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Integrating Diagnostic B-Mode Ultrasonography Into
CT-Based Radiation Treatment Planning

Wolfgang Wein*, Barbara Röper, and Nassir Navab

Abstract—This paper presents methods and a clinical procedure
for integrating B-mode ultrasound images tagged with position in-
formation with a planning computed tomography (CT) scan for ra-
diotherapy. A workflow is described that allows the integration of
these modalities into the clinic. A surface mapping approach pro-
vides a preregistration of the ultrasound image borders onto the
patient’s skin. Successively, a set of individual ultrasound images
from a freehand sweep is chosen by the physician. These images are
automatically registered with the planning CT scan using novel in-
tensity-based methods. We put a particular focus on deriving an
appropriate similarity measure based on the physical properties
and artifacts of ultrasound. A combination of a weighted mutual
information term, edge correlation, clamping to the skin surface,
and occlusion detection is able to assess the alignment of structures
in ultrasound images and information reconstructed from the CT
data. We demonstrate the practicality of our methods on five pa-
tients with head and neck tumors and cervical lymph node metas-
tases and provide a detailed report on the conducted experiments,
including the setup, calibration, acquisition, and verification of our
algorithms. The mean target registration error on nine data sets
is 3.9 mm. Thus, the additional information about intranodal ar-
chitecture and fulfillment of malignancy criteria derived from a
high-resolution ultrasonography of lymph nodes can be localized
and visualized in the CT scan coordinate space and is made avail-
able for further radiation treatment planning.

Index Terms—Computed tomography (CT), fusion, radiation
therapy, registration, ultrasound.

I. INTRODUCTION

A. Motivation

CONVENTIONAL B-mode ultrasound imaging produces
cross-sections of human anatomy of limited size, based on

the acoustic properties of tissue. It is a cost-effective and flexible
imaging modality, and therefore widely used in almost all areas
of medicine and healthcare. Modalities like X-ray computed to-
mography (CT) and magnetic resonance imaging (MRI) acquire
a stack of cross-sectional slices, which yield a 3-D data set of
the desired anatomy. A spatial alignment, i.e., registration, of
the images taken from these devices provides access to inher-
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ently complementary information. Hence, it can be beneficial
for diagnosis, planning, and treatment of various medical pro-
cedures.

In the particular application of radiation treatment planning
for inoperable head and neck cancer, the identification of
metastatic neck lymph nodes is mandatory for the correct target
volume delineation. This can be achieved with a reported ac-
curacy of 80%–95% using high-frequency ultrasound [1]–[3].
In direct comparison with ultrasonography, diagnostic CT was
equally predictive in revealing lymph node size but achieved
lower performance in depicting internal nodal architecture,
leading to a lower sensitivity and specificity than ultrasonog-
raphy [4]. In planning CTs for radiotherapy, contrast medium
is usually omitted, and consequently their diagnostic properties
are particularly poor.

Omitting the CT and performing the treatment planning
and execution solely based on ultrasound has its place only
in brachytherapy (e.g., in prostate cancer), where a small
treatment volume can be visualized together with the radiation
source(s) by ultrasound without artifacts from bone or air, the
dose distribution being dependent on distance rather than on
tissue properties. However, in the context of external-beam
radiotherapy delivered from different angles, axial sections
of the whole body are mandatory and cannot be provided by
ultrasound.

Thus, for external-beam radiotherapy, CT remains the base
imaging modality of choice for treatment planning and sim-
ulation, as it provides a coordinate systems with stable geo-
metric fidelity and the necessary electron density information
for the computation of the accurate dose distribution within the
CT anatomy. Consequently, the wish to integrate the diagnostic
properties of other imaging modalities into the planning process
has usually been met by registration with CT, based on either
external markers or anatomy information (e.g., registration of
MRI and CT), or with dedicated combined systems like positron
emission tomography (PET)-CT. Similar solutions of registra-
tion between freehand ultrasonography and planning CT seem
to be a valuable goal, as the additional ultrasound (US) infor-
mation may enable the radiation oncologist to refine the target
volume definition and individualize treatment planning. For ex-
ample, in studies on integrating PET into the treatment plan-
ning process of brain or lung tumors significant changes in gross
tumor volume (GTV), delineation could be demonstrated (re-
view by [5]). It is quite possible to have a similar impact of ultra-
sound information for GTV definition in head and neck cancer.

B. Related Work

In the context of radiotherapy, tracked ultrasound has been
used mainly to quantify and reduce daily setup errors so far.
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The commercial NOMOS B-mode acquisition and targeting
system allows one to integrate the CT planning contours with
tracked ultrasound acquisitions prior to each treatment fraction.
A description of the system, as well as a comparative study of
prostate localization based on BAT and CT, can be found in [6].
Though the largest experience has been gathered with prostate
cancer [7], some data on other sites such as the upper abdomen
are available as well [8]. A similar commercial solution is
SonArray [7], [9] by Varian Medical Systems. The RESTITU
system uses two calibrated (3-D) ultrasound devices, in the
CT and treatment room, respectively [10]. Hence, the problem
of aligning planning information within the coordinate system
of the treatment room is reduced to a monomodal registration
of the fractional 3-D US acquisition with the reference 3-D US
scan taken in the CT room.

In the field of automatic image registration, much research
has been carried out using features extracted from the ultra-
sound images in order to align them with corresponding struc-
tures in other modalities. In the context of thermal ablation for
liver metastases, the most significant structures in the ultrasound
images are the liver surface and major vessels inside the liver. In
[11], those structures are segmented in an MRI scan, and points
on the surface of the same structures are manually picked in the
ultrasound images. A method based on the iterative closest point
(ICP) algorithm is then used to compute the transformation be-
tween the two modalities.

Bone structures can be well identified using ultrasonic
imaging, as they produce a strong (though also specular and
hence position-dependent) reflection and full occlusion behind
the reflection. Thus it is feasible to use such structures in a
more automated manner for registration [12], [13]. In [12], a
modified ICP algorithm is used in order to register the bone
surface extracted from CT with points in the ultrasound images
likely to reflect the bone surface. This can be considered as a
combined registration and segmentation approach.

The use of color Doppler ultrasound aids the automatic fea-
ture extraction of vessel structures, which can in turn be used
for feature-based registration [14]–[16]. In [14], liver vessel fea-
tures are extracted from both preoperative MRI/CT data and in-
traoperative 3-D power-Doppler ultrasound data. The registra-
tion is initiated with a few manually selected landmarks, and
a rigid transformation is then estimated using a modified ICP
method, which takes the vessel topology into account. Eventu-
ally, the registration is further improved using a transformation
grid modeled with deformable B-splines. Slomka et al. evalu-
ated rigid registration of power-Doppler 3-D ultrasound with
MRI scans of the carotid artery [16].

Pure intensity-based registration with other modalities has
been performed mainly for 3-D ultrasonic data. Roche et al. [17]
use an adapted correlation ratio similarity measure in order to
register the ultrasonic data simultaneously to both the intensity
and the gradient information of an MRI scan. In [18], the Kull-
back–Leibler distance is minimized for the registration of 3-D
US and MRI. A registration involving an automatic mapping of
MRI and ultrasound data to “vessel probability values” and suc-
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cessive registration of this information is proposed in [19]. This
work is extended in [20] in order to incorporate a deformable
model generated from MRI acquisitions of the liver at different
stages in the breathing cycle. In [21], a similar approach uses
bone probability values generated from the CT intensity and gra-
dient in order to perform a rigid registration of CT with tracked
ultrasound. Single tracked ultrasound slices can hence be reg-
istered to the preoperative information in a nonrigid manner.
In [22], the image phase is proposed as underlying data for a
mutual information based registration. It includes experiments
on 2-D data with brain MRI and simulated ultrasound images,
where early results on deformable registration are presented.

To our knowledge the published data on true image-based
registration of CT with ultrasound are sparse. A mutual infor-
mation–based registration of CT with tracked 3-D ultrasound
for prostate localization is presented in [23]. It is aided by the
manual segmentation of prostate and bladder and the application
of preprocessing steps on both modalities. In [24], in the CT data
of a kidney, the intensity values are enhanced with strong edges
from the gradient. Successively, an automatic registration with
freehand 3-D ultrasound is performed.

We described a part of our method, as well as initial experi-
ments with magnetically tracked ultrasound on three patients, in
[25]. We opt for an intensity-based approach; however, we use
a combination of different information and physical properties
of both modalities to introduce a more stable measure for auto-
matic registration.

II. PROPOSED MEDICAL WORKFLOW

For the described application of radiotherapy planning, a
workflow (Steps 1–8) is needed to integrate the diagnostic
ultrasound with the current treatment planning processes. The
planning CT is usually performed with the patient fixed onto a
head pad with a thermoplastic mask individually molded. This
minimizes the spatial deviation between the anatomy depicted
in the CT scan and the daily radiation treatment delivery.

1) Just before ultrasonography, the patient is immobilized
likewise to ensure the same reclination of the head. Then,
the mask is carefully removed while the patient is told to
keep his position for the following examination.

2) The diagnostic ultrasound is performed by slow freehand
sweeps of the probe in lateral and craniocaudal directions
along the patient’s neck and chin with special regards to the
lymph node regions (i.e., submental, submandibular, digas-
tric, jugular chain, spinal accessory, and occipital nodes).
In our scenario, a position sensor is attached to the ul-
trasound probe. All diagnostic sweeps are recorded as a
combination of videos containing the actual ultrasound im-
ages, alongside the tracker readings. An offline calibration
step allows us to place all recorded ultrasound images in
the spatial context of the tracking world coordinate system
(Fig. 1). Hence, 3-D ultrasound information is obtained
with full coverage of the patient’s neck and chin.

3) Our system now applies an automatic preregistration step
by aligning the lines denoting the top of the numerous ul-
trasound images in 3-D space with the skin surface ex-
tracted from the CT data set; see Section III for details.
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Fig. 1. Workflow for image-based ultrasound-CT registration.

4) From all sweeps with relevant lymph nodes, the physician
picks some particular frames containing structures that
are identifiable in both modalities, like the carotid artery
(maybe with individual calcifications), internal jugular
vein (preferably with little or no compression), certain
muscles, or thyroidal/salivary gland tissue.

5) These frames serve for reviewing the first results from
global skin surface registration.

6) In case of excessive deviation, manual drag and drop of
the stack of ultrasound pictures into a closer range of cor-
responding CT anatomy is performed. Any frame can be
selected and its relative location and orientation modified,
while the spatial relation to all other frames (given by the
position sensor) is maintained. This allows a convenient
navigation, as in-plane and out-of-plane transformation pa-
rameters can be manipulated separately. Either a 3-D dis-
play of the data or side-by-side visualization is used, as
shown in Fig. 6(b) and (d).

7) This allows an automatic image-based registration to be
performed on these images successively, as will be de-
scribed in Section IV.

8) The results from image-based registration are evaluated
and may serve for target volume delineation. In particular,
our method overlays pathological lymph node areas, which
need to be identified and irradiated with a certain dose, but
are barely visible in and extractable from the CT data alone.

An adapted treatment planning software (which is not the focus
of this paper but should be addressed in the future) should allow
the physician to scroll through the registered ultrasound frames,
displayed alongside corresponding multiplanar reconstructions
interpolated from the CT data, and vice versa through the orig-
inal axial CT slices overlaid with the registered 3-D US data
in order to account for all additional information during target
volume delineation.

In the following sections, we present algorithmic details of
the proposed registration steps and describe the setup and results
of experiments used for validation.

III. GLOBAL SKIN SURFACE REGISTRATION

The set of all ultrasound images recorded from a patient in-
cluding the submental and submandibular regions as well as
both sides of the neck (Robbins level I–VI) can be used to de-
rive an approximate registration to the CT scan. In each ultra-
sound image, the horizontal line denoting the top of the image
roughly lies on the skin surface. As the images are continuously
recorded and tagged with position information, all frames ac-
quired from a patient (up to several thousand images) yield a
complete coverage of the neck surface in the tracking coordinate

system. Thus, a surface-based registration with the 3-D skin sur-
face segmented from CT will provide a fairly good global initial
registration.

The CT scan is automatically segmented with a re-
gion-growing method [26], using a seed point in the sur-
rounding air and inverting the result afterwards. Successively,
a border detection algorithm is run, and a Chamfer distance
map transformation [27] is applied to the surface. It results in a
distance volume where the voxel values reflect the closest ap-
proximate Euclidean distance to the surface. Ten equal-spaced
points on the top of each ultrasound image form the 3-D point
set. The global rigid transformation is initialized with a 90
rotation that brings the tracking world coordinate system in
the same orientation than the CT volume and a translation that
consists of the subtracted mean of all points (hence the point set
is centered in the CT volume). For each estimate of the global
rigid transformation, the distance of the transformed points
to the CT surface can be efficiently looked up in the distance
volume. The transformation parameters are iteratively refined
until the error converges. Fig. 2 shows the recorded ultrasound
images in a 3-D visualization, as well as the 3-D point set
derived from them, overlaid onto a volume rendering of the CT
scan.

IV. INTENSITY-BASED REGISTRATION

A. General Considerations

For intensity-based registration, the quality of anatomical
alignment between the two modalities is a function of the
image gray values. This prohibits closed-form solutions that
can often be defined for feature-based methods. Such regis-
tration methods can be considered as a search for an optimal
image alignment, which is an iterative process, as outlined in
Fig. 1. A tomographic data set will usually enclose the respec-
tive ultrasound data, be it 2-D or 3-D. Hence, data from the CT
volume, according to the spatial extent of the ultrasound data
(a slice or cone with specific thickness, etc.), can be extracted
at a location where the anatomy contained in the ultrasound
images is presumed. This should establish a representation that
can be compared with the respective ultrasound data. In the
ideal case, it would be a realistic reconstruction of ultrasound
image intensities, i.e., a simulation of ultrasound from CT. The
comparison usually yields a scalar value denoting the quality
of anatomical alignment at the current spatial configuration. A
nonlinear optimization method then changes this configuration
(i.e., typically the transformation parameters for simulation)
iteratively, until an optimal alignment is found.

Any computation step that brings the modalities closer to-
gether in terms of comparability is appreciated. If an interme-
diate representation is established for comparison, it might be a
simulation of ultrasound from CT, but just as well a simulation
of CT from ultrasound, as well as anything in between. An ul-
trasound image depicts the strength of echoes whose magnitude
increases at boundaries between different types of tissue. This
can be related to CT data as the gradient magnitude of the X-ray
attenuation (from a simplified point of view, see, e.g., [28, Sec-
tion 2.2]). Hence, the derivative of the CT voxel intensity yields
information that can be compared to ultrasound. On the other
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hand, numerical integration of the edge information depicted in
ultrasound unfortunately does not result in values that can be
put in relation to the CT data, as we are missing directional in-
formation.

As a consequence, the resemblance of ultrasound images to
CT can only be increased by reducing imaging artifacts; how-
ever, a simulation of CT intensities from ultrasound is not pos-
sible solely based on the image data (but might be feasible with
learning-based approaches and methods for incorporating prior
information).

B. Simulation From CT

A realistic simulation of ultrasound from CT is not possible
for several reasons. Both the acoustic impedance and speed of
sound in a given tissue can only be roughly estimated, as the CT
Hounsfield units represent the attenuation of a polychromatic
X-ray source within a voxel and therefore only approximately
can be related to tissue density. Regardless of tissue interfaces,
the echogeneity within a tissue depends on the microscopic in-
homogenities (i.e., in muscle fibers, fatty tissue, etc.), which is
not revealed by CT.

Instead of a realistic simulation of ultrasound, we hence need
an intelligent and efficient intermediate representation of the CT
data at arbitrary cut-planes, such that an iterative registration can
be performed in an acceptable time. These slices have multiple
components containing intensity, gradient, and edge informa-
tion, which are used to derive various parts of a similarity metric,
so that the correspondence of anatomy contained therein with
structures in 2-D B-mode ultrasound images can be determined.

The use of gradient and edge information is justified, as med-
ical ultrasound mainly depicts tissue interfaces, caused by ultra-
sonic reflections at a boundary of different acoustic impedances.
Those will also produce different intensities in CT and hence a
visible edge. The strength of such a boundary gradient can, how-
ever, not be put into a mathematical relation to the strength of
the respective ultrasound reflection. On the other hand, the orig-
inal CT attenuation values are of importance as well, as they
reveal different types of human soft tissue, which in turn cause
different effects in ultrasound, such as attenuation, speckle char-
acteristics, reflection, etc.

In our approach, first the 3-D gradient vector values are com-
puted from the CT data set by convolution with a Sobel filter
cube. They are stored in a four-channel volume together with
the original voxel intensity (i.e., channels 1–3 contain the gra-
dient vector, channel 4 the CT Hounsfield intensity). The inter-
polated slices contain four channels as well. For each pixel, the
four-vector is computed from the volume using trilinear interpo-
lation. In the first channel of the slice, the original CT intensity
is stored. The 3-D gradient vector is scalar multiplied with each
of the vectors indicating the horizontal and vertical slice plane
directions, respectively. The resulting values, corresponding to
the 2-D gradient of the CT intensity within the slice, are stored
in the second and third channel.

The 2-D slice gradient values are then used to perform Canny
edge-detection on the slice data, and the result is stored in the
fourth channel. The most time-consuming steps within the
Canny algorithm are the computation of the 2-D gradients, as
well as filtering them with a sufficiently large Gaussian kernel

for smoothing. As we compute the 2-D gradients directly from
the precomputed 3-D gradient values, we do not need to run a
2-D filtering for gradient computation. In addition, those gradi-
ents are fairly smooth, as they originate from a 3-D Sobel filter
using a 27-neighborhood. This makes further Gaussian filtering
unnecessary. The two remaining steps for the Canny algorithm,
nonmaxima suppression, and hysteresis thresholding can each
be performed in one traversal of the 2-D slice. The horizontal
gradient is weighted with a user-defined factor between zero
and one, as the ultrasound data tend to show mainly edges
along the lateral direction, parallel to the transducer array.

Thus we are able to construct intermediate slices from the CT
data at estimated transformations of the US scan plane in very
little time (1.1 ms for a 128 pixel slice, interpolated from a
512 100 CT/gradient volume, on an AMD Opteron 2.2 GHz
machine). The individual components of the slice pixels are then
used to compute a similarity metric with the ultrasound data.

C. Occlusion Handling

If an ultrasonic pulse hits bony structures, all image intensi-
ties in the ultrasound image further along the specific ray are
occluded, and mainly determined by noise. Therefore, all ultra-
sound intensity values on a ray below such an occlusion should
be disregarded in the registration method. In our implementa-
tion, we scan the US image from bottom to top, updating the
variances for all ultrasonic pulse rays. Where they exceed a
threshold (which is easily determined in the user interface),
the first pixel to be considered is defined. Thus, our region of
interest (ROI) is expressed by the following equations:

(1)

(2)

where is the lateral (increasing to the right) and the axial
(increasing upward) pixel index of an ultrasound image . By
applying a median filter on the bottom function , discon-
tinuities are removed before defining the ROI. In addition, we
discard all pixels that are located above size , as
we observed that the anatomy is highly compressed there due
to the probe pressure on the patient’s skin. This compressed re-
gion is very distinct from the remaining anatomical structures,
its size (3.6 mm) being consistent on all data we obtained from
patients [Fig. 6(a)]. This ROI definition is similar to those used
in [19] and [24]. It can be adapted to curved-array transducers as
well by accumulating (2) along the actual ultrasound pulse rays
(which do not coincide with the image columns as in our case;
hence some interpolation would be required). However, using a
sector probe will markedly enhance all remaining problems re-
lating to tissue compression and distortion, as there is no simple
function available for correcting the tissue shift.

D. Similarity Measure

Deriving a similarity measure for image-based registration
of ultrasound with CT, based on tissue attenuation values and
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(a) (b)

Fig. 2. (a) Spatial overview of all ultrasound images of Patient 3. (b) Extracted
surface points (red) with volume rendering of CT and some individual ultra-
sound slices.

their edges reconstructed from CT, is a demanding issue. Based
on both the physical properties of the imaging modalities, as
well as the visible appearance of their images, we introduce
several components for a similarity measure, which can in turn
be weighted to define a global cost function with respect to the
transformation parameters.

1) Skin Surface Clamping: In the compressed fraction of the
ultrasound image, the interpolation from CT is done with six
times the vertical scaling [see Fig. 6(a) on top, the 6x factor has
been manually optimized]. As a result, the interface between
skin and air always has to be within that region, producing a
large vertical gradient in the interpolated slice. When all vertical
gradient pixels are summed to , high and low thresholds
can be defined in order to decide if the skin surface lies inside,
outside, or close to the compressed region

if
if
otherwise

(3)

A cubic polynomial is used instead of the linear one in order
to avoid discontinuities. As a component in a cost function,
penalizes transformations that are physically impossible, as the
patient’s skin is always located at the top of the ultrasound im-
ages. and have been manually defined by displaying the
value of while gradually moving the transformation towards
the patient, and visually assessing the skin surface alignment on
sweeps from all patients.

Note that another option for evaluating the distance to the pa-
tient’s skin would be to perform lookups in the distance volume
that was used for the global preregistration in Section III. How-
ever, we prefer the described method, as we do not have to
load another volume (or another intensity channel) into the com-
puter’s main memory, which is already largely occupied by the
CT/Gradient volume. Furthermore, the above computations can
be performed with little additional computational cost.

2) Edge Alignment: As we have detected the edges in the
simulated images, we would like to derive a similarity estimate
based on the distance to edge structures in the ultrasound im-
ages. The straightforward approach would be to 1) compute an

Fig. 3. Registered image pair and edge detection result (red = CT, green =
US).

edge-detection for the ultrasound images, 2) compute a 2-D dis-
tance map for those edges, and 3) sum over the distance map
values at the locations indicated by the edges of the simulated
data. Steps 1) and 2) need to be performed once for each ultra-
sound slice, while 3) establishes a similarity metric and thus has
to be computed for each simulated slice during pose estimation.

However, due to the different nature of CT and ultrasound
data, the detected edges do not correspond in general, as shown
by Fig. 3. We therefore propose to skip the ultrasound edge de-
tection, using the original ultrasound intensity just as an indi-
cator for edges instead.

Given a binary edge image, the distance of an image point to
the edge structures is defined as .
Instead of the Euclidean distance, we can also express the prox-
imity to edges by using a Gaussian expression, which allows us
to adjust the sensitivity of the cost function value with respect
to the distances, using

(4)

Taking into account that we do not have precise edge informa-
tion, a proximity value can be defined as

(5)

where is the probability of the image pixel ’s
being an edge. Assuming that the ultrasound image intensity
directly scales with the edge probability (i.e., ), a
2-D proximity function can be computed according to (5)
by just convoluting the ultrasound image with a large Gaussian
kernel. From this, we define a similarity measure component

, where is the mean of all values in the
proximity image, is the mean of just the pixels at locations
where an edge is present in the simulated image, and is the
standard deviation of the proximity image values.

3) Statistical Correspondence: In addition to tissue inter-
faces, different tissues by themselves cause different ultrasonic
scattering characteristics, in particular characteristic speckle
patterns and echogeneity. These are in turn reflected in the
average ultrasound image intensities for a given tissue type. It
is, therefore, applicable to assess the statistical dependence of
the CT intensities, which classify the tissue according to the
X-ray attenuation property, with the intensity in the ultrasound
image. We use mutual information (the most commonly used
statistical similarity measure; see [29] for a survey) on the CT
and ultrasound intensities. The normalized mutual information
(NMI) term uses the entropies of the combined and individual
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images, which are computed with the Shannon entropy from
probability distributions of the image intensities

NMI

Here, denotes an ultrasound image and the corresponding
simulated image, i.e., the slice interpolation of CT attenuation
values. The probability distributions can be estimated using his-
togram information from the images

(6)

(7)

(8)

Here, we assume that each intensity value is mapped into one
histogram bin and is the number of pixels in the ROI

(9)

An equivalent formulation for constructing the probability dis-
tribution from a histogram can be written using a binary count
function

(10)

if
otherwise

(11)

Due to the various physical effects in ultrasound imaging, both
the chance that an image intensity reflects the anatomy (due to
refraction, reverberation, and other artifacts) and the signal-to-
noise ratio decrease with the distance from the ultrasound trans-
ducer. Thus we would like to give more weight to image pixels
that are closer to the probe, i.e., with higher values. In our
approach, we introduce an integer weighting for estimating the
probability distribution

(12)

(13)

Every intensity value is inserted times into the histograms
and the joint histogram. is a shifting constant that affects the
amount of weighting. We set ( being the number of
image rows); hence the top of the image is weighted twice as

much as the bottom. For , the original mutual infor-
mation notation is obtained. Our weighted mutual information
component NMI’ of the similarity measure is assembled by in-
serting all used ultrasound slice images and the corresponding
simulations into one histogram, as it increases the statistical sig-
nificance of the derived entropy terms. See Appendix I for de-
tails on the weighting of mutual information.

4) Cost Function: The final similarity measure from a set of
ultrasound slices and their CT simulations is

(14)

where are fractional weights of the individual mea-
sure components adding to one and are
the measure components as defined in the previous sections.

E. Registration

For automatic registration, a nonlinear optimization method
maximizes the cost function iteratively with respect to the
parameters of a rigid transformation (six degrees of freedom,
translation, and Euler angles), which is initialized with zero
and affects the current location of all slices. We used three op-
timization schemes: Simple Hill-Climbing (aka Best Neighbor
Search), Powell–Brent, and Exhaustive Hill Climbing. The
latter one evaluates all combinations of [forward, keep, back-
ward] for all parameters, using the best result of all
evaluations as estimate for the next iteration. When the op-
timization terminates, the resulting relative transformation is
multiplied onto the overall registration transformation.

V. EXPERIMENTS

A. Data Acquisition

We conducted a study on five patients. For the freehand
ultrasound acquisitions, we decided to install both optical
and magnetic tracking. However, for the evaluation of our
algorithms, we used solely the optical tracking data. In the
future, information from both tracking technologies will
allow interesting comparative studies. All ultrasound exami-
nations were performed with a GE Logiq 500-scanner and a
8.5-11MHz transducer with a 40 mm linear probe (LA39, GE
Healthcare Technologies, Waukesha, WI). An optical tracking
target, consisting of four infrared marker balls, was mounted
on the handle of the ultrasound probe using cable ties and a
layer of Varihesive bandage-aid between probe and target [see
Fig. 4(a)]. We tested the tracking setup extensively to assure
that the target does not hinder the physicians flexibility when
scanning a patient, in particular that the optical target does not
touch the patient’s skin. On the other hand, the target should be
recognized by the tracking cameras at all times.

The final setup contained four optical ARTtrack2 cam-
eras arranged behind the head of the patient [Fig. 4(c)]. A
two-camera system would have been sufficient if mounted
somewhat higher. As we had four cameras at our disposal, we
used them to obtain a symmetric setup, so that the expected

4A.R.T. GmbH, Weilheim, Germany; www.ar-tracking.de
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Fig. 4. Setup for 3-D freehand ultrasound acquisitions. (a) Ultrasound trans-
ducer with optical and magnetic tracking targets. (b) Positioning with mask. (c)
Actual patient scanning.

tracking precision is comparable on both sides of the pa-
tient’s neck. The ultrasound data were recorded using an IDS
FALCON frame grabber card. The ART tracking data were
received over user datagram protocol network transmission
from the separate PC running the ART DTrack software. We
used the CAMPAR framework for medical augmented reality
applications [30], which was developed by colleagues in our
group, for the acquisition. We implemented the recording of se-
quences by storing the gray-valued video region containing the
actual ultrasound image (size 454 454) on disk, along with its
timestamp and the corresponding 4 4 tracking matrices.The
resulting performance was the frame grabber’s full speed of
25 frames/s; 5 MB/s are written to disk. On mouse clicks, the
corresponding 2-D position in the ultrasound video was logged
in an additional text file, along with the current tracker poses.
We included an additional pose of a tracked tool, whose tip
intersected the ultrasound image, for calibration purposes (see
Section V-B). For the actual freehand ultrasound examinations,
patients were positioned supine on the examination couch with
the head pad supporting the neck and the individual thermo-
plastic immobilization mask covering the face, as shown in
Fig. 4(b). Then the mask was removed, taking care not to move
the head that was still stabilized by the preformed pad beneath,
and the patient was told to keep this posture. From each patient,
11–16 ultrasound sequences, up to 45 s each, were recorded. It
resulted in 5000–11 000 ultrasound images per patient.

Right after the examination, we took a CT scan of each patient
in the radiology department. The device was a Siemens Sensa-
tion Cardiac 64, used with the standard neck scanning protocol
and reconstruction with 0.6 mm slice thickness.

5IDS Imaging Development Systems GmbH, Obersulm, Germany; www.ids-
imaging.com.

Fig. 5. Ultrasound images from the water bath calibration scan; red dots show
points used for the floor reconstruction. (a) Straight, deep. (b) Straight, shallow.
(c) Rotated probe. (d) Tilted probe.

B. Ultrasound Calibration

In order to obtain the position and orientation of the ultra-
sound image plane with respect to the tracker’s world coordinate
system, a calibration is necessary to derive the transformation
that relates the image plane to the tracking sensor coordinates.
There has been a great amount of research on freehand ultra-
sound calibration methods in the last decade (see [31] for a de-
tailed review). We adapted the single-wall calibration technique
[32] to our experimental setting in order to yield an easy yet suf-
ficiently accurate calibration, as described in the following.

For any point in the ultrasound imaging
plane, the corresponding point in the tracker’s world coor-
dinate system is obtained by

(15)

The calibration transformation maps a point from the ultra-
sound coordinate system to the tracking target, while in turn
transforms it to the tracker’s world coordinate system. The ul-
trasound probe is dispensed in a shallow water bath, and moved
in a variety of locations and orientations. The floor then appears
as a line in the ultrasound image, and the user clicks on positions
of that line in the video image.One hundred to two hundred of
those 2-D positions in the ultrasound image (two to three po-
sitions per still frame) are recorded alongside the tracking ma-
trices in a file. Using a water-level device, we assured that both
the floor of the water bath and the rim of the container are ex-
actly parallel to the water surface. By means of the ART DTrack
room calibration, the tracker world coordinate system could be
defined such that the water bath floor is exactly in the
plane.

Thus, the calibration transformation can be recovered by
minimizing the variance of the -component of the points
reconstructed with (15). The Matlab Simplex optimizer was
used to estimate the Euler angles parameterization of . The
resulting standard deviation of the reconstructed points in the

-direction is about 1.1 mm for multiple calibration runs. We
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TABLE I
DESCRIPTION OF DATA SETS AND TARGET REGISTRATION ERRORS

manually selected points on the line representing the floor in
the ultrasound image. Depending on the angle of the probe, the
appearance of the floor becomes manifold and blurred rather
than showing a sharp line (Fig. 5). Using careful adjustment
of a single focal zone, the floor plane can be determined even
for difficult angles. In particular, when slowly moving the
probe from a perpendicular to a steep position, one can see
how the first characteristic sharp line of the floor merges into
a more complex structure, while the actual position of the
floor is still identifiable. This approach allowed us to avoid
manufacturing calibration hardware such as the Cambridge
phantom [32], which overcomes this problem by providing an
obstacle always perpendicular to the image plane. Furthermore,
as the calibration did not need to be done on a regular basis by
physicians, we did not consider more automated approaches
involving complex algorithms for estimating the correct floor
points, as in [33]. For single-wall calibration with automatic
floor line extraction, a reconstruction precision of 3.4 mm is
reported in [32] with magnetic tracking and 2.7 mm in [33]
using optical tracking. In a more recent study [34], these two
methods are quantitatively evaluated with optical tracking. The
authors report mean 3-D point localization errors of 2.7 and
1.67 mm, respectively.

Medical ultrasound devices usually assume a constant speed
of sound of 1540 m/s, which is the average in human soft tissue.
In our water bath at room temperature, however, the speed is
approximately 1485 m/s. Objects visible in the images are thus
closer to the probe than indicated by the rulers on the image
borders. Hence for our calibration, the vertical direction of
the ultrasound image was scaled accordingly with a factor of

(compare [31, p. 458 (7)]).
We used a second tracked tool to intersect the ultrasound

image plane in the water bath. By means of a 3-D visualiza-
tion of the tool and the ultrasound image we visually confirmed
the calibration was correct (i.e., the optimization had not mini-
mized the floor plane to a wrong local optimum). It also allowed
us to assess the latency of the ultrasound image with respect to
the tracker readings by means of periodic pointer movement.
We concluded that no systematic temporal calibration is neces-
sary. One would expect the ultrasound image to be up to one
frame older than the tracker readings (due to the image pro-
cessing and reconstruction on the ultrasound machine as well
as frame grabber delay). This equals to a maximum of 40 ms
delay, or 0.2 mm error if a continuous sweep with the typical
speed of 5 mm/s is considered.

C. Results

For each of the five patients, all of the recorded tracked ul-
trasound sequences were registered onto the skin surface ex-
tracted from the CT scan, as described in Section III. This reg-
istration always converged, with computation times being 1–5
s. The mean residual point distances (based on the Chamfer dis-
tance lookups) for the five patients were 2.36, 3.67, 2.41, 2.31,
and 2.70 mm, respectively.

For studying the accuracy and robustness of the intensity-
based registration methods (Section IV), one or two ultrasound
sweeps were selected from each patient, nine in total. Together,
the selections should cover the whole range of the expected
clinical applications, including the typical lymph node sites on
both sides of the neck and displaying pathological as well as
normal lymph nodes of different sizes. Of each sweep in turn,
four to seven frames were picked for automatic image-based
registration. For validation purposes, the physician carefully es-
tablished a ground-truth transformation for each set of images
using anatomical landmarks such as calcifications in the carotid
artery, well-defined lymph nodes or gland tissue, etc. For each
set, one particular lymph node of interest was selected as the
target; its deviation after the automatic registration with respect
to the manually defined ground truth represented the target reg-
istration error (TRE). The Hill-Climbing optimizer was used
with an initial step size of 5 mm/5 , and the similarity measure
weightings were . Before registration,
the ultrasound images were downsampled to 128 128 resolu-
tion, as their original high spatial sampling rate is not given in
the CT data set and hence cannot be exploited for registration.
In addition, downsampling the ultrasound images positively af-
fects the computation speed.

Table I depicts the registration accuracy with respect to the
selected target for all nine sequences, after surface registration
(column 5, surface TRE) and image-based registration (column
6, auto TRE). In the first two patients, large translational mis-
alignments between pure surface registration and ground truth
were noted, mainly in the lateral or superior/inferior dimension.
In the next three patients the deviations for surface registra-
tion ranged between 4.1 and 10.7 mm. After subsequent image-
based automatic registration (in case of the first three sequences
after some manual adjustment in order to lie within the cap-
ture range), the remaining mean target registration error was 3.9
mm. Apart from sweep 4–6, where the size of the lymph node
metastasis exceeded the 40 mm linear ultrasound probe and little
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Fig. 6. Image data from different patients used for the evaluation. (a) Three corresponding CT (first column) and ultrasound slices (second column) from Patient
2, right neck, with edges from CT (third column) and blurred ultrasound for edge alignment (fourth column), positioned above, in the middle and below a normal
target lymph node (blue outline, cross denotes center for TRE computation). Examples for corresponding anatomy: 1—sternocleidomastoid muscle, 2—internal
jugular vein, 3—carotid artery. ROI is delineated in red on the third and fourth column. The physical image size is 4� 4 cm . (b) Fused visualization of several
registered sequences of Patient 5. (c) Volume rendering of compounded ultrasound sweep from Patient 2, clipped to show a profile of the internal jugular vein (note
the ripple artifacts due to blood pulsation). (d) Images used for registration from Patient 4 (sweep 2), six consecutive ultrasound and CT slice pairs; a malignant
target lymph node (blue outline and TRE cross; 1: sternocleidomastoid muscle, green; 2: internal jugular vein: purple; 3: carotid artery; red, 4: thyroid, yellow).

anatomic distinction was given in the CT data, the target regis-
tration error after image-based fusion remained below 5 mm in
all cases.

Based on the findings above, the physician would have
to expect the following clinical workload and estimated ad-
ditional time consumption per patient to enable registration
of ultrasonography with planning CT (with the setup of the
camera system/calibration of optical tracking provided and
planning-CT performed routinely):

TABLE II
ROBUSTNESS AND SPEED OF DIFFERENT OPTIMIZERS, EVALUATED BY

REPEATEDLY REGISTERING FROM DISPLACED STARTING ESTIMATES
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Fig. 7. Plots of the individual similarity measure components against two translational transformation parameters.

1) patient positioning with mask and head pad on the ultra-
sound examination table, removing the mask (preferable
following the diagnostic ultrasound examination): 1 min;

2) acquisition of one to six freehand ultrasound sweeps (each
20–30 s) containing all pathological lymph nodes on both
sides of the neck: 4 min;

3) computation of US-CT global skin surface registration: 5
s;

4) selection of four to seven US frames per sweep for image-
based registration: 4 min;

5) visual control, if global skin surface registration is good
enough to allow for image-based registration: 3 min;

6) if not, manual drag and drop of the 1 cm deviating
sweep(s) into the range of successful image-based regis-
tration: 5 min;

7) computation of image-based registration: 30 s;
8) reevaluation: 2 min.

Thus, in case the global surface registration deviates substan-
tially, performing all steps would amount to approximately 20
min additional working time for the physician (patients 1 and
2), which could be cut down to 15 min by leaving out step 6) in
case of sufficient global surface registration to allow for a mean-
ingful image-based registration (patients 3–5).

In order to evaluate the robustness of the different optimiza-
tion strategies, 130 registrations were launched from initial
transformations randomly displaced up to 4 mm/4 in each
parameter around the ground truth pose. It was executed for
all three optimizers on a set of seven ultrasound images from
sequence 10 of Patient 2, three of which are shown in Fig. 6(a).
Table II denotes the variance of the error in the translational
and rotational components of the resulting transformation in
Euler angle parameterization, as well as the mean TRE for a
lymph node [Fig. 6(a)] picked as target and the computation
time (on a 2.2 GHz AMD Opteron machine with 2 GB RAM
running Linux). The Hill-Climbing optimizer is stable while re-
quiring the least number of cost function evaluations, resulting
in a very small computation time. Due to the expensive line
minimizations, the Powell–Brent optimizer takes significantly
more time but does not outperform the Hill-Climbing method.
Exhaustive Hill-Climbing achieves the highest robustness,
as it evaluates all combinations of possible search directions
in each iteration, and hence always reaches the closest local
optimum in the parameter space. As its computation time is
very high though, we prefer to use the Hill-Climbing strategy
as the best tradeoff between speed and robustness. To show
the contribution of the various similarity measure components

to the overall registration process, Fig. 7 plots their value
against changes in two translational parameters, with respect
to the ground-truth transformation. The edge correlation term
provides a smooth component, globally converging towards
the optimum and hence driving the stability of the algorithm.
Weighted mutual information (WMI) contributes with a local
peak denoting the highest statistical correspondence. However,
for larger translations, the individual image entropies used for
normalization might change significantly, as the image contents
become different. This can affect the mutual information value
in a way that it produces wrong local optima (left side on the
center plot). In order not to compromise the global convergence
range, we have to limit the influence of the WMI term with
respect to edge correlation. As its values are much smaller
(0.01–0.1) compared to edge correlation (0.02–0.35), an equal
weighting represents a good balance between
the two components. The skin surface clamping plot depicts a
rim of value 1, dropping smoothly to zero when some of the
ultrasound images drift away from the patient’s skin. In fact,
for our weight , the optimization never allows any
values other than one for this component.

VI. DISCUSSION

The described setup allows acquisition of freehand ultrasound
data from all sides and orientations required for thorough exam-
ination of the patient’s neck while knowing the location of each
image in 3-D-space. However, several sources for error might
affect a registration of this information to the corresponding CT
data.

A. Tracking Inaccuracy

In our particular case, this error is very small due to the use
of the high-end ART tracking system with four cameras. .

B. Calibration Error

Our calibration method yielded a reconstruction plane stan-
dard deviation of 1.1 mm (see Section V-B). Considering that we
perform sweeps in a continuous motion (without many angula-
tions) and register them individually, we expect the calibration
accuracy to have limited impact on the registration. However,
we did not perform a complete calibration accuracy study in the
scope of this paper.

6A 0.4 mm root mean square position error over the whole measurement
volume, as stated at www.ar-tracking.de
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C. Patient Immobilization

Even though the patient was placed on the immobilization
head pad also used for treatment, slight movements of the pa-
tient’s head might have happened during the examination, as the
thermoplastic mask was removed after the initial positioning. In
addition, involuntary movements are possible in the context of
counterbalancing the mild ultrasound probe pressure. The head
pad was not fixed on the examination couch; thus only gravity
and friction prevented its displacement. Similarly, the exami-
nation couch itself was a mobile design with parking brakes in
use that did not completely prevent translational movement if
leaning against it (e.g., examination of the patient’s left neck
from his right side). These latter two aspects could be respon-
sible for the large deviations in patients 1 and 2 and should be
addressed in subsequent studies by using a stationary examina-
tion couch and firm fixation of the head pad. The former aspects
are more difficult to counteract: leaving the thermoplastic mask
in place would impede access to two-thirds of the lymph nodes
under question; cutting it according to the requirements of ultra-
sonography would lead to an unstable mask no longer sufficient
for subsequent radiotherapy. Special face masks that gain sta-
bility from an individually moulded mouth piece are poorly tol-
erated by head and neck cancer patients due to hypersalivation
and tumorous obstruction of airways. Because of these prob-
lems, the global skin surface registration of the whole exam may
serve as initial estimation, but a more precise registration should
be performed for individual sweeps, which is the case in our ap-
proach.

D. Internal Tissue Movement

The heartbeat causes the vessels to pulsate with a character-
istic rhythm over time, with a single high-pressure pulse per
heartbeat for arteries and a low-pressure double pulse for veins
resulting in tissue movements of 1–3 mm; see Fig. 6(c). In ad-
dition, some of the patients had to swallow during the examina-
tion, resulting in a strong shift of internal structures in the whole
neck region. If deep breath-taking happens, other deformations
occur. Hence we asked the patients for quiet, regular breathing
throughout the examination, where only minor changes in the
anatomy are expected.

E. Ultrasound Image Distortion

Speed-of-sound variations can cause geometric distortion in
the ultrasound images. The speed of sound varies slightly in
soft tissue (fat 1476 m/s, water at body temperature 1529 m/s,
muscle 1568 m/s, blood 1570 m/s), while the ultrasound ma-
chine assumes 1540 m/s for the image reconstruction. The max-
imum deviation here is about 4%; hence, e.g., a 1 cm fat layer
would cause the tissue below to appear 0.4 mm displaced. Fur-
ther distortion can appear due to refraction. In the given data,
a lateral shadowing effect on the carotid artery was a frequent
finding; however, we do not expect implications for the reg-
istration. The shadowing itself is excluded by our algorithm
(see Section IV-C), and the slightly displaced echoes below the
carotid artery contribute with a low weight to the similarity mea-
sure, as they are on the bottom of the image.

F. Ultrasound Probe Pressure

In any ultrasound exam, some minimum pressure has to be
applied in order to keep direct contact with the patient’s skin.
Where the skin surface is convex, the linear ultrasound probe
will flatten the surface underneath, and the compression should
be strongest in the middle of the probe. This causes deforma-
tion of the skin, subcutaneous fat, muscular layers, and ves-
sels. Placing and removing the ultrasound probe repeatedly at
neighboring locations will thus lead to different distortion of
the same structures. In particular, vessel structures, as well as
lymph nodes close to the skin, are affected: Due to different in-
herent blood pressures between the arterial (60–140 mm-Hg)
and venous (2–10 mm-Hg) blood system, the external compres-
sion effect imposed by the ultrasound probe is much more pro-
nounced in veins; see anatomy contours in Fig. 6(a). In some
of the sweeps, we could observe that the internal jugular vein
would be totally collapsed due to compression in some parts
of the sweep, while it was visible with little or no deformation
in others. Nonfixed lymph nodes may be shifted slightly side-
ways by the ultrasound probe, depending on the consistency
of surrounding tissue. In the study reported in this paper, we
handled these issues by manual selection of ultrasound image
frames well suited for registration, as opposed to a 3-D/3-D reg-
istration of all information available from a sweep with the CT
scan. Thus, when two sweeps of freehand ultrasound with over-
lapping structures of interest are recorded, one cannot expect
to have an exact match of the corresponding anatomy in both
sequences. Again, this supports our supposition that a precise
image-based coregistration of anatomic structures to CT is re-
stricted to individual freehand ultrasound sweeps.

Some of the issues mentioned above suggest the integration
of deformable models into our registration methods, which we
consider an important topic for future research. However, this
will require a high degree of distinction between different tissue
types with different deformability (arteries, veins, subcutaneous
layers, muscle, fat, etc.) and thus in turn will depend on seg-
mentation algorithms and feature-based methods. Furthermore,
validating the correctness of all registered CT-ultrasound data
in terms of a deformable mapping would be a very time-con-
suming effort, left with many uncertainties concerning the rela-
tion of physiological flexible soft tissues and rigid tumor tissue.

Considering a feature-based approach as an option for auto-
matic registration between US and CT, the carotid artery would
be a structure of choice, as it appears well in the ultrasound im-
ages, is less prone to artifacts from probe pressure as opposed
to veins, and is sited in close proximity to several lymph node
regions. But for CT, it is angiographic acquisitions with contrast
agent that allow one to precisely extract the tubular shape of the
carotids [35]. However, standard planning CT scans for radio-
therapy are performed without contrast agent; thus we made use
of native CT scans in order to minimize the additional workload
in the treatment planning process and to enhance the acceptance
for the clinical routine. Our similarity measure approach is de-
rived from physical properties of ultrasound and CT imaging,
rather than from particular anatomy. Therefore, the algorithms
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should also be applicable on other parts of the human body ac-
cessible to ultrasonography. The intensity-based registration it-
self is performed within a few seconds and may be beneficial as
well for endoscopic ultrasound or interventional strategies such
as radio-frequency ablation of liver metastases.

According to our time estimates for the proposed procedure,
the physician faces a maximum of 20 min additional workload in
case of the global surface registration’s not meeting the require-
ments for subsequent image-based registration (patients 1–2).
Avoiding pitfalls like an unstable head pad fixation and exami-
nation couch along with careful patient positioning will suppos-
edly lead to a sufficient global surface registration like in our
patients 3–5, in which case step 6 is dispensable, resulting in 15
min workload per patient. In view of the complexity of planning
process in intensity-modulated radiation therapy (IMRT), usu-
ally involving the radiation oncologist and medical physicist for
more than an hour, this may be deemed acceptable if substan-
tial sparing of tissue irradiation in noneffected lymph node sites
and dose escalation in clearly identified nodal metastases due to
on-site ultrasound visualization is to be the gain.

Still, from the clinician’s point of view, further reduction of
personal involvement is desirable. As a next step, the manual
selection of US frames should be replaced by automation (e.g.,
every twentieth frame of a sweep). In fact, in this paper, we
select frames not only for being less distorted than others but
also for being helpful to establish the ground truth validation.
If image-guided registration is possible on frames selected au-
tomatically as well, preceded by a stable skin surface registra-
tion, steps 4 and 5 will become dispensable as well, cutting the
manual involvement time down to below 8 min, which should
be the aim of coming research.

Altogether, we found a TRE of 3–5 mm for all lymph nodes
other than bulky disease, which is in accordance with the lit-
erature for the BAT-system compared to gold marker verifica-
tion of the prostate [6]. In view of the internal movements and
tissue deformation mentioned above, this seems to be accept-
able. Studies on positioning head and neck patients with a ther-
moplastic mask reported on a daily setup variation of around
3 mm, but the reported measurements usually relied on osseous
landmarks in portal films. Translating the traditional three-point
laser setup error of mean 3.33 mm in any single direction into a
mean composite vector, deriving from a high-precision optically
guided patient localization system and considering all six de-
grees of freedom (like in our TRE), the offset was 6.97 mm with
a standard deviation of 3.63 mm [36]. In fact, the planning CT
alone, imaging the neck tissue at a certain time point, pretends to
resemble an accurate picture of a region that is in fact in motion
all the time due to pulsating vessels, breathing, swallowing, etc.
These effects are mirrored in the ultrasound examination, which
gives a more realistic imaging along the time scale, e.g., when
watching the pulsation without moving the probe. Thus, part
of the registration error cannot be attributed to pressure effects
from the ultrasound probe but rather relies on inherent tissue
movement. This will not be overcome by optimizing positioning
and should be allowed for when defining the margins (additional
zones around GTV) for planning target volume definition. There
is a growing interest on this issue of soft tissue movement, as the
widths of margins determine to what extent dose escalation and

Fig. 8. Test images containing three intensities. The boxes I and I are dis-
placed in the moving image, resulting in relative overlaps o and o . An overlap
of 1 means the boxes are at identical positions; 0 corresponds to no overlap.

normal tissue sparing is possible in high-precision radiotherapy.
The magnitude of TRE values derived from CT-US registration
may help to define the minimal margin to ensure full dose cov-
erage in macroscopic tumor surrounded by soft tissue.

VII. CONCLUSION

We developed methods for the integration of diagnostic ultra-
sound of cervical lymph nodes into the radiation therapy plan-
ning context of head and neck cancer, where target volume defi-
nition is performed on a native CT. This includes a tracked free-
hand ultrasound exam and a global preregistration to the skin
surface derived from the CT data to allow an automatic inten-
sity-based registration of a set of ultrasound slices to the cor-
responding CT data. For the ultrasound acquisition, it is cru-
cial to control external movements as far as possible to ensure
spatial consistency for the global surface registration. Internal
tissue movements (swallowing, pulsating vessels) and flattening
of surface tissue by the linear ultrasound probe are inevitable
though. From a clinician’s point of view, 3–5 mm uncertainty
about the exact site of each image voxel seems acceptable for ra-
diotherapy planning purposes in soft tissue. Given the tracking
system is set up and calibrated, the expected additional work-
load for the physician amounts to 15 min per patient with ade-
quate fixation. This might be halved by automation of frame se-
lection for image-based registration, which should be addressed
in studies to come. In principle, ultrasonography findings have
been made available for treatment planning, where benefits for
target volume definition might be expected.

APPENDIX I
WEIGHTED MUTUAL INFORMATION

1) Basics: In order to study the effect of weighted image his-
tograms for mutual information, we consider the case of simple
test images [Fig. 8]. Half of the fixed (reference) image has in-
tensity , and each one-fourth is covered with a box of intensity

and , respectively. In the moving image , those boxes are
shifted to the right, resulting in an overlap
with respect to the boxes in the fixed image. The entropy in the
images is independent of the overlaps

(16)
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TABLE III
JOINT PROBABILITY DISTRIBUTION

TABLE IV
WEIGHTED JOINT PROBABILITY DISTRIBUTION

(17)

The joint probability distribution in Table III lists the probability
of every pair of intensities in the left and right images, respec-
tively, and depends on the overlap values.

The joint entropy computed from it results in

(18)

2) Histogram Weighting: If we are more confident that the
overlap of the upper box reflects the image alignment than the
lower one, we would like to weight the image intensities de-
pending on the vertical position. We therefore multiply the his-
togram values with two integer count variables and . They
correspond to weights adding to one

(19)

The marginal image entropies are still independent of the
overlap. However, they depend on the weights

(20)

(21)

(22)

The joint entropy is now affected by both the overlap and the
weight values Table IV

(23)

(24)

Fig. 9. WMI versus translation of the moving image, for different overlap func-
tions and weightings. The dashed lines show the relative overlaps o ; o for the
test images (upper diagram) and a Gaussian overlap function (lower diagram).

Fig. 9 plots the WMI term versus a translation to the left of
the moving image from Fig. 8. The upper diagram illustrates that
WMI contains a higher peak at the alignment of the upper box
for an overlap function rising linearly with respect to the transla-
tion (derived from the test images). For a smooth overlap func-
tion that causes a single similarity measure peak in the center
(lower diagram), that peak is shifted towards the alignment of
the upper box with our weighting. Here not the linear overlap

with respect to translation is used but a Gaussian function.
The mutual information term used is 2 2 .
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