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Abstract

Objectives. Fibrous cap thickness is the most critical component of plaque stability. Therefore, in

vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque
rupture. In the context of preoperative planning and peri-operative decision making, intracoronary
optical coherence tomography imaging can provide a very detailed characterization of the arterial
wall structure. However, visual interpretation of the images is laborious, subject to variability, and
therefore not always sufficiently reliable for immediate decision of treatment.
Methods. A novel semi-automatic segmentation method to quantify coronary fibrous cap thickness
in optical coherence tomography is introduced. To cope with the most challenging issue when es-
timating cap thickness, namely the diffuse appearance of the anatomical abluminal interface to be
detected, the proposed framework is based on a robust dynamic programming framework using a
geometrical a priori. To determine the optimal parameters settings, a training phase was conducted
on 10 patients.
Results. Validated on a dataset of 179 images from 21 patients, the present framework could suc-
cessfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation
results from the proposed method were in good agreement with the reference tracings performed
by a medical expert (mean absolute error and standard deviation of 22± 18 µm, R=.73) and was
similar to inter-observer reproducibility (21 ± 19 µm, R=.74), while being significantly faster and
fully reproducible.
Conclusion. The proposed framework demonstrated promising performances and could potentially
be used for online identification of high risk-plaques.
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1 Introduction1

Coronary artery disease is the most common cause of human mortality and morbidity in industri-2

alized countries. Acute coronary syndrome (ACS), the most severe manifestation of atherosclerotic3

disease, is principally caused by acute coronary thrombosis, which is mainly provoked by plaque4

rupture [17]. The morphological characteristics of such plaques that are prone to rupture (also5

dubbed “high risk” or “vulnerable” plaques) are i) a large lipid necrotic core, ii) an overlying thin6

fibrous cap, and iii) dense macrophage infiltration (Fig. 1a) [4]. These plaques are also known as7

thin cap fibroatheromas (TCFAs) and are considered the precursor phenotype of plaque rupture.8

The most critical component of plaque stability is fibrous cap thickness, i.e. thinner caps being9

more prone to rupture than thicker caps, and the threshold of 65 µm has been widely adopted to10

identify high risk lesions [11]. Accordingly, identification of vulnerable plaques could potentially11

guide appropriate surgical treatments such as percutaneous coronary intervention (e.g. balloon an-12

gioplasty or stent placement) prior to the occurrence of an event. Therefore, in vivo quantification13

of fibrous cap thickness represents a major clinical challenge.14

Intravascular optical coherence tomography (OCT) is a catheter-based imaging modality that15

enables tissues to be visualized in vivo at a near-histology resolution (10−20 µm) and in a minimally16

invasive way [3]. In a similar fashion as intravascular ultrasound, the inner circumference of the17

vessel is investigated by the probe spinning along its axis while being pulled back. At each angular18

step, a so-called A-line signal is acquired via the emission and reception of near-infrared light (center19

wavelength of 1280 − 1350 nm). A stack of consecutive cross-sectional images along the length of20

the assessed artery segment is then reconstructed by converting the intensity and echo time of all21

A-lines into a gray-scale representation (Fig. 1b). The very high spatial resolution of OCT enables22

an accurate characterization of the structure of the most superficial layers of the arterial wall,23

and can indicate the degree of subclinical atherosclerotic lesion formation [14]. Moreover, OCT is24

currently the only in vivo imaging modality with which fibrous cap thickness, the most critical25

component of plaque stability, can be assessed accurately [10]. Therefore, OCT can potentially be26

used for in vivo identification of high-risk plaques.27

Although OCT images are acquired online during intervention, fibrous cap thickness quantifi-28

cation is currently performed manually offline [2, 14]. The two major drawbacks that hinder such29

manual image analysis are i) the procedure is cumbersome and time consuming, and ii) results are30

subject to a certain degree of variability between different analysts [9,10]. Moreover, segmentation31

of the fibrous cap abluminal interface is a challenging task, as fibroatheromas consist of progres-32

sively unravelling tissues and are visualized in OCT as signal-poor regions with diffuse contours33

and high signal attenuation (Fig 1a,b) [14]. Therefore, the clinical need of immediate and reliable34

information is not fully met by current procedures based on manual image analysis.35

Aiming to provide reliable and quantified information during OCT analysis in the interven-36

tion room, various (semi)automated computerized methods have recently been proposed. The at-37

tenuation coefficient of the backscattered light has been used in several classification-based ap-38

proaches [12,16,20]. These methods were successfully used to identify and locate different types of39

tissues (i.e. healthy wall sections, lipid, calcific and fibrous tissues). Nevertheless, such techniques40

are not devised to provide information regarding the actual delineation of anatomical interfaces,41

and could not be used to assess fibrous cap thickness. A seminal study was proposed to specifically42

assess fibrous cap thickness [19]. This method, based on contour segmentation by means of dynamic43

programming was applied to extract both luminal and abluminal interfaces of the fibroatheromas,44

and could quantify cap thickness. However, since this method did not exploit geometrical a priori45

features, results could have potentially been hindered in images with an eccentric catheter position46

within the lumen. Another semi-automatic method was introduced to identify the different tissue47

types and segment the wall layers [5]. In this approach, contour segmentation was based on intensity48

thresholding. Nevertheless, although the results of this study look promising, fibrous cap thickness49

was not investigated per se.50
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The present study aims at introducing and evaluating a framework designed to quantify fibrous51

cap thickness of fibroatheromas in intracoronary OCT. The principal contribution of this work is a52

robust contour segmentation method devised to extract the fuzzy abluminal interface of the fibrous53

cap. This novel framework is based on a dynamic programming approach that previously showed54

successful results on the common carotid artery wall in B-mode ultrasound [24]. The accuracy55

of the present method was validated in a set of 179 cross-sectional OCT images acquired in vivo56

from 21 different patients, and demonstrated a similar accuracy compared to the tracings manually57

performed by two experienced analysts.58

2 Material and methods59

The present segmentation framework is based on three principal phases, namely i) a manual ini-60

tialization aiming to indicate the presence of the fibrous cap to be analyzed, ii) the automatic61

extraction of the luminal interface in the objective to localize the wall contour, and iii) the auto-62

matic extraction of the abluminal interface, which is subsequently exploited to assess the actual63

cap thickness. An overview of the method is presented in Figure 1. The outline of this section is64

the following. First, we introduce a contour segmentation scheme based on dynamic programming,65

which is exploited in the phases (ii) and (iii) of our framework. Then, we detail the three principal66

phases of our framework.67

2.1 Dynamic programming68

Dynamic programming is an efficient method to find the globally optimal solution in combinatory69

analysis [1]. In the present context, contour segmentation is performed in the polar domain. Given70

an image I, the anatomical interface to be extracted corresponds to a curve running from the left71

to the right border of the image, as depicted in Figure 1c. We thus address the issue of determining,72

among all the potential candidate contours, the one that best describes the actual i) location and73

ii) shape (i.e. smoothness) of the anatomical interface. Towards this objective, we propose a specific74

implementation of a dynamic programming framework based on front propagation [6].75

2.1.1 Cost function76

Since the anatomical interfaces to be extracted are located on regions of the image showing a strong77

intensity transition, the first step consists in locally enhancing the vertical intensity gradient of the78

image. One should notice that this transition is positive for the luminal interface (i.e. from dark79

lumen to bright tissues) and negative for the abluminal interface (i.e. from bright fibrous tissues to80

dark lipid pool), as depicted in Figure 1c,d. The gradient image IG is then built according to:81

IG = ±G′ ∗ I , (1)

with (∗) the convolution operator, and G′ the first derivative of a Gaussian function of standard82

deviation σ. The ± sign corresponds to the gradient orientation, and is determined according to the83

processed interface, namely it is positive for the luminal contour, and negative for the abluminal84

contour. Finally, a cost function C is built such as:85

C = N[0,1](−IG) , (2)

with N[0,1] representing the normalization of a set of values to the positive interval [0, 1] (viz.: the86

set is first linearly scaled in such way that the minimum value becomes equal to zero, then the set87

is divided by the maximum value). In this image C, the points most likely to represent the location88

of the analyzed interface correspond to the points with the lowest cost (Fig. 1e).89
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2.1.2 Front propagation90

We now present a dynamic programming strategy to determine the path that runs in the cost91

image C from left-to-right with the minimum cumulated cost C. A schematic representation of this92

front propagation approach is displayed in Figure 2. The proposed approach extends a previously93

proposed method [23], and takes into account both the image feature (i.e. strong intensity gradient94

locally corresponding to a low cost in C) and a geometrical constraint (i.e. the shape a priori that95

describes a smooth structure). Therefore, high cost values as well as vertical displacement are96

penalized when generating the cumulated cost function C, as detailed in Equation 3 (Fig. 1f).97

C(r, θ + 1) = min
dr∈{−N,...0,...N}

{
C(r + dr, θ) +

(
C(r, θ + 1) + C(r + dr, θ)

)
·
(

1 + α · dβr
)}

, (3)

with (r, θ) the vertical and horizontal coordinates, dr the vertical displacement of the path between98

two consecutive points, and 2N+1 the number of reachable neighbors. The smoothness of the path99

is ruled by the positive parameters α and β. More specifically, the overall flexibility of the path is100

controlled by α (i.e. small α values enable vertical transitions of the path, and large α values favor101

long horizontal plateaus), and the roughness of the path is controlled by β (i.e. small β values yield102

contours that are locally spiky, and large β values impose smooth contours).103

Prior to computation, the left column of C (i.e. θ = 1) is initialized to zero: in this implemen-104

tation, each node on the left border acts as a seed and is a potential starting point for the final105

optimal path. It is also noteworthy that the weight of each candidate link depends on the cost of the106

edge connecting the currently evaluated node with the candidate node (viz.: C(r, θ+1)+C(r+dr, θ)107

in Eq.3), rather than the cost of the current node alone (viz.: C(r, θ+1)). Therefore, this implemen-108

tation is independent of the direction (i.e. left-to-right or right-to-left) of the front propagation.109

2.1.3 Back tracking110

In the objective to extract the globally optimal path, a back tracking scheme is adopted. Since C111

is constructed using a penalty that depends of the vertical distance between the nodes (Eq. 3), a112

classical gradient descent in C can not be performed to extract the minimal cost path. Instead,113

during the previously described propagation of the front, for each node C(r, θ + 1), neighboring114

information is memorized by storing the vertical coordinate r+dr of the best candidate node C(r+115

dr, θ), as shown in Figure 2. Once the cumulated cost function C is entirely built, the ending point116

of the path is determined by the node with the minimal cumulated cost located on the right border117

of the image. Finally, the total path is extracted via back tracking by iteratively connecting the118

nodes using the stored neighboring information, from the right to the left border of the image.119

2.2 Initialization and pre-processing120

The present framework starts with the user manually performing a quick and simple initialization121

phase. For a given pullback, this operation consists in i) visually detecting the presence of a necrotic122

core covered by a fibrous cap, and ii) manually indicating the region of interest (ROI) to be analyzed.123

The ROI was defined by an arc encompassing the fibrous cap, as displayed in Figure 1a,b. After124

this operation has been performed, the region shadowed by the guidewire is easily masked out using125

an approach similar to the one proposed in [19].126

2.3 Lumen segmentation127

The luminal interface is represented by a positive intensity transition (i.e. from dark lumen to bright128

tissues) and is generally well perceptible. The luminal contour is easily extracted by applying the129

previously described dynamic programming approach to the image I.130
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2.4 Abluminal interface segmentation131

The abluminal interface is represented by a negative intensity transition (i.e. from bright fibrous132

tissues to dark lipid pool) and is generally more diffuse and fuzzy. Prior to applying the dynamic133

programming segmentation method, the ROI manually selected by the user is extracted from the134

image I, as depicted in Figure 1c. Then, a spatial transformation T is applied to the ROI. The aim135

of this transformation T is to generate a sub-image CT in which the luminal interface corresponds136

to a straight horizontal line in the polar domain (Fig. 1e). The cost function C is thus shifted line-137

by-line to match the vertical origin with respect to the luminal contour rather than to the probe138

location. The rationale of our approach is based on the fact that, as the fibrous cap thickness does139

not undergo large variations within adjacent sites, we can exploit a geometrical a priori to cope with140

the diffuse appearance of the anatomical interface. In the transformed sub-image CT , the abluminal141

contour that needs to be extracted is henceforth expected to correspond to a nearly-horizontal142

structure. Subsequently, the dynamic programming segmentation method is applied to CT . Finally,143

the actual location of the abluminal interface in the original image is determined by applying the144

corresponding inverse spatial transformation T -1 onto the extracted optimal path (Fig. 1g).145

3 Experiments146

3.1 Data collection and study population147

The OCT imaging database of Thoraxenter, Erasmus MC (Rotterdam, The Netherlands) was148

screened for native coronary artery OCT pullbacks containing fibroatheromas. Fibroatheromas149

were defined as necrotic core containing regions with the maximum circumferential extent (arc) ex-150

ceeding one quadrant of the cross-section. Thirty one patients (mean age 61.3± 8.4 y.o., 25 males)151

suffering from coronary artery disease were randomly selected from the database and included in152

our study. The only inclusion criteria was the presence of fibroatheromas in the acquired pullbacks.153

Informed consent was acquired from the patients for use of their imaging data. All procedures154

followed were in accordance with the ethical standards of the responsible committee on human155

experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised156

in 2008 (5). Pullbacks were acquired in the catheterization laboratory of Erasmus MC for clinical157

indications, using the C7XR frequency-domain system and the Dragonfly intracoronary imaging158

catheter (Lightlab/St Jude, Minneapolis, MN, USA). Image acquisition was performed with a pre-159

viously described non-occlusive technique [14]. Briefly, after positioning the OCT catheter distally160

to the segment of interest, it was pulled back automatically at 20 mm/s with simultaneous con-161

trast infusion through the guiding catheter by a power injector (flush rate 3 − 4 ml/s). Images162

were acquired at the rate of 100 frames/s (corresponding to 54000 A-lines/s), over an average total163

length of 54 mm along the vessel, resulting in a stack of 271 frames. The central bandwidth of the164

near-infrared light was 1310 nm, and the spatial resolution of the system was 20 µm and 30 µm in165

the axial and lateral directions, respectively. The depth of the scan range was 4.3 mm, and acquired166

images were sampled at 504× 968 pixels per frame, with an isotropic pixel size of 4.5 µm.167

3.2 Image analysis procedure168

For each analyzed pullback, an analyst A1 selected a series of consecutive images where a necrotic169

core with an overlying fibrous cap could be observed visually. Definition of image features identify-170

ing a necrotic core was signal-poor regions with diffuse contours and high signal attenuation [14].171

Subsequently, A1 indicated, in each selected frame, the limits of the ROI encompassing the fibrous172

cap (Fig. 1a,b). All that information was stored, and subsequently used by the automatic seg-173

mentation method, the expert A1, as well as an additional analyst A2 to perform, blinded to the174
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results of others, the extraction of the abluminal interface of the fibrous cap. All tracings realized175

by the human analysts were performed in the Cartesian domain via an effective graphical interface176

that was developed in-house for this purpose. The two experts are specialists in vascular imaging177

and OCT. They received identical instructions and were trained on the new segmentation software178

during 1 month prior to this study.179

3.3 Parameters settings180

3.3.1 Luminal interface181

Segmentation of the luminal interface does not present any particular challenge. The proposed182

segmentation framework was therefore applied on the entire circumference of all images with the183

following heuristically-determined parameters settings: smoothness parameters, α = 0.1 and β = 1;184

standard deviation of the Gaussian filter, σ = 90 µm; number of reachable neighbors, 2N + 1 = 41.185

3.3.2 Abluminal interface186

Aiming to accurately extract the abluminal contour of the fibrous cap, the optimal parameters187

settings were determined by means of a training phase. In this purpose, a training set was generated188

by randomly selecting a sub-sample of Ω1 = 10 pullbacks among the cohort of 31 participants.189

During the training phase, the proposed framework was repeatedly applied to the training set,190

with 1000 different sets of {α, β, σ} parameters settings, as displayed in Table 1. The number191

2N + 1 of reachable neighbors was equal to 41 to reduce the search space while still allowing the192

path to follow the curvature of the analyzed interface. A score was then attributed to each set of193

parameters settings, by calculating, for every frame of the training set, the mean error between the194

reference abluminal contour manually traced by A1 and the corresponding segmentation contour195

resulting from the proposed framework. Finally, the optimal set of {α, β, σ} parameters settings196

was determined by visually inspecting the contours of the 10 best ranked sets, and selecting the197

configuration yielding the contours with the most realistic appearance. The selected configuration198

was the 9th best ranked set, with a mean absolute error of 32±40 µm. The parameters corresponding199

to the chosen set were as follow: smoothness parameters, α = 0.2 and β = 1.8; standard deviation200

of the Gaussian filter, σ = 45 µm. For comparison purpose, the mean absolute error corresponded201

to 31±41 µm for the best ranked set ({α, β, σ} = {0.4, 1.0, 36 µm}), and to 57±74 µm for the worst202

ranked set ({α, β, σ} = {2.0, 2.0, 9 µm}). Moreover, the difference between the errors distributions203

corresponding to the chosen set and the best ranked set yielded a zero bias and a 95% confidence204

interval equal to [−3, 3] µm. By defining a zone of clinical indifference equal to 9 µm (i.e. ±1 pixel),205

we can conclude that the accuracy of the chosen set is statistically equivalent to the accuracy of206

the best ranked set. Resulting errors in function of the {α, β, σ} parameters settings are displayed207

in Figure 3.208

3.4 Fibrous cap thickness evaluation209

The performance of the proposed segmentation framework was evaluated as follow: a testing set210

was generated with the remaining Ω2 = 21 pullbacks, then the segmentation framework was applied211

onto the testing set with the previously determined optimal parameters settings. For each analyzed212

image, thickness of the fibrous cap was assessed in the Cartesian domain, for our automatic method213

as well as the two analysts A1 and A2. For a given point of the abluminal interface of the fibrous cap,214

the measure was performed on the line going through the center of the lumen and the assessed point.215

Cap thickness corresponded to the distance between the two points defined by the intersection of216

6



Quantification of fibrous cap thickness in intracoronary optical coherence tomography

this line with both luminal and abluminal interfaces. For each image, two different measurements217

were realized to evaluate cap thickness, namely i) as a vector describing each A-line of the analyzed218

ROI, and ii) as the thinnest portion within the frame.219

3.5 Manual correction of the abluminal contour220

The robustness of the proposed segmentation method was also evaluated in the training set by221

the expert A2 visually assessing each resulting segmentation contour of the abluminal interface,222

and manually correcting it if necessary. More precisely, one or several control points were manually223

placed by A2 to correct the automatic segmentation when the analyst did not agree with the orig-224

inal resulting contour. The corrected segmentation contour was generated by means of a modified225

implementation of the dynamic programming method detailed in Section 2.1. Immediately after226

the generation of the cost function C, a modified cost function C′ was built using the following227

approach. For each manually defined control point p(θ, r), the node (θ, r) of the cost function C′228

was set to zero, and all other nodes of the column θ were set to an infinity value (Fig. 2). The229

following steps of the dynamic programming method were then applied to the cost function C′. As230

a consequence, the resulting contour corresponded to a path going through all the control points231

while still performing a search in the regions that were not corrected1.232

4 Results233

Among the 31 involved patients, the average number of analyzed images per individual pullback234

was 8.4± 1.7 (range 5− 10) consecutive frames, with a total of 261 analyzed images. The average235

length of the analyzed arc per image was 30±16% of the entire vessel circumference (range 4−78%).236

The training set was generated with Ω1 = 10 random pullbacks (corresponding to 82 images), and237

the testing set was generated from the remaining Ω2 = 21 pullbacks (corresponding to 179 images).238

For each analyzed frame of both training and testing sets, the luminal interface was automat-239

ically extracted for the entire vessel circumference, and the abluminal interface of the fibrous cap240

was automatically extracted within the ROI defined by the expert A1 (Fig. 1a,b). Representative241

examples of resulting segmentation contours are displayed in Figure 4. The results of our segmen-242

tation method, compared to the tracings of both observers A1 and A2, are presented alongside to243

the corresponding inter-observer variability in Table 2.244

Quantification of fibrous cap thickness was derived from the segmented contours of both luminal245

and abluminal interfaces. Including each analyzed A-line per frame, the average cap thickness was246

210±82 µm for the 179 images of the testing set, and 228±88 µm for the 82 images of the training247

set. The mean minimal cap thickness (i.e. the thinnest point in a given frame) was 126 ± 37 µm248

for the testing set, and 161± 64 µm for the training set. Results of cap thickness derived from the249

automatic framework were evaluated against the manual references performed by the two analysts,250

as presented in Table 3. The Bland-Altman plots (Fig. 5) show an overall good agreement between251

the present method and the two experts when assessing minimal cap thickness.252

It is also insightful to quantify the absolute error of the proposed segmentation framework253

normalized by the cap thickness. Calculating, for each analyzed A-line, the ratio between the254

absolute segmentation error and the corresponding cap thickness, and putting all these ratios255

together, the mean values were 16±19% for the 179 images of the testing set, and 15±22% for the256

82 images of the training set. When calculating the relative errors corresponding to the minimal257

cap thickness, the mean values were 19± 18% for the testing set, and 24± 31% for the training set.258

1 Please note that in the remaining of this manuscript, any reference to segmentation contour as well as all results
are related to the original automatic contours (i.e. non manually corrected), except when explicitly specified.
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Reviewing the resulting abluminal interface segmentation contours of the testing set, the ex-259

pert A2 performed a correction of the automatic contours with which he disagreed, as detailed in260

Section 3.5. A total of 20 frames out of 179 was corrected, corresponding to 7 pullbacks out of 21.261

For all these corrected frames, the mean number of manually added control points was 1.8 ± 1.1262

(range 1 − 4). The two main factors motivating this manual corrections were i) image artifacts263

hampering the automatic segmentation, and ii) the presence of several interface-like structures264

attracting the contour. Examples of such manual correction of erroneous contours are depicted265

in Figure 6. Assessing the fibrous cap with the corrected contours yielded an overall reduced cap266

thickness (bias of −26 µm, Bland-Altman 95% limits of agreement of [−95, 147] µm). Comparing,267

for the 20 corrected frames, the bias (and 95% limits of agreement) of the cap thickness estimation268

resulting from the automatic segmentation and the manually corrected segmentation, it decreased269

from 22 µm ([−142, 187] µm) to −4 µm ([−125, 117] µm) when evaluated against the reference trac-270

ings of A2, but increased from 1 µm ([−133, 134] µm) to −26 µm ([−159, 108] µm) with A1. This271

discrepancy, reflecting the subjectivity of human analysts, is also visible through the bias between272

the two experts, which was equal to 21 µm ([−124, 166] µm) in these 20 frames.273

As for the computational speed, the present framework required on average 2 s to perform the274

contour extraction of both luminal and abluminal interfaces and evaluate its thickness for a single275

image, while the corresponding manual operation required on average 190 s. In both cases and276

additionally, the average time (per frame) required by the user to define the ROI was 20 s.277

5 Discussion278

The principal aim of this study was to introduce a contour segmentation method devised to quan-279

tify fibrous cap thickness in cross-sectional OCT images. Since cap thickness is the most critical280

component of plaque stability [11], its quantification is likely to provide crucial information about281

the risk of plaque rupture. The proposed framework was trained in 82 images from 10 patients,282

and subsequently validated in 179 images from 21 other patients.283

The evaluation of the proposed segmentation framework was conducted against reference seg-284

mentation contours manually generated by two expert analysts in a set of 179 images. The mean285

absolute error of the automatic method versus both analysts (i.e. 22± 18 µm and 26± 22 µm) was286

similar to the inter-observer variability (i.e. 21± 19 µm), as presented in Table 3, which indicates287

that the present method performs at least as well as an experienced observer when assessing the288

cap thickness. It is also noteworthy that these errors are relatively small compared to the spatial289

resolution of the system, which was 20 µm. When assessing the thinnest portion of the fibrous cap290

in the image, an overall low positive bias was observed between the automatic method and the291

experts (i.e. 8.4 µm w.r.t. A1, and 4.6 µm w.r.t. A2), showing that cap thickness is slightly over-292

estimated by the computerized method. Furthermore, an accuracy improvement of roughly 30%293

could be observed when quantifying, in a given frame, the thinnest portion of the cap rather than294

the overall thickness of the entire cap (i.e. 22± 18 µm v.s. 30± 37 µm, Table 3). This performance295

discrepancy can be explained by the fact that thinnest portions tend to present sharper and more296

defined contours, whereas thickest portions of the cap often present more fuzzy contours (i.e. due to297

a greater attenuation of the signal in deeper tissues, or to a decrease of the lateral spatial definition298

along the distance from the probe in the Cartesian domain). We consider the higher accuracy in299

detection of minimal cap thickness favorable, as the minimal value of cap thickness is the most300

clinically relevant information [11]. It is also noteworthy that the ability of OCT to quantify cap301

thickness was previously evaluated in a study where cap thickness was measured manually in OCT302

images and compared to the corresponding ex vivo histopathologic segments [10]. Results from that303

study demonstrated a mean signed error of −22 ± 44 µm when measuring the thinnest portion of304

the cap. This magnitude can thus be understood as the systematic uncertainty that is introduced305

when analyzing cap thickness in OCT images. The level of accuracy of the proposed method can306
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be validated by the fact that the mean signed error is small in comparison to that uncertainty,307

namely −8.4± 28 µm (Table 3).308

A training phase was carried out on a sub-sample of Ω1 = 10 pullbacks to determine the309

optimal set of the {α, β, σ} parameters for the extraction of the fibrous cap abluminal interface.310

Despite the fact that the method was optimized with respect to the manual tracings of the expert311

A1, results show that the errors of the automatic method versus both analysts were close to each312

other as well as to the inter-observer variability, for contour segmentation (Table 2) as well as cap313

thickness assessment (Table 3). Moreover, both automatic and manual errors generated from the314

training set were similar to the errors resulting from the testing phase (Tables 2 and 3), which315

confirms the robustness of the proposed framework against new images. In a few challenging cases316

(i.e. 20 images out of 179), automatic segmentation of the abluminal interface failed, due to the317

presence of bright image artifacts or several interface-like structures. To cope with these issues,318

a correction scheme was proposed. This task is performed easily and quickly by the user visually319

assessing the resulting segmentation, and indicating, if necessary, one or several control points to320

modify the contour, as displayed in Figure 6. As opposed to the abluminal contour, segmentation321

of the luminal interface does not present any particular challenge, as the location of the anatomical322

boundary is well perceptible (Fig.1b). This is testified by the fact that the parameters settings323

used for the luminal segmentation assign less weight on the shape constraint and more weight on324

the image data (i.e. {α, β, σ} = {0.1, 1.0, 90 µm}), compared to the abluminal parameters settings325

(i.e. {α, β, σ} = {0.2, 1.8, 45 µm}).326

The clinical context of our work relates to peri-operative decision making rather than patient327

screening: the severity of the case is averred and invasive imaging is required. The rationale of the328

present study is to assess plaque stability via quantifying the thickness of the overlying fibrous329

cap. Indeed, it has been demonstrated that cap thickness is the most critical component of plaque330

stability [11], and that lesion morphology is associated with future events [13]. The error introduced331

by the present framework when assessing minimal cap thickness corresponded to 22± 18 µm. This332

is relatively large compared to the threshold of 65 µm used to identify rupture-prone sites [17].333

Nevertheless, the error of the automatic method was similar to the agreement between the two334

experts, which was 21 ± 19 µm. One should also notice that the empirical 65 µm threshold may335

be under-evaluated, since ex vivo tissues can undergo variable shrinkage rate during histological336

preparation [14, 17]. Indeed, it has recently been demonstrated that ruptured plaques in ACS are337

often associated with a fibrous cap thickness of up to 100 µm [15], and that the best cut-off to338

predict rupture was 151 µm for most representative fibrous caps [21]. Accordingly, the clinical339

applicability of the proposed method is supported by a relatively accurate quantification of cap340

thickness.341

To the best of our knowledge, the study presented by Wang et al. [19] is the only one to report a342

semi-automatic segmentation scheme dedicated to quantify fibrous cap thickness in coronary OCT.343

The accuracy of that method was slightly better than that of the present framework, namely the344

mean absolute errors (± standard deviation) were 25 (±31) µm vs 31 (±38) µm for the abluminal345

interface of the cap, and 27 (±27) µm vs 30 (±37) µm for the overall cap thickness. Nevertheless,346

the pertinence of such comparison is limited by the fact that our method was applied onto a347

different dataset, using a different OCT scanner, and that the protocol followed by the expert A1348

to determine the fibrous caps to be analyzed may also have differed. Moreover, the finding of a349

higher inter-observer variability as well in our study could imply the presence of challenging cases350

in our dataset.351

A limitation of this study is that the cap thickness validation was performed against tracings352

manually generated by expert analysts, but not against ex vivo histopatholgic specimens. Therefore,353

the actual ground truth is lacking, and further validation is warranted. However, as a variable354

shrinkage rate often occur during histological preparation of the tissues [14, 17], validation on ex355

vivo data is also expected to involve a certain amount of uncertainty. Another limitation of this356

study is that a manual initialization phase is required to be performed by the user to indicate the357
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location of the ROI encompassing the fibrous cap to be analyzed. A certain amount of variability358

is to be expected in between two selections from the same experts, or in between the selection359

of two different experts, thus hindering clinical applicability. This could be remedied by a more360

automated way of detecting these locations. Therefore future work will focus on fully-automatic361

detection of such diseased regions, using an approach based on machine learning [22]. One should362

also notice that, since the spatial resolution along the z-axis is rather coarse compared to the axial363

resolution (i.e. 200 µm vs 20 µm), a three-dimensional segmentation approach is not expected to364

greatly improve the overall accuracy. For this reason, the proposed framework is based on two-365

dimensional cross-sectional images. This issue could be addressed in further work by upsampling366

the acquired data using an ultrafast OCT system at 3200 frames per second [18]. To cope with the367

diffuse appearance of the abluminal contours, multiple texture features could also be extracted in368

addition to the intensity gradient in order to generate a multi-dimensional cost function C. Future369

perspectives will also aim at investigating the association of wall shear stress with cap thickness370

using a fusion of imaging parameters with OCT and biplane angiography, in the objective to assess371

the risk of plaque rupture with improved performances. Potential applications could also include372

automated assessment of device-induced vascular responses [7, 8].373

6 Conclusion374

The context of this study is to assess rupture-prone plaques by quantifying the thickness of the375

overlying fibrous cap in cross-sectional coronary OCT imaging. A segmentation framework devised376

to extract the contours of the cap was proposed. In the objective to localize the diffuse and fuzzy377

abluminal interface, the introduced method is based on a specific dynamic programming approach378

that integrates a geometrical a priori. Validated on in vivo data in 21 patients suffering from379

coronary artery disease, the method provided robust and accurate results, in a clinically acceptable380

computational time. The automatic framework performed as well as two expert analysts, while being381

substantially faster. Accordingly, the proposed approach could provide a useful aid for interventional382

planning and decision making in the catheterization laboratory.383
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Figures386
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Fig. 1 Segmentation framework. (a) Cartoon depicting the region of interest (ROI, dashed lines) encompassing
the fibrous cap. (b) OCT image of an in vivo human coronary artery, in Cartesian coordinates, with the resulting
luminal (cyan line) and abluminal (magenta line) segmentation contours. (c) ROI in polar coordinates, with the
luminal contour (cyan line). (d) Gradient image IG. (e) Transformed cost image CT . (f) Cumulated cost C, with
the optimal path (magenta line). (g) Resulting abluminal segmentation contour.
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(a) (b)

Fig. 2 Schematic representation of the front propagation scheme, corresponding to the panel (f) in Figure 1. (a)
Original polar image, with the pixels represented by the nodes (in this example, the layout is coarse for improved
visibility). (b) Left-to-right front propagation, with the current location of the front indicated by the vertical
dashed line. The current node is indicated by an asterisk, and the connected gray nodes correspond to the set
of potential neighbors. In this example, the number 2N + 1 of horizontally reachable neighbors is equal to 3.
The black lines connecting the nodes represent the successive back-tracking steps from a given node to the left
border of the image. Please note that in the case of segmenting the luminal interface, the nodes of the upper row
correspond to the top of the polar image (as shown in this example), whereas in the case of the segmenting the
abluminal interface, the nodes of the upper row correspond to the luminal interface.
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Fig. 3 Mean absolute segmentation error of the fibrous cap abluminal interface, between the automatic frame-
work and the manual tracings of the analyst A1, in function of the parameters settings {α, β, σ}. In each panel,
the location of the minimal error is indicated by the black dot.
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Fig. 4 Representative results of the segmentation framework on 8 frames from different pullbacks. For each
example, the panel composition is the following. The top row displays the full image with the region of interest
(ROI, white arc). The middle row displays an enlarged view of the region delimited by the dashed square in
the top row. The automatic lumen segmentation is represented by the cyan line. Within the ROI, tracings of
the abluminal interface performed by the segmentation method and the analysts A1 and A2 are represented
by the magenta, yellow and green lines, respectively. The bottom row displays the cap thickness (scale in µm),
automatically computed within the ROI as the distance between the luminal and abluminal contours that were
extracted by the segmentation method.
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Fig. 5 Bland-Altman plots, comparing the results of minimal cap thickness assessed in the training set, for the
proposed automatic method and the manual tracings performed by the two analysts A1 and A2. The solid and
dashed lines represent the bias and the 95% limits of agreement, respectively.
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(a) (b) (c) (d)

Fig. 6 Example of manual contour correction, on 4 frames from different pullbacks. The top, middle and bottom
rows display the original image, the automatic segmentation contour of the fibrous cap (orange line), and the
corrected segmentation contour (magenta line), respectively. In the bottom row, the control points that were
manually indicated by the analyst are represented by the black dots.
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Tables387

Table 1 Values of the parameters settings used during the training phase of the method.

Parameter Number of Min Max Increment step
different values

α 10 0.2 2.0 0.2
β 10 0.2 2.0 0.2
σ 10 9 µm 90 µm 9 µm

Table 2 Absolute segmentation errors (mean ± standard deviation) of the abluminal interface of the fibrous cap,
for the automatic method (Auto) and the two analysts (A1 and A2).

Errors (µm) Auto vs A1 Auto vs A2 A1 vs A2

Testing set (Ω2 = 21) 31± 38 37± 41 30± 39
Training set (Ω1 = 10) 31± 39 33± 33 34± 43

Table 3 Evaluation of fibrous cap thickness, with absolute error (mean ± standard deviation), bias, 95% limits
of agreement (Lim), and Pearson coefficient (R), for the automatic method (Auto) and the two analysts (A1 and
A2).

Errors (µm) Overall cap thickness over the entire ROI Minimal cap thickness per frame
Absolute Bias Lim R Absolute Bias Lim R

Testing set (Ω2 = 21)
Auto vs A1 30 ± 37 1.4 [-92, 95] .85 22 ± 18 8.4 [-46, 63] .73
Auto vs A2 36 ± 41 4.9 [-101, 111] .81 26 ± 22 4.6 [-61, 70] .62
A1 vs A2 36 ± 41 3.6 [-102, 109] .82 21 ± 19 -3.8 [-59, 52] .74

Training set (Ω1 = 10)
Auto vs A1 31 ± 39 -1.4 [-99, 96] .86 30 ± 27 2.4 [-77, 82] .82
Auto vs A2 32 ± 33 -1.8 [-91, 87] .87 29 ± 27 2.0 [-75, 79] .85
A1 vs A2 35 ± 41 -0.4 [-105, 105] .84 24 ± 25 -0.4 [-68, 67] .89
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