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Abstract— This paper provides a description of a new low-
level feature-fusion approach for real-time object recognition
utilising an arbitrary number of imaging sensors and based on
a boosted cascade of simple features [1].

The approach is demonstrated by means of a vehicle detecti-
on system. The application utilises laser scanner responses for
hypotheses generation and low-level features from both colour
and far infrared images for hypotheses classification. A first
evaluation shows promising results.

I. INTRODUCTION

Multi-sensor systems offer considerable advantage over

single-sensor systems. They benefit from both an increased

spatial and temporal coverage due to complementary sensor

ranges and data acquisition frequencies. They show a higher

reliability performance on account of built-in redundancy.

In addition, they offer an improved operational robustness,

because distinct physical sensing principles compensate for

particular perception shortcomings. Altogether, multiple sen-

sors are able to gather more information about the reality

especially in varying environmental conditions.

The literature offers several approaches to consult more

than one sensor for object recognition purposes (e.g. [2], [3]).

A decision-based approach, performing the classification for

each sensor separately reaches the final decision by voting

or weighted averaging [4]. That output could suffer from an

absence of significance, if only a few sensors are combined

or the information gain of the involved sensors is unbalanced.

Moreover, sub-threshold information derived from one sensor

might be discarded. Consequently, the information is lost and

cannot contribute to the overall result. Contrary to that, early-

fusion approaches operate on low-level features derived from

all available sensors. A common course of action is a static

feature vector composed of features from all sensors that are

judged by learners like neuronal networks or support vector

machines.

Not long ago, Viola et al. [1] have introduced a well-

established approach for rapid object-detection on a single

video sensor. They utilise a boosted cascade of simple Haar-

like image-features. Weak classifiers which are extracted

from these features are selected and combined with Ada-

Boost [5] to form strong stage classifiers which are organised

as degenerated decision tree.

Recently, several improvements regarding computing ti-

me, detection rate and multi-class enhancements have be-

en proposed. Huang et al. [6], [7] have employed nested

degenerated decision trees of strong classifiers to hand on

effective information from the current to the next tree layer.

They have addressed multi-class demands for multi-view

face detection by feature flipping and eight extra classifier

cascades. Lienhart et al. [8] have suggested a clustering-and-

splitting approach to cope with diverse clusters of object pat-

terns. They have validated their approach for human mouth

tracking and improved the computation time in comparison

to a single detector cascade.

A further increase in detection performance could be

reached by utilizing more than one imaging sensor. The

contribution of this paper is an extension to the object

recognition approach of Viola et al. in such a way that an

arbitrary amount of imaging sensors can be employed in the

detection process to improve performance.

II. BOOSTED CLASSIFIERS FOR MULTI-SENSOR OBJECT

DETECTION

A. Features

The object detection approach of this paper operates

on simple image features which were introduced as Haar-

like features by Viola et al. [1] (see Figure 1(a)). These

features are typically bound to a single sensor. In order

to satisfy multi-sensor demands, an independent feature set

( f1,s, . . . , fn,s) for every sensor is defined. For each feature

fi,s taken from sensor s a weak classifier hi,s is composed

of a threshold θi,s, a feature function fi,s (which is defined

as a subtraction of adjacent rectangular image regions) and

a parity function pi,s.
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Fig. 1. (a) Three exemplary Haar-like features. The sum of pixel intensities
which lie in the black region are subtracted from the pixel sum in the white
region. (b) Imaging sensor dependent stack of integral image representation.
This allows for an efficient feature calculation. The pixel sum inside area D

e.g. results in 4+1−(2+3), since the value of the integral image at position
1 is the sum of the intensities in rectangle A, at location 2 rectangle A+B,
at location 3 rectangle A+C and at location 4 rectangle A+B+C +D.
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hi,s(xs) =

{

1 if pi,s fi,s(xs)≤ pi,sθi,s

0 otherwise
(1)

The discrete weak classifier acts on a sub-window xs

of a single sensor image. In order to achieve an efficient

feature calculation, Viola et al. introduced an integral image

representation. Thereby, an arbitrary rectangular sum can be

calculated with only four additions. We propose a stack of

integral images to facilitate a rapid feature calculation on

multiple images simultaneously (see Figure 1(b)).

Single Haar-like features are not meaningful enough to

achieve low error rates. Therefore, an adaptive boosting

technique AdaBoost [5] is used to form a strong classifier.

B. Training

The training process trains a weak classifier h j,s for

each Haar-like feature f j,s taken from sensor s based on

negative and positive sample image tuples ~xi. Thereafter,

each boosting cycle t determines the weak classifier ht

which results in the smallest training error ε j,s considering

the current weight distribution wt,i. The weights wt,i of all

misclassified examples are increased (3) and normalized (2).

Consequently, the algorithm concentrates more and more on

the difficult cases. Furthermore, each cycle selects a feature

f j,s, which offers the best separation of the training set. The

strong classifier h(~x) is composed of all weak classifiers ht

(Compare algorithm 1).

Samples which are misclassified by h(~x) build the input for

the training of subsequent strong classifiers. The outcome of

this is a degenerated decision tree, also referred to as cascade,

composed of strong classifier stages. A detailed description

of the cascade training can be found in [9].

C. Classification

The resulting multi-sensor cascade operates on a region

stack R which is composed of rectangular regions of interest

Rs(xs,ys,ws,hs) deduced from every imaging sensor s, in

which (ws,hs) denotes the dimension of the regions and

(xs,ys) the location in the image plane, respectively. It has

to be ensured, that every region Rs represents the projection

of the same real-world object. Accordingly, only objects

entirely observable by all employed imaging sensors s can

be classified. Thus, only the maximum sensing overlap can

generate a complete region stack and serve as a possible

input area for the multi-sensor cascade.

In order to allow a high-performance evaluation of all

weak classifiers, the complete region stack R is converted

into a stack of integral images Ri composed of Ri
s (see Figure

1(b)), where

Ri
s(xs,ys) = ∑

x′≤xs,y′≤ys

Rs(x
′,y′). (5)

All weak classifiers of one stage are evaluated on this stack

of integral images according to the strong classifier (4).

The evaluation of the complete cascade is performed from

the first stage classifier to the last stage classifier. Each

positive result of one stage triggers the succeeding stage.

A negative outcome at any stage immediately rejects the

Algorithm 1: The AdaBoost algorithm for multi-sensor

classifier training. Features are taken from all available

sensors.

Input: Set of training images (~xi,yi), . . . ,(~xn,yn), where

~xi denotes a tuple of corresponding sensor views

xi,s for training sample i and yi ∈ {0,1} indicates

negative and positive samples respectively.

Output: A strong classifier h(~x)
for t=1 to T do1

Normalize the weights2

wt,i←
wt,i

∑
n
j=1 wt, j

(2)

foreach Feature j do

foreach Sensor s do3

Train a classifier h j,s which is restricted to4

use a single feature.

ε j,s = ∑i wi|h j,s(xi,s)− yi|.
end5

end6

Choose the classifier, ht = h j,s, with the lowest error7

ε j,s. Update the weights:

wt,i = wt,iβ
1−ei
t (3)

where ei = 0 if example xi,u is classified correctly,

ei = 1 otherwise, and βt =
εt,u

1−εt,u

end8

The strong classifier is:9

h(~x) =

{

1 ∑
T
t=1 αtht,u(xu)≥

1
2 ∑

T
t=1 αt

0 otherwise
(4)

where αt = log 1
βt

region stack and thus the underlying object. The object to

be classified is only accepted if all stages of the cascade are

passed successfully.

III. MULTI-SENSOR VEHICLE RECOGNITION

One important aspect for advanced driver assistance sys-

tems is a robust, accurate and reliable perception of the

vehicle’s environment. In order to meet these requirements

a multi-sensor perception system composed of a far infrared

camera (FIR), a grey-scale camera, a laser scanner and a

radar has been set up to detect and track vehicles. Our

detection system (see Figure 2) can be split in two parts

which are explained shortly in the following. Refer to [10]

for a more detailed description of the overall system.

A. Hypotheses Generation

Based on laser scanner and radar measurements se-

veral cubic object hypotheses are initialized and tracked

as stated in [10]. These two ranging sensors allow for

an estimation of the objects’ position and dimensions

Rveh (xveh,yveh,wveh,hveh). An exact calibration of all partici-

pating sensors is mandatory. The estimation of Rveh enables
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c Hypotheses Generation

d Hypotheses Projection

e Region Stack

f Classification

Video FIR

LIDAR data (Bird‘s eye 

view)

Fig. 2. Flowchart of the vehicle recognition application. (1) Bird’s eye
view showing LIDAR responses of a car running ahead, (2) projection of
the hypotheses into the video and FIR image, (3) image stacks of regions
of interests, (4) classification.

an unambiguous projection of the hypotheses onto the image

planes of the FIR and grey-scale cameras resulting in regions

of interest RFIR and Rgrey. In order to compensate the

uncertainties of the hypothesis’s position, width and height

estimation an additional confidence area is added to Rveh.

This in turn leads to slightly altered regions R̃FIR and R̃grey

respectively. Accordingly, the bounds of a sensor dependent

scale factor range ~τs are adapted. Finally, the region stack R

is composed of R̃FIR and R̃grey.

A multi-sensor cascade ϒ (see section II-C) working on a

30×24 pixel sub-window rejects an implausible region stack.

In the majority of cases the dimension of R significantly

exceeds the window size of ϒ. Therefore, the cascade has

to be scaled. For every scale factor ζ ∈ ~τs a scaled cascade

ϒ̃ = ζ ϒ is applied to all remaining sub-windows of R. The

hypothesis is verified as a vehicle if at least one classification

step on a sub-window successfully returns. Once a hypothesis

is correctly classified a more specific vehicle model is in-

stantiated. Using this extended object model further tracking

of the vehicle is performed by common Kalman filtering.

Currently, the classification is limited to rear ends of vehicles.

IV. EXPERIMENTAL RESULTS

This sections describes some results concerning the low-

level feature fusion approach. To illustrate the potential of the

proposed feature fusion a multi-sensor cascade is compared

to its single sensor cascades (FIR and grey-scale). In order

to achieve comparable results between all involved classifiers

they share the same training- and test data. As described in

section II-C only overlapping sensing areas are able to serve

as input for the multi-sensor cascade classifier. Thus, the

training data is limited to data where this assumption holds.

The training data contains 650 manually extracted image

pairs (FIR and grey-scale) which were taken from 150

different vehicle rears (see Figure 3) in front of a very

similar background. All traffic scenes were recorded in the

urban area with a minimal different camera perspective at

a temperature of about 10 degree above zero. Furthermore,

1200 negative samples without vehicles have been collected.

Fig. 3. Small subset of the vehicle training set. Grey-scale training samples
are in odd rows. Even rows contain the corresponding FIR samples.

All three cascades (FIR, grey-scale, multi-sensor) were

trained until the false positive rate on the training set reached

10−5. The training of the FIR classifier finished after 10

stages and 38 involved features. The grey-scale cascade

needed 12 stages and 45 features to achieve the desired

error rate. Finally, the multi-sensor cascade consists of only

9 stages and 25 different features (13 from FIR and 12 from

grey-scale) since it selected the most distinctive features (see

Figure 4) from both sensors to reach the desired error rate.

With regard to the detection rates, the single sensor FIR

cascade achieves better results than the grey-scale cascade

as long as only a few features are utilised. That is due to
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Fig. 4. The first eight Haar-like features (6 from FIR and 2 from the grey-scale sensor) in the order of their selection (from left to right) during the
training process for the multi-sensor cascade (FIR features depicted in the top row and grey-scale features in the bottom row). The first column contains
typical FIR and grey-scale sample images taken from the training set. Obviously, feature one, e.g., corresponds to the “cold” rear window and the “warm”
vehicle’s rear end.

the fact, that on the one hand textureless FIR images only

cover coarse details of vehicle rear ends (see first column

in Figure 4), which can be easily distinguished from most

of the background objects. On the other hand the feature

richness in consequence of the detailed textured grey-scale

representation becomes more and more important in order

to reject challenging background objects. Accordingly, the

grey-scale cascade measures up to the FIR cascade and even

gets ahead as more features are added to the single-sensor

cascades (see Figure 5).

The entangled training process of the multi-sensor casca-

de selects the most distinctive feature, independent of the

sensor. Thus, a seamless transition from coarse FIR to fine

grey-scale features is achieved automatically. Altogether, the

multi-sensor cascade slightly outperforms both single-sensor

classifiers concerning detection rate and computational per-

formance as it achieves better classification rates with fewer

features (compare Figure 5 and 6).
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Fig. 5. ROC curve of the single-sensor cascades as well as of the multi-
sensor cascade. The ROC curve has been generated by varying the stages
of the cascades from one to the total amount of trained stages.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper presented a novel multi-sensor extension to the

object recognition approach of Viola et al. [1]. The Haar-like

feature space and the AdaBoost [5] training algorithm are
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Fig. 6. The number of used features of the trained cascades in comparison
to the false positive rate.

extended to act on multiple imaging sensors. The classifi-

cation process, which is demonstrated by means of vehicle

hypothesis verification, operates on a stack of image regions

which are extracted from every sensor. Only the maximum

sensing overlap can generate a complete region stack and

serve as possible input for a multi-sensor cascade. A first

experimental evaluation has shown that the introduced ap-

proach leads to slightly higher classification rates compared

to the results achieved by a single imaging sensor.

B. Future Work

Currently, the sensor fusion approach is limited to ima-

ging sensors. Further research is needed to evaluate the

suitability of the low-level feature fusion with respect to

the integration of different sensor principles. Laser scanner

intensities for example could be added to the feature space

in order to further enhance the detection quality. Avoiding

sensor failures is crucial for the detection performance as

the cascade classifier relies heavily on every single sensor

input. Therefore, these drop outs should be considered and

treated separately. Finally, further evaluation has to be ac-

complished to acquire recognition rates on a more versatile

training set and to compare the performance of the introduced

multi-sensor feature selection to decision based late-fusion

approaches.
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