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ABSTRACT

Magnetic resonance imaging is performed without ionizing

radiation, however, the applied radio frequency power leads

to heating, which is dependent on the body part being im-

aged. Determining the patient position in the scanner allows

to better monitor the absorbed power and therefore optimize

the image acquisition. Low-resolution images, acquired dur-

ing the initial placement of the patient in the scanner, are ex-

ploited for detecting the patient position. We use Laplacian

eigenmaps, a manifold learning technique, to learn the low-

dimensional manifold embedded in the high-dimensional im-

age space. Our experiments clearly show that the presumption

of the slices lying on a low dimensional manifold is justified

and that the proposed integration of neighborhood slices and

image normalization improves the method. We obtain very

good classification results with a nearest neighbor classifier

operating on the low-dimensional embedding.

Index Terms— Manifold Learning, Classification, MRI

1. INTRODUCTION

Current magnetic resonance (MR) scanners allow the acqui-

sition of high resolution images. However, this comes with

a higher dose of radio frequency (RF) power applied to the

patient. This leads to heating in the body and has to be mon-

itored by measuring the specific absorption rate (SAR). The

limits for the maximal SAR depend on the patient position in-

side the scanner. If the position is not known, the lowest SAR

limit along the body, which is in the neck area, is to be set to

the global limit [1]. Determining the patient position within

the MR scanner enables to impose an SAR model, adaptive

to the body region, and consequently, to exploit the maximal

image resolution.

In our previous work [1], we proposed to use the novel

”move during scan” imaging protocol to determine the pa-

tient position. This enables the acquisition of low-resolution

images during the initial positioning of the patient in the scan-

ner. This has the advantage that the workflow does not have

to altered, ensuring its seamless integration and practicability.

During the acquisition, the bed moves with a relatively high

but constant speed, leading to low-resolution slices, having a
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Fig. 1. Low dimensional embedding of manifold using Lapla-

cian eigenmaps (w/ Nbh, w/ normalization) with ground truth

labeling. Below, coronal plane of move during scan volume.

resolution of 64× 64 pixels, and a slice spacing of 7.5 mm to

15 mm (see Figure 1 for examples and a coronal view).

The objective of patient position detection is to classify

these slices according to different regions of the body such as

head, abdomen, and lower leg. In [1], principal component

analysis (PCA) is used to reduce the dimensionality before

the classification is performed. PCA [2] and also the inde-

pendent component analysis (ICA) [3] find a set of basis im-

ages, and represent an input image as linear combination of

those. However, the representation of images as a linear com-

bination of those basis images may require many of those for

an accurate representation, and further, the internal structure

may not be easy to identify by analyzing the weighing param-

eters. Having data that lies on a low-dimensional manifold
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(a) Laplacian eigenmaps, w/o Nbh,

w/o normalization.
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(b) Laplacian eigenmaps, w/ Nbh,

w/o normalization.
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(c) Isomap, w/ Nbh, w/ normal.
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(d) PCA, w/ Nbh, w/ normalization

Fig. 2. Low dimensional embeddings. Data labeling with

ground truth segmentation.

living in a high-dimensional space, more appropriate meth-

ods were proposed that respect this structure [4, 5]. In this

article, we evaluate those methods for patient position detec-

tion, focusing on Laplacian eigenmaps [5], with exemplary

low-dimensional embeddings shown in Figures 1 and 2. Ad-

ditionally, we investigate if the MR slices lie on a manifold

with intrinsic low dimensionality. In order to achieve good

classification results, we adapt manifold learning methods by

integrating the consideration of neighboring slices and a pre-

ceding normalization. The classification is performed with a

nearest neighbor classifier.

2. BACKGROUND

The task of dimensionality reduction is to find the under-

lying structure in a large set of points embedded in a high

dimensional space. The advantages of a successful dimen-

sionality reduction are: First, it assists the classification be-

cause a direct classification in high-dimensional space does

not respect the manifold structure whereas the classification

on the low-dimensional embedding does. And second, the

lower-dimensional embedding enables to visualize the man-

ifold and, therefore, indicates whether a classification seems

feasible.

Manifold learning for dimensionality reduction has re-

cently gained much attention to assist image processing tasks

such as segmentation [6], registration [7, 8], tracking [9],

recognition [10], and computational anatomy [11]. Common

techniques for manifold learning are Isomap [4], local linear

embedding [12], and Laplacian eigenmaps [5]. The appli-

cations vary by using either the intensity image as input or

Table 1. Results of classification for Laplacian eigenmaps

with neighborhood and image normalization. The overall cor-

rect classification rate is 94.0%.

Recognized Class Labels in %

Head Neck Lung Abd. U. Leg L. Leg

Head 95.0 5.0 0.0 0.0 0.0 0.0

Neck 25.9 69.0 5.2 0.0 0.0 0.0

Lung 0.0 0.9 92.0 6.9 0.3 0.0

Abd. 0.0 0.0 2.0 97.2 0.8 0.0

U. Leg 0.0 0.0 0.0 2.1 84.5 13.5

L. Leg 0.0 0.0 0.0 0.0 1.6 98.4

calculating coordinate transformations, for instance diffeo-

morphic warps [13, 11, 8], between the images, which sub-

sequently serve as input. The calculation of the deformation

field makes sense, if all images to be analyzed show similar

objects e.g. brain images. In our application, we need to deal

with images from all body parts, for which it would not be

possible to register one to the other. We therefore directly

perform the dimensionality reduction on the original images.

The suggestion that the MR slices lie on a low-dimensional

manifold in the ambient space seems to be justified because

variations between neighboring slices are smooth, and fur-

ther, slices from the same body position but different patients

are similar.

3. METHOD

In this section we describe the details of the proposed mani-

fold learning approach. Throughout, we consider one dimen-

sion of the ambient space for each image pixel. Consider-

ing k points x1, . . . ,xk in R
N lying on a manifold, we want

to find a set of corresponding points y1, . . . ,yk in the low-

dimensional space R
n (n � N ).

3.1. Pre-Processing

Precedent to applying the dimensionality reduction, we nor-

malize the intensity values in the images. Inhomogeneities

and imaging artifacts lead to variation in the intensity values

making the normalization necessary. Further, we integrated

neighborhood information to make each slice also dependent

on its locally neighboring slices. The idea is similar to the

consideration of neighborhood information in many image

processing tasks by looking not only at single pixel intensi-

ties but the local context, to make the processing more robust.

In our case, we create a new data point x′i by concatenating it

with exactly those neighbors of distance m away

x′i = [xi−m, xi, xi+m]. (1)

The concatenation leads to input slices with three times higher

dimensionality. In order to avoid the dimensionality growth,
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Table 2. Results of classification for Laplacian eigenmaps

w/o neighborhood but w/ image normalization. The overall

correct classification rate is 92.6%.

Recognized Class Labels in %

Head Neck Lung Abd. U. Leg L. Leg

Head 95.7 2.8 0.0 0.0 0.0 1.4

Neck 60.3 34.5 5.2 0.0 0.0 0.0

Lung 0.3 0.3 91.7 6.6 0.9 0.3

Abd. 0.0 0.0 2.7 96.4 1.0 0.0

U. Leg 0.0 0.0 1.8 1.8 83.8 12.6

L. Leg 0.0 0.0 0.0 0.0 3.3 96.7

we downsample the data points x′i by the factor 3, so that the

input dimensionality remains N .

3.2. Laplacian Eigenmaps

Laplacian eigenmaps [5] build upon the construction of a

graph, which respects the neighborhood information of the

data set. Subsequently, the graph Laplacian is applied to

calculate a low-dimensional representation of the data that

preserves the local neighborhood information in an optimal

way. Laplacian eigenmaps are well founded on mathematical

concepts (Laplace Beltrami operator) and computationally

efficient.

We construct a graph with a node for each point xi and

with edges connecting neighboring nodes. The neighborhood

can be defined with an ε-neighborhood around each point, so

xj is in the ε-neighborhood of xi if ||xi − xj ||2 < ε, with

||.|| the Euclidean norm. Although this is geometrically mo-

tivated, a disadvantage is the selection of the parameter ε. In

our implementation, we search instead for the l nearest neigh-

bors and add edges between them in the adjacency graph. Fur-

ther, heat kernel-based weights are assigned to the edges with

wij = e−||xi−xj ||2/(2·σ2) and σ2 the variance [5].

The similarity measure is important for finding nearest

neighbors and assigning edge weights, where the calculation

of the Euclidean norm between the points is equivalent to cal-

culating the the sum of squared differences (SSD). A vast

number of similarity measures are proposed in the context

of medical image registration. For our application, we uti-

lize SSD, however, it is similar to calculate SSD on the nor-

malized images and the correlation coefficient on the original

ones.

Once the neighborhood graph is constructed, the eigen-

vectors of the graph Laplacian provide the embedding map.

In our implementation we choose to consider the 40 nearest

neighbors, so l = 40 and, further, dimension n = 2 as intrin-

sic manifold dimensionality with N = 64 × 64 the dimen-

sionality of the ambient space. In our experiments, we found

out that n = 1 is not sufficient for correctly distinguishing the

classes and the good results for n = 2 make a further increase

Table 3. Results of classification for Laplacian eigenmaps

w/o neighborhood and w/o image normalization. The overall

correct classification rate is 90.0%.

Recognized Class Labels in %

Head Neck Lung Abd. U. Leg L. Leg

Head 90.1 2.6 0.0 0.0 0.0 7.4

Neck 62.1 6.9 5.2 0.0 6.9 19.0

Lung 0.0 0.0 92.6 4.6 1.7 1.1

Abd. 0.0 0.0 2.7 96.5 0.8 0.0

U. Leg 0.0 0.0 6.4 2.1 86.1 5.5

L. Leg 7.2 0.2 0.0 0.0 3.0 89.6

superfluous.

3.3. Classification

The dimensionality reduction significantly facilitates the clas-

sification and simple classifiers, such as k-nearest neigh-

bors (KNN), can be applied for performing the classification

in the low-dimensional space. Following the comparison

of supervised learning algorithms [14], random forests and

decision trees outperform KNN, and therefore could lead to

further little improvements of the classification results.

4. EXPERIMENTS

We evaluate the manifold learning embedding on 13 whole-

body data sets, consisting of acquisition from male and fe-

male patients. Further, some acquisitions were done with a

pillow below the legs and the position of the arms varies. A

manual labeling of the data sets was done under supervision

of a medical expert, assigning each slice one of the 6 classes:

head, neck, lung, abdomen, upper leg, and lower leg. We per-

form the dimensionality reduction with Laplacian eigenmaps,

Isomap, and PCA, see Figures 1 and 2. PCA is used to com-

pare to our previous work [1] and illustrate the advantages of

the non-linear embedding methods. We further evaluate the

influence of image normalization and the integration of the

neighboring slices.

Next to graphs of the 2D dimensional embedding of the

data, we also present classification results with KNN. To

quantify the performance we perform a cross-validation with

a leave-one-out strategy. In Tables 1 to 5, we show the results

of the study of the selected approaches. Each row indicates

the percentage of a slice being assigned to one of the 6 classes.

Looking at Table 1, for instance, head slices are assigned with

95% to the head class and with 5% to the neck class.

We obtain the highest overall correct classification rate

of 94.0% with Laplacian eigenmaps in combination with the

normalization of the images and neighborhood integration. In

Table 1, it can be seen that especially the classification of

the head and lower leg slices works to a very high accuracy,
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Table 4. Results of classification for Isomap w/ neighborhood

and w/ image normalization. The overall correct classification

rate is 90.1%.

Recognized Class Labels in %

Head Neck Lung Abd. U. Leg L. Leg

Head 93.3 6.7 0.0 0.0 0.0 0.0

Neck 29.3 60.3 10.3 0.0 0.0 0.0

Lung 0.0 1.1 92.6 6.3 0.0 0.0

Abd. 0.0 0.0 7.7 89.3 2.9 0.0

U. Leg 0.0 0.0 0.0 3.7 86.3 10.0

L. Leg 0.0 0.0 0.0 0.0 7.4 92.6

which is important to determine if the patient moves in head

or feet first. Remarkable is that in the case of wrong classifi-

cations, labels from neighboring classes are assigned, so that,

for example, no head slice wrongly got detected as abdomen

or leg. This does not hold for the classification without nor-

malization or neighborhood. For Isomap, the classification

accuracy is lower, however, also there the wrong assignments

are limited to neighboring classes. The results for PCA show

the lowest classification performance.

The low correct classification results for the neck are due

to a significantly lower number of slices for training, where

even for the medical expert, it is difficult to uniquely assign

the transition from head to neck and neck to shoulders.

5. CONCLUSION

We proposed the application of manifold learning techniques

for patient position detection. Our results clearly indicate that

the image slices lie on a low-dimensional manifold embedded

in the high-dimensional image space. We propose to apply

Laplacian eigenmaps for the manifold learning and achieved

superior results in comparison to Isomap. Moreover, the pro-

posed adaption of the method to the specific scenario by the

consideration of neighboring slices and image normalization

lead to a further improvement of recognition rates. For the

evaluation, we perform a classification with KNN and subse-

quent cross-validation, and obtain very good results.
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