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Figure 1: Exchanging contact data during handshake gesture.
Alignment of gravity vector along y-axis of accelerometer is used to
detect initiation of handshake.
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Abstract
We present ShakeCast, a system for automatic peer-to-peer
exchange of contact information between two persons who
just shook hands. The accelerometer in a smartwatch is
used to detect the physical handshake and implicitly triggers
a setup-free information transfer between the users’ personal
smartphones using Bluetooth LE broadcasts. An abstract
representation of the handshake motion data is used to
disambiguate between multiple simultaneous transmissions
and to prevent accidental data leakage.

To evaluate our system, we collected individual wrist
acceleration data from 130 handshakes, performed by
varying combinations of 20 volunteers. We present a
systematic analysis of possible data features which can be
used for disambiguation, and we validate our approach using
the most salient features. Our analysis shows an expected
match rate between corresponding handshakes of 92.3%.
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Introduction
Exchanging contact information is a mundane task that
people have attempted to simplify for centuries, first through
physical items such as business cards and, more recently,
through technological means such as data transfer via
smartphones. For example, many modern mobile devices
are capable of directly exchanging contact data when held
back-to-back through an integrated NFC transceiver.
Nevertheless, all these methods still require active
participation of the user, which may become burdensome
when many contacts are made in a context such as a
business fair or conference.

However, it is customary in many cultures to briefly shake
hands with the other person upon meeting. Based on this
custom, we present ShakeCast, a system which uses the
handshake as an implicit trigger to broadcast a small,
user-selected information snippet containing contact
information. An off-the-shelf smartwatch is used as a
wrist-worn sensor to detect the motion made by the users’
hands, and a regular smartphone then broadcasts the
contact snippet to other devices within reception range while
at the same time listening for the peer device’s transmission.
Note that in a scenario such as a business meeting, several
handshakes may take place simultaneously within close
proximity to each other. To ensure that contact data is only
exchanged with those persons the user actually shook hands
with, the broadcast data is hashed with a feature vector
extracted from the motion data itself.

Related Work
The growing popularity of smartwatches allows for a variety
of novel system interaction modalities like the recognition of
and response to motion gestures. The Office Smartwatch [3],
for example, recognizes hand turns to lock and unlock doors
or knocking gestures to virtually announce the presence of a

person in front of the door. Wilkinson et al. use a smartwatch
to augment touch gestures on a tablet with additional
degrees of freedom [11]. Xu et al. [13] have shown that
gesture recognition with watches works even for finger
gestures, while WatchMI [14] uses IMU data to augment
touches on the watch with additional information such as
pressure. Motion data can also be maliciously exploited to
reconstruct text written on a whiteboard [1], typed PINs on
the phone [9] or typed text on a keyboard [10].

The concept of gesture-based exchange of contact
information was proposed by Hinckley [6] and first
demonstrated with iBand [7], a custom bracelet-like device
that is able to detect up-and-down movements and to
exchange information via built-in infrared sensors. The
ShakeOnit system [4] is capable of detecting various
two-sided greeting gestures by using data gloves. Strategies
for detecting handshakes using smartwatches combined with
a subsequent data exchange have been shown by Augimeri
et al. [2] and Wu et al. [12]. However, these strategies need
the full accelerometer data of the other participating device to
make a decision and hence require a pre-existing network
connection between the devices. SyncTap by Rekimoto [8]
purely relies on timing information of a simultaneous button
press to pair two devices on the same network.

A promising approach to handshake-triggered data exchange
was presented by Aimee Ferouge [5], who introduced
peakmaps to resolve ambiguities when more than a single
pair of people shake hands in close proximity. Although this
doesn’t require the full accelerometer data of the other side,
there still is the need for an initial data exchange before
decisions can be made. In our system, we aim at making all
decisions about detection and disambiguation locally, i.e.
without any accelerometer data from other devices.



ShakeCast
Our system was designed to combine and improve the
characteristics of the works presented above. In particular,
ShakeCast should be able to: a) detect handshakes using
commodity smartwatches without any custom hardware
modifications, b) correlate matching handshakes based on
locally available data only (i.e. no prior data exchange), c)
exchange contact information when a matching handshake
was successfully detected - without the need for any
additional infrastructures (peer-to-peer), and d) disambiguate
between multiple arriving contact data from people in close
proximity.

We used two LG G Watches running Android Wear 1.5 as
wearable sensors and paired each to a corresponding
smartphone. In our test setup, we used two Motorola Moto E
(2nd generation) running Android 6.0 as peer devices. The
smartphone and the smartwatch were connected via
Bluetooth LE using the Android Wear framework. The
smartphones exchange contact data via BTLE
advertisements.

Handshake Detection
During an initial video analysis, we found that a typical
handshake consists of three consecutive phases. In the
invitation phase, one of the participants raises the forearm to
a horizontal orientation with the hand being open. Accepting
the invitation, the partner performs the same arm movement
and grabs the inviting hand. Then, the oscillation phase
follows, where both partners move their hands up and down.
Eventually, in the finalization phase, the hands are released
and the forearms of both participants move back to their
initial positions.

In our system, we use these distinct phases to automatically
detect a handshake using the accelerometer data of a
commodity smartwatch worn at the wrist of the shaking hand.

As also illustrated in figure 1, the gravity component of the
accelerometer data shifts mostly to the y-axis in the invitation
phase and back out in the finalization phase. These events
serve as start and end triggers for the deeper analysis of
accelerometer data recorded between the trigger events,
which will be referred to as a data packet. The exact gravity
force threshold for the y-axis was set to 7m/s2. This
approach allowed us to reduce the battery consumption by
discarding irrelevant gestures directly on the smartwatch. A
lower sample rate could also be used before initiation to
further conserve power.

To detect the characteristic handshake oscillation movement
on the y-axis, we move a window of width w through the data
values and check for acceleration values of a minimum
intensity imin; if the longest streak of these positive windows
exceeds a threshold of n, a handshake was detected in this
data packet. Using the aforementioned hardware operating
at 100 Hz, we empirically found w = 20, imin = 15m/s2

and n = 6 to be suitable values. In order to reduce the
analysis effort for data packets triggered accidentally by
non-shake motions, we require an incoming packet to be
between a minimum (lmin = 100) and maximum sample
length (lmax = 700), i.e. between 1 and 7 seconds.

For the handshake matching mechanism explained below,
we require a reliable labelling of the oscillation region’s start
within the analyzed data packet. To this end, we use the first
minimum or maximum after the start of the first positive
window. Figure 2 shows an exemplary handshake plot, in
which the longest positive window streak and the first local
minimum within it is visualized.

Peer-to-Peer Data Exchange
When a handshake was detected, the system exchanges
contact data between the two smartphones using Bluetooth
Low Energy due to its ability to broadcast small



Figure 2: An exemplary y-acceleration plot of a handshake from
both participants. The red (outer) lines indicate start and end of the
longest positive window streak; the blue (inner) line is the first local
extremum within this extracted range.

advertisement packets to all nearby devices without any prior
setup. A user-configured URL (e.g. pointing to the user’s
homepage or business profile) is shortened using the bit.ly
service to account for the highly restricted payload size of at
most 31 bytes in the advertisement broadcast, and is then
sent out to peer devices as manufacturer-specific data with a
custom payload ID. At the same time, each device listens for
incoming broadcasts with matching payload ID and saves the
received URL into a list of recent contacts while indicating
successful reception through a brief vibration.

However, when multiple pairs of people are shaking hands in
close proximity, a single mobile device may receive several
broadcasts, i.e. also contacts of people that the owner did
not actually shake hands with. To address this issue, we use
the features described in the next section to derive a code
with which the payload is hashed (using XOR) before being
sent to the other devices. Ideally, only the device with the

matching handshake data can reconstruct this code and
therefore decode the payload. Please note that this is just a
disambiguation mechanism and must not be considered an
encryption in the cryptographic sense. However, since the
intended usage of our system is to only transfer
publicly-available data such as the user’s homepage URL,
this does not pose a major privacy issue (although some form
of contact network analysis may be possible nevertheless).

We briefly evaluated wireless signal strength as an
alternative disambiguation mechanism. However, even
preliminary tests showed that the physical distance itself has
far less influence on the weak BTLE signal than other
confounding factors, such as placement of the phone in the
front or back pocket, body orientation etc. We therefore
focused on the feature-based approach described below.

Handshake Matching
As a data basis for our analysis, we collected data from 130
handshakes among varying combinations of 20 volunteers.
Both participants wore the smartwatch on their dominant
hand, and all data between the start and end labels were
logged on the smartphone, resulting in 260 unique
acceleration traces. In order to generate the same code for
hashing on both devices out of slightly different acceleration
curves, we need to determine features which behave similar,
given two related sets of accelerometer data (x- ,y-, and
z-axis over a data packet identified by the algorithm
described above). We considered the Fast Fourier
Transformation (FFT) of the signal as most important set of
features because of its time invariant and noise filtering
properties.

The features we take into consideration are a variety of FFT
values, the mean value of the signal and the amount of zero
crossings for the data obtained in the handshake window. For
an exemplary FFT window size of 65, we denote the resulting



32 distinct FFT values for the seven channel combinations as
FFTi0 to FFTi31 for i ∈ {X,Y, Z,XY,XZ, Y Z,XY Z},
where XY is the magnitude of the (combined)

accelerometer channels: XYj =
√
x2
j + y2j .

Due to inherent noise, the data packets for two matching
handshakes will have different length. We address this by
using a fixed window size for feature extraction. An optimal
window size can be estimated by iterating through variable
window sizes and looking for maximum correlation in our
sample data. We evaluated window sizes in the range
between 50 and 100 samples with a step size of 5. The lower
bound was chosen to get a representative sample of the
oscillation phase and not only one peak, the upper bound so
that not too much non-handshake data will be taken into
account. The latter would happen if the oscillation phase
were shorter than the window size.

To analyze the data, we generated virtual instances of
handshakes by combining all the individual data recordings
in pairs and looking at the difference in feature values. 260
individual traces combine into n(n−1)

2 = 33670 instances,
130 matching and 33540 non-matching. If multiple
non-matching instances were generated where the
handshake partners were the same persons, we removed all
but one instance to avoid biasing the data towards specific
persons. This information was only partly available, resulting
in a total number of 16589 non-matching instances.

The goal was now to find the features that are most suitable
to correctly classify the instances regarding their target
classes. A perfect feature will have a minimal difference
within in the set of matching and maximal difference within
the set of non-matching instances. To measure this quality,
we used the Pearson product-moment correlation coefficient,
also called Pearson’s r, between the individual feature and

the target vector. After running our analysis on the sample
data, we found the highest importance for the features of
FFTY 2, FFTY 3 and FFTXY Z0 with a window size of 65
(i.e. 0.65 seconds), as illustrated in figure 3.

Figure 3: The three most important features, ordered by Pearson’s
r with their distribution of differences. Blue filled boxes show the
difference distribution in the set of matching instances, red empty
boxes in the set of non-matching instances.

Using these features, we created a simple encoding scheme
that takes an incoming contact broadcast and a recent local
handshake data packet. A successful decoding step shows
that these are in fact data from one physical handshake,
while a failure to decode shows they are part of different
handshakes. We divide the value range of a feature into 7
equally sized successive regions (bins) and assign a bit
sequence to each bin, which is simply the binary
representation of the bin number. The concatenation of all bit
sequences resulting from each feature value’s bin is then
used as a hash value to encode the data in the contact
broadcast.

However, due to the large amount of noise present in the
data, the local representation of the handshake may have
sufficiently different feature values so that they fall into



different bins than those used in the broadcast, even if they
have been computed from the same physical handshake. In
order to allow for some margin of error, multiple hashes are
generated by also considering one or more adjacent bins for
each feature. If any hash succeeds in decoding the
broadcast data (i.e. the result is a valid HTTP URL), it is
accepted as a match. Consequently, the decoding can
always take up to Decmax = (2a+ 1)Nf steps, where a
denotes the accepted bin difference and Nf the amount of
features we select. Fortunately, the computational cost of
even multiple decoding attempts is negligible. Of course, this
approach raises the false-positive rate, as discussed in the
following section.

Evaluation

Figure 4: Histograms showing the bin distance of the matching
instances in blue and the non-matching instances in red for feature
FFTY 2.

As can be seen in figure 4, for the strongest feature FFTY 2

only about 50% of all actually matching shakes fall into the
same bin, but the vast majority of the other matching pairs
fall in an adjacent bin.Therefore, an accepted bin difference
of at least 1 should be chosen. From a usability point-of-view,
the worst case for the classifier would be a false negative, as
the users would have to shake hands again to complete the

exchange. False positives, on the other hand, could be
reduced using additional non-feature-based approaches
such as evaluating Bluetooth signal strength.

Predicted

Nf , a Actual Positive Negative

Nf = 2, a = 1 Positive 76.15% 23.85%

Negative 21.17% 78.83%

Nf = 3, a = 1 Positive 57.69% 42.31%

Negative 11.23% 88.77%

Nf = 2, a = 2 Positive 96.92% 3.08%

Negative 46.95% 53.05%

Nf = 3, a = 2 Positive 92.31% 7.69%

Negative 33.68% 66.32%

Table 1: Confusion matrices illustrating the proportions of
(in-)correctly matched handshakes for varying amounts of selected
features Nf and accepted bin difference a.

Table 1 shows us the different accuracies we can achieve for
different a and Nf values where Nf follows the order of the
most valuable attributes established in Figure 3. Using only
the two most salient feature FFTY 2 and FFTY 3 provides
nearly 77% true positive and 79% true negative matches with
Decmax = 9 decoding steps (2 features with 3 possible bins
each). Adding the third feature FFTXY Z0 further improves
the true negative rate but reduces the true positive rate by
roughly 20%, an undesirable result (Decmax = 27). Allowing
a bin difference of two instead vastly reduces the false
negatives rate. While this allows us to accept nearly all
matches, we have more than doubled our false positive rate
(Decmax = 25).

Using both bin difference a = 2 and including the third
feature gives us better values in true positives and in true



negatives than both variants with a = 1 and far better true
negative values than with two features for 4% worse true
positive values. This approach provides the best-balanced
solution, although the decoding process for every received
handshake will now take up to Decmax = 125 steps.
However, even in the worst case with up to 125 iterations, the
decoding process still takes only a negligible amount of time
due to the tiny amount of encoded data.

Discussion & Future Work
We have presented ShakeCast, a method to automatically
exchange contact data between two persons shaking hands.
We contribute a peer-to-peer approach to identify the correct
handshake among multiple candidates, a method to encode
contact data into space-constrained BTLE broadcasts, and
an evaluation of our approach on a dataset of real-world
handshakes.

During our data collection process, we observed that the
motions for the same handshake between two persons can
vary widely (e.g. "fishy" vs. "firm" handshake). This often
leads to huge differences in the accelerometer output.
Therefore, the generation of an unique and robust identifier
based just on the accelerometer data is a hard problem. Our
best-balanced solution will not recognize about 7.7% of
handshakes in a scenario with multiple simultaneous
transmissions, while mistakenly collecting about 33.7% of
non-matching transmissions. In the future, we will use more
advanced analysis methods such as PCA, in combination
with a k-fold validation approach, to improve our matching
algorithm.

Another possible solution might be to use additional sensors
to get more accurate information about the actual handshake.
For example, an approach we consider promising would be
the use of a smart ring. A finger-worn sensor would provide

the opportunity to exclude the additional movement in the
wrist joint from the accelerometer data.

One drawback of our approach is the fact that the usage of a
smartwatch is not ideal for this application as the watch has
to be worn on the shaking hand. This conflicts with the habit
that most people usually wear their watch on the
non-dominant hand while using the dominant one for shaking
hands. However, the increased popularity of fitness trackers
which are also worn on the dominant hand may provide an
opportunity to detect handshakes without forcing the users to
change their habits.
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