TIM Easing The Transition Between Multiple Trackers

Martin Wagner, Sven Hennauer and Gudrun Klinker

Augmented Reality Group Institut für Informatik, Technische Universität München Boltzmannstr. 3, 85748 Garching bei München, Germany

martin@augmentedreality.de

Problem:

- Generic multi-tracker setup for AR applications
 with visual augmentations
- Transition between two trackers
- Trackers have varying error on their boundary

Estimating the Working Volume:

Convex hull approach:

- Update convex hull of measurement volume with every data item received
- Pro: fast, online updates
- Con: assumes tracker working volumes to be convex, susceptible to outliers

• "Jumps" in visual augmentations result

Approach:

- 1. Automatic estimation of trackers' working volumes (on- or offline process)
- 2. If object is in overlapping area, determine distances to boundaries
- 3. Interpolate tracker measurements according to distances

Neural network approach:

- Train neural network to act as classifier
- Pro: fast decision, adapts to arbitrarily shaped decision boundaries
- Con: slow offline training phase, no explicit representation of decision boundary

Open Questions & Future Work:

- Good measurements for distance estimation?
- Factors of applications influencing negative effects of jumps in visual augmentation
- Incorporate additional knowledge for estimation of working volumes

DWARF

Distributed Wearable Augmented Reality Framework http://www.augmentedreality.de

This work was supported by the Deutsche Forschungsgemeinschaft, Project DySenNetz (KL1460/1-1), and Volkswagen AG

