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Abstract. Automatic and robust registration of pre-operative magnetic
resonance imaging (MRI) and intra-operative ultrasound (US) is essen-
tial to neurosurgery. We reformulate and extend an approach which uses
a Linear Correlation of Linear Combination (LC2)-based similarity met-
ric, yielding a novel algorithm which allows for fully automatic US-MRI
registration in the matter of seconds. It is invariant with respect to the
unknown and locally varying relationship between US image intensities
and both MRI intensity and its gradient. The overall method based on
this both recovers global rigid alignment, as well as the parameters of a
free-form-deformation (FFD) model. The algorithm is evaluated on 14
clinical neurosurgical cases with tumors, with an average landmark-based
error of 2.52mm for the rigid transformation. In addition, we systemat-
ically study the accuracy, precision, and capture range of the algorithm,
as well as its sensitivity to different choices of parameters.

1 Introduction

Modern neurosurgery heavily relies on both pre-operative and interventional
medical imaging, in particular MRI and US. MRI provides a good visualization
of tumors, a relatively large field of view and good reproducibility. Its use as intra-
operative imaging modality is possible [8], however with limited accessibility to
the patient and high workflow complexity. On the other hand, US is inexpensive
and easy to use, but imaging quality is reduced, fewer anatomical details are
visible and, in general, US is operator-dependent and harder to interpret. Also,
the field of view is limited and direction dependent. The combination of both
modalities would allow to integrate high-contrast pre-operative MRI data into
the interventional suite. Therefore, quick, robust and automatic alignment of
MRI and US images is of high importance. In contrast to MRI, ultrasound
provides real-time 2D images, which, when tracking the ultrasound transducer,
can be interpreted in 3D space. This has been used in the past decades for
brain examinations, for instance to localize tumors, determine their tissue and
boundary properties, and detect brain shift.

Registering US and MRI images is a complex and still not satisfactorily solved
problem, mostly because the nature of the represented information is completely
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different for both modalities. MRI intensities are correlated to relaxation times,
which in turn depend on the tissue type and hydrogen concentration, while US
images are a representation of acoustic impedance transitions. Those in turn
can be both reflections on large structures (hence correlating to some extent
to the gradient of MRI), or reflections from the tissue inhomogeneities that
cause the characteristic brightness and texture of certain tissue types (in that
case correlating to the MRI intensities directly). As an additional challenge, US
exhibits various direction-dependent artifacts.

Therefore, the basic and well known off-the-shelf registration approaches are
known to fail, which includes registration using cost functions based on sum of
squared distances, mutual information [4] or correlation ratio [12]. A method
which uses a measure based on 3D gradient orientations in both US and MRI is
presented in [3], however such an approach discards valuable MRI intensity infor-
mation and hence requires either optimal data or close initialization. Many of the
best existing approaches transformMRI and/or US intensities under application-
and organ-specific considerations, in order to make them easily comparable. This
is done, for example, for liver vasculature in [9], with significant effort due to
learning-based pre-processing. Similarly, pseudo-US images may be generated
using segmented structures from MRI [1,2,5,6]. In light of the modality-specific
considerations, the most promising general strategy for robust US-MRI registra-
tion, without relying on application-specific pre-processing or segmentation, is
to compare US to both the MRI intensity and its gradient, as pioneered in [12],
where a global polynomial intensity relationship is fitted during registration.
The alternating optimization of the rigid pose and the polynomial coefficients,
as well as the fact that it is a global mapping, limit the convergence range.
Higher-dimensional Mutual Information (α-MI) is theoretically suited to assess
US-MRI alignment based on both intensity and gradient information (in fact,
an arbitrary number of features may be used). However, current approaches are
neither practical in terms of implementation effort nor computation time [11].
Powerful tools for image registration are similarity measures which are invariant
to local changes, such as local normalized cross-correlation (invariant wrt. local
brightness and contrast). In [13] the similarity measure Linear Correlation of
Linear Combination (LC2) is presented, which exhibits local invariance to how
much two channels of information contribute to an ultrasound image. The entire
method has been specially designed for US-CT registration, where a strong corre-
lation between X-ray attenuation coefficients and acoustic impedance is known,
which allows a simulation of ultrasound effects from CT. These incorporate es-
timates of the acoustic attenuation, multiple reflections, and shadowing, which
can not directly be estimated from MRI.

In this paper, we adapt the LC2 formulation for the registration of interven-
tional US to (pre-operative) MRI, and extend it to non-linear deformations. It
results in a globally convergent, robust new algorithm, which we evaluate on a
database of 14 patients with ground-truth information.
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2 Method

Similarity Measure: Instead of correlating US intensities with two channels
of simulated information from CT as in [13], we use LC2 to correlate US with
both the MRI intensity values p and its spatial gradient magnitude g = |∇p|.
The local LC2 value is computed for each pixel xi in each ultrasound image,
considering a neighborhood Ω(xi) of m pixels. For each patch of m pixels, the
contribution of MRI intensity values p and gradient magnitudes g are unknown.
Therefore, we define an intensity function f(xi) as a function of the transformed
MRI intensities pi = p(T (xi)) and gradients gi = g(T (xi)) = |∇pi| as:

f(xi) = αpi + βgi + γ, (1)

where yi = {α, β, γ} denotes the unknown parameters of the influence of the MRI
intensities and gradients within Ω(xi). They can be estimated by minimizing the
difference of the intensity function and the ultrasound image intensity ui:
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which can be solved using ordinary least squares with the pseudo-inverse of M.
This results in a parameter triple yi for each pixel xi, which is only depending
on the neighborhood Ω(xi) and therefore compensating for changing influences
of tissue interfaces or organ-internal intensities. The local similarity is then:

S(u,M) = 1−
∑

xi
|u(xi)−My|2

∑

xi
V ar(u(xi))

(3)

The overall similarity is the weighted sum of eq. 3 with the local variance of the
US image. This suppresses regions without structural appearance, therefore al-
lowing to cope with ultrasonic occlusions implicitly, without the need to simulate
them.

Computation: We compute LC2 on the original 2D US image slices located
in 3D-space through the tracking data, as opposed to using a 3D compounded
volume. This has four main advantages:

1. An unnecessary resampling step of the ultrasound image data, which may
degrade its quality, is avoided.

2. Registration can start as soon as the first US frames are available, catering
to real-time applications in the operating room.

3. One may also optimize the US probe calibration parameters or further pa-
rameters expressing e.g. tracking system errors.

4. Image information within slices is inherently more consistent, because all
scan-lines of an image are acquired within a short duration and void of
tracking errors.
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Extracting the MRI intensity and gradient at the presumed location in the
3D volume is performed on the GPU using its hardware tri-linear interpolation.
We then compute eq. 3 using a multi-core recursive filtering strategy; however
a GPU implementation is equally possible. The MRI image data is used in full
resolution (typically iso-tropic voxel size of 0.5mm). The higher-resolution US
frames are down-sampled such that their pixel size is smaller than twice the voxel
size (assuring that tri-linear interpolation never discards MRI voxel information
within the oblique US planes). Similarly, US frames are skipped such that no
overlapping planes occur, with average spacing between the image centers <
1.5mm (mostly yielding smaller spacing in the area of interest).

Optimization of Rigid Transformation: Due to the least-squares fitting in
eq. 2 which is computed for every US image pixel, an analytic derivative of
LC2 is difficult to compute. Therefore we use Bound Optimization by Quadratic
Approximation (BOBYQA) [10], which internally creates own derivative approx-
imations, resulting in fewer evaluations than most other direct search methods.
While we recommend and use this optimizer throughout this paper, clinical re-
quirements on capture range may necessitate other techniques. In particular,
global optimization strategies may be chosen that perform a more thorough
search within specified bounds.

Deformable Registration: The optimizer first seeks the 6 rigid transformation
parameters as described above. Successively, we use a free-form deformation
model with cubic splines, which is applied in the same GPU kernel which extracts
MRI intensity/gradient information. More specifically, 2x2x4 control points are
placed within the bounding box of the rigidly registered ultrasound sweep. The
3-displacement vectors are then optimized for all control points using BOBYQA.

3 Experiments and Results

3.1 Clinical Data

To evaluate our method and compare the results to other publications, we used a
publicly available database containing Brain Images with Tumors for Evaluation
from Montreal Neurological Institute (MNI BITE) [7], with pre-operative T1-
weighted MRI and pre-resection 3D freehand US from 14 patients. Initial trans-
formations and corresponding landmarks for each US-MRI pair are included.
Therefore we can provide ground truth evaluations, and denote the average
Euclidean distance of the landmarks as Fiducial Registration Error (FRE).

3.2 Registration Results

Tab. 1 depicts the results of our algorithm for all 14 data sets.1 Our rigid reg-
istration yields almost exactly the same FRE values as [3], which suggests that
both methods achieve the correct optimum transformation. The errors in [11] are

1 Computation times measured with Intel i7-3770 CPU and NVIDIA GTX 570 GPU.
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Table 1. Overview of clinical data [7], previous published results [3,11], and results
using our method for rigid and deformable registration including computation times

Dataset Overview and Related Methods

Patient Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean

Number of Tags 37 35 40 32 31 37 19 23 21 25 25 21 23 23 -

Initial FRE (mm) 4.93 6.30 9.38 3.93 2.62 2.30 3.04 3.75 5.09 2.99 1.52 3.70 5.15 3.77 4.18±5.20

US Spacing (mm) 0.24 0.42 0.23 0.20 0.25 0.17 0.24 0.18 0.18 0.22 0.16 0.18 0.21 0.19 0.22±0.20

FRE in [3] (mm) 4.89 1.79 2.73 1.68 2.12 1.81 2.51 2.63 2.7 1.95 1.56 2.64 3.47 2.94 2.53±0.87

FRE in [11] (mm) - 2.05 2.76 1.92 2.71 1.89 2.05 2.89 2.93 2.75 1.28 2.67 2.82 2.34 2.57±0.82

Registration Results using LC2

FRE Rigid (mm) 4.82 1.73 2.76 1.96 2.14 1.94 2.33 2.87 2.81 2.06 2.18 2.67 3.58 2.48 2.52 ±0.87

Precision (mm) 0.01 0.01 0.01 0.01 0.02 0.01 0.05 0.30 0.02 0.00 0.03 0.15 0.05 0.04 0.05 ±0.08

Time Rigid (sec) 5.9 8.3 11.1 5.7 7.1 8.2 18.2 8.6 6.0 23.4 17.3 25.8 8.1 7.0 11.5 ±6.8

FRE Def. (mm) 4.95 1.64 2.43 1.91 2.26 2.2 2.52 3.64 2.65 2.09 1.76 2.45 3.71 2.76 2.64 ±0.9

Time Def. (sec) 158 141 279 92 133 166 563 312 76 675 597 93 106 282 262 ±204

(a) Initial (b) Rigid (c) Deformable

Fig. 1. Registration result of patient 6, with US superimposed on an axial MRI slice

slightly higher (with computation times of several hours per data set), which in-
dicates that applying their proposed deformable registration to the mostly rigid2

data does not provide much benefit. Similarly, our deformable registration can
further improve on the FRE value only in a few of the cases. We believe that
the change of landmark errors induced by deformable registration lies within the
range of the fiducial localization error (FLE) of the data, especially since some
of the landmarks are located along boundaries, not only 3D-corner structures.
Fig. 1 depicts the registration results on patient 6. It can be seen that the visual
alignment is significantly improved after deformable registration.

3.3 Accuracy, Precision and Capture Range

While some initial errors are significantly away from the correct optimum
(e.g. patients 2 and 3), an analysis about the suitability of our algorithm to
reach the optimum under all conditions is required. Randomized trials were

2 The pre-resection ultrasound has been acquired before opening the dura.
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Fig. 2. Random study results of all patients. The converged results are clustered in
the lower right corner (highlighted in blue, outliers red).

executed on all data sets, repeating the rigid registration for randomly displaced
starting positions (±10mm/◦ in all 6 parameters). Comparing the final FRE
against the LC2 metric, we discovered that the best pose is always perfectly sep-
arated by a significantly higher similarity. This proves that our method allows
for global registration; the results for all patients are shown in Fig. 2, including
the percentage of converged executions. The mean value of the converged results
is the accuracy, its standard deviation the precision, and the range of initial FRE
values from which all executions converge with a smaller than desired number of
outliers is the capture range. The outlier behavior is also visualized in figure 4(a),
where their number is plotted against the initial FRE for some patients. For an
initial FRE < 8mm a single local optimization with BOBYQA is sufficient.

Unfortunately, precision and capture range are often not reported in the liter-
ature. Since the gradient orientation alignment (GOA) method [3] yields similar
FRE values, we implemented it and re-ran the aforementioned randomized trials
with it. We obtain > 90% outliers; further investigation into the cost function
properties revealed that only a minor local optimum is present, see Fig. 3(b) for
an example. A possible explanation is, that without further heuristics the GOA
method would line up strong gradients from e.g. dura mater or skull; besides,
using only gradients larger than a threshold limits the image content considered,
preventing a smooth similarity increase. While we believe these to be general is-
sues, it has to be acknowledged that better results may be obtained by changing
certain implementation details such as resolution, smoothing and interpolation.

3.4 Parameter Sensitivity

To investigate the sensitivity of our method to the choice of parameters, we
computed accuracy and precision for different LC2 patch sizes, and number of
US frames used (i.e. spacing in between), see Fig. 4. The registration results
are similar for patch sizes 2-24, therefore our method is rather insensitive to
the choice of this parameter. For all other results presented, we used a value
of 9 (hence m = (2 ∗ 9 + 1)2 = 361). Overly large patches result in a global
mapping of MRI intensity and gradient, removing the main advantage of LC2

over other methods (robustness wrt. local changes of intensity-gradient relation-
ship). Consistently good results are obtained with an average spacing < 5mm.
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Fig. 3. Plots of different cost functions for two rotation parameters on patient 2
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Fig. 4. Relationship between initial FRE and outliers (a); dependency of accuracy on
LC2 patch size (b) and US frame spacing (c)

For deformable registration, we chose < 1.5mm to make sure we are not missing
even smallest structures. Last but not least, we have investigated the effect of
using the dot product of the MRI gradient g with the US beam direction, instead
of g directly. This reduces the influence of vertical gradients, similar to the US
simulation in [13]. Interestingly, this results in 10− 25% more outliers (the cost
function becomes more non-linear due to the added directional dependance).

4 Conclusion

We have introduced an algorithm based on the LC2 similarity metric, which can
rigidly register US-MRI data within a few seconds, and non-linearly within a few
minutes. Apart from its efficiency and global convergence, its main strength lies
in its simplicity. As opposed to previous works involving the simulation of US
imaging, we actually refrain from using the US beam direction and attenuation
(which is more difficult with MRI as opposed to CT), and directly compare the
MRI intensity and 3D gradient magnitude to US. This smoothens the topol-
ogy of the cost function, while LC2 at the same time locally picks the most
suited structures. We have shown that the cost function allows for global reg-
istration, thoroughly evaluating our method on all 14 patients of an US-MRI
image database. We obtain superior results both in terms of computation time
and robustness with respect to previously proposed methods on the same data.
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