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The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however exten-
sive manual effort is usually required for correct registration. We developed new methods that allow one
to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging
effects. They are combined with a robust similarity measure that assesses the correlation of a combina-
tion of signals extracted from CT with ultrasound, without knowing the influence of each signal. This
serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the cor-

Igy words: responding tomographic modality using a rigid or an affine transformation model, without any manual
Ultrasound interaction. . . . . . oy s . . S

Registration These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver
Fusion and kidney. The clinical setup, acquisition and registration workflow is described, along with the evalu-

ation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm
correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple
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target lesions throughout the liver is 8.1 mm.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Conventional 2D ultrasound systems can be equipped with
position sensors to perform 3D acquisitions of whole organs, and
to obtain spatial information during a procedure. This is usually
denoted as “3D Freehand Ultrasound” in the technical community
(while ultrasound vendors often declare hand-swept imaging
without tracking as “Freehand”). The fusion of such 3D ultrasound
imaging with tomographic modalities can be used not only to im-
prove navigation and ultrasound-based guidance for interventional
procedures, but also to improve diagnostic value, e.g. for assess-
ment of indeterminate lesions. This requires that the target
anatomy is precisely registered between ultrasound and the pre-
operative modality. Doing so in an automated manner is very
challenging, and is the main focus of this work.

1.1. Clinical context

A common clinical problem is a patient with an indeterminate
lesion, contained in the liver or kidney, identified by computed
tomography (CT) or magnetic resonance imaging (MRI). Often, fur-

* Corresponding author. Tel.: +1 609 734 4477; fax: +1 609 734 3310.
E-mail address: wolfgang.wein@siemens.com (W. Wein).

1361-8415/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.media.2008.06.006

ther clinical work-up involves characterization of the lesion with
the use of ultrasound (US) imaging. US imaging is utilized because
this modality can often determine whether the lesion is likely
benign or malignant due to the characteristic appearance of many
lesions. However, it is sometimes difficult to correlate CT or MRI
findings with US imaging due to inherent differences in the imag-
ing methods. US imaging has several limiting factors that affect the
use of this methodology for lesional identification and for its use as
a guidance method. These factors include: (1) image acquisition is
user dependent, (2) the field of view is limited, (3) US images are
typically acquired off true axial, sagittal, or coronal planes with
resultant difficulty correlating with these other cross-sectional
imaging methods, (4) lesional identification can be difficult due
to its echogenicity relative to the organ that is interrogated, and
(5) the quality of the imaging is affected by the physical character-
istics of the patient and overlying structures such as ribs, subcuta-
neous fat, and normal gas-containing structures. In this context,
the fusion of CT and ultrasound can improve the diagnostic value
to an extent beyond the “sum” of the individual modalities, poten-
tially sparing an invasive biopsy, where a tissue sample for further
pathological examination is obtained.

This leads to a second common clinical issue - the need to per-
form percutaneous needle biopsy or ablation of an indeterminate
or malignant lesion contained in the liver or kidney. In the most
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Fig. 1. Radiofrequency ablation of a liver mass guided by ultrasound imaging in the
CT suite.

common ablation technique, radio-frequency ablation (RFA), one
or multiple ablation needles are inserted into the center of the le-
sion(s). Heat created around the needle tip causes coagulative
necrosis of the tumor tissue (vanSonnenberg et al., 2005). Often,
US image guidance is the method of choice for these procedures
because it is performed real-time which allows precise placement
of the biopsy needle or ablation device (Fig. 1). However, as with
diagnostic imaging with US, the use of US for image-guidance
can be difficult because the target lesion may not be visible or
the imager may not be confident that a lesion identified with US
imaging actually corresponds to the abnormality identified with
CT or MRI (Wood et al., 2000). While many factors are important
to achieve local tumor control of a targeted lesion when using per-
cutaneous image-guided ablation devices, the most important one
is accurate placement of the device in the center of the targeted
tumor.

Many image-guided procedures are best performed with inter-
mittent CT guidance, particularly when the target is relatively
immobile in the retroperitoneum, lung, and bone. However, CT is
of more limited usefulness as a guidance method for mobile tar-
gets, including the liver or kidney, due to the interrupted nature
of the technique with superimposed patient breathing and motion.
Multiple needle or device placement attempts may be necessary to
successfully access a small target. This in turn increases the risk of
possible complications such as bleeding.

One can clearly see that the use of tracked ultrasound, alongside
with multi-modal registration of ultrasound to the pre-operative
CT data, has a huge potential of improving ablation treatments.
Many uncertainties regarding intra-operative tumor localization
and delivery can be removed by precisely mapping the pre-opera-
tive and planning data into the coordinate system of the live ultra-
sound during the actual procedure (Crocetti et al., 2008).

1.2. Commercial systems

To the best of our knowledge, Ultraguide (est. 1996, Haifa,
Israel) offered the first commercially available system that used
magnetically tracked ultrasound transducers and biopsy instru-
ments (Stippel et al., 2002). However, the clinical benefit of the
technology over traditional fixed biopsy guides was never clearly
demonstrated (Sheafor et al., 2000). The company went bankrupt
in 2003.

The ultrasound vendor Biosound Esaote (Genoa, Italy) features a
solution denoted Virtual Navigator, available on some of its prod-
ucts. It uses magnetic tracking as well, of both the ultrasound
transducer and, optionally, an ablation electrode (Crocetti et al.,
2008). The pre-operative CT data is integrated before the ablation
procedure using manual registration.

Likewise, the Real-time Virtual Sonography system by Hitachi
Medical (Tokyo, Japan) allows fusion of tracked ultrasound with
CT or MR], it has been applied for liver ablation and breast imaging
(Arai et al., 2006).

Traxtal Inc. (Toronto, Canada) recently released the PercuNav
system for Image-Guided Needle Interventions. It uses miniature
electromagnetic tracking sensors integrated in the tip of ablation
and biopsy needles, providing accurate navigation even for flexible
instruments. Integration of pre-operative imaging and intra-opera-
tive tracked ultrasound is featured as well.

In the context of the described systems, automatic registration
has the promise of improving the overall workflow by saving time
and decreasing the human factor and subjectivity in aligning the
pre- and intra-operative images.

1.3. Related work

A number of techniques for automatic registration of CT/MRI to
ultrasound are described in the literature. In Roche et al. (2001),
image-based registration of MRI to 3DUS is achieved by using both
MRI intensity and gradient information in a similarity criterion
based on correlation ratio (CR). Automatic registration on a single
kidney CT/US data using CR as well, here by enhancing the CT
intensities with major boundaries, is done in Leroy et al. (2004).
In Penney et al. (2004), both MRI and US are remapped to an inter-
mediate vessel probability representation using training data sets,
then cross-correlation is used as similarity measure. In Wein et al.
(2007b), a multi-component similarity measure involving
weighted Mutual information is used on CT intensities and edge
maps for rigid alignment with freehand ultrasound of the head
and neck.

The mentioned methods all require manual initialization of the
registration transformation, some need manual frame selection as
well. In our work, we present a simulation of ultrasound from CT,
which is realistic enough to allow for a stable registration, yet is
computationally efficient at the same time. This has the added ben-
efit that the simulation can be used by physicians or sonographers
during planning, to get a feeling for the accessibility and optimal
orientations even before the ultrasound exam, or the ultrasound-
guided intervention. Furthermore, a novel similarity measure is
developed, which is invariant to missing simulation details, yield-
ing smooth properties and a global maximum at the correct align-
ment. We had presented a first version of it, along with preliminary
clinical evaluation, in Wein et al. (2007a).

An ultrasound simulation based on a segmented CT scan, for
training purposes rather than registration, has been proposed in
Zhu et al. (2007).

2. Methods
2.1. Simulation of ultrasound from CT

In the following we explain the aspects of ultrasound physics
relevant to our work. A more detailed introduction can be found
in Zagzebski (1996). An ultrasound wave is partly reflected when-
ever a change in acoustic impedance is encountered in the imaged
tissue. The acoustic impedance Z = pc depends on the tissue den-
sity p and the speed of sound c. Ultrasound machines assume a
constant ¢ = 1540 m/s in human soft tissue, while a significantly
different speed of sound occurs e.g. in air and bone. Table 1 lists
the values for various tissue types, from Schneider et al. (1996).
The ratio of an ultrasound wave intensity, reflected at a tissue
interface with different acoustic impedances Z; and Z, is
(Zy — Z1)*/(Z2 + Z1)%, given a specular interface with angle of inci-
dence equal to the angle of reflection. The diffuse reflection Ar,
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Table 1
CT Hounsfield units u and physical properties of human tissues (density p, speed of
sound c, acoustic impedance Z)

Material u p(5) c(m) z(Zer)
Bone 1000 1912 4080 7.8
Muscle 10...40 1080 1580 1.7

Liver 40...60 1060 1550 1.64
Blood 40 1057 1575 1.62
Kidney 30 1038 1560 1.62
Brain 43 ...46 994 1560 1.55
Water 0 1000 1480 1.48

Fat —100...-50 952 1459 1.38

Air —1000 1.2 330 0.0004

which is reflected straight back to the ultrasound transducer de-
pends on the angle of incidence 6 (see Fig. 2):

zzfz1>2
Zr+ 74

Ar(Z1,Z,0) = (cos 9)”( (1)
The exponent n describes the heterogenity on the tissue interface,
causing the amount of reflection to be more or less narrow around
its perpendicular. We lack detailed physical knowledge from CT,
hence we use n =1, as it simplifies the equations and produces
good results. Higher values would restrict the reflections of non-
perpendicular interfaces, possibly missing to extract some features
from the CT intensities. On the other hand, the similarity measure
that will be explained later is to some extent capable of ignoring
additional information not present in ultrasound. The transmitted
intensity t(Z;,Z,) does not depend on the angle of incidence, if
refraction is neglected:
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The X-ray attenuation y measured by a CT scanner is approximately

proportional to the tissue density, see Fig. 3. Because tissue density

is in turn proportional to acoustic impedance (as c is assumed con-

stant), we can directly derive the incremental acoustic intensity

reflection from it
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where £(X) is the CT attenuation value at position X, Vu(X) its spa-
tial derivative, and d a unit vector denoting the direction of the
ultrasound wave propagation. The scalar multiplication of d with
the normed CT gradient vector yields the angular dependency
equivalent to cos(f). The ultrasound wave intensity is reduced

specular reflection

_.tissue interfaces”

transducer

Fig. 2. Principle of ultrasonic transmission and reflection at multiple tissue
interfaces.
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Fig. 3. Plot of CT Hounsfield units against tissue density, values from Schneider
et al. (1996).

according to t(X) at each tissue interface, while Ar (%, a) contributes
to the wave intensity detected by the probe. Integrating over this
reflection and transmission behavior along an ultrasonic scanline
yields:

-

R . 2 .
I%) = Ipexp | — / (W) di | (@ v ) VAL
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(6)
where Iy is the original intensity of the ultrasound pulse, we define
it as Ip = 1. In addition, we apply a log-compression, which ampli-
fies smaller reflections. Its parameter a is visually determined, and
resembles the dynamic range knob on the ultrasound machine. This
yields the resulting value of the simulation:

r(R) = lolgo(l +al(X)) )
g(1+a)

For a linear array probe, the integral in Eq. 6 can be computed
efficiently by traversing the columns in the simulated ultrasound
image from top to bottom while updating the transmitted
intensity based on the interpolated CT intensity and gradient val-
ues. For curvilinear arrays, we compute the image row-wise from
top to bottom, while using an auxiliary channel storing the
remaining transmitted ultrasound wave intensity (starting with 1
in the first row). For every pixel, this transmission value is re-
trieved by linear interpolation from two pixels in the row above,
according to the ultrasound ray angle derived from the curvilinear
geometry.

This provides a means to simulate large-scale ultrasonic reflec-
tion at tissue boundaries, and the related shadowing effects at
strong interfaces like bone. However, individual tissue types have
specific echogeneity and speckle patterns by themselves, based
on the microscopic tissue inhomogenities. There is no simple rela-
tionship between tissue echogeneity and CT hounsfield units,
therefore we add an intensity mapping p(x(X)) on a narrow soft-
tissue range to the simulated large-scale reflection r(X). We use a
simple polynomial function, based on a number of correspon-
dences (liver tissue, liver vasculature, kidney, gall bladder) be-
tween CT/CTA intensities and tissue echogeneity in ultrasound,
see Fig. 4. Fig. 5 depicts the simulation result for a transverse liver
image, computed from a native CT scan.
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Fig. 4. Intensity mapping p for CT (dashed) and portal-venous CTA (solid) soft
tissue. Note that the liver-vasculature relation is inverted in the two modalities.

2.2. Registration algorithm

2.2.1. Automatic frame selection

Since we simulate ultrasound imaging effects with respect to
the probe geometry, the original B-mode scan planes of the sweep
have to be used rather than a 3D reconstruction. Neighboring
frames of the freehand sweep contain similar information, hence
we use always the one out of n frames that has the highest image
entropy. This assures that frames which contain unique fine vascu-
larity, that can be located in CT as well, are picked for registration.
If two neighboring frames have the highest entropy out of their
group of n, only one of them (again with the highest entropy) is
used. Furthermore, a threshold is used to discard frames at the
beginning and end of the sweep with little structures. In our exper-
iments, n was defined to yield 20-30 frames per sweep for
registration.

2.2.2. Similarity measure considerations

It seems appropriate to use statistical similarity metrics like
mutual information (MI) and correlation ratio (CR) for assessing
the correspondence of original CT and ultrasound intensities. In
their general formulation, however, they do not work well for
our registration problem, since there are too many possible config-
urations where the joint entropy is minimal (for MI), or the inten-
sities from one image can be predicted well from the other one (for
CR). At correct alignment of CT and ultrasound, they typically pro-
duce only a small local optimum. Known approaches for restricting
the possible intensity distributions are distance metrics to joint
histograms learnt from correct registrations (see e.g. Guetter
et al. (2005), Kullback-Leibler divergence), as well as bootstrap-
ping parameters for a polynomial intensity mapping in the actual
registration process itself (Roche et al., 2001). In both cases, very
important information is disregarded, as e.g. small vascularity is
essential for a correct registration within the liver, but due its

(a) CT

(b) ultrasound

(¢) reflection r

appearance on a relatively small fraction of the image content, it
would neither affect a joint histogram or a least-squares estimate
of a polynomial intensity mapping. Since CT attenuation measure-
ments are mostly reproducible, we will use the constant mapping
function p defined in Section 2.1 in conjunction with a linear
model.

2.2.3. The LC? similarity measure
In a correlation ratio framework, the parameters of the registra-
tion transformation T are modified in order to maximize

L eoUx) — F(UT(X))?
R =1 = = o Var(U) ®)

with f denoting the mapping function which estimates the intensi-
ties of the US image U from the transformed CT image y, and Q the
shared image domain. If a linear mapping f (i) = oit + f is assumed,
Eq. (8) can be directly related to the common normalized cross-cor-
relation (NCC) similarity metric, see Roche et al. (1999) for the
derivation.

For a pixel intensity in the US image, the relative contributions
of large-scale reflections and general tissue echogeneity are
unknown. Hence both the mapped CT intensity p(u) and the
simulated reflection r have to be integrated in a correlation frame-

work with the US intensity. Using the notation p;=
p(u(T(X))), ri=r(T(x)), w =U(X) for the intensity triple at a
certain voxel, we define the intensity function as
f(R) = op; + pri+y 9)
The unknown parameters o, § and y then have to minimize
o U 2 pr o1
M| B | - ;where M=1] @ @ (10)
v Uy pp T 1

Therefore the solution is

« Ui YpF Yt YD Y Dilki
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Direct inversion of the symetric matrix M'M results in a closed-
form solution for the parameters. They are then inserted in Eq. (8)
to yield a novel registration similarity metric, which we denote Lin-
ear Correlation of Linear Combination (LC?). It assesses the correla-
tion of US intensities u; and a linear combination with unknown
weights of signals p;, r; extracted from CT. The value of LC? is con-
stant with respect to brightness and contrast changes of the US im-
age (as NCC), but also independent to how much of the two
described physical effects contributes to the image intensities. The

(d) transmission t

(e) simulation r + p

Fig. 5. Simulation of ultrasonic effects from CT. The original images are depicted in (a) and (b). The simulated large-scale reflection is shown in (c), the auxiliary transmission
image in (d). The final simulation outcome is (e), where reflection and echogeneity estimated from CT are combined. (a) CT, (b) ultrasound, (c) reflection r, (d) transmission t

and (e) simulation r + p.
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latter is important, since e.g. hepatic vasculature or the gall bladder
is represented mostly by p (different intensities due to echogeneity
in ultrasound, no borders), while large-scale tissue interfaces corre-
spond to r (strong edge in ultrasound, comparable intensities on
both sides).

This implicit computation of the parameters o, 8 and y during
every pose evaluation equals a simultaneous optimization of radio-
metric and geometrical registration parameters (with the radio-
metric parameters providing information for simulating US
images from the CT volume). Fig. 6 illustrates this by showing
the simulated intensity according to ap; + fr; + 7 for an aligned
and displaced image of the liver. For the aligned image, the param-
eters o and p are higher, denoting a good least-squares matching of
the structures. For the displaced image, they are very small, caus-
ing both the vasculature and liver border to almost disappear. The
value of y is expressed in a normalized intensity range [0...1].

Note: The fact that the weights for p and r are unknown, sug-
gests that a higher-dimensional mutual information (HMI) ap-
proach could be used as well (Gan and Chung, 2005). Here, each
p,r and u would represent one axis in a three-dimensional joint
probability distribution. We had investigated this approach, com-
puting modified versions of MI and CR on a 3D joint histogram;
it however resulted in an unstable similarity metric (see also Sec-
tion 3.3). One reason is that the reflection term r has an intensity
distribution containing mostly small values (no reflections) and
few yet important large values (representing reflections at tissue
interfaces). A non-linear histogram equalization approach would
be a pre-requesite to use r in such a framework. Another problem,
as pointed out before in Section 2.2.2, is the unconstrained huge
number of intensity configurations that lead to a local optimum.

Egs. (11) and (8) can be computed once for a set of US-CT image
pairs, individually for every frame in the set (as we did in Wein et
al., 2007a), or locally for arbitrary image regions (see Section 2.2.4
below). In all but the first case, the mean of the resulting LC? values
constitutes the cost function for optimization.

For disregarding fine speckle information in the registration
(whose correspondence we cannot extract from CT), and speed-
up of the computation, the US images are down-scaled to
~ 128 x 100 pixels (by averaging an integer number of pixels in
each dimension). The top 3 cm along the ultrasonic rays are ig-
nored for the measure computation, since they contain only com-

(b) a@=0.11, 3 =0.14, v = 0.29

Fig. 6. The effect of simultaneous simulation and registration. The left column
shows the simulation from CT using the parameters resulting from the LC?
computation. (a) is well registered, (b) is 1 cm displaced.

pressed subcutaneous tissue (which we visually confirmed on a
large number of data sets).

2.24. Local LC? computation

Generally, it can not be assumed that Eq. (9) is valid over the
whole content of a registered image pair. One reason, as pointed
out above, is that different anatomic structures yield different
weightings of the echogeneity and reflection terms p and r. Apart
from that, every ultrasound machine features settings that locally
optimize the image quality, such as the time gain compensation
(TGC) curve or the number and location of focal zones. Last but
not least, orientation-dependant artifacts result in upper structures
influencing the imaging of anatomy further away from the probe,
which might not always be accurately reproduced by our simula-
tion from CT.

We therefore compute the LC? similarity measure for local
patches centered around every pixel in each image pair. This
extension is similar to the local normalized cross-correlation
(LNCC) similarity metric, which has particularly proven useful for
2D-3D registration (Khamene et al., 2006). The patch size has to
be chosen correctly; if it is too small, Eq. (9) will always hold,
therefore not decreasing the image similarity with larger misalign-
ment. If it is too large, it does not hold for the correct alignment,
since structures reflecting different weightings for p and r share
one patch. In a robustness study (see Section 3.3) carried out for
different sizes, we obtained 11 x 11 pixels as the optimal patch
size.

As a further advantage of the local LC* computation, we can
drop the intensity mapping for contrasted CT scans (Fig. 4). The
resulting inverse relationship between CT and US intensities of
vasculature causes a negative o value for the respective patches
(which would not be valid for the remainder of the image). This in-
creases the local accuracy particularly of small vascular structures,
as some ambiguity can be introduced by the mapping - one can see
in Fig. 4 that up to three CT intensities are mapped to the same US
intensity.

2.2.5. Optimization strategy

An initial estimate of the orientation is obtained from the track-
ing setup, if the patient is supine. Otherwise, an approximate angle
around the cranio-caudal axis is entered manually. The large-scale
translation is determined by performing an exhaustive search of
the translation space. Here, a skin surface clamping approach is
used, skipping physically impossible transducer locations, as in
Wein et al. (2007b). All configurations within the evaluated 3D-
grid suggesting an optimum, are further locally optimized with re-
spect to the translation. From the configuration which in turn
yields the best result, all six parameters of the rigid transformation
are refined. As an optional last step, an optimization is executed on
all rigid and three selected affine transformation parameters
(henceforth denoted semi-affine). These are the two scaling param-
eters and the one shearing of the sagittal plane, since respiratory
motion mainly causes deformation in that plane (Rohlfing and
C.R. Maurer, 2004). For all local optimizations, the Amoeba Simplex
algorithm is used, as described in Press et al. (1992), chapter 10.

3. Experiments
3.1. Setup

In order to evaluate the performance of the registration algo-
rithm, a study on abdominal data of 25 patients was performed.
Patients were included that had one or more indeterminate lesions
contained in either the liver or kidney, that measured > 0.5 cm
and < 5 cm in diameter, diagnosed on a prior contrast-enhanced
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CT examination. Patients with cardiac pacemakers or defibrillators
were excluded from the study. No patients were excluded on the
basis of body habitus.

For focal liver lesions, a biphasic contrast-enhanced examina-
tion of the abdomen (delay of 45 and 70 s) was performed. For fo-
cal renal lesions, a triphasic contrast-enhanced examination (delay
of 45, 70 and 180 s) was done. In either case, image reconstruction
slice thickness of < 2 mm was required.

Since the study is ultimately targeted towards the intervention-
al application, the decision was made to use a magnetic tracking
system. The small tracking sensor can be attached right to the
ultrasound transducer (optionally inside a sterile plastic wrap),
and does not require a line of sight to the transmitter. This is
advantageous in the RFA setup with limited space (see Fig. 1),
and allows tracking of needles as well. Our freehand ultrasound
system uses a 3D Guidance tracking system (Ascension Technology
Corp., Burlington, VT USA) with the flat transmitter option, which
slides below the patient mattress and avoids tracking errors in-
duced by metal in the patient bed. Images from a Siemens Sequoia
ultrasound machine are fed via progressive RGBS video into a PC
with frame grabber. The position sensor was affixed to the trans-
ducer using hot-melt adhesive, and the method presented in Wein
and Khamene (2008) was used to compute the spatial and tempo-
ral calibration.

Transverse liver sweeps on 21 patients (see e.g. Fig. 7) and four
kidney sweeps, acquired during breath-hold on inspiration, were
used. They were co-registered with the portal-venous phase of
the CT scans, due to the conspicuity of the portal and hepatic veins
in this phase of imaging. For optimal visualization, the ultrasound
exam was executed in various setups - 14x supine, 7x left posterior
oblique (LPO), 1x right posterior oblique (RPO), 3x decubitus.

3.2. Registration results

After manually aligning each of the data sets, 5-9 point corre-
spondences on anatomical landmarks, mostly vessel bifurcations
in the liver, were selected by an expert. In order to define those
landmarks truly in 3D, we visualized both original ultrasound
frames and an arbitrary number of cross-sections, compounded
using the direct MPR technique presented in Wein et al. (2006),
each with the respective CT plane (see Fig. 7b). Using a linked poin-

(a) transverse liver sweep

ter and superimposition options, the physician could precisely lo-
cate vessel bifurcations.

While the obtained point correspondences serve as fiducial
landmarks, additional target point correspondences were defined,
depicting the lesions to be ablated. Typically, the center of multiple
small lesions, or distinguished spots in larger lesions close to
peripheral vasculature, were used, creating 1-5 point correspon-
dences (in one atypical case 10), which indicate where the highest
registration accuracy is desired for optimal treatment. The point
localization errors are expected to be higher than for the fiducials.

For registration based on point correspondences, the rigid mo-
tion between ultrasound and CT was computed according to Walk-
er et al. (1991). Table 2 lists the mean, minimum and maximum of
the root-mean-square (RMS) residual distances of the fiducial and
target points (henceforth denoted as fiducial registration error FRE,
target registration error TRE) for all data sets. They have been com-
puted for point-based registration based on the fiducials alone, and
both fiducial/target points; as well as rigid & semi-affine automatic
registration using our methods.

The automatic registration completes for 19 patients with an
average computation time of ~28 s (C++ implementation executed
on an Intel Core 2 Duo 2.2 GHz notebook). Two difficult supine data
sets, as well as three LPO and one decubitus data, had to be roughly
manually aligned in order for the automatic algorithm to converge.
At the initial estimate, before the translation search, the FRE was
between 13 and 71 mm (the flat transmitter of the positioning sys-
tem was placed similarly below each patient).

In 59% of the cases, automatic affine registration yielded a lower
TRE than point-based registration of the fiducials (55% for rigid).

Table 2
Average registration accuracy in mm for 25 patients, expressed as root-mean-square
fiducial registration error (FRE) and target registration error (TRE)

Mean Min Max

FRE TRE FRE TRE FRE TRE
Point-based (fiducial) 5.0 9.7 23 2.8 11.5 284
Point-based (fid. + target) 5.8 5.4 2.4 2.2 11.9 11.1
Automatic rigid 10.4 9.0 4.5 3.0 18.7 22.1
Automatic affine 9.5 8.1 2.8 3.0 153 215

(b) CT MPR planes alongside ultrasound frame (top) and recon-
struction (bottom)

Fig. 7. Typical liver data, from a patient with a large metastatis near the hepatic vein confluence. The green plane in (a) corresponds to the ultrasound reconstruction in the
lower right. (a) transverse liver sweep and (b) CT MPR planes alongside ultrasound frame (top) and reconstruction (bottom).
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This can be attributed to the fact that the image-based technique
incorporates information throughout the 3D sweep, trying to find
an alignment of all structures visible in both modalities. On the
other hand, even careful definition of unique fiducial landmarks
does not necessarily guarantee a small TRE, particulary if the clin-
ical targets are not in their vicinity. The FRE after point-based reg-
istration of the fiducials can obviously not be lowered by automatic
registration, since it represents their residual error. It is composed
mostly of inaccuracy in the point selection, tissue deformation be-
tween the two modalities, tracking and calibration errors. In 73% of

Fig. 8. Longitudinal image of a right kidney, aligned by automatic rigid registration.

(c) automatic affine registration, FRE = 8.1lmm

Fig. 9. Comparison of point-based, rigid and affine registration. The patient was positioned left posterior oblique (LPO), the Sequoia Clarify option was enabled, enhancing
vasculature. The 1st and 3rd column depict a color overlay of CT and US, 2nd and 4th column show the original US (for better visualization, the reader is referred to the web
version of this article). Arrows point to anatomical clues that visualize the quality of alignment. (a) registration based on fiducial point correspondences, FRE = 6.4 mm (b)
automatic rigid registration, FRE = 9.8 mm and (c) automatic affine registration, FRE = 8.1 mm.
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the cases, the TRE after affine registration was lower than after ri-
gid registration. This suggests that the semi-affine model can elim-
inate most of the large-scale deformations, particularly induced by
CT and ultrasound exams in different respiratory configurations. As
expected, this TRE difference was especially high for non-supine
patient positioning during ultrasound. For the kidney cases, the
alignment after automatic rigid registration looks visually excel-
lent (see Fig. 8), although it was sometimes difficult to precisely
locate fiducials. Here, the semi-affine model provided no improve-
ment over the rigid one.

Fig. 9 illustrates the results for a liver sweep in LPO setup.
Matching the fiducials results in well aligned vasculature, however
gross structures such as the lower liver surface are misplaced. Our
automatic method with a rigid model in turn correctly lines up the
liver surface, while the matching of the vasculature and kidney is
worse. Only the semi-affine model accurately aligns the liver bor-
der, kidney and features within the liver gland.

3.3. Similarity measure comparison

In order to evaluate the LC?> metric, we performed a randomized
robustness study on a typical liver sweep. From the fiducial ground
truth, the translation parameters were individually displaced up to
+20 mm and a local registration was executed, repeated 100 times.
The box-and-whisker plot in Fig. 10 depicts the resulting distribu-
tion of the FRE error values. Our LC?> measure with global, per-
frame and local parameter estimation (see Section 2.2.3) was
compared against MI, CR and higher-dimensional MI (HMI). For
MI and CR, the sum of simulated echogeneity and reflection
p+r, as shown in Fig. 5e, was inserted into a joint histogram
against the US intensities u. For HMI, each p, r and u were used
individually in a 3D joint histogram.

For each of the similarity measures, outliers (i.e. failed registra-
tions) were defined by separating two clusters in a 2D-plot of the
FRE against the similarity measure value (with the cluster of outli-
ers having low similarity & high FRE values). The maximum initial
displacement for the successful registration runs then defined the
capture range of the measure. As can be seen in Table 3, global LC?
has the highest capture range, and local LC? the highest accuracy
(underlined values). Higher-dimensional MI fails for all trials.

Based on these results, we decided to solely use the local LC?
measure due to its unmatched accuracy; the grid size of the global
optimization (Section 2.2.5) was adjusted according to its capture
range. In similar, systematic randomized studies, further algorithm
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Fig. 10. Robustness of the different LC? variants and statistical similarity measures.

Table 3
Outliers, FRE and capture range of different measures

LC? Statistical

Global Frame Local MI CR HMI
Outliers (%) 0 1 35 29 7 100
Median FRE (mm) 8.7 8.5 4.6 8.1 8.7 253
Capture range (mm) 15.8 13.7 6.7 3.8 10.1 0

parameters were optimized with respect to the overall accuracy
and robustness, such as the local LC? patch size, number of
images per sweep used for registration, as well as the image
resolution.

4. Conclusion

We have presented novel methods for simulation of ultrasonic
effects from CT data, as well as the new LC? similarity metric that
is robust with respect to unknown parameters in the simulation.
Together, they allowed us to develop a new, fully automatic im-
age-based algorithm for registering 3D freehand ultrasound
sweeps with CT, each acquired in breath-hold.

The methods have been evaluated in a diagnostic fusion study
on 25 patients with indeterminate lesions of the liver and the kid-
ney. We established Ground Truth registration by carefully defin-
ing fiducial and target point correspondences in all data sets. The
average RMS TRE of our automatic method with a semi-affine
transformation model is 8.1 mm, better than point-based registra-
tion of the fiducial landmarks (9.7 mm). Point-based registration of
both fiducial and target points yielded an average TRE of 5.4 mm.
The automatic registration succeeded without manual pre-align-
ment in 76% of the cases, with an execution time of less than
40 s. This stands against a tedious definition of point correspon-
dences, which took us ~ 10 min per patient in this study. An aver-
age RMS TRE value over multiple lesions of 8.1 mm is acceptable
for overall organ registration, particularly since it represents an
improvement upon the point-based registration of vascular fea-
tures. We expect our method to greatly increase the acceptance
of multimodal fusion for diagnosis and treatment, since it provides
a simple workflow and enables more precise registration.

Using a global semi-affine model, the algorithm is at this point
not able to fully compensate organ deformations, occuring mainly
due to different patient setup or inhalation in each of the imaging
modalities (the RMS TRE for supine data sets is 6.2 mm, and
10.3 mm for the remainder). We are currently investigating ap-
proaches to expand our methods towards deformable transforma-
tion models. Paired with the robust local LC?> metric, the level of
detail of our ultrasound simulation is sufficient for global align-
ment; however a more complex simulation model (including e.g.
refraction and multiple reflections) might be required for non-lin-
ear registration. For precise interventional navigation, the TRE on
single lesions has to be lowered significantly, weighting of the local
similarity metric with respect to the targets is an additional option
to achieve this. The global initialization of difficult cases, i.e. where
ultrasound imaging characteristics are challenging, is another cur-
rent limitation. Last, but not least, strategies to provide real-time
compensation of respiratory motion with image-based techniques
is left for future work.
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