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ABSTRACT

This paper deals with a novel sensor fusion approach
to detect and track cars and pedestrians to facilitate a
collision mitigation application for vehicles. Robust
collision mitigation requires a perception performance
of an unprecedented degree of reliability, since an er-
roneous application of emergency braking caused by
false alarms would greatly impede road safety improve-
ment not lastly due to the major setback such an in-
cident would represent for driver acceptance. How-
ever, current off-the-shelf single sensor approaches can
hardly fulfil the challenging demands. Accordingly,
we develop a multi-sensor recognition system. It is
composed of a far infrared imaging device, a laser scan-
ner and several radar sensors, which operate integrated
into a BMW sedan.

1. INTRODUCTION

Statistic evidence of the European Union shows that
accidents resulting in fatalities or serious injuries are
caused to the highest percentage by collisions of cars
with vulnerable road users. This fact points to the ur-
gent need for active and passive automotive safety sys-
tems as a significant contribution to the overall road
safety.

Focusing on a novel approach for environmental
perception based on a multi-sensor system this paper
offers a collision mitigation application for cars by
means of autonomous braking. To meet the applica-
tion’s requirements regarding accuracy and reliability
of the perception result, we propose a fusion process-

ing scheme, which operates only on slightly pre-pro-
cessed sensor data. This “early fusion” approach uses
the synergetic effect of a common and consistent data
processing as well as an interpretation of sensor low-
level data to tap almost the full sensor potential. To
this end it strongly relies on a combined modelling of
the environment, which contains object assumptions as
well as a-priori knowledge.

1.1. Related Work

Many research groups have contributed significantly in
the field of sensor fusion. With regard to an automotive
environment K̈ampchen et al. [KFD04] propose an
adaptive cruise control system (ACC) based on a com-
bination of an early and a track-based fusion approach.
A laser scanning sensor and an imaging camera are
used to detect vehicles. Schweiger et al. [SNR05] uti-
lize a radar and a monocular imaging sensor to build
an ACC system. A collision warning and vision en-
hancement system is proposed by Polychronopoulos
et al. [PST04]. Vulnerable road users and vehicles are
identified by a far infrared camera and a radar sensor.

In this paper the multi-sensor perception system is
composed of four radar sensors, a laser scanning de-
vice and a far infrared camera to detect both vulnerable
road users and other vehicles utilizing a novel early fu-
sion approach.

1.2. Overview

This publication focuses on a novel fusion approach
based on only slightly pre-processed sensor data. The
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given sensor platform and its configuration is discussed
in chapter2. The envisaged safety application on top
of the perception system is presented in chapter3.
Chapter4 is dedicated to the perception system. Af-
ter a short motivation with respect to the early fusion
concept (4.1), section4.2 is giving an overview on the
fusion cycle and the system’s main components. In the
following sections (4.2.1to 4.2.3) the data acquisition
as well as the time prediction of our system is intro-
duced, and the generation of predicted measurements
is explained in detail. Sections4.2.4 and 4.2.5 illus-
trate the data association process and the generation
of new object hypotheses within the proposed fusion
framework before the filtering of the object informa-
tion is addressed (section4.2.6). Finally, the last sec-
tion gives an overview on the system architecture and
implementation details of the fusion system.

2. SENSOR CONFIGURATION

BMW has set up an experimental car with the follow-
ing sensor configuration depicted in figure1.

Fig. 1. BMW experimental car equipped with the fol-
lowing sensor configuration: (a) SAGEM far infrared
camera, (b) Grey-scale camera, (c) Bosch SGU long
range radar, (d) IBEO laser scanner and (e) MA/COM
short range radar.

Concentrating on the surveillance of the area in
front of the vehicle, these cooperative sensors, which
operate on the basis of distinct physical principles, com-
plement each other both in effective range and spatial
accuracy.

The usage of a far infrared (FIR) sensor guarantees
both perception at bad lighting conditions and straight-
forward vehicle and pedestrian detection (see figure

(a) (b)

(c) (d)

Fig. 2. (a) Pedestrian (FIR camera). (b) Pedestrian
(grey-scale camera). (c) Vehicle (FIR camera). (d) Ve-
hicle (grey-scale camera).

2). As most pedestrian-scenarios covered by the ex-
perimental vehicle, are situated in the area to the right
of the road, this sensor is mounted at the right of the
frontal bumper. Long and short range radar sensors
are surveying the environment ahead providing a seam-
less transition in distance and field of view resolution.
Moreover, a laser scanning (lidar) device is mounted
beneath the number plate to enhance the detection and
tracking quality for both pedestrians and vehicles. The
visual grey-scale cameras are used for supervising and
controlling purposes only.

3. COLLISION MITIGATION APPLICATION

The target application of the demonstration system is
collision mitigation by means of autonomous braking.
Accident statistics tell us that most of the accidents
with severely injured persons happen through collisions
of cars with vulnerable road users – often in urban ar-
eas on straight roads. These accidents can be attenu-
ated or even prevented by our collision mitigation sys-
tem. The second crash scenario addressed in our sys-
tem deals with rear-end collisions.
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The basis for any intra-system decision is a situ-
ation assessment. Taking into account the geometric
and kinematic data of object-models provided by the
perception system as well as probabilistic attributes
and physical limits the collision risk is estimated. Only
in case of an inevitable collision, the system engages
the brakes autonomously. It uses the fact that techni-
cal systems are capable of reacting much faster than
human beings.

Emergency braking caused by false alarms would
greatly impede road safety improvement not lastly due
to the major setback such an incident would represent
for driver acceptance. Thus such an active autonomous
intervention in the process of driving requires an out-
standing degree of perception performance, particularly
with regard to accuracy, availability and robustness.
Therefore the attention is especially concentrated on
the construction and design of the environment percep-
tion system.

4. PERCEPTION SYSTEM

The central challenge for advanced driver assistance
systems is an adequate perception of the vehicle’s envi-
ronment and the generation of an environment descrip-
tion.

A multi-sensor system containing a set of sensors
based on distinct physical principles establishes a basis
for an accurate and robust environment perception –
notably if they complement each other in their sensing
capabilities. Key ingredient of the perception system
is the way how the diverse and sometimes conflicting
measurement data from different sensors are combined
in order to increase the information content on the one
hand and to reduce the amount of data on the other
hand.

In track-based fusion approaches several sensor
data streams are processed independently from each
other until the level of object data is reached. Fusion
on the object level runs the risk that useful data is dis-
carded during early processing steps (e.g. data reduc-
tion or feature extraction) because it doesn’t seem to
be significant enough from one sensor’s point of view.
That way contradictions could arise on object level,
that are difficult to be resolved due to the lack of lower
level information.

Therefore it is this paper’s standpoint that the “early
fusion concept” is the more promising approach to ex-
ploit the synergies of the different sensor data.

4.1. Early Fusion Concept

The term “early” means to combine data provided by
multiple and even diverse sensors at an early stage of
the data processing chain. These input data can be
slightly pre-processed – limited to untracked and raw
sensor data.

During the subsequent fusion algorithm, data from
one sensor is assessed with regard to the relevance of
its information, always in the light of data provided by
other sensors.

The early fusion approach ensures consistency of
models in the whole processing chain. In particular,
one common environment model is used for describ-
ing the same aspect of reality seen from different sen-
sors. Thus the whole sensor data contributes to one
global environmental description, i.e. one outgoing re-
sult. With this early fusion approach it is expected to
achieve a robust and reliable output of the environment
perception system.

4.2. Fusion Cycle

Generally speaking an abstract inference problem is
composed of three circular steps namely time predic-
tion, data association (data matching) and measurement
update (correction) [FP02]. On top of this basic pattern
we added further steps to come up with multi-sensor
and multi-object demands. The following subsections
describe the fundamental structure of the implemented
fusion cycle, also condensed in figure3.

4.2.1. Data Acquisition

As most of the used sensors are working on different
clock rates and time is crucial in collision mitigation
applications, we preserve a high time resolution by a
semi-asynchronous data acquisition. The fastest sen-
sor (master sensor) with respect to the refresh rate is
used to trigger this step. The actual data acquisition
is done by polling every sensor for new data. This
raw data is stored in a sensor specific coordinate sys-
tem, which is relative to the sensor’s mounting posi-
tion. Measurements of sensors, which work asynchro-
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Fig. 3. Overview of Fusion Cycle. The cycle start
is at the red circle. Yellow boxes symbolize tracked
object-models. Green boxes and blue lines/circles rep-
resent predicted object-models respectively predicted
measurements. Red lines/circles show real measure-
ments.

nously to the master sensor, obtain a time delay as
these measurements occur between the last and the cur-
rent cycle. Assuming a maximum object velocity of
15m/s in urban environments, this error is negligible
compared to the sensor specific errors. In addition, a
slight pre-processing of the raw data, i.e. noise reduc-
tion or edge extraction, is performed. As the sensors
have probably moved along with the own-car, a coor-
dinate transformation from sensor specific to world co-
ordinates can not be applied in this step. Nevertheless,
this conversion is handled in the subsequent “time pre-
diction” step.

4.2.2. Time Prediction

According to every objects’ state (position, orientation,
velocity . . . ) at the last cycle, these states have to be
predicted to the current time. With the nomenclature
from [BW95] the object-stateŝxk and their prediction
error covariancesPk are projected one time step ahead
via

x̂−k+1 = f(x̂k, uk) (1)

P−k+1 = Ak+1PkA
T
k+1 + Qk (2)

on the basis of the objects’ underlying dynamic models
f(·) and their derivativeAk.

A single track dynamic model [Hie04] utilizing
own-car sensor data like current velocity, steering an-
gle and lateral acceleration is used to predict the own-
car’s position. As all other sensors are mounted to the
own-vehicle, their position is directly deducible and a
world coordinate transformation is performed. In com-
bination with a global coordinate system, this simpli-
fies and standardizes the subsequent time prediction
step of tracked vehicles and pedestrians. Currently for
these object-models a linear dynamic model is applied.

4.2.3. Predicted Measurement Generation

In the previous step for every object an updated repre-
sentation (state) with regard to the current time is gen-
erated. These predicted states are the basis for the fol-
lowing step, which estimates what each sensor would
measure under the assumption that every objects’ state
was correctly predicted. With the notation of [BW95],
this process reflects the non-linear functionh(x̂−k )
wherex̂−k represents the result of the “time prediction”
step. In the following, a representation of the gen-
eral task of the “predicted measurement generation” is
given. The basic principle of this task is also shown in
figure4. Currently all object models are composed of
simple polygons.

x

y

world

world

Sensor A Sensor B

Pedestrian

Car

Predicted 
Measurements

Own 
Car

Fig. 4. Showcase for the predicted measurement gen-
eration. Using two different physical sensor princi-
ples predicted measurement generation is illustrated
for both vehicles and pedestrian object-models, con-
sidering the sensors’ view-port as well as partial oc-
clusions. (Exemplified scene is in birds-eye-view and
not in scale)
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For all valid sensors within the current cycle the
following steps are performed:

Sensor Transformation: Transform all known object-
models into the sensor coordinate system.

Back-face Culling: Temporarily remove the objects’
parts which are not “visible” to the sensor, be-
cause they are occluded by other parts of the ob-
ject.

Clipping: All objects residing outside the view-port
of the sensor are ignored.

Occlusion Test: Discard all objects which are “invisi-
ble” because they are occluded by other objects.

Measurement Generation: For the remaining objects
respectively object parts the object specific pre-
dicted measurements are computed. This requi-
res, that all object models have their own sensor
specific representation.

Most of the necessary steps, like sensor coordinate
transformation, clipping or occlusion testing, are strong-
ly related to common computer graphics tasks. There-
fore, we use a scene-graph representation for all object-
models, which allow for an easy adaptation of these
algorithms to the specific sensor characteristics.

4.2.4. Data Matching

The next step within the aforementioned fusion cycle
is the data association that extracts and assigns cor-
responding pairs of real and predicted measurements.
Due to the large data amount compared to most track-
based fusion systems and the resulting complexity to
determine the matching pairs, gating mechanisms are
essential to support the fast finding of data correspon-
dences. Thus, sensor data specific rectangular gates
(derived from the object’s shape model; see figure5)
are computed from the object’s predicted estimation
error covarianceP−k , the JacobianHk of partial deriva-
tives of the state-to-measurement function with respect
to states and the sensor’s measurement noise covari-
anceRk. Therefore

ε = γ
√

si (3)

Fig. 5. Gate calculation of an object

is added to the object’s length and width respectively
on each side, whereγ ∈ (0;∞) and si denotes the
respective element in the innovation covariance matrix

Sk = HkP
−
k HT

k + Rk. (4)

Now the real measurement data is tested for being in-
side one or more gates. Next, the data within the gating
area of an object-model is assigned sensor-specifically
to the object’s predicted measurements (as calculated
in 4.2.3) on the basis of a Global Nearest Neighbour
approach.

4.2.5. Hypothesis Generation

A priority goal of the hypotheses generation is a direct
and complete detection of all so far untracked and pos-
sibly relevant objects in the sensors’ ranges. Thereto a
high error of second kind is consciously taken into ac-
count. Usually a succeeding classification procedure
as well as an observation of the objects over time can
select and eliminate irrelevant assumptions. To limit
the cost of computation, the hypothesis generation fo-
cuses to salient and unmatched sensor data in the de-
tection range.

Currently the unmatched salient points, where new
assumptions are placed, are radar responses, lidar seg-
ments within certain dimensions and vertical image
edges from the far infrared imaging device. To limit
the amount of assumptions a first coarse pre-classifica-
tion step rejects impractical assumptions and a second
aggregation step tries to combine overlapping hypothe-
ses.
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4.2.6. Extended Kalman Filter

A conventional Extended Kalman Filter (EKF) (see
[AM79] for instance) has been chosen. It handles the
nonlinearities of this application quite well. For ev-
ery assigned pair of real and predicted measurement,
which has been calculated before, a measurement up-
date on the underlying object is performed. This pro-
cedure propagates the measurement information into
the states of the respective objects. In doing so, the in-
formation of several measurements enhance the states
by updating the objects’ state values and furthermore,
lowering the estimation error covariances. Thereby,
for each assigned sensor data a measurement update
step is conducted before the next cycle starts with the
object’s state prediction in time. With the notation of
[BW95] the equations at time stepk of the EKF’s mea-
surement update can be written as

Kk = P−k HT
k (HkP

−
k HT

k + Rk)−1 (5)

x̂k = x̂−k + Kk(yk − h(x̂−k )) (6)

Pk = (I −KkHk)P−k . (7)

Thereby the specific termh(x̂−k ) has already been eval-
uated during the calculation process of predicted mea-
surements and thus equation (6) can be written as

x̂k = x̂−k + Kk(yk − y−k ) (8)

for every pair(yk, y
−
k ) of measurement and predicted

measurement, matched by the data association process.
As all sensor data is projected into the 3D global world
coordinate system, the entries of the JacobianHk can
be easily deduced from the underlying object-model
without any further complex and time consuming cal-
culations.

4.3. Implementation Details

A cyclic top-down architecture has been implemented
to facilitate the detection, classification and tracking of
relevant road users over time. The real world vehicle
surroundings and the sensor configuration are reflected
by a virtual environment, which is modelled as a hier-
archical scene-graph structure [BW95], ensuring cen-
tralized data access and efficient spatial dependency
processing (see section4.2.3). To allow an efficient
graph traversal as well as a decoupling of algorithm
and data portions, the so called Visitor Design Pattern
[BMRS96] has been used extensively.

5. CONCLUSION

This paper proposed a novel sensor fusion approach
to detect and track cars and pedestrians in real-time
to facilitate a collision mitigation application for vehi-
cles. The system is composed of a far infrared imag-
ing device, a laser scanner and several radar sensors
which operate integrated into a BMW sedan. The pro-
posed fusion framework in combination with the con-
sistent use of global world coordinates for measure-
ments, matching and the predicted measurement gener-
ation provides a high level of abstraction. Thus, more
sensors at different view-ports up to a 360 degree sen-
sor configuration could easily be implemented.

6. FURTHER WORK

There are still ample possibilities for improving the
system. The most important ones to be tackled in fu-
ture are to extend the system by a classification unit,
to develop an auto-calibration of sensors and to apply
alternative filtering approaches. In addition to these
improvements, an extensive evaluation of the system
performance is planned.
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