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Abstract

Objectives. The aim of this work is to present and evaluate a novel segmentation method for
localizing the contours of the intima–media complex in the carotid artery wall through
longitudinal ultrasound B-mode imaging. The method is used to investigate the association
between atherosclerosis risk factors and the cyclic variation of the intima–media thickness
during the heart beat.
Methods. The framework introduced is based on two main features. The first is a simultaneous
extraction of both the lumen–intima and the media–adventitia interfaces, using the
combination of an original shape-adapted filter-bank and a specific dynamic programming
scheme. The second is an innovative spatial transformation that eases the extraction of skewed
and curved contours, and exploits the result from the previous image as a priori information,
when processing the current image. The intima–media thickness is automatically derived from
the estimated contours for each time step during the cardiac cycle. Our method was evaluated
in vivo on 57 healthy volunteers and 25 patients at high cardiovascular risk. Reference contours
were generated for each subject by averaging the tracings performed by three experienced
observers.
Results. Segmentation errors were 29± 27µm for the lumen–intima interface, 42± 38µm for the
media–adventitia interface, and 22± 16µm for the intima–media thickness. This uncertainty
was similar to inter- and intra-observer variability. Furthermore, the amplitude of the temporal
variation in thickness of the intima–media layers during the cardiac cycle was significantly
higher in at-risk patients compared to healthy volunteers (79± 36µm vs 64± 26µm, p = 0.032).
Conclusion. The method proposed may provide a relevant diagnostic aid for atherosclerosis
screening in clinical studies.
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1 Introduction3

1.1 Clinical context4

Cardiovascular disease remains the major cause of mortality and morbidity in industrialized5

countries. During the atherosclerosis process, clinical events such as myocardial infarction and6

stroke are caused by rupture of atheromatous plaque [40]. Several alterations of the blood7

vessel properties can already be observed at the early stage of the pathology, such as8

endothelial dysfunction, vascular remodeling, as well as arterial thickening and9

stiffening [7,22,34]. It has also recently been demonstrated that preventive care (i.e., treatment10

of arteriosclerosis and atherosclerosis at early stages) can dramatically reduce the mortality11

rate related to cardiovascular disease [17,47]. Therefore, early detection of accelerated vascular12

aging is a major clinical issue.13

Carotid intima–media thickness (IMT) has been demonstrated to be strongly correlated with14

cardiovascular disease by several previous studies [1, 4, 6]. This parameter is considered an15

established marker of atherosclerosis [26,33]. A recent in vivo investigation, carried out with16

ultrasound (US) B-mode imaging, has shown that the IMT actually undergoes a reproducible17

compression–decompression phenomenon during the cardiac cycle [42], namely the IMT is18

maximal at the end of diastole and minimal during systole. Further clinical studies have19

considered the amplitude of this phenomenon, henceforth denoted as AIMT, and demonstrated20

a positive correlation with cardiovascular risk factors [5, 27,35,36]. According to these findings,21

the AIMT parameter is likely to be a novel and relevant marker to assess atherosclerosis and22

may be useful in screening vulnerable patients.23

1.2 Carotid wall segmentation in US B-mode imaging24

A wide variety of methods have been proposed to segment the common carotid artery (CCA)25

wall layers in two-dimensional (2D) US B-mode images (Fig. 1). Many of them aimed at26

quantifying the IMT, but previous work can be mentioned that exploited contour segmentation27

within a motion-estimation framework dedicated to track the 2D motion of the wall28

tissues [14,28,50]. The first category of methods is exclusively based on image features. In this29

context, an edge-tracking method using intensity gradient was introduced in [41], and an30

approach based on envelope intensity thresholding was proposed in [10]. Other studies also31

introduced different methods to exploit the local statistics of the image, using a mixture of32

Nakagami distributions and stochastic optimization [14], a multiscale anisotropic barycenter33

based on statistical filtering [15], and a fuzzy K-means classifier [31]. A second category of34

methods involves, in addition to image features, a fitting scheme designed to converge towards35

the optimal solution. In this context, several teams have proposed different implementations of36

the active contours framework [9, 13,25]. Moreover, dynamic programming approaches have37

also been proposed, based on fuzzy expression forms representing image features and38

geometrical characteristics of vessel interfaces [24], smooth intensity thresholding surfaces and39

geometric snakes [37], directional Haar-like filter [23], and dual contour detection [8, 50]. A40

detailed state-of-the-art review covering the field of CCA segmentation in US B-mode imaging41

is provided in [30].42

The above-mentioned compression–decompression of the IMT during the cardiac cycle has also43

been assessed by various teams. In these studies, the segmentation of the intima–media44
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complex was carried out sequentially, as opposed to the segmentation of a single image. The45

temporal variation of the IMT value was then derived from the results of the contour46

extraction at different time steps. Towards this objective, four main strategies have been47

proposed to perform the segmentation process. The first type only involves two different48

specific time steps, namely the end-diastole and the systole, mostly featuring approaches based49

on manual tracing [35,36]. The second type consists in segmenting each frame of the sequence50

independently, i.e., without exploiting any relation between two consecutive time steps.51

Different approaches have been introduced in this context, such as a method based on the52

Hough transform [19], detection of the maximum intensity echoes [11,32], active contours [20],53

manual segmentation [39], dual line detection [44], finite element modeling [46], and phase54

change detection in radiofrequency data [45]. The third type is based on the temporal55

consistency of the sequence, and segments all consecutive frames by exploiting the results from56

the previous operation as an input for the current operation. Fewer studies have investigated57

this field, among which are methods based on statistical filtering with region update [38] and58

wall tracking by adaptive normalized correlation [21]. Finally, a fourth type of technique is59

segmentation using a surface fitting approach in a 2D+t volume, as presented in [28].60

Among the pitfalls that may hamper contour segmentation of the carotid artery in US B-mode61

imaging, the following are the most commonly encountered. The organ anatomy itself62

represents a difficulty. Indeed, the two interfaces of the intima–media complex to be segmented63

are very close to each other, and have a similar pattern [48]. For that reason, methods based on64

a single characteristic (i.e., intensity gradient only) are often jeopardized. Furthermore, the US65

modality, despite its numerous advantages, also presents a few drawbacks that must be taken66

into consideration, such as poorly contrasted interfaces, a rather low signal-to-noise ratio67

(SNR), and weak echoes. Therefore, methods that are based on a single feature with no shape68

constraint or that perform the segmentation locally (i.e., column by column in a 2D image),69

are less likely to extract realistic and accurate contours. Namely, frequent failures occur, where70

one (or both) interface(s) locally present(s) weak contrast. Additionally, when working on71

clinical datasets, great variability in both image quality and anatomic geometry can generally72

be observed between images of different subjects.73

1.3 Objectives and contributions74

The objective of the present article is twofold. First, we introduce a novel segmentation75

framework that simultaneously extracts both lumen–intima (LI) and media–adventitia (MA)76

contours of the CCA in vivo in US B-mode sequences. Second, we investigate AIMT,77

corresponding to the temporal variation of the intima–media thickness during the cardiac cycle,78

using the previously segmented contours. Let us note that the framework introduced was79

specifically designed to assess so-called “normal” carotid arteries, in which alteration of the80

wall by the formation of an atheromatous plaque (if any) is not yet perceptible, in the context81

of screening vulnerable patients who are prone to developing atherosclerosis [7].82

The main methodological contribution of the work reported in this article is a combination of a83

specific filter bank and an appropriate dynamic programming strategy, to cope with84

discontinuities due to contrast drop locally observed along the interfaces. Furthermore, to85

manage variable geometry, i.e., arterial wall skewed and/or curved in the image plane, we86

devised a local spatial transform that makes the interfaces nearly horizontal. Additionally,87

when processing a whole sequence to assess the temporal variation of the wall location and88

thickness, the results obtained for the previous frame are used as a priori information to89

segment the current frame.90

The accuracy of the present segmentation method was evaluated in vivo, on the full exploitable91
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width of the carotid distal wall of 82 subjects (57 healthy volunteers and 25 patients at high92

cardiovascular risk likely to develop cardiovascular disease) in US B-mode imaging. All93

measurements and analyses were conducted on the distal wall of the CCA, to take advantage of94

a better echogenicity [48]. When comparing the results of this novel approach with those95

obtained manually by three independent experts, the accuracy of our method compared to the96

reference was similar to inter- and intra-observer variability, and the reproducibility of our97

method was systematically greater. Finally, we investigated the clinical relevance of the AIMT98

parameter, i.e., the amplitude of the compression–decompression phenomenon of the IMT99

during the heart beat, by comparing the results between healthy volunteers and at-risk100

patients. Statistical analysis showed that AIMT was significantly increased in at-risk patients,101

which tends to confirm that this parameter could constitute a relevant marker for screening102

vulnerable patients [5, 27,35,36].103

2 Material and Methods104

The introduced method is semi-automatic and relies on a quick and simple interactive105

initialization phase (Fig. 2), aiming to increase the overall robustness by avoiding errors that106

may be introduced by fully automatic procedures. The subsequent segmentation approach107

(Fig. 3) is characterized by the extraction of a single skeleton line and is based on the108

estimation of a local thickness parameter that simultaneously define the location of both LI109

and MA interfaces. This method is sequential, i.e., all frames of the sequence are successively110

processed and the results from the previous operation performed at time step (n− 1) are111

exploited as a priori information for the current operation at time step n. The temporal112

variation of the IMT during the cardiac cycle is thus assessed, and the AIMT parameter is113

calculated as the difference between the diastolic and systolic estimated IMT (i.e., the maximal114

and minimal IMT values, respectively).115

2.1 Initialization116

Manual initialization is performed in the first frame I(1) of the sequence. This phase involves117

three consecutive steps (see Figure 2 for a graphical sketch), as described below.118

• Firstly, a region of interest (ROI), denoted IW , is defined by the user. Since the borders119

of the image sometimes show blur, low echoes and/or high noise, these poor-quality parts120

are clipped out, if necessary. The height of the ROI remains equal to the full image121

height, whereas its width W is defined by clicking two points that indicate the left and122

right limits, beyond which the LI and MA interfaces cannot be perceived.123

• Then, the user provides a rough initial estimate of the IMT by positioning two radially124

aligned points on the LI and the MA interfaces.125

• Finally, an even rougher delineation of the skeleton is given by positioning three points,126

located within the intima–media complex on the left, middle, and right sides of the ROI.127

The initialization parameters are then stored and the full sequence is automatically processed,128

as described below.129

2.2 Segmentation framework130

Spatial transformation T The aim of the transformation T is to generate a sub-image IT in131

which the anatomical interfaces become nearly horizontal (Fig. 3a, b), with two objectives: (1)132
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managing images where the artery segment of interest is tilted or curved and (2) keeping track133

of the radial displacement of the wall. We thus overcome the limitation of several existing134

methods [15,19] that require careful acquisition such that the interfaces of interest are135

horizontal. At first, the skeleton from the frame I(n− 1) is mapped onto the frame I(n) (when136

n = 1, the approximate skeleton defined by the three points during the initialization step is137

used)1. Then, the transformed image IT is created by applying the spatial transformation T on138

the original IW sub-image, such that:139

IT = T (IW ). (1)

The transformation T consists in selecting L pixels above and below the skeleton in IW140

(Fig. 4). To obtain greater precision in the segmentation process, the image is interpolated by a141

factor of 10 in the radial direction. The interpolation was bilinear and achieved in Matlab142

(Matlab 7.13, The MathWorks Inc., Natick, MA, USA, 2011) with the function interp2.143

Shape-adapted filter H∆ The aim of this novel original shape-adapted filter is to provide144

strong responses within the intima–media complex at points located mid-way between the145

contours to be extracted, together with a local estimation of the distance between them (IMT).146

We introduce a convolution operator H∆ that models the characteristic structure of the arterial147

wall observed in US images (Fig. 1), representing the two transitions (i.e., the LI and MA148

interfaces) between zones with different echogenicity:149

H∆ = ±G′ ∗M∆. (2)

Here, (∗) is the convolution operator, G′ is the first derivative of a Gaussian of standard150

deviation σ and of length l (representing the intensity gradient between two layers), and M∆ a151

pair of Diracs separated by ∆, with ∆ ≥ l (representing the typical double-line pattern of the152

interfaces). The ± sign corresponds to the gradient orientation, and is determined according to153

the processed wall, i.e., it is negative for the distal wall used in this study, and would be154

positive if the proximal wall was used. To prepare a front-propagation step (see next155

paragraph), a velocity map F∆ is then built:156

F∆ = H∆ ∗ IT , (3)

with H∆ applied column-wise. The largest values in F∆, with ∆ equal to the local IMT,157

represent the points most likely to belong to the skeleton (Fig. 3c). Although the IMT can be158

considered as almost constant, since this study involves the detection of the pathology at an159

early stage with no perceptible atheromatous plaques, this thickness is subject to tiny changes160

during the heart cycle [42]. To manage these minute variations that can occur both spatially161

within a single image and temporally between two consecutive images, actually a set of K (odd162

number) filters H∆k is applied on IT to build K maps F∆k (Fig. 3c). The K tentative values of163

the local IMT are defined as follows:164

∆k = ∆(n− 1) + kδ, k ∈ K ≡ {−K − 1

2
, . . . 0, . . .

K − 1

2
}, (4)

where δ is an increment corresponding to the minimal IMT variation investigated and ∆(n− 1)165

is the IMT value estimated in I(n− 1). When n = 1, the approximate IMT value defined by166

the two points during the initialization step is used. Then a single velocity map F is generated167

1We drop n to simplify the notations, when it is not confusing, since all the subsequent steps in this section are
explained on the same time-point n.
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pixel-by-pixel by independently selecting, for each point (x, y), the highest F∆k(x, y) value168

among the corresponding candidates from all the K maps (Fig. 3d):169

∀(x, y),F(x, y) = max
k∈K
{F∆k(x, y)} , (5)

while storing the corresponding local values of ∆k, k = argmaxk∈K {F∆k(x, y)}. Finally, a cost170

map C is generated, where the points most likely to represent the skeleton correspond to the171

positions with the lowest values of C (Fig. 3e):172

C = exp(−F). (6)

Dynamic programming Given that US images are noisy, contrasts are inhomogeneous and173

Equation 5 is evaluated independently in each column, the locations of thus found maxima do174

not form a smooth path. A smoothness constraint is therefore introduced and a globally175

optimal solution (minimum-cost path) is sought, while the cost map is used as a176

data-attachment term. Dynamic programming is generally used to implement optimization177

algorithms in combinatorial analysis [2]. The aim of this strategy is to determine, using a global178

approach, the optimal solution among all possible combinations, overcoming a costly full-search.179

The general principle, upon which this approach is based, consists in a successive resolution of180

sub-problems, whose combined solutions eventually optimally solve the initial problem. In the181

present case, the actual problem is to find the optimal path that defines the skeleton located182

mid-way between the LI and MA contours, corresponding to the lowest cumulative cost C183

(highest responses of the filter H). First, a seed point s = (xs, ys) is automatically determined184

by seeking the center of the longest valley in C, that is to say the longest continuous segment of185

minimal values in C. The continuity notion is defined here by a maximal vertical variation of ±186

10 pixels (which would correspond to ± 1 pixel in the non-interpolated original image) between187

two adjacent columns. From the seed point s, a specific front propagation scheme is then run in188

order to build a cumulative cost map C (Fig. 3f). The front propagation scheme introduced is189

adapted from the fast-marching methodology [12,43] to provide a unidirectional (i.e., across190

the image width) path, favoring the propagation along the valleys in C while penalizing the191

non-horizontal displacements. The initial value is set as:192

C(xs, ys) = C(xs, ys). (7)

Then, from the seed s to the left and right borders, the map C is iteratively built using the193

following relation:194

C(x+ dx, y) = min
dy∈{−10,...0,...10}

C(x, y + dy) + C(x+ dx, y)

√
1 +

(
dy

10

)2
 , (8)

with dx = −1 when x < xs (i.e., on the left side of the seed) and dx = +1 when x > xs (i.e., on195

the right side of the seed). In Equation 8, C(x, y + dy) corresponds to the already solved196

sub-problem term (i.e., the previously calculated value of the map C), C(x+ dx, y) is the image197

data term at the current point (i.e., the value C inferred from the result of the dual interface198

filtering), and

√
1 +

(
dy
10

)2

is a shape constraint term (i.e., the penalty calculated as the199

Euclidean distance to the candidate point). The latter term penalizes the vertical “yaw” dy,200

whose variation interval corresponds to ±1 pixel in the original non-interpolated image.201

Finally, on both the left and right borders of the image, the point with the minimal cumulative202

cost is determined and the minimal path is found by back-tracking the decreasing values in the203

map C [12] from these border points to the seed s (Fig. 3g).204
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Inverse transformation T−1 Finally, the skeleton position is determined by mapping back the205

optimal path onto the original image I(n) by the T−1 operation. Then the two contours of the206

intima–media complex are deduced from the skeleton position and from the stored local values207

of ∆k (Fig. 3h). Finally, the IMT ∆(n) corresponding to the current nth frame, calculated as208

the column-wise mean radial distance between the LI and MA contours over the width W , is209

stored for further analysis.210

2.3 Estimation of the AIMT parameter211

The AIMT parameter, corresponding to the amplitude of the temporal variation in thickness of212

the intima–media layers, was assessed for each sequence from the segmentation results. From213

our experience however, the measurement of the IMT temporal variation integrated over the214

full exploitable width of the image sometimes fails to capture a cyclic and reproducible215

compression–decompression pattern. Therefore, to assess the tiny temporal changes of the216

IMT [42], we preferred to integrate the distance between the LI and MA contours over a217

narrower region (W = 3 mm). This narrow region was centered on the most contrasted part of218

the image. We expected that the variations of interest would be homogeneous within such a219

short artery segment. Curves representing the IMT values thus estimated during several220

consecutive cardiac cycles were presented to an experienced user together with the221

corresponding electrocardiograms (ECG). The user, blinded to all clinical information, selected222

end-diastole and systole of at least two consecutive cardiac cycles. The AIMT parameter was223

first calculated as the end-diastole-to-systole difference in IMT for each cycle, then averaged224

across the available cycles. The choice of this manual reading instead of a fully-automatic225

process to determine AIMT from the IMT variation curves was motivated by two factors: first,226

the ECG signal was not available as is, but rather superimposed on the image, and second, this227

reading operation can be performed very easily and quickly by the user. The drawback of this228

solution is that it may introduce some user-dependent variability.229

2.4 Acquisition of in vivo image data230

2.4.1 Study population231

In this study, 82 subjects (57 young healthy volunteers and 25 older patients at high232

cardiovascular risk, i.e., likely to develop atherosclerosis but with no established cardiovascular233

disease) were involved. The healthy volunteers were 24 males and 33 females, with an average234

age of 37.9± 14.1 years (range, 19− 63 years), and pulse pressure of 44± 8 mmHg. The at-risk235

patients were 16 males and 9 females, with an average age of 56.2± 10.5 years (range, 34− 73236

years), and pulse pressure of 54± 15 mmHg. All healthy volunteers were cardiovascular risk237

factor-free (tobacco use, hypercholesterolemia, diabetes, hypertension or particular family238

history), as assessed by an oral questionnaire. The inclusion criterion for the patient group was239

the presence of either metabolic syndrome, or type 1 or 2 diabetes, diagnosed at least 1 year240

before [16]. No other criterion, including clinical characteristics, was used to select these241

participants. Informed consent was obtained from all participants. The study fulfilled the242

requirements of our institutional review board as well as the ethics committee.243

2.4.2 Acquisition of carotid artery ultrasound sequences244

All subjects underwent a US examination. A medical scanner (Antares, Siemens, Erlangen,245

Germany), equipped with a 7.5- to 10-MHz linear array transducer, was used to perform US246

acquisition. Longitudinal B-mode image sequences of the left CCA were acquired after a247
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15-min rest, the subjects lying in supine position, with the neck being extended and rotated248

45◦ to the contralateral side. The probe was centered on the CCA, in the longitudinal plane249

(i.e., along the axis of the artery), positioned 2 cm from the carotid bulb. The absence of250

atheromatous plaques in the imaged region was systematically assessed by a medical doctor.251

Temporal sequences of images were acquired, covering on average 2.6± 0.7 heart beats, with at252

least two consecutive full cardiac cycles. In order to avoid motion artifacts, the subjects were253

asked to perform a breath hold and not to swallow during the acquisition. All acquisitions were254

performed using the following instrumentation settings: the dynamic range was 65 dB, the255

sequence frame rate was 26 fps, the pixel size in both radial and longitudinal directions was256

30µm. The recorded scans were stored digitally and transferred to a commercial computer for257

off-line analysis. No participant was rejected from the study.258

2.5 Evaluation of the method’s accuracy259

The segmentation accuracy of the present method was assessed on the entire exploitable260

width W of the first frame in each sequence. Aiming to quantify the accuracy of our method261

despite the lack of ground truth inherent to clinical imaging, reference segmentation contours262

were generated for each sequence by three experienced observers O1, O2 and O3. The observers263

were specialists in US image modeling, processing and analysis with 5, 23 and 3 years of264

experience, respectively. First, as the left and/or right borders of the image sometimes show265

blur, low echoes or high noise, observer O1 was asked to clip out the poor-quality borders, if266

necessary (Fig. 2), thus defining the IW region to be considered. Then, the segmentation267

method was applied to localize the contours of both LI and MA interfaces. Subsequently, each268

observer performed the manual segmentation of both interfaces, blinded to the automatic269

results.270

For the first frame of each sequence, the reference contour segmentation was constructed by271

averaging the results from the three observers, for both interfaces. The corresponding reference272

IMT (denoted as IMTREF ) was calculated as the mean distance between the LI and MA273

reference contours, over the width W of the ROI.274

The method’s reproducibility was also assessed. Since some variability could potentially be275

introduced during the manual initialization phase (Section 2.1). To investigate this impact, our276

method was applied twice, with observer O1 performing the initialization phase a second time,277

within the same clipped IW region for each sequence. Similarly, intra-observer variability of the278

manual tracings was also assessed. For this purpose, the manual segmentation was performed279

twice by observer O1, within the same clipped IW region of the first image in each sequence.280

Finally, the AIMT parameter (i.e.,the amplitude of the IMT variation), derived from the281

automated segmentation results, was also assessed twice for each sequence, viz.: in a282

randomized manner and blinded to all clinical information, observer O1 twice located the283

systole and end-diastole time-points on the resulting IMT curves. All resulting contours were284

stored for further analysis.285

2.6 Parameter settings286

Our method was applied on all the sequences with the following parameter settings: number of287

pixels above and below the skeleton used in the transformation T , L = 34, corresponding to a288

1 mm half-height; standard deviation of the Gaussian G, σ = 0.35, corresponding to 10µm, and289

its length l equal to 75% of the approximate IMT provided at the initialization stage; number290

of possible ∆k values of the IMT, K = 61, with increment δ = 3µm, thus leading to a variation291

range of ±90µm around the IMT estimated in the previous frame.292
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2.7 Statistical analysis293

The Mann-Whitney U test was used to compare the values of end-diastole IMT, as well as the294

total amplitude of the IMT variation, AIMT, during the cardiac cycle, between healthy295

volunteers and at-risk patients. The value p < 0.05 was considered to indicate a statistically296

significant difference.297

To determine the agreement between two repeated measurements, the measurement error was298

calculated as follows:299

err =

√
var

m
× 100%, (9)

with var the within-subject variance and m the average of all measurements [3]. The300

corresponding intra-class correlation coefficient (ICC) and its 95% confidence interval (CI) were301

also computed. All statistical analyses were performed using Matlab.302

3 Results303

3.1 Contour segmentation304

The average width W of the IW sub-images was 19± 5 mm (range, 10− 29 mm), which305

corresponds to an average ratio of 80± 20% (range, 41− 100%) of the full width of the images.306

For all 82 subjects, our segmentation method successfully localized the anatomical interfaces of307

the wall, and the extracted contours matched the reference contours well. Representative308

examples of resulting segmented contours, corresponding to subjects with varying image309

quality, are displayed in Figure 5.310

For both LI and MA interfaces, the unitary segmentation error ε(x) was defined as the distance311

between the reference contour and the estimated contour, in the column x of the image. The312

IMT estimation error was defined as the difference between the estimated (averaged on W in313

the given image) IMT and the reference value, IMTREF .314

The mean absolute errors (± standard deviation) of the segmentation process are displayed in315

Table 1. These results were calculated by putting together in a single vector all the316

corresponding unitary segmentation errors, prior to generating the mean absolute error and317

standard deviation. Let us first note that the errors of our method were of the same order of318

magnitude as inter- and intra-observer variability, while its variability was significantly smaller319

than inter- and intra-observer variability.320

When analyzing these errors, it is also useful to compare them with the thickness of the321

segmented tissue, i.e., the IMT. The mean value (± standard deviation) of the reference322

intima–media thickness in all the assessed subjects was 618 (±152)µm. Calculating the ratio323

between each absolute segmentation error |ε(x)| and the corresponding individual IMTREF ,324

and putting all these ratios together, the mean values (± standard deviation) were: 5(±5)% for325

the LI interface, 7(±7)% for the MA interface, and 4(±3)% for the estimated IMT.326

Figure 6 shows a good correlation (R = 0.985) between the IMT estimated with our method327

and the reference. The Bland-Altman plot (Fig. 7) also demonstrates good agreement between328

the estimated IMT and the reference, with a 95% CI of 51µm and a slight over-evaluation of329

9µm. The details of this bias versus the reference for our method, as well as for each observer,330

are provided in Table 1.331

3.2 IMT analysis332

For each subject, the temporal variation of the IMT was estimated during the entire length of333

the sequence, over a sub-region of reduced width W = 3 mm (Fig. 8). The total number of334
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analyzed frames in all the sequences considered was 9539, with an average number of 116± 34335

frames per sequence (range, 66− 194). Implemented in Matlab, the present method required on336

average 189 s to segment an entire sequence (i.e., 1.6 s/frame), the initialization phase took less337

than 20 s. This is to be compared with an average of 162 s/frame to manually trace both338

interfaces of the intima–media complex.339

A cyclic compression–decompression pattern could be observed during the cardiac cycle, as340

displayed in Figure 9. More precisely, the diastolic IMT was systematically greater than the341

systolic IMT, namely 662± 148µm and 594± 140µm, respectively, which corresponds to342

previous findings reported by different teams [19,27,42]. The average amplitude of the343

thickness variation, AIMT, was equal to 69± 30µm and represented 11± 5% of the estimated344

end-diastole IMT.345

The result of the Mann-Whitney U test demonstrated that the end-diastole IMT value,346

estimated with our segmentation method, was significantly higher in at-risk patients compared347

to healthy volunteers (747± 163µm vs 573± 103µm, p < 0.0001), which is in accordance with348

previous studies [1].349

More interestingly, the mean AIMT was also significantly higher in at-risk patients compared to350

healthy volunteers (79± 36µm vs 64± 26µm, p = 0.032), as depicted in Figure 10.351

The variability of the AIMT parameter measurement due to manual localization of the systole352

and diastole was 9.7% (Eq. 9), with ICC equal to 0.92 (95% CI = 0.88− 0.95) and the Pearson353

correlation coefficient equal to 0.92.354

4 Discussion and conclusion355

The present contour extraction method was successfully applied on 82 subjects, to detect the356

location of the carotid lumen–intima and media–adventitia interfaces and showed good357

accuracy. The temporal variation of the IMT presented a cyclic compression–decompression358

pattern along the heart beat. The amplitude of this compression was found to be significantly359

increased in at-risk patients compared to healthy controls.360

4.1 Contour segmentation361

Evaluated in vivo on images from 82 subjects, the accuracy level of this novel segmentation362

method was very similar to inter- and intra-observer variability, i.e., the mean absolute distance363

was approximately one pixel (Table 1), while its reproducibility was much better. Moreover,364

the accuracy in the at-risk patients was substantially the same as in the healthy volunteers,365

despite often worse echogenicity of the former. These results demonstrate a certain robustness366

of our method, as all 82 sequences of the clinical dataset were successfully segmented using the367

same parameter settings, despite differences in arterial geometry and image quality.368

The segmentation of the carotid artery wall has been widely investigated, with the objective of369

measuring the IMT, the internal diameter, or the plaque volume. According to a recent370

detailed review [30], the most accurate methods are those proposed in [29] and [14]. The former371

was reported to quantify the IMT with an average error of 10± 10µm, but its inaccuracy in372

the extraction of the LI and MA interfaces (35± 32µm and 37± 29µm, respectively) were very373

close to ours. The latter approach extracted the respective interfaces with an average error374

of 21± 12µm and 16± 7µm, but the IMT accuracy was not reported, so it is hard to375

determine if the corresponding error was similar, larger or smaller than the errors for each376

interface separately. Based on the results reported, the present method would rank among the377

most accurate state-of-the-art approaches. Nevertheless, the pertinence of such comparisons is378

limited by several differences in the evaluation protocols, such as the distance metric (e.g.,379
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mean absolute distance or polyline distance), ROI (e.g., full width, or limited region), data380

included (e.g., only healthy volunteers, patients with/without perceptible atheromatous381

plaques), image characteristics (e.g., spatio-temporal resolution, presence or absence of skewed382

and curved arterial walls).383

A very important difference is related to the reference segmentation. As ground truth is not384

available in clinical imaging, the reference contours generally are traced by experienced385

observers, but several experts are necessary to provide an averaged or consensus reference.386

Nevertheless, as long as different images with contours traced by different experts are used, the387

evaluation results are also likely to differ slightly. In the present study, each expert introduced388

a different bias in the contour location, as shown in Table 1: the resulting IMT was389

overestimated by two of them, similarly to our method, while the third one introduced a large390

negative bias with regard to the averaged reference. However the amplitude of these errors391

remained smaller than one pixel. The inter- and intra-observer variability also was on the pixel392

scale and small in comparison to the IMT. We therefore consider that the averaged contours393

used in this study constitute a valid reference to evaluate the automated method. Conversely,394

as the errors of our method are within inter- and intra-observer variability, the method can be395

considered as accurate.396

Other criteria that may influence the results, when comparing various methods are the degree397

of automation and the processing time. According to the survey in [30], the fully automatic398

methods are substantially less accurate except the one presented in [29]. Our method involves a399

manual initialization in the first frame of the sequence, aiming to increase the overall accuracy400

by discarding, when necessary, the regions with poor image quality. This phase takes not more401

than 20 s, and the remainder of the sequence is processed automatically. The computation time402

is directly proportional to the ROI width, as well as to the number of frames in the sequence.403

In our experiments, where the average ROI size was equal to 80% of the image size, our method404

performed the segmentation 100 times faster than the experts. The processing speed can be405

improved by using a compiled programming language and by optimizing the implementation.406

4.2 IMT variation407

A cyclic compression–decompression pattern along the heart beat was observed (Fig. 9),408

namely the IMT was systematically maximal at the end of diastole, and minimal during409

systole, as described in the seminal work [42]. The mean AIMT (i.e., the peak-to-peak410

amplitude of the wall’s thickness temporal variation), was larger for the at-risk patients than411

for the control population. Although the mean difference (15µm) between the two groups was412

on the same order of magnitude as the mean IMT segmentation uncertainty (22µm), this413

difference was statistically significant with an “exploratory” p-value of 0.032. This finding is in414

accordance with previous studies [5,27,35,36]. The compressibility of the arterial wall has been415

hypothesized to express fluid exchange and leakage between blood and wall layers [5], to reflect416

the wall’s structural and mechanical alterations since the early stage of the pathology [27], and417

to have predictive power for outcomes [35]. We hypothesize that, during the atherosclerotic418

process, endothelial function is affected by the increased radial stress on the wall’s innermost419

layers. The latter is reflected by a higher rate of compressibility, which could be observed with420

US imaging in this study.421

As previously mentioned, integrating the distance between the LI and MA contours over the422

full exploitable width of each frame sometimes fails to capture a cyclic and reproducible423

compression–decompression temporal variation of the IMT. One possible explanation would be424

that this variation is not identical along the artery. Another possibility is that the425

segmentation uncertainties in relatively poorly contrasted parts of the wall included within the426
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width W mask actual tiny variations. These hypotheses need to be verified.427

A 3-year follow-up study is currently being conducted by our team, aiming to investigate the428

relationship between vascular health in subjects with either metabolic syndrome or type 1 or 2429

diabetes, and the parameters that can be inferred from the curves provided by our method.430

Further application of this segmentation method to other peripheral arteries, such as humeral,431

popliteal, and brachial arteries, could also provide additional information about vascular432

health, as suggested by previous work [18,49]. Future work will also focus on further433

automating the entire process, including the detection of diastole/systole, as well as a surface434

fitting approach in a 2D+t volume [28].435

4.3 Limitations436

As initially specified, this method was devised to segment the arterial wall in the absence of437

perceptible plaque. It can easily cope with a thickened wall, provided that the thickening is438

homogeneous along the artery. Indeed, the filter bank was designed to accommodate slight439

variations in IMT (±90µm) around the value resulting from interactive initialization. It is440

likely to accommodate larger variations by increasing the K parameter, but this increase may441

become contradictory with the smoothness assumption underlying the dynamic programming442

part of the method. Accuracy of the segmentation may further decrease in the presence of443

heterogeneous plaque, where more than two edges may be observed locally. However, such444

cases provide visual evidence of the disease, whereas our method was devised to assess the risk445

prior to plaque onset.446

The temporal variation of the IMT during the heart beat was assessed within a single narrow447

region with visually best image quality for each sequence. The impact of choosing a different448

region was not assessed in this work. Reference curves were also missing to evaluate the449

accuracy of AIMT, as collecting manual annotations to build such reference curves would be450

even more labor-consuming then constructing the reference to evaluate the segmentation451

process.452

In this study, all sequences were acquired with the same US scanner, with the same protocol453

and settings, and by the same medical doctor. For this reason, the variability in image454

properties was solely due to inter-subject variability, that is to say the position, shape and455

orientation of the arterial walls in the image plane varying from one subject to another,456

whereas the image quality depended on the subjects’ echogenicity. The use of a different457

acquisition setting and/or of a different US scanner may modify the overall image appearance.458

There are few parameters in our method (Section 2.6) and they could be tuned to459

accommodate such changes. All are related to pixel size (e.g., L and l) and these can only be460

adjusted to the scanner’s actual spatial resolution. However, as long as the typical double-edge461

structure of the intima–media complex remains visible, as is the case in the vast majority of462

medical B-mode US images, we expect our method to be applicable. Further work involving463

various ultrasound devices as well as various acquisition settings would be necessary to assess464

the actual robustness of the method, but this was beyond of the scope of the present study.465

Generally, we recommend configuring the scanner’s overall gain, central frequency, and focal466

zone so that both interfaces of the distal intima–media complex are clearly perceived during467

image acquisition. As for the temporal definition, the frame rate should be high enough to468

accurately capture the different phases of the cardiac cycle. It should also be emphasized that469

in its initial assumption, our method was not devised to process images with already developed470

thick heterogeneous plaque, and therefore might not provide segmentation results at the same471

accuracy level in such patients.472

Two very different populations were involved in this study, namely younger healthy controls473
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and older diabetic patients at high cardiovascular risk. Therefore, we did not measure the474

influence of the pathology per se on the AIMT parameter. However, this proof of concept475

permitted us to quantify the accuracy of our method in subjects whose images varied in476

quality, as well as to confirm that a significant difference could be detected in the IMT477

compression between the two groups.478

A 3-year follow-up study is currently being conducted by our team, aiming to investigate the479

relationship between vascular health in subjects with either metabolic syndrome or type 1 or 2480

diabetes, and the parameters that can be inferred from the curves provided by our method.481

Further application of our segmentation method on other peripheral arteries, such as humeral,482

popliteal, and brachial arteries, could also provide additional information on vascular health, as483

suggested by previous work [18,49]. Future work will also focus on further automating the484

entire process, including the detection of diastole/systole, as well as a surface fitting approach485

in a 2D+t volume [28].486

4.4 Conclusion487

We have presented a contour extraction method devised to localize the lumen–intima and488

media–adventitia interfaces of the CCA in US B-mode imaging. By combining a novel filter489

bank with an appropriate dynamic programming strategy, the method successfully copes with490

the local contrast drop that is locally observed along these interfaces. It provided reproducible,491

robust, and accurate results, in a reasonable computational time, for clinical images of variable492

geometry and/or quality. By successively processing all frames of a sequence, the temporal493

variation of the IMT during the heart beat can be assessed. Evaluated in vivo on 82 subjects,494

this novel method provided results as accurate as those obtained by experienced observers and495

showed greater reproducibility. Additionally, we observed that AIMT, namely the amplitude of496

the IMT variation during the cardiac cycle, was significantly increased in at-risk patients w.r.t.497

healthy controls, which corroborates preliminary observations from the literature.498
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Figure 1: Representative example of a healthy common carotid artery acquired in ultrasound
B-mode imaging. (a) Single frame, displaying both proximal and distal walls, encom-
passing the lumen. The characteristic structure pattern of each wall, consisting of two
nearly parallel lines, is clearly visible. The blood flow direction is indicated by the
white arrow. (b) Detailed regions, showing the different anatomical layers of the wall.
(c) Radial intensity profile, corresponding to the dashed line in (a). The transition
between the different layers is clearly visible. (d) Gradient of the intensity profile. The
locations of the lumen–intima and media–adventitia interfaces correspond to the two
maximum positive values for the proximal wall and the two minimum negative values
for the distal wall (circles). All measurements and analyses reported in this article
were conducted on the distal wall.
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Figure 2: Schematic example of the user interaction performed during the segmentation ini-
tialization phase in the image I(1). First, the left and right borders are clipped out
(vertical dashed lines), where the interfaces of the intima–media complex are not per-
ceptible, thus defining the sub-image IW of width W . Second, the approximate IMT
value is determined (two red squares). Finally, the approximate position and curvature
of the wall is determined (three green circles). The initial skeleton is determined by
spline interpolation from the position of the three points (yellow line).
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Figure 3: Sequential segmentation process (applied here to the full width of an image, i.e.,
IW = I in this example). (a) Longitudinal B-mode image I(n) of the carotid artery
and skeleton of the previous image (red dashes). (b) Sub-image IT (n) resulting from
the T transformation, such that the interfaces of the distal wall around the previous
skeleton (red dashes) are nearly horizontal. (c) Set of K velocity maps F∆k created
with the convolution operators H∆k . (d) Maximal velocity map F and storage of the
corresponding ∆k local values. (e) Cost map C. (f) Cumulated cost map C generated
from the seed (white dot). (g) Optimal path (black line) corresponding to the skeleton
of the contours. (h) Final segmentation of the interfaces in I(n) (green lines), ob-
tained from the central skeleton and the local IMT ∆k values, after the inverse spatial
transformation T−1.
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(a) (b)

Figure 4: Spatial transformation T . (a) Original image IW (n) and position of the skeleton from
the previous image IW (n − 1) (black line). (b) Transformed image IT , generated by
selecting, for each column, L pixels below and above the skeleton, as depicted by the
white squares in (a).
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(a)

(b)

(c)

(d)

Figure 5: Results of our segmentation method (white solid lines), from two healthy volunteers
(a, b) and two at-risk patients (c, d), compared to the reference (green dotted lines).
The left and/or right borders presenting poor image quality have been clipped out
(vertical lines) prior to segmenting the contours.
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Figure 6: Linear regression line and correlation coefficient R between the reference IMT value
and the estimation performed by our segmentation method in the first image of each
sequence, for healthy volunteers (circles) and at-risk patients (squares).
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Figure 7: Bland-Altman plot comparing the IMT value estimated by our method (SEG) in the
first image of each sequence with the reference (REF), for healthy volunteers (circles)
and at-risk patients (squares).
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Figure 8: Variation of the intima–media thickness (IMT) during the cardiac cycle. (a) Segmen-
tation of the intima–media complex, on a local region of reduced width (W = 3 mm).
(b) Successive positions of the lumen–intima and media–adventitia interfaces during
the sequence, for a single column corresponding to the orange vertical bar in (a). The
end-diastole and the systole are depicted by the square and circular markers, respec-
tively. (c) Corresponding variation of the IMT and peak-to-peak magnitude used to
calculate the parameter AIMT.
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Figure 9: Temporal variation of the intima–media thickness (IMT) during several cardiac cycles,
resulting from our segmentation method, for four healthy volunteers (a–d) and four at-
risk patients (e–h). The end of the diastole is indicated by the triangle markers.
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Figure 10: Box plot representing the variation amplitude of the intima–media complex (AIMT)
during the cardiac cycle, for healthy volunteers and at-risk patients. Percentiles are
indicated by boxes (25th and 75th), inner lines (50th) and error bars (5th and 95th).
The result of the Mann-Whitney U test is indicated by the p-value.
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Tables506

Table 1: Segmentation absolute errors as well as bias (mean ± standard deviation) in µm, for
our computerized method (SEG) and the manual tracings (O1,2,3).

lumen–intima media–adventitia intima–media
Method interface interface thickness

Healthy volunteers (n=57)
SEG vs Reference 29 ± 25 41 ± 38 21 ± 15
SEG variability 8 ± 17 13 ± 39 9 ± 12

Inter-observer variability 46 ± 41 40 ± 39 49 ± 37
Intra-observer variability 32 ± 33 32 ± 40 29 ± 26

At-risk patients (n=25)
SEG vs Reference 30 ± 30 43 ± 40 26 ± 18
SEG variability 18 ± 22 20 ± 27 11 ± 21

Inter-observer variability 31 ± 29 40 ± 41 37 ± 28
Intra-observer variability 24 ± 30 32 ± 43 24 ± 25

All subjects (n=82)
SEG vs Reference 29 ± 27 42 ± 38 22 ± 16
SEG variability 11 ± 19 15 ± 36 9 ± 15

Inter-observer variability 41 ± 38 40 ± 40 46 ± 35
Intra-observer variability 30 ± 32 32 ± 41 27 ± 25

SEG bias 9 ± 39 18 ± 54 9 ± 26
O1 bias -1 ± 30 17 ± 32 17 ± 29
O2 bias 18 ± 31 -10 ± 31 -28 ± 27
O3 bias -17 ± 27 -6 ± 28 11 ± 24
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[20] Haller, C., Schulz, J., Schmidt-Trucksäss, A., Burkardt, H., Schmitz, D., Dickhuth, H.H.,564

Sandrock, M.: Sequential based analysis of Intima-Media Thickness (IMT) in common565

carotid artery studies. Atherosclerosis 195(2), e203–e209 (2007)566

[21] Ilea, D.E., Duffy, C., Kavanagh, L., Stanton, A., Whelan, P.F.: Fully automated567

segmentation and tracking of the intima media thickness in ultrasound video sequences of568

the common carotid artery. IEEE Transactions on Ultrasonics, Ferroelectrics and569

Frequency Control 60(1), 158–177 (2013)570

[22] Laurent, S., Boutouyrie, P., Asmar, R., Gautier, I., Laloux, B., Guize, L., Ducimetiere, P.,571

Benetos, A.: Aortic stiffness is an independent predictor of all-cause and cardiovascular572

mortality in hypertensive patients. Hypertension 37(5), 1236–1241 (2001)573

[23] Lee, Y.B., Choi, Y.J., Kim, M.H.: Boundary detection in carotid ultrasound images using574

dynamic programming and a directional haar-like filter. Computers in Biology and575

Medicine 40(8), 687–697 (2010)576

[24] Liang, Q., Wendelhag, I., Wikstrand, J., Gustavsson, T.: A multiscale dynamic577

programming procedure for boundary detection in ultrasonic artery images. IEEE578

Transactions on Medical Imaging 19(2), 127–142 (2000)579

[25] Loizou, C.P., Pattichis, C.S., Pantziaris, M., Tyllis, T., Nicolaides, A.: Snakes based580

segmentation of the common carotid artery intima media. Medical & Biological581

Engineering & Computing 45(1), 35–49 (2007)582

[26] Lorenz, M.W., Markus, H.S., Bots, M.L., Rosvall, M., Sitzer, M.: Prediction of clinical583

cardiovascular events with carotid intima-media thickness: a systematic review and584

meta-analysis. Circulation 115(4), 459–467 (2007)585

26



[27] Meinders, J.M., Kornet, L., Hoeks, A.P.G.: Assessment of spatial inhomogeneities in586

intima media thickness along an arterial segment using its dynamic behavior. American587

Journal of Physiology-Heart and Circulatory Physiology 285(1), H384–H391 (2003)588

[28] Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of589

dynamic medical imaging data using nD+t B-splines and a groupwise optimization590

approach. Medical Image Analysis 15(2), 238–249 (2011)591

[29] Molinari, F., Liboni, W., Giustetto, P., Badalamenti, S., Suri, J.S.: Automatic592

computer-based tracings (ACT) in longitudinal 2-D ultrasound images using different593

scanners. Journal of Mechanics in Medicine and Biology 9(04), 481–505 (2009)594

[30] Molinari, F., Zeng, G., Suri, J.S.: A state of the art review on intima-media thickness595

(IMT) measurement and wall segmentation techniques for carotid ultrasound. Computer596

Methods and Programs in Biomedicine 100(3), 201–221 (2010)597

[31] Molinari, F., Zeng, G., Suri, J.S.: Completely automated robust edge snapper for carotid598

ultrasound imt measurement on a multi-institutional database of 300 images. Medical &599

Biological Engineering & Computing 49(8), 177–192 (2011)600
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