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Abstract. The creation of 2D ultrasound mosaics is becoming a com-
mon clinical practice with a high clinical value. The next step coming
along with the increasing availability of 2D array transducers is the cre-
ation of 3D mosaics. In the literature of ultrasound registration, the
alignment of multiple images has not yet been addressed. Therefore, we
propose registration strategies, which are able to cope with problems
arising by multiple image alignment. Among others, we use simultane-
ous registration which urges the usage of multivariate similarity mea-
sures. In this paper, we propose alternative multivariate extensions based
on a maximum likelihood framework. Experimental results show the
good performance of the proposed registration strategies and similarity
measures.

1 Introduction

At the moment, a paradigm shift takes place in ultrasound (US) imaging, moving
from 2D to 3D image acquisition. The next generation of 2D array US trans-
ducers with CMUT1 technology could accelerate this shift by offering superior
and efficient volumetric imaging at a lower cost. From a current perspective, the
only drawbacks that remain are the limited field-of-view (FOV) of the acquired
images and the reflectance of the beam from structures with high acoustical
impedance causing occlusion. The idea of mosaicing is to address these issues
by combining the information of several images taken from different poses. The
focus can rest on quality improvement by imaging the same scene from different
directions, or the extension of the FOV by stitching together consecutively taken
images. Whatever we are interested in, the first step is to calculate the correct
global alignment for which we propose solutions in this report.

The rigid intensity-based registration that we use for the alignment is not
trivial to compute because of the limited amount of overlap between the images.
For mosaicing the registration scenario changes since the perfect alignment does
not correspond to a maximal overlap, like it is in most cases, putting a special
interest on the overlap invariance of the measures. An additional difficulty lies
in the interface enhancing nature of ultrasound images, making acquisitions of
the same object but from varying viewing angles not necessarily look the same.
Feature-based registration methods like in [1] were discarded due to the problems
of automatic salient feature point identification.
1 Capacitive Micromachined Ultrasound Transducer.
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1.1 Clinical Value of Ultrasound Mosaicing

The usage of ultrasound mosaicing provides the sonographers not just with a
compounded volume of higher quality; recent studies also state a couple of other
clinical advantages that come along with the extended FOV. First, the spatial
relationship among structures that are too large for a single volume is easier to
understand [2]. Second, sonographers have the flexibility to visualize anatomical
structures from a variety of different angles [3]. Third, size and distance mea-
surements of large organs are possible [2]. Fourth, individual structures within a
broader context can be identified by having an image of the whole examination
area [4]. And last, because of the increased features in the compounded view,
specialists that are used to other modalities than ultrasound can better under-
stand the spatial relationships of anatomical structures [5]; helping to bridge the
gap between the modalities and making it easier to convey sonographic findings
to other experts.

But it is not just the improvement of already existing workflows, the creation
of high quality mosaics may also create new medical applications for ultrasound
that do not yet exist at all or are reserved for other modalities.

1.2 Problems Statement

In the literature of ultrasound mosaicing, the global alignment of multiple im-
ages is deduced from a sequence of pairwise ones. Gee et al. [6] reduce the
3D-3D registration problem to a 2D-2D one by registering the dividing planes
to each other. Poon et al. [7] use a block-based rigid and block-based warping
approach for the registration. The disadvantages that come along with the usage
of pairwise registrations for ultrasound mosaicing are twofold. First, by stitching
together pairwise aligned images, registration errors can be accumulated leading
to a non-consistent global alignment, see figure 1. Second, during the pairwise
registrations only a fraction of the available information is taken into account
making it prone to misregistrations. The registration is further complicated by
the viewing angle dependent US images and the high demands on the overlap
invariance by mosaicing.

2 Mosaicing Strategies

In this section, we present registration strategies that directly address the prob-
lems that arise during the mosaic creation as mentioned in section 1.2. We
denote the n images by U = {u1, . . . , un} with the global transformations
T = {T1, . . . , Tn}, and the pairwise transformation Ti,j between each overlapping
image pair ui and uj.

2.1 Pairwise Registration with Lie Normalization

The first strategy is based on pairwise registrations and uses a consecutive nor-
malization to reduce the accumulated error. Supposing that we would have all
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correct global transformations, we could express the pairwise registration error
εi,j as

εi,j = T−1
i · Tj · Ti,j .

In practice, the opposite holds since we know the pairwise registrations Ti,j

and use them to estimate the global transformations Ti. The best estimation
of the global alignment is reached when the overall error is minimized. The
minimization is not trivial because rigid transformations do not belong to a
vector space but rather lie on a non-linear manifold forming a Lie group [8].
We use the Lie group based normalization framework, as it was proposed by
[9] for the alignment of 2D optical images, to align the 3D ultrasound images.
An error function με is introduced to assign each transformation εi,j a distance
value serving as score for the optimization. Assuming εi,j being a sample of the
random error ε with Fréchet matrix mean identity and covariance matrix Σεε,
the Mahalanobis distance that we use as error function is

μ2
ε(εi,j) = logId(εi,j)T · Σ−1

εε · logId(εi,j).

The global pose estimation is expressed by the following least-squares criterion

[T̂1, . . . , T̂n] = arg min
[T1,...,Tn]

1
2

�
(i,j)

ωi,j · μ2
ε(εi,j).

with the quality weights ωi,j . These weights model the quality of each pairwise
registration. Since we are interested in an automated registration we use the
amount of overlap as an indicator of the registration quality. The final algorithm
using the Lie normalization is stated in the following listing. The registration is
accepted if the total error εt =

�
(i,j) ωi,j ·μ2

ε(εi,j) is below a scenario dependent
threshold δ.

1. Start with initial global transformations T = {T1, . . . , Tn}
2. Do

2.1 Deduce initial pairwise transformations Ti,j from T
2.2 Compute all pairwise registrations Ti,j

2.3 Estimate new T from calculated Ti,j with Lie normalization
3. While (εt > δ)
4. Return T

2.2 Simultaneous Registration

The second strategy is based on simultaneous registration which is an active field
of research and has so far mainly been used for population studies [10] in medical
imaging. The principle of simultaneous registration is to consider all available
images at the same time during the registration process. The registration frame-
work has to be extended to deal with multivariate similarity measures and the
simultaneous optimization of n ·6 parameters. Up to now, only a limited number
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Table 1. Summary of bi- and multivariate similarity measures in shortened notation

Pairwise Semi-Simultaneous Full-Simultaneous Voxel-Wise

SSD E[(u - v↓)2]
n�

i=2

ω1,iE[(u1 -u↓
i )2]
�
i<j

ωi,jE[(u↓
i - u↓

j )
2
�

xk∈Ω

ωkEi[(μk - u↓
i (xk))2]

NCC E[ũ · ṽ↓]
n�

i=2

ω1,iE[ũ1 · ũ↓
i ]
�
i<j

ωi,jE[ũ↓
i · ũ↓

j ]
�

xk∈Ω

ωkE[ũ↓
1 · ũ↓

2 · · · ũ↓
n]

CR Var[E(u|v↓)]
Var(u)

n�
i=2

ω1,i
Var[E(u1|u↓

i
)]

Var(u1)

�
i<j

ωi,j

Var[E(u↓
i

|u↓
j
)]

Var(u↓
i
)

-

MI MI(u,v↓)
n�

i=2

ω1,iMI(u1, u
↓
i )
�
i<j

ωi,jMI(u↓
i , u↓

j )
�

xk∈Ω

ωkH(P k)

of multivariate extensions for popular measures have been proposed, which we
discuss together with our own extensions in section 3.

The reason for choosing a simultaneous registration approach is twofold, like
the problems occurring during registration. First, the accumulated registration
error that was treated in a separated normalization step by the above mentioned
registration approach, is now handled intrinsically during the registration. Sec-
ond, the multivariate similarity measures create more robust cost functions for
the optimizer to run on because each image is put into its global context trying
to get the maximum out of the depicted structures.

For our mosaicing framework we use two variants of the simultaneous ap-
proach that we refer to as full-simultaneous and semi-simultaneous registration,
both using multivariate similarity measures but differing in their optimization
strategy. While for the full-simultaneous registration the optimization is per-
formed in the n ·6 dimensional parameter space, the semi-simultaneous registra-
tion focuses on the optimization of the 6 pose parameters of one image at a time.
During one cycle each image is registered for a limited number of registration
steps. Several of these cycles yield a stepwise simultaneous convergence to the
best global alignment.

The reason for working with two versions lies in the increased computa-
tional complexity of simultaneous methods, which is a logical consequence of
the higher dimensional parameter space and multivariate similarity metrics. The
semi-simultaneous approach has lower complexity because of the reduced param-
eter space and the measures, which need only to be evaluated within the grid
of the currently optimized image, in contrast to the whole compounding vol-
ume for the full-simultaneous one. A complete drift of the scene is avoided by
normalizing the transformations so that one of them be the identity.

3 Multivariate Similarity Measures

Multivariate similarity measures have not yet been used for the registration of
multiple ultrasound images in spite of their already mentioned advantages. We
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focus our analysis on four popular measures, whose applications are not lim-
ited to ultrasound registration: sum of squared differences (SSD), normalized
cross-correlation (NCC), mutual information (MI), and correlation-ratio (CR).
A maximum-likelihood estimation (MLE) framework is commonly used to math-
ematically model the registration process. For the bivariate case the imaging
process is described by u(x) = f(v(T (x))) + μ, with the images u and v, the
transformation T , the stationary white Gaussian noise μ and the intensity map-
ping f . The negative log-likelihood function is

− log L(T, μ, f) = − log P (u|v, T, μ, f) = − log P (μ = u(x) − f(v(T (x)))) (1)

with P the probability density function (PDF). In the work of Viola [11] and Roche
et al. [12] the deduction of the four measures based on this equation is shown
by varying the assumptions for the intensity mapping. We are extending this ap-
proach to multiple images under the assumption of conditional independent im-
ages. The extended MLE denoting the transformed images u↓

i = ui(Ti(.)) is

− logL(T , μ, f) = − log P (u↓
1|u

↓
2, . . . , u

↓
n, μ, f)

= − log P (μ2 = u↓
1 − f2(u

↓
2), . . . , μn = u↓

1 − fn(u↓
n))

= −
n�

i=2

log P (μi = u↓
1 − fi(u

↓
i ))

with intensity mappings f = (f2, . . . , fn) and Gaussian noises μ = (μ2, . . . , μn).
Each summand corresponds to the bivariate formula in equation 1 and the de-
duction of the four similarity measures can therefore be done analogously as in
[11,12]. This shows that we directly obtain multivariate extensions of that form
by summing up the bivariate measures. In this type of extension we pick one
reference image, in the formulae above u1, which suits very well for the semi-
simultaneous registration approach. Setting up a similarity matrix M with the
entries Mi,j = SM(ui, uj), this corresponds to summing up its first row. An
adaptation of this approach to the full-simultaneous registration is obtained by
summing up the whole similarity matrix, which can often be limited to the upper
triangular part because of the symmetry of the measures. Additionally, the pairs
are weighted by an overlap dependent factor ωi,j emphasizing pairs with high
overlap. The final criteria are shown in figure 1.

A second type of extension, the voxel-wise one, that we are using is based on
the idea of congealing [10] and puts the focus on a voxel location at a time. In
the MLE framework, it is integrated by estimating PDFs for each voxel under
the assumption of independent but not identical distributed coordinate samples

− log L(T ) = − log P (u↓
1, u

↓
2, . . . , u

↓
n)

= − 1
|Ω| log

�
xk∈Ω

P k(u↓
1(xk), . . . , u↓

n(xk))

≈ − 1
|Ω|
�

xk∈Ω

log
n�

i=1

P k(u↓
i (xk)) (2)
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(a) Pairwise (b) Lie Norm (c) Semi-Sim (d) Full-Sim (e) Setup

Fig. 1. Error sum up by pairwise reg. Simultaneous reg intrinsically deals with it

with the grid Ω. By further assuming a Gaussian distribution of values at each
location with mean μk and variance σ2

k the negative log-likelihood function is

− log L(T ) = − 1
|Ω|
�

xk∈Ω

n�
i=1

log

�
1√
2πσ

e
− 1

2

(u↓
i
(xk)−μk)2

σ2
k

�

≈ 1
|Ω|
�

xk∈Ω

1
σ2

k

n�
i=1

(u↓
i (xk) − μk)2. (3)

We consider this criterion as a voxel-wise extension of SSD because similar as-
sumptions as for its pairwise deduction in [11] were used. We also use a voxel-wise
criterion for NCC that, in our opinion, captures the basic idea of it by multi-
plying the values at each voxel location of the normalized images ũi. We added
the congealing criterion [10] as an extension of MI to the figure 1, because they
are both based on the estimation of entropy H, although they have different
properties. For all, we added the weighting factor ωk emphasizing locations with
a higher number of overlapping images. The usual extensions based on higher-
dimensional PDFs are not applicable to mosaicing because they are not flexible
enough to allow for varying numbers of overlapping images.

4 Results

We tested the mosaicing strategies and multivariate similarity measures on two
data sets. First, 3D images of a heart clay model in the water bath were acquired
from six different angles. The imaging setup is shown in fig. 1(e). We use a cutting
plane through the reconstruction volume to visualize the registration error. When
using pairwise registration the summed up error leads to a large displacement
between the first and sixth volume, fig. 1(a). The pairwise registration with a
successive Lie normalization corrects this error, but the alignment is not perfect,
fig. 1(b). The semi-simultaneous registration provides good results, fig. 1(c), but
superior results are obtained with the full-simultaneous registration, fig. 1(d).

The second data set consists of four sequentially taken acquisitions from a
baby phantom, see fig. 3(d) for the compounded result. For this data set we
plot all the proposed similarity measures by moving the second image along the
cranio-caudal axis, see fig. 2. One clearly sees the high overlap dependence of the
bivariate measures, being a source for misregistrations (total overlap at -37mm
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Fig. 2. Similarity plots of the measures in figure 1 on the baby phantom

(a) Pairwise registration (b) Full-Simultaneous registration

(c) Voxel-wise registration (d) 3D Baby Phantom

Fig. 3. Mean and standard deviation of pose parameters after 100 registrations
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displacement). The multivariate measures provide a smooth cost function with
a clear maximum at the correct position 0. We also ran a registration study,
with an initial random deviation of maximal ±20 mm in translation and ±20° in
rotation from the correct pose. The mean and standard deviation of each pose
parameter of the three moving images after the registration are shown in fig. 3.
The pairwise registration leads to a misalignment because of the total overlap of
the images 2 and 3, indicated in fig. 3(a) by a mean of -34.9 mm of parameter 7.
The distribution of the mean values around 0 after the simultaneous registration,
together with low variances, indicates good registration results, see fig. 3(b) and
3(c). For a demonstration of the performance of the simultaneous registration
on the baby phantom, see the video material.

5 Conclusion

We have described three registration strategies for ultrasound mosaicing which
are put into relationship to the standard pairwise sequential one. Our experi-
ments clearly show that these advanced strategies are necessary to address the
problems that can occur during ultrasound mosaicing. The best registration re-
sult was obtained with the full-simultaneous approach but this comes with a high
computational cost. Moreover, we set up a MLE framework to deduce extensions
of popular similarity measures. This allows us to derive a new class of multivari-
ate measures by summing up the pairwise ones and also to deduce a voxel-wise
extension of SSD. Our results show the good performance of these measures
in contrast to the bivariate ones. Seamless extension to affine and deformable
transformation models is possible especially using the proposed voxel-wise SSD.
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