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Abstract
Purpose Quantitative and automatic analysis of intracoro-
nary optical coherence tomography images is useful and
time-saving to assess cardiovascular risk in the clinical arena.
Methods First, the interfaces of the intima, media, and
adventitia layers are segmented, bymeans of an original front
propagation scheme, running in a 4Dmulti-parametric space,
to simultaneously extract three non-crossing contours in the
initial cross-sectional image. Second, information resulting
from the tentative contours is exploited by a machine learn-
ing approach to identify healthy and diseased regions of the
arterial wall. The framework is fully automatic.
Results The method was applied to 40 patients from two
different medical centers. The framework was trained on
140 images and validated on 260 other images. For the con-
tour segmentation method, the average segmentation errors
were 29 ± 46 µm for the intima–media interface, 30 ±
50 µm for the media–adventitia interface, and 50 ± 64 µm
for the adventitia–periadventitia interface. The classification
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method demonstrated a good accuracy, with a median Dice
coefficient equal to 0.93 and an interquartile range of (0.78–
0.98).
Conclusion Theproposed frameworkdemonstratedpromis-
ing offline performances and could potentially be translated
into a reliable tool for various clinical applications, such as
quantification of tissue layer thickness and global summa-
rization of healthy regions in entire pullbacks.

Keywords Optical coherence tomography · Coronary
artery · Contour segmentation · Machine learning

Introduction

Optical coherence tomography (OCT) is an imaging modal-
ity that enables vascular tissues to be visualized in vivo at
a near-histology resolution. Intravascular OCT can provide
high-resolution cross-sectional images of the coronary artery
and is widely used to assess coronary atherosclerosis [23].
Therefore, OCT is a major asset in clinical applications
related to cardiovascular imaging.

However, visual interpretation as well as manual analy-
sis of OCT images suffers from two major drawbacks: the
procedure is cumbersome and time-consuming, as well as
subject to variability between different analysts. To cope
with this issue, a number of methods have recently been pro-
posed to (semi-)automatically analyze OCT images. Stent
strut apposition, coverage and re-endothelialization were
assessed by means of strut shadow detection [10], active
contours [12], and peak intensity location [19]. Contour
segmentation methods have been put forward to quantify
fibrous cap thickness [25,28]. Tissue-type characterization
was also investigated, by exploiting the backscattering coef-
ficient [26], the attenuation coefficient [8,21], and image

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-017-1657-7&domain=pdf


Int J CARS

texture [1]. An approach based on matched filtering and
hysteresis thresholding was proposed to detect calcified
plaques [24]. Another study could successfully classify four
tissue types (lipid, fibrous, calcium, and mixed tissues) using
local binary patterns and gray level co-occurrence matri-
ces [20]. Recently, a method has been introduced to quantify
plaque burden from plaque-free wall measurements [11].

Identification of healthy wall regions is relevant for a
great number applications, such as automatic quantification
of the extent of coronary artery disease. Nevertheless, auto-
matic classification of diseased and healthy regions is the
missing link for total automation of most of the aforemen-
tioned approaches. Moreover, identification of regions could
be used to guide and refine already existing tissue characteri-
zation algorithms, to ensure they only analyze plaque and not
healthy regions, which are known to produce artifacts [8].
Therefore, an algorithm that can identify healthy and dis-
eased vessel wall regions is a critical (and most of the time,
missing) step and will have a tremendous benefit for true
automation of OCT image processing.

A criterion for vessel health can be derived from the char-
acteristics of the intima, media, and adventitia layers in the
arterialwall (Fig. 1). To the best of our knowledge, nomethod
has been introduced yet to segment the contours of the three
arterial layers. In addition to classifying diseased and healthy
regions, such analysis could be used to quantify the thickness
of the anatomical tunicas and provide crucial information
about the atherosclerosis process.

The main contributions of the proposed approach are
the following. (1) The interfaces of the intima, media, and
adventitia layers are simultaneously (as opposed to iter-
atively) extracted using an original contour segmentation
method (“Multi-layer segmentation”). To address the chal-
lenge of multi-layers segmentation in two-dimensional (2D)
cross-sectional images, a multi-parametric space is con-
structed in a higher-dimensional domain. (2) Healthy and
diseased regions of the wall are identified (“Healthy region
classification”). The tentative contours resulting from the
segmentation operation are exploited by a classification
method based on machine learning to detect healthy regions.
(3) The method is fully automatic and does not require input
from the user. (4) The framework is thoroughly validated on
260 previously unseen images, corresponding to 26 patients
from two different medical centers (“Image analysis proce-
dure”).

Material and methods

In intracoronary OCT imaging, the triple-layered structure—
intima,media, adventitia—can be seen in healthy arteries.On
the other hand, in diseased arteries, the field of view is gen-
erally blocked by the presence of an atherosclerotic plaque

or intima thickening, and most of the time only the intima
layer is visible due to limited signal penetration. Based on
this assumption, the framework consists of two fully auto-
matic steps. First, a contour segmentation step is carried out
in attempt to extract the contours of the intima, media, and
adventitia layers. Second, the resulting tentative contours are
exploited by amachine learning algorithm to classify healthy
and diseased regions.

Multi-layer segmentation

The purpose of the proposed segmentation method is to
simultaneously extract the contours of the three anatom-
ical interfaces, namely the intima–media (IM), media–
adventitia (MA), and adventitia–periadventitia (AP) bound-
aries (Fig. 1a–c). This operation is performed along the entire
circumference of the vessel wall, regardless of the state of
the artery in the current image plane (i.e., fully healthy, fully
diseased, or partly healthy and diseased). The three contours
are expected to be nearly parallel lines located in regions of
extremum intensity gradient (i.e., strongly positive or nega-
tive values, Fig. 1d). This a priori information is exploited by
a dynamic programming approach to extract, in a 4D multi-
parametric space, a unique and globally optimal solution that
corresponds, in the 2D image plane, to three smooth paths
that do not cross each other.

The present segmentation framework shares two aspects
with a previous method proposed by our team [28]. Namely,
the lumen-intima (LI) interface is segmented using the
already existing method as a preprocessing step, and the ini-
tial cost map used for the front propagation is identical and
defined as the gradient image. The essential aspects of the
framework that define the originality of the present work are
the following: (i) three anatomical interfaces (IM, MA, and
AP) are targeted (as opposed to only two, namely the LI
and abluminal plaque boundary), (ii) these boundaries are
very close to each other and the IM and AP can easily be
mistaken as they are located on ambiguous image regions
with similar features, namely a strong negative gradient (as
opposed to theLI and abluminal boundaries being unambigu-
ous and located on positive and negative gradient regions,
respectively), (iii) these three interfaces are extracted simul-
taneously (as opposed to iteratively), and (iv) a specific 4D
search space is introduced (as opposed to 2D) to allow a
unique front propagation scheme to localize the three target
interfaces at once. All these points are further detailed below.

The segmentation framework is composed of a set of
nine fully automatic operations (i.e., no user interaction is
required), as described hereafter.

(1) The LI interface is extracted using a previously intro-
duced method [28].
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Fig. 1 a OCT image of a human healthy coronary artery in vivo. The
layered appearance of the wall is clearly visible. b Detail of the square
region in (a), showing the lumen (L), the intima (I), media (M) and
adventitia (A) layers, as well as the periadventitial tissues (P). c Inten-

sity profile of the magenta line in (a, b). d Corresponding gradient. The
extremum gradient values g0,1,2,3 correspond to the LI, IM, MA and
AP interfaces, respectively

(2) The region shadowed by the guidewire is masked out by
detecting a continuous dark band in the averaged inten-
sity profile of the pullback [25].

(3) A sub-image I is then generated from the original Carte-
sian image using the following approach (Fig. 2a, b).
The entire circumference is first divided into a total of
100 angular steps originating from the lumen center.
I is then generated by concatenating the 100 intensity
profiles extracted from the luminal interface down to a
depth D = 1 mm within the tissues.

(4) The expected location of the anatomical interfaces cor-
responds to regions with extremum gradient values
(Fig. 1), namely strongly negative for the IM and AP
interfaces, and strongly positive for the MA interface.
The gradient image IG (Fig. 2c) is thus computed by
applying a column-wise filter G ′

σ to the sub-image I :

IG = I ∗ G ′
σ (1)

Here, (∗) is the convolution operator and G ′
σ is the first

derivative of a Gaussian with standard deviation σ .

(5) The condition of contour continuity is then addressed:
each IM, MA and AP contour must be closed in the
Cartesian space (Fig. 2f). The issue is the following:
since the image is processed in the polar space, the start-
ing and ending points of a contour that runs from the
left border of the image to the right are not guaranteed
to have the same y coordinate if no specific rules are
set. Therefore, when transforming such contour to the
Cartesian space, there might be an abrupt discontinuity
between the ending point of the contour (i.e., 359◦) and
the starting point (i.e., 0◦). To enforce this condition, a
periodic image I ′′′

G is generated by replicating the gradi-
ent image IG three times along the x direction (Fig. 2d),
such as:

I ′′′
G = [IG, IG , IG ] (2)

(6) In the context of a front propagation scheme, two pos-
itive cost functions C+ and C− are then built according
to:
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Fig. 2 Principal steps of the segmentation process. In this example, the
wall is entirely healthy and the anatomical layers are visible around the
whole circumference. a Original image, with the lumen contour (solid
cyan line). The depth D = 1 mm is indicated by the dashed cyan line.
b Sub-image I , corresponding to the area between the two cyan lines
in (a). The intima (I), media (M) and adventitia (A) layers, as well as
the periadventitial tissues (P) are clearly visible. The orange line rep-
resents a single column, which corresponds to the orange line in (a).
c Gradient image IG . The IM,MA and AP interfaces, located in regions

with extremumgradients values g1,2,3, are delineated, although they are
not determined yet at this stage of the process. d Replicated image I ′′′

G ,
with the IM (yellow), MA (green) and AP (magenta) contours resulting
from the segmentation method. The contours within the central part of
the image systematically respect the condition of continuity (=), even
though the contours of the total image do not ( �=). e Segmentation result
in the polar space, corresponding to the contours within the central part
of I ′′′

G . f Final segmentation result in the Cartesian space

C± = N[0,1](±I ′′′
G ) (3)

where N[0,1] represents the normalization of a set of
values to the positive interval [0, 1]. The points most
likely to belong to the IM and AP interfaces therefore
correspond to the regions with the lowest cost in the
function C+. Similarly, the points most likely to belong
to the MA interface correspond to the low-cost regions
in C−.

(7) A dynamic programming scheme based on front propa-
gation is then run to build a multi-parametric cumulative
cost function C. In this higher non-spatial dimen-
sional domain, the space is described by a set of four
parameters, and the following {x, y1, y2, y3} notation
is adopted: x corresponds to the direction of the front
propagation (i.e., along the circumference of the vessel),
and y1,2,3 correspond to the depth of the IM, MA, and
AP interfaces, respectively. The propagation is unidirec-
tional along the x direction and favors low-cost regions
in C± while penalizing non-horizontal displacements.

For x = 1, C is initialized to zero. The function C is
then iteratively built for increasing values of x , using
the following relation:

C(x, y1, y2, y3) = min
dy1,dy2,dy3{

C(x − 1, y1+dy1, y2+dy2, y3+dy3)

+ ω1 · (1 + κ · dy1)
·
(
C+(x, y1)+C+(x−1, y1+dy1)

)

+ ω2 · (1 + κ · dy2)
·
(
C−(x, y2) + C−(x − 1, y2 + dy2)

)

+ ω3 · (1 + κ · dy3)
·
(
C+(x, y3)+C+(x−1, y3+dy3)

)}

(4)

Here, the number of reachable neighbors along the y
direction corresponds to 2N + 1, with dy1,y2,y3 ∈
{−N , . . . 0, . . . N }. Theparameterκ controls the smooth-
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Fig. 3 Schematic representation of the image classification. a The pro-
cess is carried out column-wise in the sub-image I , in the region R
(vertical gray line) defined by all the pixels between the luminal inter-
face and the point located 300µmbelow the AP interface (dashed line).

b Features are extracted from the region R. The corresponding column
is then classified ashealthy or diseased. cResulting classification
of the entire image

ness of the contours, and the parameters ω1,2,3 control
the weight that is set for each of the three interfaces.
To ensure non-crossing contours that are separated from
each other by a minimal gap g, the variables y1,2,3 fol-
low the relation yn+1 ≥ yn + g. A unique and global
optimal path is then extracted from the multi-parametric
cumulative cost functionC using a previously described
back tracking scheme [28]. Thismulti-parametric path p
fully describes, for each column x of the sub-image I ,
the position y1,2,3 of each of the three detected contours,
such as:

p(x) = {y1(x), y2(x), y3(x)} (5)

(8) Since the extracted contours result from the segmenta-
tion of the replicated image I ′′′

G , they are truncated in
three equal parts along the x dimension to match the
width of the initial sub-image I . The two extreme parts
are discarded, and the central part is kept, thus fulfilling
the closed contours condition (Fig. 2e).

(9) Finally, the three 2D contours are mapped back in
the original Cartesian coordinates of the cross-sectional
OCT image to describe the location of the IM, MA and
AP anatomical interfaces (Fig. 2f).

Healthy region classification

Rationale

In the context of machine learning, the contours resulting
from the tentative segmentation of the three anatomical inter-
faces across the entire circumference of the artery are then
exploited to extract a collection of image-based features. The
aim is to automatically classify the arterialwall in healthy and
diseased regions. The underlying rationale is that the result-
ing contours—and related image properties such as intensity
and gradient values—are expected to have significantly dif-
ferent characteristics between these two types of regions, due
to the presence (in healthy regions) or absence (in diseased

regions) of the concentric layers that are targeted by the seg-
mentation process, as illustrated in Fig. 3.

Feature selection

For each column of the sub-image I , a region R is defined
by all the pixels between the top of the image (luminal inter-
face) and the point located 300 µm below the detected AP
interface, as depicted in Fig. 3. To prepare a feature selec-
tion study, a set of 17 tentative features were extracted from
each column of the region R, using the previously segmented
contours, and subsequently normalized. These features are
expected to yield substantially different values between a
typical healthy wall profile and a diseased region (Fig. 1).
Let us recall that the target pattern for healthy regions is a set
of three layers bearing a high, low, and high image intensity,
respectively. The extracted features are listed in Table 1.

To determine which features are important in the classifi-
cation process, a feature selection studywas performed using
the R [15] package Boruta [13] algorithm, an heuristic pro-
cedure based on the random forest framework. The adopted
protocol is the following. Among the 140 images of the train-
ing set, a subset of 100 A-lines was randomly gathered,
together with the corresponding healthy or diseased
label.1 Boruta was applied to identify the important features.
The maximum number of iterations was 1000. The Bon-
ferroni correction was applied. The value p < 0.01 was
considered to indicate a statistically significant difference.
This experiment was conducted 51 times (odd number), each
time with a different subset of randomly gathered A-lines
from the training set. Finally, relevant features were defined
as those that were labeled as “important” by Boruta at least
26 times (i.e., for more than half of the 51 total number of
experiments).

1 We kindly ask the reader to refer to “Image analysis procedure” sec-
tion for a full description of the study design regarding the generation
of the training set as well as the manual labels.
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Table 1 Set of the 17 tentative features for image classification, sorted
by decreasing relevance score

Score Relevant Feature

51/51 Yes Contrast of the region R [9]

51/51 Yes Mean square error between the
intensity profile I of the region R
and the linear interpolation of R
as a polynomial of degree 1,
calculated as
Average

(|I (i) − P(i)|2), where
P is the 1-degree interpolation of
I , and i is the index of the i th
pixel along the A-line

50/51 Yes Homogeneity of the region R [9]

50/51 Yes Gradient g3 at the MA interface

49/51 Yes Correlation of the region R [9]

48/51 Yes Gradient g2 at the IM interface

34/51 Yes Gradient g1 at the LI interface

34/51 Yes Monotony index, defined as the
median absolute distance of all
piece-wise permutations required
to sort the intensity values of the
region R in a monotonically
decreasing fashion, calculated as
Median(|i − i ′|), where i ′ is the
new index of i after the A-line
has been sorted in a descending
intensity order

22/51 No Sum of all negative gradient values
IG in the region R, calculated as∑

i

(
min(IG(i), 0

)

21/51 No Entropy of the region R [9]

13/51 No Median image intensity in the
media layer, between the IM and
MA interfaces

12/51 No Energy of the region R [9]

5/51 No Median image intensity in the
adventitia layer, between the MA
and AP interfaces

4/51 No Median image intensity in the
intima layer, between the LI and
IM interfaces

4/51 No Distance between the LI and IM
interfaces

3/51 No Distance between the LI and AP
interfaces

1/51 No Distance between the LI and MA
interfaces

Results of the feature selection study were the following.
Among the initial set of 17 features, a total of NF = 8 fea-
ture were confirmed as relevant for the classification process,
as described in Table 1. The remaining 9 features were con-
firmed as irrelevant. During the healthy wall detection phase,
only the 8 relevant features were extracted from the image
and provided to the classifier, and the 9 irrelevant features
were ignored.

Classification

Classification was carried out with the adaptive boosting
(AdaBoost) predictive algorithm [5]. In the present imple-
mentation, aiming to increase the robustness of the classifica-
tion process against image noise and artifacts, four operations
are subsequently carried out when analyzing the current kth
frame, as described hereafter.

(1) For each column of the image, the NF = 8 relevant
features (Table 1) are extracted from the image and nor-
malized.

(2) A similar operation is conducted in the (k − 1)st and
(k + 1)st frames, namely features are computed in the
two immediately adjacent frames of the pullback.

(3) The AdaBoost classifier is successively applied to the
current kth image, as well as the two (k − 1)st and
(k + 1)st images. For each column of the current kth
frame, the resulting healthy or diseased label is
determined by majority voting between the correspond-
ing column in the three frames. The aim of this operation
is to exploit the consistency of the data along the axis of
the pullback to cope with frames that may be hindered
by image noise.

(4) A set of morphological operations is applied to the
healthy (1) and diseased (0) labels. The successive
morphological operations consist in an erosion and
a dilatation of kernel size KE and KD , respectively.
This final step contributes to correct some misclassified
columns by aggregating them into larger homogeneous
regions.

Data collection

Forty OCT pullbacks, from 40 patients, were included in this
study. To evaluate the performances of the framework on
images acquired with different scanners and protocols, data
were gathered from twodifferentmedical centers, namely the
Thoraxcenter of ErasmusMC (Rotterdam, The Netherlands)
and the University Hospital of Auvergne (Clermont-Ferrand,
France). Twenty patients were included from both medical
centers. All patients were suffering from coronary artery dis-
ease.

Pullbacks from Erasmus MC were acquired using the
C7XR frequency-domain system and the Dragonfly intra-
coronary imaging catheter (Lightlab/St Jude Medical, Min-
neapolis, MN, USA), hereafter referred to as “SJM-OCT.”
Pullbacks from University Hospital of Auvergne were
acquired using the Lunawave coronary imaging console and
the Fastview coronary imaging catheter (Terumo Corpora-
tion, Ashitaka, Japan), hereafter referred to as “Terumo-
OCT.”The characteristics of bothOCTscanners are provided
in Table 2. All procedures followed were in accordance with
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Table 2 Characteristics of the
OCT scanners

St Jude Medical Erasmus MC
Rotterdam, The Netherlands

Terumo University Hospi-
tal of Auvergne Clermont-
Ferrand, France

Pullback speed (mm/s) 20 20

Acquisition rate (fps) 100 158

Acquisition length (mm) 54 80

Number of frames 271 632

Resolution (axial/lateral) (µm) 20/30 20/15

Depth of the scan range (mm) 4.3 4.5

Dimensions of the polar image
(pixels)

968 × 504 512 × 512

Pixel size (µm) 4.5 8.8

the ethical standards of the responsible committee on human
experimentation, and informed consent was acquired from
all patients.

Image analysis procedure

Image selection

For each pullback, 10 frames were selected for analysis, thus
resulting in a total of 400 included images. To avoid subjec-
tive bias, the frame selection was random, with two criteria:
absence of stent or bifurcation, and distance from each other
of at least 10 intermediate frames.

Manual reference annotations

Reference annotations were manually traced on all the 400
included images. Inter-analyst variability was assessed by
three experienced analystsA1 (GZ),A2 (AH), andA3 (NC),
and intra-analyst variability was assessed by A1 performing
the operations twice (denoted as A′

1). First, the region of
interest encompassing the healthy tissues was indicated by
an arc. Healthy wall regions were defined as regions where
all three layers were visible, with an intima–media thick-
ness inferior to 500 µm [18]. Second, the three anatomical
interfaces were precisely delineated, within the previously
indicated arc region.2

Method evaluation

To evaluate both the segmentation and classification meth-
ods, a training set of 140 images was generated by ran-
domly selecting 7 patients from both the SJM-OCT and

2 Due to the highly time-consuming nature of manual contour tracing,
inter- and intra-analyst variability was only assessed on a subset of
80 images. This subset was generated by randomly selecting, for each
pullback, 2 frames among the 10 initial frames.

Terumo-OCT cohorts. The training set was used during the
development phase of the method, to empirically determine
the optimal parameter settings and construct the AdaBoost
model. A testing set of 260 images was then generated by
selecting the remaining 13 patients from both cohorts. The
testing set was used only during the evaluation phase of
the method, to determine the performance of the developed
framework on independent test data, using the previously
determined optimal parameter settings and the previously
generated AdaBoost model.

The segmentation accuracy was evaluated by means of
a point-to-point distance comparison between the result-
ing contours and the manual tracings performed by the
analyst A1. The classification accuracy was evaluated by
comparing the automatic classificationwith themanual anno-
tations performed by the analystA1. TheDice coefficient [4],
as well as an accuracy, sensitivity, and specificity analysis,
were used to evaluate the similarity of the healthy arc regions
between the manual annotations and the automatic method.
TheDice coefficient D between two given regions A and B is
an agreement metric that ranges between 0 (non-intersecting
regions) and 1 (identical regions), andwhose formula is given
by:

D = 2|A ∩ B|
|A| + |B| (6)

Defining TP, TN, FP, FN as the number of true positives, true
negatives, false positives and false negatives, respectively,
the accuracy, sensitivity, and specificity were defined as:

Accuracy = TP + TN

TP + TN + FP + FN
(7)

Sensitivity = TP

TP + FN
(8)

Specificity = TN

TN + FP
(9)
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Results

Parameter settings

For all parameters, the optimal setting was empirically deter-
mined using the training set (n = 140), then the method was
applied once to all the images of the testing set (n = 260).
The following configuration was used: standard deviation of
the Gaussian function Gσ , σ = 30 µm; weight of the inter-
faces, ω1 = 0.2, ω2 = 1, and ω3 = 1; minimal gap between
the contours, g = 45 µm; number of reachable neighbors,
2N + 1 = 7; smoothness coefficient, κ = 0.1. The number
of AdaBoost iterations was equal to 100. The size of the mor-
phological kernels was KE = 4 and KD = 9, respectively.

Contour segmentation

The segmentation method was successfully applied to all
the 400 images to extract the contours of the IM, MA, and
AP interfaces. Representative results are provided in Fig. 4.
The mean absolute errors (± standard deviation) of the con-
tour segmentation method are displayed in Table 3. It is also
relevant to describe the segmentation errors in relation to
the thickness of the segmented layers: the mean absolute
error to assess the intima–media thickness was 33± 51 µm,
with a bias of +8 µm and 95% limits of agreement of

[−109, 125 µm]. For the 260 images used to assess the seg-
mentation method, the average reference thickness of the
layers was 131 ± 67 µm for the intima, 94 ± 38 µm for the
media, and 103±64µm for the adventitia. For these images,
the relative segmentation error, compared to the thickness of
the corresponding layer, was 29 ± 73 % for the IM inter-
face, 35 ± 64 % for the MA interface, 54 ± 74 % for the
AP interface. When quantifying the thickness of the intima,
media, and adventitia layers, the error introduced by the pro-
posed method was very close to the inter- and intra-analyst
variability, as displayed in Fig. 5.

Healthy region classification

Subsequent to the contour extraction, the healthy region clas-
sification method was successfully applied to all the 260
images of the testing set to detect healthy regions of the wall
from diseased regions. Representative classification results
are displayed in Fig. 6. Thehealthy anddiseased labels
resulting from the automatic classification method were in
good accordancewith themanual annotations, as displayed in
Fig. 7. For all the 260 analyzed images, themedian value (and
interquartile range) of the accuracy, sensitivity, and speci-
ficity was 0.91 ([0.75 − 0.98]), 0.92 ([0.71 − 1.00]), and
1.00 ([0.92 − 1.00]), respectively. The median Dice coeffi-
cient was 0.93, with an interquartile range of [0.78 − 0.98]

Fig. 4 Representative examples of segmentation results, for SJM-OCT
(top row) and Terumo-OCT (bottom row) patients. Left column the
healthy wall region is indicated by the orange line. Central column
the intima–media (yellow), media-adventitia (green), and adventitia–
periadventitia (magenta) contours resulting from the method are rep-

resented. Right column the corresponding inter-analysts variability is
indicated by the blue, red and cyan regions, for each angular step. The
area representing the dispersion is centered around the mean position
of the tracings of the analysts A1,2,3, and its width corresponds to one
standard deviation in each direction around the mean value.
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Table 3 Segmentation absolute
errors (mean ± SD) in µm, for
the proposed method and the
manual tracings performed by
the analysts A1,2,3

Training set Testing set

All SJM-OCT Terumo-OCT All SJM-OCT Terumo-OCT

Intima–Media

Method vs A1 25 ± 37 28 ± 44 23 ± 32 29 ± 46 33 ± 48 27 ± 44

Inter-analysts 21 ± 25 21 ± 28 21 ± 22 20 ± 34 24 ± 45 18 ± 24

Intra-analyst 23 ± 40 31 ± 54 16 ± 20 15 ± 21 15 ± 18 15 ± 23

Media–adventitia

Method vs A1 27 ± 42 29 ± 45 25 ± 39 30 ± 50 31 ± 49 29 ± 50

Inter-analysts 20 ± 23 22 ± 28 19 ± 18 23 ± 48 27 ± 69 20 ± 25

Intra-analyst 20 ± 37 28 ± 52 14 ± 13 17 ± 28 20 ± 38 15 ± 20

Adventitia–tissues

Method vs A1 37 ± 48 38 ± 49 37 ± 47 50 ± 64 50 ± 66 49 ± 62

Inter-analysts 25 ± 28 27 ± 32 24 ± 25 32 ± 53 37 ± 72 29 ± 34

Intra-analyst 24 ± 40 34 ± 55 16 ± 20 24 ± 37 27 ± 47 22 ± 28

The metric is defined as the point-to-point distance along a line crossing the lumen center between a given
contour and the corresponding reference contour. The number of included images per pullback for the method
evaluation (Method vs A1) and for inter- and intra-analysts variability was 10 and 2, respectively
Bold values indicate the overall evaluation results of the method against the reference

Fig. 5 Box plot representing the dispersion between the layers thick-
ness estimated with the proposed method M and the manual tracings
performed by A1, compared to the inter- and intra-analysts variabil-
ity, for the 26 pullbacks of the testing dataset. This corresponds to 10

images per pullback (n = 260) for themethod evaluation (M−A1), and
2 images per pullback (n = 52) for inter- and intra-analysts variability.
Percentiles are indicated by boxes (25th and 75th), inner lines (50th),
and error bars (5th and 95th)

and an average (±SD) value of 0.83 ± 0.25. More specifi-
cally, the median, interquartile range, and average was 0.92,
[0.74 − 0.98], and 0.79 ± 0.30 for the SJM-OCT images,
and 0.92, [0.81 − 0.98], and 0.86 ± 0.19 for the Terumo-
OCT images, respectively. For each of the 260 images of the
testing set, the average percentage of healthy regions com-
pared to the entire circumference of the wall, as annotated
by the analyst A1, was 69 ± 31%. This is to be compared
with the corresponding ratio derived from the automatic
method, which was 61 ± 29%. To assess the usefulness
of feature selection, these results were confronted to those
obtainedwhen using the full set of 17 features. Similar results
were systematically found: the median value (and interquar-
tile range) of the Dice coefficient, accuracy, sensitivity, and

specificity were 0.92 ([0.79 − 0.99]), 0.89 ([0.76 − 0.98]),
0.93 ([0.69− 1.00]), 1.00 ([0.93− 1.00]), respectively. The
healthy region classification method was finally applied to
the first 200 frames of a single pullback as a proof of con-
cept to automatically highlight healthy regions, as shown in
Fig. 8.

Computational speed

The present framework was implemented in MATLAB
(MATLAB 7.14, The MathWorks Inc., Natick, MA, USA,
2011), on a desktop computer with 2.40 GHz processor with
12GbRAM.The average time required by themethod to pro-
cess one framewas 5 s to extract the contours of the 3 anatom-
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Fig. 6 Examples of automatic healthy wall detection (magenta) com-
pared to the manual tracings performed by A1 (green), for images of
the testing set. The entire spectrum of results is represented. The panels
(a–c) and (d–f) correspond to the SJM-OCT and Terumo-OCT cohorts,
respectively. a The wall is partly healthy. b, c The entire circumference
is diseased. d–f The entire circumference is healthy. a, b, e High agree-

ment. c Failure, calcifications are wrongly detected by the method as
this region has a layered appearance similar to a healthy wall structure.
d Failure due to the tangential penetration angle of the probe, in contact
with the arterial wall. f Failure, part of the healthy region is not detected
by the method as the three anatomical layers are poorly visible

0
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1

Dice coefficient Accuracy Sensitivity Specificity

Fig. 7 Box plot representing the Dice coefficient, accuracy, sensitiv-
ity, and specificity of healthy regions detection, between the proposed
method M and the manual tracings performed by A1, compared to the

inter- and intra-analysts variability, for all 260 images of the testing set.
Percentiles are indicated by boxes (25th and 75th), inner lines (50th),
and error bars (5th and 95th)

ical interfaces and2 s to classify healthy anddiseased regions.
This is to be compared with the time required by manual
annotations, corresponding to 180 s and 8 s, respectively.

Discussion and conclusions

On the contour segmentation method

Extraction of the anatomical interfaces is a critical step in the
overall analysis, as the resulting contours are directly used

to generate the classification features. Therefore, errors in
the segmentation process would have a substantial impact in
the subsequent classification process. Nevertheless, the per-
formances of the segmentation method were validated and
demonstrated an accuracy similar to the inter- and intra-
analyst variability, as displayed in Table 3. Moreover, the
segmentation errors were similar between the two cohorts,
which contributes to demonstrate the robustness of the
method. For both cohorts, the AP interface—generally less
well anatomically defined—was more challenging to extract
with accuracy, as demonstrated by the higher error rate.
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Fig. 8 Example of the comparison ofmanual annotations (a) and auto-
matic classification (b) in the first 200 frames of a pullback. Healthy
regions, diseased regions, guidewire shadow, and sidebranches are rep-
resented ingreen, red,gray, andwhite, respectively.TheDice coefficient

is equal to 0.80. The x and y axes represent the length of the arterial seg-
ment imaged during the pullback, and the angle from the lumen center,
respectively

Nevertheless, accurate determination of the thickness of the
intima–media complex is generally the most relevant clinical
application.

When designing the front propagation scheme to simul-
taneously extract the three contours, the balance between
low guidance (i.e., image data only) and high guidance
(i.e., image data, and a number of geometrical a priori)
is crucial. In the present framework, the resulting con-
tours are subsequently exploited in the classification step
to detect healthy and diseased regions. Therefore, a low
guidance would result in irregular contours that are often
erroneous in challenging image sections corrupted by noise,
whereas a high guidance would result in contours that
systematically respect a smooth and parallel structure and
would compromise the classification process. In the present
implementation, the guidance level is intermediate: first, a
sub-image I is generated, where the LI interface is a hor-
izontal line (Fig. 2), then the non-horizontal solutions are
penalized by a smoothing term in the front propagation
scheme (Eq. 4).

The problem of segmentingmultiple layers was addressed
in several studies, in the field of vascular OCT or intravas-
cular ultrasound (IVUS), as well as retinal OCT as the
structure of the human eye also exhibits several interfaces.
These methods can be classified in two categories. The
first category concerns the iterative extraction of the layers
(i.e., one after the other) that cannot perform a simultaneous
segmentation of all contours. A combination of region-
growing and clustering was used to segment the LI and
MA interfaces with a two-step approach [6]. A Viterbi-based

dynamic programming implementation was proposed to iter-
atively segment multiple layers, where the final solutions
are obtained by uncrossing all the extracted contours [14].
A fast-marching method was presented to segment the LI
and MA contours [3], although a drawback of this approach
is the initialization procedure, since two initial contours
must be placed around each interface to be segmented. A
coarse-to-fine approach, based on a combination of active
contours and Markov random fields, and following three
successive steps where the large structures are extracted
first and the fine structures last, was also introduced [7]. A
method based on support vector machine was proposed to
segment the LI and MA interfaces, using a set of features
based on texture, geometry, edge presence, and shadow [2].
The second category includes methods devised to simulta-
neously extract multiple contours, similarly to the approach
presented in this manuscript. Six intra-retinal layers were
segmented using a method based on multi-phase active con-
tours [27]. Nevertheless, this approach is hindered by two
limitations: it requires a manual initialization (three points
per contour), and convergence relies on multiple iterations
that are not always guaranteed to yield the global optimal
result. Graph optimization was exploited under the min-flow
theory to simultaneously segment the LI and MA inter-
faces [17], as well as seven retinal layers (that is, 3 layers
were first simultaneously segmented, then the remaining 4
also simultaneously) in ophthalmic OCT [16]. The segmen-
tation method proposed here is comparable to these two
latter approaches [16,17], in the sense that a combinatorial
analysis is performed to extract the optimal solution corre-
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sponding to the simultaneous delineation of several contours,
the difference being that the algorithm adopted in the present
framework is based on front propagation rather than graph
cut.

The accuracy of the segmentation framework may be
penalized by the presence of artifacts. The method is not
devised to detect the presence of stents and extract their con-
tours and is expected to fail in such cases. Future perspectives
will focus on a cascading approach,where stented regions are
first detected using a specifically devisedmethod [10,12,19],
before the tissues in the remaining of the pullback are
segmented using the present approach. Thrombi were not
present in our dataset, and such images were therefore
not evaluated; however, they are expected to yield erro-
neous contours with irregular shapes (from our experience,
we also expect the classification method to provide cor-
rect results, as the features that will be derived from the
contours would be substantially different from those of
the healthy wall structure). It is, however, noteworthy that
the method performed well when flushing was not opti-
mal.

On the healthy region classification method

The main originality of the proposed classification method
is to directly exploit the tentative contours resulting from
the previous segmentation step to partition the image in
healthy and diseased regions. A collection of local fea-
tures is extracted from specific image regions delimited
by the contours (e.g, image statistics at the contours loca-
tion). This approach is different from previous studies
that used a unique and more global feature such as the
backscattering coefficient [26] or the attenuation coeffi-
cient [21].

A limitation of the proposed approach is its dependency
to a clear layered architecture, with visible intima, media,
and adventitia tunicas. Tangential penetration is the arti-
fact that most hinders the method: in case of an eccentric
catheter, the sharp angle of incidence of the beam would
result in an image where part of the healthy layers are not
clearly defined [22]. In such a situation, the classification
algorithm may provide inaccurate results, as illustrated in
Fig. 6d. The healthy region classification process also failed
in some cases where all three human analysts correctly anno-
tated the region. This misclassification concerned two types
of failures: false negatives and false positives. False neg-
atives corresponded to healthy images that could not be
correctly identified when the structure was not well defined,
with blurred and poorly perceptible layers, as depicted in
Fig. 6f. False positives corresponded to diseased regions that
were wrongly labeled as healthy because of image artifacts
or plaque formation. Such cases include fibrotic plaques
with a layer-like structure, or calcific plaques showing a

well contrasted pattern, as shown Fig. 6c). Misclassifica-
tion issues could be solved in a future implementation of the
AdaBoost model, by specifically integrating a large number
of such challenging cases in the learning process. How-
ever, it is noteworthy that false positives were less frequent
than false negatives. This is represented in Fig. 7 with the
specificity being substantially higher than the sensitivity.
From a clinical perspective, this would have the follow-
ing implication: the classification results for regions labeled
as healthy are trustworthy, and only regions labeled as
diseased—that must be analyzed anyway—should be
visually inspected to confirm the classification result. Let
us also note that the accuracy (Dice coefficient, accuracy,
sensitivity and specificity) is very close to the inter-observer
variability (Fig. 7), which contributes to validate the perfor-
mances of the method.

The proposed classification scheme is binary, namely
a healthy or diseased label is applied to different
regions of the image. In contrast to several previous stud-
ies [1,20,21,24,26], the present method is not capable of
characterizing different tissue types, such as lipid, fibrous,
or calcium. To address this limitation, future work will
focus on a cascade approach, where the artery is first
roughly partitioned in healthy and diseased regions using the
present framework, before a second classifier based on dif-
ferent image features is applied only to diseased regions for
finer tissue and plaque type characterization. However, the
present method can potentially be used as a preprocessing
step to guide existing classification approaches in diseased
regions.

Conclusions

A contour segmentation method based on dynamic pro-
gramming was introduced to localize the contours of the
intima, media, and adventitia layers in intracoronary OCT
images. A unique and globally optimal multi-parametric
path was extracted to describe the set of three 2D con-
tours. The tentative contours resulting from the segmentation
method were then exploited by a machine learning algo-
rithm to partition the images in healthy and diseased regions.
To thoroughly evaluate the method and assess its clini-
cal applicability potential, the framework was trained on
140 images and validated on 260 other images, gathered
from two different medical centers with two different OCT
scanners. The clinical significance of the present study is
twofold. First, segmenting the arterial layers in healthy
regions enables accurate and automatic quantification the
intima–media thickness, one of the most relevant clini-
cal parameters. Second, fully automatic identification of
the diseased regions provides valuable information for the
clinician because it indicates the regions that must be
further analyzed. Such an approach, allowing a distinc-
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tion of healthy and diseased regions, is an essential step
for plaque characterization. In conclusion, the introduced
framework has potential to assist clinicians with quantified
information in an automatic, accurate, and reproducible fash-
ion.

Compliance with ethical standards

Funding This work was partially supported by the STW Carisma
11635 funding.

Conflict of interest Wiro Niessen is co-founder, scientific director,
and stockholder of Quantib BV. Erasmus MC has a patent licensing
agreement with Terumo Corporation in the area of OCT, and Gijs Van
Soest has the right to receive royalties as part of this agreement.

Ethical approval All procedures performed in studies involving
human participants were in accordance with the ethical standards of
the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical
standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Athanasiou LS, Bourantas CV, Rigas G, Sakellarios AI, Exarchos
TP, Siogkas PK, Ricciardi A, Naka KK, Papafaklis MI, Michalis
LK, Prati F, Fotiadis DI (2014) Methodology for fully automated
segmentation and plaque characterization in intracoronary optical
coherence tomography images. J Biomed Opt 19(2):026,009

2. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI
(2009) Intracoronary optical coherence tomography: a comprehen-
sive review: clinical and research applications. JACC Cardiovasc
Interv 2(11):1035–1046

3. Destrempes F, Cardinal MHR, Allard L, Tardif JC, Cloutier G
(2014) Segmentation method of intravascular ultrasound images of
human coronary arteries. Comput Med Imaging Graph 38(2):91–
103

4. Dice LR (1945) Measures of the amount of ecologic association
between species. Ecology 26(3):297–302

5. Freund Y, Schapire RE (1997) A decision-theoretic generalization
of on-line learning and an application to boosting. J Comput Syst
Sci 55(1):119–139

6. Gao Z, Hau WK, Lu M, Huang W, Zhang H, Wu W, Liu X, Zhang
YT (2015) Automated framework for detecting lumen and media-
adventitia borders in intravascular ultrasound images. Ultrasound
Med Biol 41(7):2001–2021

7. Ghorbel I, Rossant F, Bloch I, Tick S, PaquesM (2011) Automated
segmentation of macular layers in OCT images and quantitative
evaluation of performances. Pattern Recogn 44(8):1590–1603

8. Gnanadesigan M, Hussain AS, White S, Scoltock S, Baumbach A,
van der Steen AFW, Regar E, Johnson TW, van Soest G (2017)

Optical coherence tomography attenuation imaging for lipid core
detection: an ex-vivo validation study. Int J Cardiovas Imaging
33(1):5–11

9. Gómez W, Pereira WCA, Infantosi AFC (2012) Analysis of
co-occurrence texture statistics as a function of gray-level quanti-
zation for classifying breast ultrasound. IEEE Trans Med Imaging
31(10):1889–1899

10. Gurmeric S, Isguder GG, Carlier SG, Unal G (2009) A new 3-D
automated computational method to evaluate in-stent neointimal
hyperplasia in in-vivo intravascular optical coherence tomography
pullbacks. MICCAI, pp 776–785

11. Hoogendoorn A, Gnanadesigan M, Zahnd G, van Ditzhuijzen NS,
Schuurbiers JCH, van Soest G, Regar E, Wentzel JJ (2016) OCT-
measured plaque free wall angle is indicative for plaque burden:
overcoming the main limitation of OCT? Int J Cardiovasc Imaging
32(10):1477–1481

12. KauffmannC,Motreff P, SarryL (2010) In vivo supervised analysis
of stent reendothelialization from optical coherence tomography.
IEEE Trans Med Imaging 29(3):807–818

13. Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta
package. J Stat Softw 36(11):1–13

14. Mishra A, Wong A, Bizheva K, Clausi DA (2009) Intra-retinal
layer segmentation in optical coherence tomography images. Opt
Express 17(26):23719–23728

15. R Development Core Team (2008) R: A Language and Envi-
ronment for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna, Austria. http://www.R-project.org.
ISBN3-900051-07-0

16. SongQ,Bai J, GarvinMK, SonkaM,Buatti JM,WuX (2013)Opti-
mal multiple surface segmentation with shape and context priors.
IEEE Trans Med Imaging 32(2):376–386

17. Sun S, Sonka M, Beichel RR (2013) Graph-based IVUS segmen-
tation with efficient computer-aided refinement. IEEE Trans Med
Imaging 32(8):1536–1549

18. Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy
PM, Young JB, Nissen SE (2001) High prevalence of coro-
nary atherosclerosis in asymptomatic teenagers and young adults
evidence from intravascular ultrasound. Circulation 103(22):2705–
2710

19. Ughi GJ, Adriaenssens T, Onsea K, Kayaert P, Dubois C, Sinnaeve
P, Coosemans M, Desmet W, D’hooge J (2012) Automatic seg-
mentation of in-vivo intra-coronary optical coherence tomography
images to assess stent strut apposition and coverage. Int J Cardio-
vasc Imaging 28(2):229–241

20. Ughi GJ, Steigerwald K, Adriaenssens T, Desmet W, Guagli-
umi G, Joner M, D’hooge J (2013) Automatic characterization of
neointimal tissue by intravascular optical coherence tomography.
J Biomed Opt 19:021,104

21. van Soest G, Goderie T, Regar E, Koljenović S, van Leenders
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