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ABSTRACT

For freehand ultrasound systems, a calibration method is necessary to locate the position and orientation of a
2D B-mode ultrasound image plane with respect to a position sensor attached to the transducer. In addition,
the acquisition time discrepancy between the position measurements and the image frames has the be computed.
We developed a new method that adresses both of these problems, based on the fact that a freehand ultrasound
system establishes consistent 3D data of an arbitrary object. Two angulated sweeps of any object containing
well visible structures are recorded, each at a different orientation. A non-linear optimization strategy maximizes
the similarity of 2D ultrasound images from one sweep to reconstructions computed from the other sweep. No
designated phantom is required for this calibration. The process can be performed in vivo on the patient. We
evaluated our method using freehand acquisitions on both a phantom and the human liver. The accuracy of the
approach was validated using a 3D ultrasound probe as a known reference geometry.
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1. INTRODUCTION

Due to its non-invasive nature, flexibility and cost-effectiveness, medical 2D B-mode ultrasound is a very popular
imaging method. It essentially depicts the ultrasonic reflections of human tissue within a two-dimensional cross-
section. While 3D ultrasound transducers are now available by most of the manufacturers, tracked freehand
ultrasound is nevertheless a very important technology. One one hand, it allows for having larger field-of-view
required for acquisitions of whole organs. On the other hand, it is a preferred modality for interventional
navigation applications, as both the ultrasound images and their location in space are acquired in real-time.
For such 3D freehand ultrasound systems it is crucial that the spatial relation between the position sensor and
the image plane is precisely determined. This is a rather complex problem, which tends to be underrated. A large
body of literature deals with spatial ultrasound calibration, a concise survey is.1 Most of the methods are based on
imaging a designated phantom object with some known geometric properties. Acquiring a number of images from
different orientations then allows to establish the relation of the image content to the tracking sensor’s coordinate
system. Optimal phantoms contain material mimicking human tissue, and are precisely manufactured according
to a geometric model used for the mathematical computation of the calibration parameters. Such phantoms are
mostly used for commercial freehand ultrasound systems, and potentially allow for a very convenient calibration
workflow, that can be performed by sonographers & physicians. However, purchasing or manufacturing them is
often not an option for research facilities. On the contrary, the Single-Wall calibration method2 only relies on a
rough-textured plane submerged in water. A number of subsequent research effort has been conducted to further
automate this method.3 However, its precision is still limited by the narrow range of imaging orientations and
depths. The varying elevational beam thickness causes the Single Wall phantom to appear as line with different
thickness and fuzziness, depending on the depth and focus settings used. Another problem arises as the speed
of sound in water is different than the reference speed assumed by ultrasound machines (1540m/s in average
human soft tissue). An additional source of errors is introduced when trying to overcome this problem, either
by using a particular fluid with the desired speed (mixture of water with NaCl), or estimating the actual speed
of sound and henceforth compensating for the image distortion. Phantom-less calibration methods4, 5 use the
intersections of a tracked tool with the ultrasound image plane to derive the calibration. They suffer from the
speed-of-sound problem as well, as the calibration has to be performed underwater. Besides, two more error

Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, edited by Stephen A. McAleavey,
Jan D'hooge, Proc. of SPIE Vol. 6920, 69200K, (2008) · 1605-7422/08/$18 · doi: 10.1117/12.769948

Proc. of SPIE Vol. 6920  69200K-1



Figure 1. Used coordinate systems and image planes for computing reconstruction errors.

sources are added: The tracking accuracy of the tool itself, as well as the calibration of the tool. For magnetic
tracking, especially the rotational accuracy is rather poor, making it difficult to achieve a good tool calibration.
For optical tracking, the target markers have to be considerably far away from the tool tip, as they always need
to be above the water surface.
In,6 an image-based approach is used, which maximizes Mutual Information of tracked ultrasound images and
reconstructions from an MRI scan of a custom-built Agar gel phantom.
In our approach, we can avoid a number of the problems pointed out above, by using spatial consistency of
realistic freehand ultrasound acquisition as the underlying information for calibration. The proposed method
can be performed using in vivo tissue, making it possible to calibrate ultrasound prior to the procedure, or
even validate the calibration during an exam. While in7 tracking of in-plane motion on successive frames is
used to monitor some calibration parameters, we are using large-scale consistency of the anatomy to recover all
parameters, including the temporal lag.

2. METHOD

If two slow angulated freehand ultrasound sweeps are acquired from the same anatomy at approximately perpen-
dicular orientation, they measure roughly the same image intensities at every point in 3D-space, assuming the
right calibration parameters Tc are known. While this is not entirely true for small structures, speckle patterns
and tissue interfaces yielding specular reflections (i.e. bone) due to the orientation-dependency of ultrasound
imaging, it is sufficiently given for large-scale soft tissue structures such as e.g. encountered in liver imaging.
Hence a maximization of the similarity measure S of images Ij from the first sweep with reconstructions ˜Ij from
the second sweep (and vice versa) should yield the correct optimization parameters:

˜Tc = arg max
Tc

∑

j

S
(

Ij(�p), ˜Ij(�p)
)

(1)

2.1 Geometric Formulation

In homogenous coordinates, we denote the sought calibration Tc as rigid transformation from image to sen-
sor coordinates, and Tij = T−1

j Ti the relative transformation between two sensor measurements. Then the
transformation between two images is described as

T−1
c TijTc =

[

R−1
c −R−1

c tc
0 0 0 1

] [

Rij tij
0 0 0 1

] [

Rc tc
0 0 0 1

]

=
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=
[

R−1
c −R−1

c tc
0 0 0 1

] [

RijRc Rijtc + tij
0 0 0 1

]

=

=
[

R−1
c RijRc R−1

c (Rijtc + tij − tc)
0 0 0 1

]

(2)

If the rotation Rij is close to identity, the influence of both Rc and tc in equation 2 diminishes, which means
that frames used for calibration should be angulated as far as possible from each other. For further examination,
we use a more specific setup with T12 = T−1

2 T1 and two locations �p1 = (u1, v1, 0, 1)T and �p2 = (u2, v2, 0, 1)T in
image coordinate systems that represent the same point �pw in 3D-space:

T−1
c T−1

2 T1Tc �p1 = �p2 (3)

Here Tc describes the rigid 4x4 transformation matrix of the correct calibration, which maps the ultrasound
image coordinate system onto the coordinate system of the tracking sensor. T1 and T2 are the tracking matrices
of images 1 and 2, which describe the transformation from sensor to world coordinate system of the tracking
system. The image locations �p1 and �p2 are in physical units (mm), i.e. we assume the correct pixel spacing to
be known. We are now interested in the reconstruction error e of the 3D positions, if an error-prone calibration
matrix ˜Tc is used.

e = |T2
˜Tc �p2 − T1

˜Tc �p1| (4)

Using eq. 3: e = |T2
˜TcT

−1
c T−1

2 T1Tc �p1 − T1
˜Tc �p1| (5)

In the setup used to analytically derive the error, Tc consists solely of a translation d = 100mm along the negative
y-axis, T1 a rotation of α around the x-axis, T2 a rotation of β around the x-axis first and 90◦ around the y-axis
(see figure 1). Without loss of generality, we define v1 = 0mm and α = −30◦. The 3D point �pw is

�pw = T1Tc �p1 =

⎛

⎜

⎜

⎝

u1

(v − d) cosα
(v − d) sin α

1

⎞

⎟

⎟

⎠

(6)

The angle β is defined such that the second imaging plane intersects �pw as well:

β = − arctan
−u1

(v − d) cosα
(7)

An error-prone calibration ˜Tc is defined as a translation about (tx, ty − d, tz)T . Inserting in equation 5 yields

e =

∥

∥

∥

∥

∥

∥

∥

∥

⎛

⎜

⎜

⎝

sin(β)ty + cos(β)tz − tx
cos(β)ty − sin(β)tz − cos(α)ty + sin(α)tz

−tx − sin(α)ty − cos(α)tz
0

⎞

⎟

⎟

⎠

∥

∥

∥

∥

∥

∥

∥

∥

(8)

For applying error in one translation component at a time, the error results to:

ex = |tx|
√

2 (9)

ey = |ty|
√

2(1 − cosα cosβ) (10)

ez = |tz|
√

2(1 − sin α sin β) (11)

The reconstruction error linearly increases with respect to the calibration error, and is independent of the posi-
tion in the image plane (apart from the dependency of the angle β in equation 7). Only if the angles α and β are
small, the error in the y direction remains unchanged (eq. 10). This is obvious as in that case the change of ty
moves the two image planes along parallel lines in 3D space. Hence the calibration sweeps have to be sufficiently
angulated, two linear motions would not recover the y translation of the calibration transformation. Similarly,
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(a) translation error
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Figure 2. Plots of the reconstruction error. The configuration is �p1=(40, 20, 0, 1)T and α=β=−30◦.

(a) 3D view (b) ultrasound image (c) reconstruction

Figure 3. Phantom images, acquired with the Antares wobbler. The NCC measure for those images is 0.86.

eq. 11 shows that for angles approaching 90◦ a change in tz would not affect the reconstruction error. However,
such a configuration is not possible with transcutaneous ultrasound anyway (the image planes would be parallel
to the patient’s skin).
Expanding the equations with rotations in ˜Tc yields very large trigonometric equations. Essentially, the only
situations where a wrong rotation would not increase the reconstruction error, are: a) that �p1 and �p2 both lie
on the x- or y-axis of the respective image coordinate system (which would only be the case for a minority of
the pixels in an ultrasound image); b) both α and β are very small, then the θy rotation cannot be recovered.
Figure 2 displays the reconstruction error for all 6 calibration parameters.
We have shown that the described setup allows to recover all 6 calibration parameters. If an appropriate im-
age similarity measure between original ultrasound intensities Iim(u, v) and a reconstruction at its 3D location
Irec( �pw) from the respective other sweep can be described as a monotonous function of the reciprocal reconstruc-
tion error e, its maximization will result in the correct calibration.

2.2 Algorithm

We have previously presented an algorithm to efficiently reconstruct arbitrary planes directly from a freehand
ultrasound sweep,8 without creating a cartesian reconstruction volume. 5-10 images from every sweep are
compared against reconstructions from the other sweep, respectively. Normalized Cross-Correlation (NCC) is
computed on every pair, its average is used as a cost function for non-linear optimization (i.e. S = NCC in
equation 1). This assures that brightness and contrast differences of an ultrasound image and its reconstruction
do not impose the registration accuracy. Such differences can occur, as the respective intensities originate from
different scan orientations. The Amoeba Simplex algorithm9 then finds the optimal calibration transformation
maximizing the image similarity. Instead of directly modifying the calibration parameters, a relative calibration
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Figure 4. Similarity measure plots for the Antares phantom data, altering two calibration parameters at once.

tx(mm) ty(mm) tz(mm) θx(◦) θy(◦) θz(◦) NCC time(s) error(mm)
Antares Ground Truth data

mean -0.15 2.01 -0.63 -0.06 0.00 0.01 0.91 168.6 2.39
σ 0.20 0.75 0.30 0.38 0.17 0.15 0.00 45.9 0.74

Sequoia freehand ultrasound, phantom vs. in-vivo
phantom 115.5 -3.5 27.3 -172.7 7.3 -90.3 0.85 115.9

liver 114.4 -2.0 25.8 -172.8 6.8 -86.6 0.68 89.2
Table 1. Results of precision and robustness study.

matrix composed from zero-initialized translation and Euler angles is right-multiplied onto the initial estimate.
This avoids the inherent Gimbal lock problem of the Euler-angles parameterization.

3. RESULTS

3.1 Ground Truth Study

To derive the absolute precision of our new calibration method, we used a Siemens Antares ultrasound machine
with the C5F1 3D transducer. It acquires 30-70 2D frames per volume, mechanically wobbling over an angulation
of 35 − 75◦. Two perpendicular volumes have been acquired from a multimodal abdominal phantom (CIRS
Inc, Norfolk VA USA, figure 3(a)). Using the imaging geometry from the saved pre-scan-converted DICOM
volumes, we perform a 2D scan-conversion into a set of cartesian 2D images, and tag the images with calibration
and tracking matrices to resemble a freehand ultrasound acquisition. The tracking effectively consists of an
x-rotation angle α, the calibration of a negative y offset d, similarly to the setup in figure 1. A standard image-
based registration technique is used to register 3D-scan-converted representations of the volumes, using NCC as
similarity metric. The registration result is then applied to the tracking matrices of the second sweep. Table 1
(top) depicts the mean and standard deviation values for execution of 183 optimizations, each randomly displaced
from the ground truth calibration (every parameter in ±20mm, ±20◦ mean distribution). The method reliably
finds the same calibration. Only in the y axis is a systematic bias of 2mm. This might be due to interpolation
in the 2D- and 3D-scan-conversion algorithms, or a difference between the 3D imaging geometry provided by
the manufacturer, and the physical transducer properties. The error value in the right column depicts the
relocation error of a point in the center of the ultrasound image (around 7cm depth). It is mostly composed
from that deviation in ty. Figure 4 depicts 2D plots of the sum-of-NCCs similarity function used, for changing
two parameters from the ground truth calibration each.

3.2 Calibration on Human Liver

Here we used a freehand ultrasound system based on a Siemens Sequoia ultrasound machine in conjunction
with an Ascension 3D Guidance magnetic tracking system and a PC with a video grabber. Three transducers
(4C1, 4V1 and 6C2) were calibrated for a permanent clinical setup, using the same CIRS phantom. For every
transducer, two perpendicular sweeps were recorded at 12cm, 18cm and 26cm depth setting, and two focal zones
(the minimum on that machine) evenly distributed over the image.
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(a) 3D view (b) ultrasound image (c) reconstruction

Figure 5. Freehand ultrasound sweep of the human liver. NCC for the shown images is 0.60.

We repeated a particular calibration (4C1 transducer at 18cm depth) in-vivo on a human liver. The two required
sweeps were combined to achieve a consistent data set within one breath-hold, and without removing the probe
from the skin (see figure 5(a), angulated, twisted 90◦, angulated back). The result deviates in the calibration
parameters from the phantom-based results less than 2mm and 4◦, see table 1 (bottom). If the patient or
volunteer steadily maintains the breath-hold and does not shift his position during the acquisition (10-20 seconds),
the only additional error source with respect to phantom data arises from lower structures pulsating with the
heart-beat (e.g. the portal vein).

3.3 Temporal Calibration

We achieved temporal calibration by performing a linear forward-backward motion on the phantom. Each 4
images in the forward motion were reconstructed from the backward motion, and vice versa. A one-dimensional
Brent-line-optimization9 was run on the temporal delay parameter. It alters the spatial information of every
recorded frame by interpolating between the neighboring tracking matrices, using a quaternion-based method.10

We consistently obtained a lag between the video-frames and tracking information of 100ms.
The linear motion used here makes the temporal calibration mostly independent of the spatial calibration pa-
rameters. For bootstrapping the calibration, it is sufficient to optimize the spatial calibration parameters with
zero temporal lag, successively run the temporal calibration, and refine the spatial calibration with the temporal
result. In our experience, the temporal delay is very similar for all different transducers and depth settings, and
in fact only needs to be established once for a certain hardware setup.

4. DISCUSSION

We presented novel methods for spatial and temporal ultrasound calibration, that can be performed on any
ultrasound phantom or in-vivo. We have expanded on the theoretical foundation of the method, and proved that
the chosen acquisition geometry allows one to recover all spatial calibration parameters. Our result on a ground-
truth 3D ultrasound machine, as well as freehand ultrasound calibration on both phantom and human liver data
show that the method is reliable and precise. We believe it is a very convenient alternative to other methods
published in the literature, that might especially be beneficial if the availability of specialized tools, phantoms and
3D imaging of those phantoms, is limited. As an advanced application, freehand ultrasound systems continuously
recording during an exam or procedure could detect perpendicular image frames from analyzing the tracking
trajectories, and automatically verify and correct some or all calibration parameters in the background. Besides,
our algorithm might be used in conjunction with methods based on motion of successive ultrasound frames,7 to
increase overall stability and accuracy by combining small- and large-scale anatomic clues.
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