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Abstract. Advanced driver assistance using cameras is a first impor-
tant step towards autonomous driving tasks. However, the computa-
tional power in automobiles is highly limited and hardware platforms
with enormous processing resources such as GPUs are not available in
serial production vehicles. In our paper we address the need for a highly
efficient fusion method that is well suited for standard CPUs.

We assume that a number of pairwise disparity maps are available,
which we project to a reference view pair and fuse them efficiently to
improve the accuracy of the reference disparity map. We estimate a
probability density function of disparities in the reference image using
projection uncertainties. In the end the most probable disparity map is
selected from the probability distribution.

We carried out extensive quantitative evaluations on challenging stereo
data sets and real world images. These results clearly show that our
method is able to recover very accurate disparity maps in real-time.

1 Introduction

Dense real-time multi-view stereo allows for a wide spectrum of useful appli-
cations including automotive driver assistance or robotics. Although a large
amount of research has been devoted to the stereo problem using image
pairs [1,3,5,7,6,8,14,17] and using multiple cameras [2,10,12,13,15,16], obtaining
dense high-quality disparity maps in real-time is still a challenging problem. Tra-
ditional real-time stereo methods [6,17] still lack accuracy compared to methods
which do not impose time constraints. A few multi-view stereo methods [11,18]
may achieve real-time performance, but only by using the enormous processing
power of graphics cards. However, such hardware is usually not available on mo-
bile platforms and therefore it is absolutely necessary that all calculations can
be performed in real-time on a standard mobile CPU at video frame rate.

Another important problem based on traditional pairwise stereo methods is
motion-stereo. In Fig. 1 we show an example of our automotive driver assistance
application where the camera is mounted laterally on a vehicle. The disparity
maps can be computed from consecutive image frames over time while the vehicle
is moving. From these disparity maps, we build a model of the environment, in
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(a) (b) (c) (d)

Fig. 1. Real-time motion-stereo for automotive driver assistance. When the vehicle
moves, depth is inferred via motion-stereo. (a) A camera on the side of the vehicle
observes the lateral space. (b) One frame captured by the side camera. (c) Disparity
map obtained by pairwise real-time stereo matching. (d) Result of our proposal.

order to mitigate collisions or to find lateral parking spaces. Even at higher
velocities, the disparity maps obtained over time exhibit a large overlap and
thus depth information is highly redundant. At the same time, due to the real-
time stereo method used, disparities are very error prone. The question is how
to fuse all those disparity maps to improve the accuracy of the disparity map
defined by a reference image pair, for example, the last two images in case of
motion-stereo.

In our paper we assume that a set of disparity maps is available and that
they were computed using any available short baseline stereo technique. Then,
given any other reference view pair, we propose a novel stereo fusion method to
produce an accurate disparity map of the given reference view pair by fusing all
available disparity maps. In our approach, we first project all disparity maps to
the reference view pair. After maintaining visibility constraints, we estimate a
probability density function over all valid disparities in the reference view using
uncertainties of these reprojections. Finally, this allows us to select the most
probable disparity map from this distribution.

We tested our method on the challenging datasets of Middlebury [14] and com-
pared it to the fusion methods of [11] and [19]. The experiments show that our
technique is very robust and that the quality is significantly improved, especially
at object boundaries. We also show results on real-world sequences acquired from
a camera attached to a vehicle. A very important fact is that our method allows
real-time operation on CPU without dedicated hardware.

In the remainder of the paper we will first review related work, then present
our method and finally show an exhaustive experimental evaluation.

1.1 Related Work

In recent years, traditional stereo and multi-view stereo methods have been ex-
tensively studied and tested using the available Middlebury datasets [15]. While
resulting in a large amount of excellent results, little attention has been spent
on computational performance. However, when that was the case and real-time
stereo methods were proposed [6,17], the reconstruction quality was significantly
decreasing. While multi-view stereo approaches introduce assumptions on shape
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priors and use robust photo-consistency measures, there are others which aim
to produce consistent disparity maps [4,10,11,16,19,20]. In many cases disparity
maps are produced locally using a number of overlapping views and are later
fused into either a global disparity video [19] or a full 3D model [11,18]. Again,
the vast majority of works aim at high quality reconstructions of single objects
and only very few try to minimize the computational overhead.

Since the main motivation of our work comes from motion-stereo we tend
to fuse locally overlapping disparity maps and do not aim to produce full 3D
models. Works of Merrell et al. [11] and Zhang et al. [19], which explicitly deal
with fusion of the disparity maps are thus directly related to our approach.

Merrell et al. [11] compute depth maps between neighboring views and fuse
this information based on the stability of every depth. In order to keep track
of occlusions, the stability is determined for every depth hypothesis and is de-
fined by counting occlusions in the reference and other views. A valid depth
is defined as the first depth hypothesis which is stable. However outliers affect
the stability and such hard decisions may produce incorrect depth estimates.
Further, the computational complexity grows quadratically with the number of
disparity maps and in practice real-time operation is only possible with GPU
hardware. In our paper, we overcome these problems. Our probabilistic approach
employs reprojection uncertainties, handles outliers robustly and depth-accuracy
gets improved compared to this approach.

Zhang et al. [19] impressively generalized the fusion problem by formulating it
as an energy minimization problem. In their bundle optimization framework all
disparity maps are optimized iteratively using belief propagation. In contrast to
Merrell et al. [11] they do not model occlusions or visibility constraints explicitly.
In their work these constraints are handled by the simultaneous use of geometric
coherence and color-similarity as well as the regularization of belief propagation.
The minimization of the energy functional is in practice very time consuming
and thus, this method is not an option for mobile real-time applications.

Koch et al. [9] introduced the efficient correspondence linking algorithm: by
chaining correspondences across many views outliers are rejected and accuracy
is improved. However, no solution was provided for multiple disparity maps per
view and disparities in occluded regions or outliers near the beginning of the
chain are problematic. Zach [18] fuses multiple depth maps to obtain a full volu-
metric 3D reconstruction. It was formulated as a relatively efficient method using
the GPU and produces very good results. However, the hardware requirements
are too high and the volumetric representation is problematic for our application.

Compared to other fusion methods, our work focuses on both real-time per-
formance and high quality depth maps. In our exhaustive experimentation we
obtained better depth maps, especially in occluded and discontinuity areas.

2 Method

The major problem in motion and multi-view stereo are occlusions and dis-
continuities. Here we consider a reference view pair (RVP) in which we want
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to improve disparities, especially in occluded and discontinuity areas by bring-
ing the information from other view pairs to the RVP. For this, we propose to
compute a probability density function (pdf) estimating the probabilities of the
disparities in the RVP. It is done by the reprojection of all available disparity
maps to this RVP. This allows us to construct a global pdf which is sampled
from a relatively large number of measurements coming from all disparity maps
reprojected to the RVP.

2.1 Reprojection

Our goal is to compute an improved disparity map D̂ = D̂R1,R2 for a specific
RVP (IR1 , IR2). To do this we transfer the disparity maps from all input view
pairs (e.g. D0,1, D2,3) to the RVP (IR1 , IR2). A simple triangulation and pro-
jection is sufficient [19] to perform this transfer. Independent from the transfer

method used, we refer to it using the transfer function ΘA,B
k : (xA, dA,B) �→ xk,

which transfers the point xA using input disparity dA,B = DA,B(xA) into view

Ik. So, we use functions ΘA,B
R1

and ΘA,B
R2

to compute a reprojected disparity

map D̃A,B by applying the transfer to every disparity in DA,B: D̃A,B(xR1) =

ΘA,B
R1

(xA,DA,B(xA))−ΘA,B
R2

(xA,DA,B(xA)) = xR1 − xR2 . In practice, all avail-
able disparity maps are transferred to the RVP and they are used to compute
the pdf of the disparities in the RVP.

2.2 Visibility Model

There are in general zero, one or even multiple disparity estimates for every pixel
of a reprojected disparity map depending on the occlusions and discontinuities in
DA,B. In an ideal world, the case with only one disparity occurs when cameras of
the reference and input views observe only non-occluded scene points. Multiple
disparities occur due to depth discontinuities where several input disparities of
different scene surfaces reproject to the same location in the reference view with
different disparities. In these cases we pick the closest depth estimate (i.e. the
occluding surface) to maintain correct visibility. Zero disparities occur mainly
due to occlusions and thus, no disparity information is available.

The Reliable Area: We must ensure that every reprojected disparity comes
from a surface observable in both, reference and input view pair. If that is not
the case, it means that the point corresponding to this disparity is potentially
occluded or not visible in the RVP. To check this we verify if a point on the
surface defined by the maximum disparity is outside the frustum of IA and IB .
In practice, for every point xR1 ∈ IR1 we compute xk = ΘR1,R2

k (xR1 , dmax)
and check if xk ∈ Ik for k ∈ {A,B}. If xk �∈ Ik, then the disparity at xR1 is
invalidated, meaning that either it is occluded in the RVP or it is not visible in
the input views. Here, dmax is the maximum disparity of view pair IR1 and IR2 .

2.3 Probability Density Function of Disparity

We reproject all input disparities to the RVP and use them as measurements to
compute a probability density function of the disparities in the reference image.
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Fig. 2. The pdf estimation: (a) The 2D-geometry is observed from three different stereo
cameras. (b) Disparity maps from input stereo pairs are determined. (c) The repro-
jected disparity maps to the reference view pair lead to (d) three pdfs for each repro-
jected disparity map which are finally (e) combined in one pdf.

Later, we draw from this pdf the most probable disparity at every pixel location
of the reference view as illustrated in Fig. 2.

First we build the set S of reprojected disparity maps by reprojecting all N
input disparity maps to the RVP. Now we use these disparity maps as measure-
ments to sample the pdf of disparity d at every given pixel location x in the
reference image. The unknown pdf p can be modeled as:

p(x, d) =
∑

x̃∈IR1

∑
d̃∈S(x̃)

p(x, d | x̃, d̃) p(x̃) p(d̃) (1)

where p(x, d|x̃, d̃) is the joint probability of disparity d at pixel location x given a
measurement d̃ ∈ S(x) at measured location x̃ of a reprojected disparity map in
S. We assume that all the measurements of locations and disparities are equally
probable. Therefore we consider them constant and write after marginalization:

p(x, d) ∼
∑

x̃∈IR1

∑
d̃∈S(x̃)

p(x, d | x̃, d̃) (2)

The probability p(d,x | x̃, d̃) depends on the reprojection uncertainty defined by
the probability pL(x, d | x̃, d̃) that the scene point X(x̃, d̃) (computed from the
uncertain correspondence xA ↔ xB before reprojection) projects to the location
x in the image IR1 . It further depends also on the probability pD(x, d | x̃, d̃) that
the disparity of X is d in the RVP. So we write it as:

p(x, d | x̃, d̃) = pL(x, d | x̃, d̃) · pD(x, d | x̃, d̃) (3)

These uncertainties are naturally coming from the input image pairs and can
be directly estimated there. In the following, we use the transfer function Θ to
relate the uncertainties to the RVP. The location uncertainty at pixel position
x is measured by the discrepancy between the true location xA = ΘR1,R2

A (x, d)

and the measured location x̃A = ΘR1,R2

A (x̃, d̃) in the input image obtained by
back-projections of the true x and measured x̃ locations from the reference
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image. Thus, pL has its maximum value when the true xA and measured x̃A

back-projections coincide and it decreases with increasing distance. So we use:

pL(x, d|x̃, d̃) ∼ exp

(
− 1

2σ2
x

∥∥∥ΘR1,R2

A (x, d)−ΘR1,R2

A (x̃, d̃)
∥∥∥
2

2

)
(4)

Similarly, pD is maximal at d̃ and decreases for differing depths:

pD(x, d|x̃, d̃)∼exp

(
− 1

2σ2
d

∥∥∥(ΘB(x̃, d̃)−ΘA(x̃, d̃))−(ΘB(x, d)−ΘA(x, d))
∥∥∥
2

2

)

(5)

where ΘA = ΘR1,R2

A , ΘB = ΘR1,R2

B and σx is the location uncertainty defined by
pixelwise sampling and σd is the accuracy of the disparity estimation. Note that
x̃ and d̃ are taken from the set of reprojected disparity maps. If the disparities d
and d̃ are the same, the point defined by (x, d) will project to exactly the same
input locations x̃A and x̃B and define the same disparity in the input view, which
will result in the maximum value. Otherwise, points with different disparities or
locations will back-project to locations away from the measurement (x̃, d̃) and
get lower values.

2.4 Disparity Estimation

Finally we estimate the most probable disparity map from the estimated pdf.
From p(x, d) = p(d|x)p(x) and assuming that image positions x are equiprobable

we get: d̂ = argmaxd p(d|x) = argmaxd p(x, d).

3 Results

We evaluated our method using classical stereo datasets with ground truth
[14] and real world data. In our experiments we used σd = 1 and σx = 1.
The standard two-frame stereo datasets from Middlebury [14] contain up to 9
images from which we computed 72 (Venus, Teddy, Cones) or 42 (Art, Moe-
bius, Aloe) disparity maps from all possible image combinations. After that, we
fused these disparity maps to the standard reference view pair (e.g. (2, 6) for
Teddy) and computed the percentage of erroneous pixels (disparities that dif-
fer by more than 1). For stereo processing we used Geodesic Support Weights
[8] (GSW). We used constant parameters for stereo among all baselines and
datasets.

3.1 Comparison to Other Fusion Methods

We compare our method to other fusion algorithms, in particular the stability-
based algorithm of Merrell et al. [11] using our own implementation running on
CPU and the bundle optimization of Zhang et al. [19] using their implementation
(without their stereo-matching and without final bundle adjustment). We used
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Art True Disparities Our Method Zhang et al. Merrell et al.

Fig. 3. The disparities and bad pixels of different fusion methods for the dataset Art.
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Fig. 4. The performance of different fusion methods. Disparity maps were computed
using GSW [8]. Error bars show percentages of disparities that differ by more than 1
from the ground truth in the whole image (all), non-occluded (nocc) or occluded pixels
(occl) and regions near discontinuities (disc). We fused up to 72 disparity maps.

the same input data (i.e. disparity maps) for all fusion methods. The method of
[19] seems to be optimized for short baselines (the video sequences of [19] have
much smaller baselines than the datasets of [14]). Our method works better with
larger baselines, which is our target application. The error bars in Fig. 4 show
that our method performs very well. It is also visible in Fig. 3 and Fig. 5 where
our method preserved sharp object boundaries and thin structures.

Analysis: In Merrell, visibility-constraints are enforced using their expensive
definition of stability (having a complexity of O(N2) – please note that the
computation of S is O(N) and that for every disparity of S, N − 1 projections
are performed). However, visibility can be maintained more efficiently using our
reprojection and the reliable area (having O(N), because at every entry of S
we only update the global pdf by summation). This also has the big advantage
that projection uncertainties can be used later, whereas in Merrell it is not
possible. Moreover, for optimal stability calculation it is important that the
number of outliers having a negative stability is equal to the number of outliers
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Left Image True Disparities Our method Zhang et al. Merrell et al.

Fig. 5. The disparity maps of different fusion methods for the datasets Teddy (first
row), Cones (second row) and Meobius (bottom row).

with positive stability. Our experiments suggest that this assumption is often
violated in occluded regions, where usually many outliers are present.

In Zhang’s method, the correct disparity is supported by the simultaneous
combination of geometric coherence and color similarity.Geometric coherence alone
supports also background disparities of surfaces occluded by foreground objects in
the reference view, because visibility is not determined and this is problematic in
cases where fore- and background objects are of similar color. The optimization
using belief propagation ensures smoothness in these ambiguous situations, but
seems to perform suboptimally in regions near discontinuities. Due to the results
we obtained during our evaluation (our method does not use any kind of optimiza-
tion), we believe that our pdf will also bring a huge advantage in comparison to the
method of Zhang, especially near discontinuities and for wide-baseline sequences.
We would like to stress that we explicitly compute visibility to disambiguate depth
hypotheses at an early stage and model projection uncertainties.

Execution Times: For the dataset Teddy (72 disparity maps) our method took
8.7 s (not optimized), the method of [11] took 40.7 s and the method of [19] 175
minutes (i.e. 146 s/disparity map). These times do not include stereo matching
and were measured on an Intel E8200 dual-core with 2.66 GHz (for our method
and [11]) or an Intel E5405 quad-core Xeon CPU with 2.00 GHz (for [19]). For our
real-time implementation, we use SIMD-instructions of the SSE2 instruction set
and simplified the reprojection for motion-stereo. Using pre-computed kernels,
we are able to fuse 16 disparity maps in just 30 ms on a mobile CPU (2 GHz;
320x240 pixels; 60 disparity levels).
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3.2 Real World Sequences

We tested our method on real world sequences from a moving vehicle and we
estimate the the transfer function from sensors attached to the vehicle. Fig. 6
shows a rectified camera frame, one input disparity map (computed using a real-
time stereo method [17]) and one fused disparity map. For fusion we used a
highly optimized implementation (using SIMD instructions) to fuse 16 adjacent
input disparity maps. Due to the monocular camera system, it must be noted
that objects which move parallel to the image plane might be determined with a
wrong depth. However, such situations arise relatively seldom in our application.

Rectified view One input disparity map Fused disparities

Input view Our result Zhang et al.

Fig. 6. First two rows: Our method applied to sequences from our vehicle using real-
time stereo [17]. Last row: results for the sequence Road provided by [19].

Fig. 6 shows fused disparities of a sequence provided by [19], along with the
camera frame and their fusion result. For stereo matching we used GSW [8]
and ensured a minimal and maximal baseline of 5 and 7 frames (the baseline
of adjacent frames was too small for robust matching with GSW). We fused
disparity maps of only 20 adjacent frames and this explains why some disparities
which are outside of the field of view are missing (black regions).

4 Conclusion

In this paper, we propose a novel probabilistic method for fusing disparity maps
in classical stereo or motion-stereo setups. We achieve this by computing a
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probability density function from all provided disparity maps. From this dis-
tribution, we determine the most probable disparity map for a given reference
view pair.

We introduced a generic probabilistic model that uses projection uncertainties
for robustness against outliers and reprojection using the reliable area for efficient
and explicit visibility determination.
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