

Three-Dimensional Ultrasound Mosaicing

Christian Wachinger^{1,2}, Wolfgang Wein^{1,2}, Nassir Navab¹

¹Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany ²Siemens Corporate Research (SCR), Princeton, USA

Moving from 2D to 3D US Imaging

3D with: - Freehand US - Wobbler probes

CMUT Technology

Clinical Value of Ultrasound Mosaicing

Extended Field-of-View and Quality Improvement:

- Measuring spatial relationship among large structures (Kim, 2003)
- Sonographers have the flexibility to visualize anatomical structures from a variety of different angles (*Peetrons, 2002; Leung, 2005*)
- Size and distance measurements of large organs (Ying, 2005)
- Individual structures within a broader context can be identified by having an image of the whole examination area (*Dietrich, 2002*)
- Specialists not used to ultrasound can better understand the spatial relationships of anatomical structures (Heinrich, '03)

Agenda

- **1. Mosaicing Strategies**
- 2. Similarity Measures
- 3. Experiments & Conclusion

Problem Statement

Proposed 3D mosaicing techniques by (Gee, 2003) and (Poon, 2006) use a sequence of pairwise registrations

Partial Overlap:

High demands on the overlap invariance of similarity measures Accumulation errors:

Mosaicing Strategies – Multiple Image Alignment

- Having n Images u₁, ..., u_n
- Pairwise Transformations T_{i,j} from intensity-based rigid registration
- Global Transformations T₁, ..., T_n

Sequential Pairwise Registration

Complete Pairwise Registration

Lie Group based Normalization (Vercauteren, MICCAI 2005)

- Registration of all images at the same time
 - Multivariate Similarity Measures
 - Parameter Space: n · 6
- Adressing the mentioned problems
 - Accumulation errors are dealt with intrinsically
 - Better conditioned costfunction:
 - Overlap
 - Viewing angle dependent US images
- Increasing Computational Complexity
 - Higher dimensional parameter space
 - Evaluation of cost function more expansive
- Semi-Simultaneous Registration
 - Multivariate Similarity Measure
 - Moving one image at a time

A M

Mosaicing Strategies

	Sequential PW	Complete PW	Semi-Simultaneous	Full-Simultaneous
Optimization	6	6	6	n · 6
Similarity	Bivariate	Bivariate	Multivariate	Multivariate
Overlap	Sequence	All	All	All

Agenda

- 1. Mosaicing Strategies
- 2. Similarity Measures
- 3. Experiments & Conclusion

- Maximum likelihood estimation to model registration mathematically
- Imaging setup

$$u(x) = f(v(T(x))) + \varepsilon$$

• Negative log-likelihood function

$$-\log \mathcal{L}(T,\varepsilon,f) = -\log P(\varepsilon = u - f(v^{\downarrow}))$$
$$= -\log P(u|v,T,\varepsilon,f)$$

$$v^{\downarrow} = v(T(.))$$

• Derivation of SSD, NCC, CR, and MI (Viola 1995, Roche 2000)

$$u, v:$$
 images

- ε : Gaussian noise
- f: intensity mapping

1. Summed-Up Bivariate Extension

Extension of Likelihood Function to Multiple Images

1. Summed-Up Bivariate Extension

$$-\mathcal{L}(\mathcal{T}) = -P(u_1|u_2, \dots, u_n, \mathcal{T}, \vec{f}, \vec{\varepsilon})$$

$$= -\prod_{i=2}^{n} P(u_1|u_i, T_i, f_i, \varepsilon_i)$$

$$\mathcal{T} = \{T_1, \dots, T_n\}$$

$$\mathcal{T} = \{T_1, \dots, T_n\}$$

$$\mathcal{T} = \{T_1, \dots, T_n\}$$
Bivariate formula
Semi-Simultaneous:
$$\sum_{i=2}^{n} SM(u_1, u_i)$$
Full-Simultaneous:
$$\sum_{i\neq j}^{n} SM(u_i, u_j)$$

Extension of Likelihood Function to Multiple Images

2. Voxel-wise extension

$$-\log(\mathcal{L}(\mathcal{T})) = -\log P(u_1, u_2, \dots, u_n, \mathcal{T})$$
$$= -\sum_{x_k \in \Omega} \log P^k(u_1(x_k), u_2(x_k), \dots, u_n(x_k), \mathcal{T})$$

- Independent but not identical distributed coordinate samples
- Allows for varying numbers of overlapping images
- First applied to medical imaging by Zöllei, 2005

Three-Dimensional Ultrasound Mosaicing - Wachinger et al.

AM

Summary – Multivariate Similarity Measures

	Pairwise	Semi-Simultaneous	Full-Simultaneous	Voxel-Wise
SSD	$\mathbb{E}[(u \operatorname{-} v^{\downarrow})^2]$	$\sum_{i=2}^{n} \omega_{1,i} \cdot \mathbb{E}[(u_1 - u_i^{\downarrow})^2]$	$\sum_{i \neq j} \omega_{i,j} \cdot \mathbb{E}[(u_i^{\downarrow} - u_j^{\downarrow})^2$	$\sum_{x_k \in \Omega} \omega_k \cdot \mathbb{E}_i[(\mu_k - u_i^{\downarrow}(x_k))^2]$
NCC	$\mathbb{E}[\tilde{u}\cdot\tilde{v}^{\downarrow}]$	$\sum_{i=2}^{n} \omega_{1,i} \cdot \mathbb{E}[\tilde{u}_1 \cdot \tilde{u}_i^{\downarrow}]$	$\sum_{i \neq j} \omega_{i,j} \cdot \mathbb{E}[\tilde{u}_i^{\downarrow} \cdot \tilde{u}_j^{\downarrow}]$	$\sum_{x_k \in \Omega} (\omega_k \cdot \tilde{u}_1^{\downarrow} \cdot \tilde{u}_2^{\downarrow} \cdots \tilde{u}_n^{\downarrow})$
CR	$\frac{\operatorname{Var}[\mathbb{E}(u v^{\downarrow})]}{\operatorname{Var}(u)}$	$\sum_{i=2}^{n} \omega_{1,i} \cdot \frac{\operatorname{Var}[\mathbb{E}(u_1 u_i^{\downarrow})]}{\operatorname{Var}(u_1)}$	$\sum_{i \neq j} \omega_{i,j} \cdot \frac{\operatorname{Var}[\mathbb{E}(u_i^{\downarrow} u_j^{\downarrow})]}{\operatorname{Var}(u_i^{\downarrow})}$	-
MI	$\mathrm{MI}(u,v^{\downarrow})$	$\sum_{i=2}^{n} \omega_{1,i} \cdot \mathrm{MI}(u_1, u_i^{\downarrow})$	$\sum_{i \neq j} \omega_{i,j} \cdot \mathrm{MI}(u_i^{\downarrow}, u_j^{\downarrow})$	$\sum_{x_k \in \Omega} \omega_k \cdot \mathbf{H}(P^k)$

Agenda

- 1. Mosaicing Strategies
- 2. Similarity Measures
- 3. Experiments & Conclusion

Experiments on Clay Model

Pairwise

Lie normalization

Semi-Simultaneous

Full-Simultaneous

CAMP

Experiments on Baby Phantom

Similarity Plot: moving image 2 along the cranio-caudal axis

Experiments on Baby Phantom

Experiments on Baby Phantom

- Random Registration Study
 - 4 images
 - Up to ± 20 mm/degree random initial displacement
 - 100 registrations
 - Sum of Squared Differences
 - Plotting mean and standard deviation

AM

Conclusion

- Ultrasound mosaicing as multiple image alignment
- Proposal of specific registration strategies for mosaicing
- Deduction of multivariate extensions for similarity measures under usage of a maximum likelihood framework
- Experiments show the superior performance of proposed strategies

Publications

Further information: Diploma Thesis http://campar.in.tum.de/Students/DaWachinger

- Kim, S.H., Choi, B.I., Kim, K.W., Lee, K.H., Han, J.K.: *Extended FOV Sonography: Advantages in Abdominal Appl.* J Ultrasound Med 22(4) (2003)
- Peetrons, P.: *Ultrasound of muscles*. European Radiology 12(1) (2002) 35{43
- Dietrich, C., Ignee, A., Gebel, M., Braden, B., Schuessler, G.: *Imaging of the abdomen*. Z Gastroenterol 40 (2002)
- Henrich, W., Schmider, A., Kjos, S., Tutschek, B., Dudenhausen, J.W.: *Advantages of and applications for extended eld-of-view ultrasound in obstetrics*. Archives of Gynecology and Obstetrics V268 (2003)
- Gee, A.H., Treece, G.M., Prager, R.W., Cash, C.J.C., Berman, L.H.: *Rapid registration for wide eld-of-view freehand 3d ultrasound*. IEEE Trans. Med. Imaging 22(11) (2003) 1344{1357
- Poon, T., Rohling, R.: *Three-dimensional extended eld-of-view ultrasound*. Ultrasound in Medicine and Biology 32(3) (2005)
- Pennec, X.: Statistical Computing on Manifolds for Computational Anatomy. Habilitation a diriger des recherches, Universite Nice Sophia-Antipolis (2006)
- Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: *Robust mosaicing with correction of motion distortions and tissue deformation for in vivo bered microscopy*. Medical Image Analysis 10(5) (2006)
- Zoellei, L., Learned-Miller, E., Grimson, E., III, W.W.: *Efficient population registration of 3d data*. In: ICCV. (2005)
- Viola, P.A.: *Alignment by Maximization of Mutual Information*. Ph.d. thesis, Massachusetts Institute of Technology (1995)
- Roche, A., Malandain, G., Ayache, N.: *Unifying maximum likelihood approaches in medical image registration*. Int J of Imaging Syst and Techn 11(1) (2000)