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Purpose: The motion of the common carotid artery tissue layers along the vessel axis during the cardiac cycle,
observed in ultrasound imaging, is associated with the presence of established cardiovascular risk factors. How-
ever, the vast majority of the (semi-)automatic methods devised to measure this so-called “longitudinal kinetics”
phenomenon are based on the tracking of a single point, thus failing to capture the overall—and potentially
inhomogeneous—motion of the entire arterial wall. The aim of this work is to introduce a motion tracking
framework able to simultaneously extract the temporal trajectory of a large collection of points (several hundred)
horizontally aligned and spanning the entire exploitable width of the image, thus providing a dense motion field.

Method: The only action required from the user is to indicate the left and right borders of the region to be
processed. A previously validated contour segmentation method is used to position one point in the arterial wall
in each column of the image. Between two consecutive frames, the radial motion of each point is predetermined
by the position of the segmentation contours. The longitudinal motion, which is the main focus of the present
work, is determined in two steps. First, a series of independent block matching operations are carried out for
all the tracked points. Here, the displacement of each point is not determined yet, instead the similarity map is
stored. Then, an original dynamic-programming approach is exploited to regularize the collection of similarity
maps and estimate the globally optimal motion over the entire vessel wall. Sixty-two atherosclerotic participants
at high cardiovascular risk were involved in this study. Method training and validation was performed with 20
and 42 participants, respectively. The amplitude-independent index σX was introduced to quantify the motion
inhomogeneity across the length of the artery.

Results: A dense displacement field, describing the longitudinal motion of the carotid far wall over time, was
extracted from all participants. For each cine-loop, the method was evaluated against manual reference trac-
ings performed on three local points, and showed a good accuracy, with an average absolute error (± STD) of
150 (±163) µm. It also demonstrated an overall greater robustness compared to a previously validated method
based on single-point motion tracking. For all the 62 participants, the analyzed region had, in average, a width
of 24.2 mm, involving the simultaneous tracking of 357 points along 151 temporal frames, and requiring a total
computational time of 68 s. Analyzing the inhomogeneity of the carotid artery motion showed a strong correlation
between σX and the presence of coronary artery disease (β-coefficient = .586, p = .003).

Conclusions: To the best of our knowledge, this is the first time that a method is specifically proposed to
assess the dense motion field corresponding to the longitudinal kinetics of the carotid far wall. This approach
has potential to evaluate the homogeneity (or lack thereof) of the wall dynamics. The proposed method has
promising performances to improve the analysis of arterial longitudinal motion and the understanding of the
underlying patho-physiological parameters.
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I. INTRODUCTION

Cardiovascular risk evaluation is a major public health issue as well as a tremendous scientific challenge. In the
last recent years, the characterization of the elastic deformation of the tissue layers of the common carotid artery
along the direction parallel to the vessel axis during the cardiac cycle in ultrasound sequences (also called cine-loops)
has gathered a growing attention. This patho-physiological phenomenon, hereafter dubbed as LOKI for longitudinal
kinetics, corresponds to the shear between the intima-media complex and the tunica adventitia (Figure 1) [1]. This
motion was shown to be cyclic and reproducible over several months [2].

Although the causes—as well as the implications—of LOKI remain to be fully determined, this dynamic parameter
has been demonstrated by several groups to be associated with the presence of established cardiovascular risk factors.
LOKI was shown to be associated with carotid atherosclerotic plaque burden in man and mouse [3], and to be a pre-
dictor for 1-year cardiovascular outcome in patients with coronary artery disease [4]. The motion amplitude was found
to be significantly reduced in elderly diabetic patients compared to young healthy subjects [5]. It was also confirmed
that LOKI was significantly reduced in patients with periodontal disease compared to age-matched healthy volun-
teers, independently of other established cardiovascular risk factors [6]. Similar results were found in a study involving
individuals with spinal cord injury and able-bodied subjects, where the longitudinal retrograde motion and retrograde
shear strain were reduced in the subclinical cardiovascular risk population [26]. Administration of catecholamines and
β-blockade in pigs showed a significant positive correlation with LOKI, thus potentially constituting a link between
mental stress and cardiovascular disease [8]. Building upon these findings, the independence between LOKI and wall
shear stress was demonstrated, suggesting that LOKI is most likely caused by the pulsatile displacement of the heart,
rather than by blood flow [9]. A similar hypothesis was formulated in a study that evaluated the association of LOKI
with both left ventricular cardiac motion and local blood velocity [10]. A strong association between LOKI and the
severity of carotid stenosis was demonstrated, potentially constituting a tool to screen arterial sites known to be
predisposed to atherosclerotic plaque formation [11]. In addition to motion amplitude, two new indices of arterial
stiffness derived from LOKI waveforms were explored: the total distance of the intima trajectory during one heart
cycle, as well as the degree of a polynomial function fitting LOKI, were found to be associated with arterial stiffness
measurements [12]. It was further demonstrated that LOKI is inversely associated with arterial stiffening [13], and
that LOKI provides complementary information regarding arteriosclerosis and risk factors compared to traditional
markers [14]. These findings therefore strongly suggest that robust and accurate LOKI quantification may improve
cardiovascular risk evaluation.

Tracking the motion of the common carotid artery in vivo in B-mode ultrasound image cine-loops is hindered
by several factors of different nature. First, the resolution cell of the scanner is generally coarser in the direction
perpendicular to the beam (x) than in the direction of the beam propagation (y). This is reflected by the anisotropic
shape of the point spread function, whose width (determined by the probe geometry and the depth of the focal zone)
is typically larger than its height (determined by the ultrasound signal wave-length) [15]. Second, the profile of the
image in the longitudinal direction is rather homogeneous and does not present clear landmarks. As opposed to the
radial direction, where image intensity undergoes profound variations along the depth of the image, only a small gray
level variation is present along the longitudinal profile, as visible in Figure 1. This phenomenon is known as the
aperture problem, and in this case, is caused by the geometry of the anatomical structure of the vessel, consisting of
tissue layers aligned along the longitudinal axis. As a result, motion along the x direction is more difficult to perceive.
Third, images are often corrupted by several degrading phenomena inherent to the ultrasound modality itself, such
as out-of-plane movements, speckle decorrelation, acoustic shadowing, or movement artifacts, which can lead to the
alteration of the tracked speckle pattern over time. Another aspect to consider, especially in the context of clinical
routine, is the high variability of image quality caused by the specific vessel geometry and tissue echogenicity of each
examined subject.

A number of motion tracking methods have been put forward to address the aforementioned issues and evaluate
LOKI. A block matching approach—also called speckle tracking—could successfully extract the longitudinal trajectory
of a selected point in a given cine-loop [16]. The motion was assessed between pairs of consecutive frames by locating
the point centered on the speckle pattern bearing the greatest similarity with the tracked reference pattern, according
to the sum of absolute difference metric. This study however has two limitations: First, the rather large size of the
tracked blocks (3.2× 2.5) mm2, added to the fact that the images were not interpolated, resulted in coarse, stairway-
like motion trajectories. Second, this method was applied on 5 healthy subjects and 2 atherosclerotic patients, but
the tracking accuracy was not quantitatively evaluated against any reference. Another approach exploited a very
small block size (0.5 × 0.5) mm2 and reached a high tracking accuracy when evaluated in vitro in an agar phantom
with tiny glass beads producing distinct echoes [17]. Reference motion was provided using laser measurements and
the mean tracking error was 5.9 µm. Nevertheless, in vivo experiments were only conducted on one healthy subject
and not evaluated quantitatively. Moreover, this framework requires optimal image quality and a careful selection of
a single and very well defined scatter point, thus making it not truly applicable on images acquired in routine clinical
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FIG. 1. (a) Longitudinal view of a common carotid artery in B-mode ultrasound. (b) Detail of the far wall. The cyclic motion
of the tissue layers along the axis of the vessel (i.e., LOKI) is indicated by the double arrow.

practice. A different approach was proposed based on cross-correlation after compensation for luminance changes [18].
Applied in 19 healthy subjects, the evaluation protocol did not involve characterizing the accuracy of the method per
se, but rather focused on quantifying the intra-subject reproducibility of the measurements on image data acquired on
two subsequent days, which resulted in a Cronbach α coefficient between −0.68 and 0.93. Several advanced methods
based on Kalman filtering have been specifically introduced in an attempt to improve the tracking performances. An
approach predicting the motion of the target point and the appearance of the corresponding speckle pattern was put
forward [19]. Although quantitative evaluation was only performed on simulated sequences, showing a 47% accuracy
increase compared to traditional block matching, the method was applied on 9 healthy subjects and 31 atherosclerotic
patients, demonstrating substantial difference in the measured motion amplitude. Another approach proposed the use
of a control signal designed to avoid the accumulation of successive tracking errors [20]. Quantitatively evaluated in
57 healthy subjects and 25 patients at high cardiovascular risk against manually traced motion references, the average
accuracy (± STD) was 84 (±107) µm. A statistically significant difference was also found in the motion amplitude
between controls and patients (643±274 µm vs 408±281 µm, p < 0.0001). The combination of update and prediction
has also been exploited within a state-space approach based on an elasticity-model and ruled by a H∞ filter [21]. A
quantitative evaluation of the tracking accuracy on 37 healthy subjects and 103 patients at high cardiovascular risk
was performed against manually tracked points, the Pearson’s correlation coefficient was 0.9536 and the width of the
95% confidence interval was 387 µm.

All the methods mentioned above share a similar property: They are based on the local estimation of the temporal
trajectory of a single point. This approach requires a careful selection of the best point to be processed within the
image, typically, a point located in a region with optimal image quality, and centered on a well distinguishable speckle
pattern. Such local analysis is limited by three principal drawbacks: First, interrogation of a unique region fails to
capture the non-uniform behaviour of the dynamics of the wall, since different regions may undergo deformations of
different magnitudes [22]. Second, tracking a single target point is likely to yield erroneous results in noisy image
regions. Third, point selection—and hence results exploitation—is subject to inter-analyst variability. Therefore,
characterizing the motion of the entire wall instead of a single point, which is the aim of the present method, would
be a more advantageous approach to address these issues.

A few methods only have been proposed to assess the global deformation of the arterial tissues across an elongated
region of interest (ROI) covering (part of) the full width of the image. The traditional block matching framework
has been extended by independently tracking a small set of points and averaging the resulting trajectories [6, 26].
These simple models, however, do not exploit any assumption on the physical interrelations between the motion of the
different points. Individual tracking failures, although their magnitude is attenuated by the averaging operation, are
therefore likely to have an impact on the resulting overall trajectory. The Velocity Vector Imaging commercial software
(VVI, Research Arena 2; TomTec imaging systems GmbH, Unterschleissheim, Germany) has been applied for LOKI
quantification [23]. However, that tool was originally designed to measure the heart dynamics in echocardiography,
and the evaluation of its performances on the carotid artery showed poor results [20]. Another approach based on
feature detectors and descriptors to automatically identify and track several keypoints was recently introduced [24].
However, three limitations can be observed: First, due to substantial computation time, this method relies on a
limited amount of points (typically, 10) and therefore only captures a rather sparse distribution of the wall dynamics.
Second, the (x, y) coordinates of the reference points to be tracked must be reselected at each time step, with no
guarantee that the same set of points will be continuously analyzed over time. Therefore the motion trajectory of a
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specific sub-region over time can not be captured. Third, for each pair of consecutive frames, a single displacement
value is computed with the median of the motion resulting from all the tracked points. This yields a unique trajectory
that describes the global displacement of the entire wall, but does not permit to study the specific displacement of
different sub-regions of the wall individually.

The aim of this study is to propose an approach capable of assessing the dense motion field of the tissue layers,
namely, tracking one point in every column of the image. The rationale is an attempt to minimize individual tracking
errors by exploiting the collaboration between the ensemble of points. This is achieved by simultaneously extracting,
in each frame of the cine-loop, the displacement of all the points by means of combinatorial analysis. More precisely,
the methodological contribution of the present study is the following. The framework is based on two main steps.
First, for each point (one per column), a block matching operation is conducted, exploiting three specific features
(radial motion guidance with anatomical contour segmentation; use of the initial speckle pattern as a control signal
to generate the tracked reference block; storage of the similarity matching describing the ensemble of potential
displacements). Second, the matching score of all points are gathered in an artificial space to generate a single cost
function. Then, a dynamic programming scheme is run to determine the minimal-cost path that describes the globally
optimal displacement of all the points simultaneously. The framework is applied to in vivo data, validated against
manual reference annotations, and assessed in the context of a pilot clinical study.

II. MATERIALS AND METHODS

The method introduced here is devised to simultaneously extract the motion of all the points located on a line.
The main steps of the method—hereafter referred to as Dynamic Block Matching (DBM)—are illustrated in Figure 2.
The framework is composed of two principal operations: First, a block matching search is conducted independently
for all the assessed points, then the resulting similarity maps are exploited in the context of a dynamic programming
scheme to determine the global optimal displacement map of the ensemble of points. The remainder of this section
is organized as follow: First the image acquisition procedure is defined, then the DBM framework is presented in
detail, next the evaluation protocol is described, finally a quantitative analysis between LOKI-derived parameters and
cardiovascular risk factors is proposed.

A. Data acquisition and study sample

Ultrasound image acquisition was performed at the National Cerebral and Cardiovascular Center, Osaka, Japan,
by a skillful medical doctor (KS), as part of the routine procedure, using a clinical scanner (Toshiba Applio, Tokyo,
Japan) equipped with a linear probe (PLT-704SBT, 7.5 MHz). Pixel size was 70 µm and frame rate was 32 fps.
Images were recorded in the longitudinal plane during several cardiac cycles (average number of frames in each cine-
loop: 151 ± 44, corresponding to 4.7±1.4 s). The probe was oriented such that the left and right sides of the image
corresponded to the heart and head direction, respectively.

Sixty-two participants suffering from atherosclerosis (age: 76 ± 7 y.o., 50 male) were enrolled in this study. The
participants characteristics is provided in Table I. Opt-out consent was obtained from all participants. This observa-
tional study was conducted as a retrospective analysis and fulfilled the requirements of our institutional review board
and the ethics committee.

B. Motion tracking

1. Initialization

First, a ROI is determined by manually indicating the left and right borders of the full exploitable width W of the
far wall in order to clip out noisy regions (Figure 3a). All the subsequent steps of the framework are fully-automatic.

In each frame t of the image cine-loop, the contours of the lumen-intima (LI) and media-adventitia (MA) interfaces
are segmented within the ROI (Figure 3a), using a previously validated method [25]. Briefly, the contour segmentation
framework is based on a front propagation approach specifically devised to simultaneously (as opposed to one after
the other) extract the two anatomical interfaces of the intima-media complex. This is achieved by building a 3D space
(LI depth × MA depth × width), where the minimum-cost path is a medial axis that describes, in each column of the
image, i) the center of the intima-media complex, and ii) its thickness. The LI and MA contours can immediately be
deduced from the medial axis.
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FIG. 2. Illustration of the main steps of the framework.

In preparation for a block matching scheme, the contour information is used to populate a mesh of Ω points p(ω, t),
with ω ∈ {1, . . . ,Ω} and t = 1, in the first frame of the cine-loop. One point is placed in each column of the ROI, in
the center of the intima-media complex (Figure 3b,e).

The image is then spatially interpolated: It has been shown that LOKI magnitude was approximately 1 mm [5,
16, 17]. Given an isotropic pixel size of 70 µm, the total amplitude of the tissue motion is around 14 pixels over the
cardiac cycle, which generally corresponds to 30 images. Although tissue dynamics greatly depends on the cardiac
phase, the motion amplitude between two consecutive frames generally corresponds to a few pixels and may often be
smaller than one pixel. Therefore, to capture the motion in finer details, a spline interpolation with a factor of 10 is
performed along the x direction for sub-pixel resolution, as previously proposed by other studies [5, 17, 19, 21, 26].
This operation is applied to the image, as well as the points and contour coordinates.
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TABLE I. Characteristics of the 62 involved participants.

Parameter Unit Total Missing
Coronary artery disease n (%) 21 (34%) –
Hypertension n (%) 53 (85%) –
Systolic blood pressure mm Hg 129± 15 14
Diastolic blood pressure mm Hg 71± 9 14
Pulse pressure mm Hg 58± 15 14
Dyslipidemia n (%) 55 (89%) –
Peak systolic value m/s 92± 67 13
Other heart diseases n (%) 27 (44%) –
Diabetes mellitus n (%) 24 (39%) –
Gender male, n (%) 50 (81%) –
Age years 76± 7 1
Previous stroke n (%) 15 (24%) –
Intima-media thickness mm 1.59± 0.86 8
Peripheral artery disease n (%) 8 (16%) –
Estimated glomerular filtration rate mL/min/1.73m2 54.9± 20.4 16
Total cholesterol mmol/L 157± 29 24
Glycosylated hemoglobin % 6.7± 1.0 29
Smoking: n (%) 4
- Current 7 (11%)
- Ex 39 (63%)
- Never 12 (19%)
Body mass index kg/m2 22.9± 3.2 8
Other vascular diseases n (%) 6 (10%) –

2. Extraction of the raw motion

This operation consists in estimating the motion field X (ω, t), namely the relative x-wise displacement of each point
p(ω, t) in each frame t of the cine-loop. This process being carried out independently for each point, the description
of the operation will be given for a single point at a given time step. The previously described interpolation scheme
is applied to the frames t and t + 1. A block matching operation is then carried out between these two consecutive
frames: a rectangular block Bt of size (bx × by) is centered around p(ω, t) in the tth frame, and a search window of
size (bx × by) is explored in the (t+ 1)st frame. Matching similarity is evaluated with the sum of squared differences
(SSD) metric.

Let us briefly recall three specificities that are most generally followed by traditional block matching approaches:
i) the next position of the tracked point p(ω, t + 1) is blindly determined by the coordinates of the global minimum
in the SSD map, ii) the search window in the (t + 1)st frame is centered around p(ω, t), and iii) the reference block

B̃t corresponds to the speckle pattern centered around the currently tracked point Bt. In comparison with traditional
implementations, these three specific points are addressed differently by the present framework, as described hereafter.

First, the search is guided along the y direction using a previously validated contour segmentation method [25]. The
rationale is to perform a first estimate of the wall radial displacement to guide motion tracking and systematically
ensure that the tracked points remain within the intima-media complex. Guidance is realized by automatically setting
the y coordinate of the center of the search window in the center of the intima-media complex in the (t+ 1)st frame
(Figure 3c). The segmentation method has been reported to delineate the LI and MA interfaces with a mean absolute
error (± STD) of 47(±70) µm and 55(±68) µm, respectively [25]. Therefore, block matching is conducted along the
y direction with a reduced maximum displacement wy = 0.2 mm, in order to allow a fine search around the initial
position provided by contour segmentation. In contrast, since no a priori guidance is provided along the x direction,
a wider exploration range is permitted, with wx = 0.5 mm. This value has been selected based on the maximum
expected displacement between two time steps and validated in a previous study [20]. Given a pixel size of 70 µm
and an interpolation factor of (10, 1) in the longitudinal and radial directions, respectively, the size (wx × wy) of the
search window in pixels is equal to (71× 3).

Second, the reference block B̃ used within the block matching operation is systematically updated to follow the gray-
level variations of the moving images over time, while still preserving the appearance of the initial tracked pattern.
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FIG. 3. Schematic representation of the main steps of the framework. (a) Carotid ultrasound image. The lumen-intima
(LI) and media-adventitia (MA) contours are segmented (yellow solid lines) within the region of interest of width W (white
dashed lines). The white-filled rectangle represents a block B(ω, t) (size bx× by), centered around a point p(ω, t) to be tracked.
(b) Detail of the intima-media complex (gray region), with the tracked block (white rectangle) centered around p(ω, t) (red
point, size 1 × 1 pixel). (c) The search window (yellow rectangle, size wx × wy = 71 × 3 pixels in the interpolated image),
yielding a 2D SSD map M(ω, t) (same yellow rectangle), is automatically positioned in the center of the intima-media complex
in the next (t+ 1)st frame. The radial displacement of p(ω, t) is indicated by the vertical arrow. (d) Similarity vector V (ω, t)
(size wx × 1), generated from the column-wise minimum of the 2D SSD map M(ω, t) in panel c. (e) Detail of a sub-sample
of the Ω tracked points (red points). (f) Cost function C, resulting from the aggregation of the individual similarity vectors
(panel d). Here (in f-h), the ω axis corresponds to the left-to-right indices of the points. (g) Cost functions C+ (front) and C−
(back), enforcing a unidirectional motion field (towards positive or negative values of x, respectively). (h) Result of the front
propagation in C± ruled by Equation 2, showing the optimal path O± (blue points). A more detailed representation of this
panel is presented in Figure 4. (i) Motion field X resulting from the optimal path (arrows between the red and blue points),
yielding the points coordinate in the (t+ 1)st frame (in this example, O = O+).

The motivation of this implementation is to avoid a potential and irreversible divergence of the trajectory that may be
caused by the accumulation of tracking errors due to artifacts and speckle decorrelation. This is accomplished by using
a control signal B1, corresponding to the initial image pattern in the first frame of the cine-loop, to systematically
keep the memory of the initially tracked point. To cope with small gray-level variations, the reference block B̃t is thus
generated by a weighted sum of the current speckle pattern Bt and the control signal B1, according to the following
relation:

B̃t = (1− σ)Bt + σB1 (1)

Here, σ ∈ [0, 1] is a weighting factor that determines the relative influence of the initial and current speckle patterns
in generating the reference block.

Third, the optimal position of the ensemble of all Ω blocks is determined simultaneously by means of a dynamic
programming scheme. Please note that the aim of this paragraph is to describe the operations undertaken to prepare
the dynamic programming scheme, whereas the dynamic programming algorithm per se is described thereafter in
Section II B 3. For a given tracked point p(ω, t), as part of the block matching operation, a search window is explored,
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resulting in a 2D SSD map M(ω, t) of size wx×wy (Figure 3c). From this map, a 1D similarity vector V (ω, t) of length
wx is generated by selecting the smallest value in each column of the initial 2D SSD map (Figure 3d). Therefore,
at this stage, no decision is taken regarding determining the displacement of any single point: instead of selecting
the candidate point with the lowest value in the 2D SSD map, the matching potential along the x direction is stored
for further use. The rationale is to simultaneously determine the optimal x-wise displacement of the ensemble of all
blocks by using the collection of similarity vectors in a dynamic programming scheme, as described in the following
paragraph. Let us also remember that the displacement along the y axis has already been determined by the contour
segmentation.

3. Computation of the motion field

In this step, at a given time t, the ensemble of 1D similarity vectors V (ω, t), resulting from the raw motion estimation
of the Ω points p(ω, t), are considered collectively. A combinatorial analysis is performed to determine, among all
possible solutions describing the displacement of the ensemble of all points, the optimal motion field given the following
rules: i) data similarity: displacement is guided by the SSD matching criterion represented by the 1D similarity vectors
V (ω, t), ii) non-crossing trajectories: the initial ordering of the points along the x axis does not change, iii) motion
smoothness: increase or decrease of the x-wise distance between two neighboring points is penalized, and iv) motion
uniformity: between two successive frames, all moving points must either follow a displacement towards the right or
left side of the image. The implementation enforcing these rules is described below.

A dynamic programming algorithm based on front propagation is proposed. A cost function C is constructed in
the artificial space (x, ω), where each ω-th 1D similarity vector V (ω, t) is oriented along the x direction and centered
on
(
X (ω, t), ω

)
(Figure 3f). Here, the ω axis of the coordinate system corresponds to the left-to-right ranking of the

points: two neighbors points p(ωn, t) and p(ωn+1, t) yield ωn+1 = ωn+1. The values of C outside of the region covered
by the maps correspond to non-reachable positions, and are therefore set to infinity.

The condition of motion uniformity is addressed by using C to generate two cost functions C± (Figure 3g). In each
row ω of C+ (respectively, C−), the value of the points whose x-coordinates are strictly smaller (respectively, larger)
than X (ω, t) is set to infinity, thus enforcing a global displacement to the right (respectively, left).

A front propagation is then run to build two cumulative cost functions C+ and C−. For ω = 1, C± is initialized
with the corresponding values of C±. Then, for ω ∈ {2, . . . ,Ω}, C± is iteratively generated according to Equation 2.

C±(x, ω + 1) = min
dx∈{−Dx,··· ,−1}

{
C±(x+ dx, ω)

+
((
C±(x, ω + 1)

)γ
+
(
C±(x+ dx, ω)

)γ)
×
(
1 + α|d̂+ dx|β

)} (2)

To provide a more intuitive grasp of this relation, the cumulated cost of the current node (first line, left part) is
determined as the minimal value, across a reachable neighborhood dx, of the addition of i) the cumulated cost of
the previous node (first line, right part), and ii) the sum of the cost of the current and previous nodes (second line)
multiplied by a factor to penalize non-realistic distances between the two nodes (third line). Here, dx ∈ {−Dx, · · · ,−1}
prevents crossing point trajectories, namely to respect the condition X (ω1, t) < X (ω2, t) given two points ω1 and ω2

such that ω1 < ω2. The elasticity of the mesh is controlled by the smoothing coefficients α, β, and γ, as well as by

the parameter d̂ = 10, which represents the expected x-wise distance between two adjacent points, namely one pixel

in the original image corresponding to ten pixels in the interpolated image. The distance penalty |d̂+dx| is null when
two neighbors points are separated by exactly ten pixels (one pixel in the non-interpolated image), and gradually
becomes greater when the distance between these two points increases (stretching) or decreases (compression). A
schematic representation of the front propagation is provided in Figure 4.

Finally, the optimal paths O+ and O− are extracted in both C+ and C− via back-tracking [25] from the point
(x,Ω) having the minimal cumulated cost (Figure 3h). The solution O with the minimal cost among O+ and O− is
used to determine the motion field X such that X (ω, t+ 1) = O(ω), ω ∈ {1, . . . ,Ω} (Figure 3i).

C. Method evaluation

To evaluate the performance of the method on a fair basis, a training set and a testing set were generated. The
training set was composed of 20 randomly selected participants, and was used during the development phase of the
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FIG. 4. Front-propagation scheme used to generate the cumulative cost functions C± from the Ω similarity vectors V (ω, t). For

the sake of clarity, this example depicts a non-interpolated image (d̂ = 1). Here, the direction of propagation is top-to-bottom.
The gray-filled nodes depict the regions that already have been computed, and the white-filled nodes represent the regions yet
to be computed. The node that is currently processed is indicated by an asterisk, and its potential neighbors are circled in
black. In this example, Ω = 5 (total number of tracked points), Dx = 4 (reachable neighborhood), wx = 11 (width of the block
matching window). The black lines connecting the nodes represent the successive back-tracking steps from any given node to
the top of the map. Every path connecting the dots corresponds to the potential positioning of a set of points pω arranged
along strictly increasing x values. The final solution is determined as the path with the minimal cumulative cost.

method to empirically determine the optimal parameter settings. The testing set was composed of the 42 remaining
participants, and was used solely during the evaluation phase of the method, using the previously determined optimal
parameter settings, to determine the performance of the proposed approach on independent test data.

In order to quantify the accuracy of the method despite the lack of ground truth, manual annotations were performed
to constitute a reference. For each cine-loop, a set of three reference points p̄i, i = 1, 2, 3, were first manually placed
by an experienced analyst (GZ) in the left, center, and right part of the ROI in the first frame. These anchor points
corresponded to well contrasted and distinguishable speckle patterns that remained visible through the entire duration
of the cine-loop. Then, the 2D trajectories of these points were manually traced during the entire cine-loop by tracking
their position in all frames of the sequence. Intra-analyst variability was also assessed for all tracked points in the
testing set. Manual annotations were conducted using a graphical interface that was specifically developed for this
purpose, and a Wacom Intuos Pro pen tablet for improved precision.

The DBM method was then applied to the entire ROI. The three columns specifically describing the motion of the
reference points p̄i were selected for evaluation. Finally, a state-of-the-art tracking method based on Kalman Block
Matching (KBM) [20] was used for comparison purpose and applied to track the same set of reference points p̄i.
The tracking accuracy, for both the DBM and KBM methods, was evaluated by means of a point-to-point distance
comparison between the resulting estimated trajectory and the reference manual tracings.

D. Statistical analysis

The peak-to-peak amplitude ∆X of the motion trajectory (Figure 5c), an established LOKI-derived parameter that
was demonstrated to be associated with cardiovascular risk factors [5, 6, 8–10, 26], was extracted from the resulting
motion field (Figure 5b,c). For each participant, ∆X was automatically determined as the average between all the
local peak-to-peak amplitude values, in all the available cardiac cycles and across the entire width of the ROI.

The intra-participant variability δX index was introduced to evaluate the reliability of measurements based on a
single point, namely to quantify LOKI reproducibility with respect to the selection of the horizontal coordinate of the
initial measurement point. This parameter was assessed by means of the following procedure. For each participant, the
local amplitude ∆Xi was automatically measured in each ith column of the ROI. The intra-participant variability δX
was then established by calculating the mean absolute difference between all pairs {∆Xa,∆Xb}, with a ∈ [1, · · · ,Ω−1],
b ∈ [2, · · · ,Ω], a < b, and Ω the total width of the ROI.

The inhomogeneity index σX was introduced to quantify the consistency (or lack thereof) of the motion field across
the horizontal direction of the ROI (Figure 5b). The parameter σX is determined as follow: A linear normalization
is first applied to the motion field to scale the values between 0 and 1. The aim of this step is to generate an index
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that is independent of the mere amplitude of the motion. Then σX is obtained by calculating the average standard
deviation of the normalized motion field along the horizontal direction. The purpose of this step is to detect, in any
given frame of the cine-loop, the presence of spatial regions where LOKI magnitude is greater than in other regions.
Such behaviour, caused by an inhomogeneous motion field, is thus reflected by a large σX value.

Linear regression analysis was performed to evaluate the association of participants characteristics (Table I, predictor
variables) with either σX or ∆X (response variables). The analysis was performed separately for each response
variable. A univariate model was first generated. A multivariable model was then generated, with a selection scheme
of predictor variables based on three criteria: i) association to the response variable with p < 0.15, as derived from
the univariate model, ii) no pairwise correlation between the predictor variables (in case of two candidates variables
being correlated, the one with the strongest association to the response variable was selected), and iii) adoption of
the “one in twenty” rule [27], leading to the selection of a total of three predictor variables. All statistical analysis
was undertaken with R [28]. The value p < 0.05 was considered to indicate a statistically significant difference.

III. RESULTS

A. Parameter settings

For all the 62 involved cine-loops, the average width W of the processed region, corresponding the to full exploitable
width of the image, was 24.2±7.0 mm. This corresponded to an average number of tracked points pω, defined by the
number of columns within the ROI, of Ω = 357± 120. The average distance between two neighboring points p̄i used
to generate the manual references was 7.2±4.3 mm.

The optimal value for each parameter was empirically determined using the training set (n = 20) by successively
running the method using different parameters values and selecting the configuration that yielded the lowest tracking
error. The allowed range of parameters is detailed in Table II. The method was then applied once to the testing set
(n = 42). The following parameter settings were used: size of the block B, (bx × by) = 0.65 × 0.50 mm2; size of the
search window, (wx ×wy) = 0.50× 0.20 mm2; weight of the control signal, σ = 0.35; smoothing coefficients, α = 0.5,
β = 2.0, γ = 0.5.

TABLE II. Allowed range of the parameter settings during the empirical training phase. Parameters with more tentative values
are those having the largest impact on the performances.

bx (µm) 0.15, 0.25, 0.30, 0.35, 0.40, 0.50, 0.55, 0.60, 0.65, 0.70
σ 0.15, 0.25, 0.35, 0.75
γ 0.10, 0.25, 0.50, 1.00
α 0.10, 0.25, 0.50
β 1.00, 2.00

B. Tracking performances

The motion was successfully extracted from all the analyzed cine-loops. The quantitative evaluation of the proposed
DBM framework, showing the mean absolute (± STD) difference between the trajectories resulting from the manual
reference annotations and those resulting from the method, is presented in Table III, together with the comparison
against the previously introduced KBM method. Overall, the temporal trajectories resulting from the DBM method
demonstrated a good similarity with the manual reference annotations, as displayed in Figure 5c. It was also observed
that the DBM method performed quite robustly, as opposed to the KBM method, which in some cases failed to
capture the exact tissue motion due to progressive drift or sudden jumps to another target point. This is reflected by
the Figure 6, where outliers are more numerous in the case of the KBM method.

The very nature of the DBM framework enabled for the extraction of a dense motion field X . Several dynamic
patterns, corresponding to different participants, are displayed in Figure 7. Although a quantitative analysis of the
tracking accuracy was only performed in three local points per cine-loop, as described above, a qualitative assessment
of the motion homogeneity can be obtained from these 2D fields.

The DBM framework was implemented in MATLAB (MATLAB R2016b, The MathWorks Inc., Natick, MA, USA,
2016) and accelerated using Mex/C++, on a desktop computer with a 2.90 GHz processor and 32 Gb RAM. The
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FIG. 5. Representative example result from the testing set. (a) Image depicting the region of interest of width W (ROI,
white dashes) and the set of three points p̄i used for evaluation (red circles). (b) Dense LOKI field X (2D) resulting from the
DBM method, displaying the longitudinal motion across the entire width of the ROI. The red dashes indicate the trajectory
of the points p̄i. (c) Trajectories (1D) of the three evaluated points, for the DBM method (purple), the manual reference
tracings (green), and the KBM method (orange). The tracking failures of the KBM method are indicated by the arrows. The
peak-to-peak amplitude ∆X of the motion trajectory is represented. The blue dots on the temporal axes (b,c) represent the
end-diastole.

TABLE III. Average absolute tracking error (± standard deviation) in µm compared against manual reference tracings for the
Dynamic Block Matching (DBM) and Kalman Block Matching (KBM) methods, and intra-analyst variability (MAN).

Method Training set (n = 20) Testing set (n = 42)
DBM 141± 118 150± 163
KBM 180± 248 191± 270
MAN – 129± 146

required computational time to process a typical cine-loop (151 frames, width W = 24.2 mm, corresponding to
Ω = 357 tracked points) was 68 s. More specifically, it was 450 ms per frame: 140 ms for the layers segmentation,
120 ms for the block matching operation, and 190 ms for the dynamic programming operation.
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FIG. 6. Illustration of the absolute tracking errors, for all the 42 participants of the testing base, for the DBM (purple) and
KBM (orange) methods. Percentiles are indicated by boxes (25th and 75th), inner lines (50th) and error bars (5th and 95th).
The 150 µm level is represented by the black horizontal line.

C. Intra-participant variability

The intra-participant variability of LOKI with respect to the selection of the x-coordinate of the initial measurement
point was assessed by means of the δX index, as detailed in Section II D. Among all participants, the mean absolute
(±STD) value of δX was 33 (±48) µm. With an average peak-to-peak amplitude ∆X of 314 (±163) µm, the average
relative intra-participant variability was 14 (±22) % of the total motion amplitude.

D. Motion inhomogeneity

The association between either the motion inhomogeneity index σX or the peak-to-peak amplitude ∆X and
participants characteristics is provided in Table IV. The strongest correlates to σX were coronary artery disease
(β-coefficient = .586, p = .003, Figure 8) and systolic blood pressure (β-coefficient = .015, p = .053). Interestingly,
the association with coronary artery disease remained nearly-significant (β-coefficient = .484, p = .061) in a mul-
tivariable model after adjusting for systolic blood pressure and peak systolic value, the second and third strongest
independent correlates. The peak-to-peak amplitude ∆X was strongly correlated with peripheral artery disease
(β-coefficient = .165, p = .006) and hypertension (β-coefficient = .120, p = .040). These results are in accordance
with previous findings showing that ∆X is associated with cardiovascular risk factors [6]. A significant association was
also observed between σX and ∆X (β-coefficient = −.889, p = .001). A qualitative analysis of the motion field in all
participants did not reveal an association between motion homogeneity and putative local tissue stiffness (e.g. healthy
sections or atherosclerotic plaques, Figure 7).

IV. DISCUSSION

The introduced method is devised to simultaneously analyze the motion of a large number of tracked points arranged
in a linear fashion. It was applied in vivo in carotid B-mode ultrasound cine-loops to extract LOKI, the tissue motion
along the vessel axis during the cardiac cycle. The motion is extracted along the entire exploitable length of the
imaged artery (as opposed to traditional approaches that only focus on a single point). Such dense motion field
analysis was a missing link in LOKI-based studies.

Let us start by briefly recalling the three hypotheses that were investigated in the present study. First, tracking of
a single point is more prone to generate erroneous trajectories compared to exploiting the collaboration of multiple
points. The increased robustness of DBM was demonstrated in Section III B against a state-of-the-art method based on
single-point tracking, with an average absolute error of 150±163 µm compared to 191±270 µm. Second, the selection
of a single point is an analyst-dependent procedure and may hinder the reliability of results exploitation. The impact
caused by single-point selection when measuring the peak-to-peak motion amplitude was assessed in Section III C,
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FIG. 7. Example result of the longitudinal motion field X during several cardiac cycles, evaluated in the intima-media complex
of the far wall (arrow in panel a) within the region of interest of width W (white dashes), for six different participants of the
testing set. (a-c) The motion field is quite homogeneous. (d-f) The motion field is rather inhomogeneous, substantial variations
are visible in both spatial and temporal directions. The motion amplitude in µm is indicated by the colorbars.

and showed that the intra-participant variability δX was 33±48 µm. Although relatively reduced compared to the
total magnitude of the motion, this additional source of error can be avoided with a global analysis. Third, motion
trajectories resulting from a single point do not allow the analysis of the displacement field (in)homogeneity across the
entire length of the artery, which may reflect cardiovascular health. The results presented in Section III D establish that
the LOKI-derived inhomogeneity index σX is strongly associated with coronary heart disease (β-coefficient = .586,
p = .003, Figure 8).

The collaboration of all the points allowed for improved robustness. The spatial consistency of the motion was
implicitly exploited within the front propagation step (Eq. 2), since the global optimum was preferred over a series
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TABLE IV. Association of cardiovascular risk factors with LOKI-derived parameters in all 62 participants. The symbols
describing the p value are 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1 ( ) 1.

Inhomogeneity index σX Peak-to-peak amplitude ∆X
Univariate Multivariable Univariate Multivariable

Parameter β p β p β p β p
Coronary artery disease .586 .003 (**) .484 .061 (.) .000 .995
Hypertension .577 .033 (*) .120 .040 (*) .094 .151
Systolic blood pressure .015 .053 (.) .008 .357 -.003 .151
Diastolic blood pressure .071 .552 -.002 .532
Pulse pressure .015 .080 (.) -.002 .240
Dyslipidemia .496 .102 -.006 .923
Peak systolic value -.003 .111 -.002 .253 .000 .198
Other heart diseases .293 .131 .054 .196
Diabetes mellitus .206 .300 -.018 .683
Gender -.235 .336 .042 .430
Age .014 .372 .000 .898
Previous stroke .162 .473 -.018 .719
Intima-media thickness -.080 .520 -.002 .936
Peripheral artery disease .154 .595 .165 .006 (**) .149 .012 (*)
Estimated glomerular filtration rate -.003 .602 -.001 .447
Total cholesterol -.002 .699 .001 .153
Glycosylated hemoglobin -.050 .725 .006 .820
Smoking:
- Current -.130 .773 .017 .857
- Ex .107 .770 -.072 .354
- Never -.134 .747 .006 .949
Body mass index .006 .863 -.012 .079 (.) -.012 .069 (.)
Other vascular diseases .009 .976 .047 .507

of independent best matches, thus reducing the risk of individual tracking errors. To phrase it differently, the set of
conditions ruling the behaviour between neighboring points could successfully maintain the cohesion of the mesh and
prevent sudden jumps or cumulative drift errors. On the other hand, the mesh was flexible enough for the points to
follow the motion of the tissues over time. This phenomenon is illustrated in Figure 5c. At this point, it is useful to
differentiate accuracy and robustness. While accuracy describes the ability of a method to yield results close to the
ground truth, robustness represents the capacity of a method to avoid failure and provide an exploitable result. In
the present situation, it is unlikely that the DBM method could have a positive impact on the tracking accuracy per
se, however the robustness was improved. Moreover, it should be noted that the combinatorial analysis, solved by
means of dynamic programming, also enabled a simultaneous motion computation for a large collection of points in
a rather limited time due to the intrinsic reduction of the solution space.

The motion along the y direction was guided by the contour segmentation and a reduced search window, whereas
the motion along the x direction, substantially more challenging to assess, was obtained by means of a dynamic
programming approach. The user interaction was minimal, only the left and right borders of the ROI to be processed
had to be selected to discard non-exploitable regions of the image. In addition to providing motion information for
the entire ROI, this procedure (namely, region selection rather than point selection) reduces user variability compared
to individual point selection and facilitates full-automation.

A fair evaluation was conducted by using a training set (n = 20) to define the optimal parameter settings and
an independent testing set (n = 42) to quantify the accuracy of the method. Results demonstrated that the DBM
framework was able to perform in the testing set almost as well as in the training set, showing the ability of the method
to analyze previously unseen data. It is also noteworthy that the method was evaluated in challenging conditions,
as image quality was overall quite poor, mostly for two reasons. First, images acquired with the ultrasound scanner
were rather coarse (pixel size of 70 µm). Second, the involved participants were all elderly patients suffering from
atherosclerosis, and therefore data was more challenging to process than images from young healthy volunteers due
to a less favorable echogenicity.

Although the motion inhomogeneity index σX is amplitude-independent since it is derived from the normalized
motion field, this index was correlated to the peak-to-peak amplitude ∆X (β-coefficient = −.889, p = .001). Nev-
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FIG. 8. Univariate association between LOKI inhomogeneity index σX and the presence of coronary artery disease (CAD).
Percentiles are indicated by boxes (25th and 75th), inner lines (50th), and error bars (5th and 95th). The result of the
Mann-Whitney U-test is indicated by the p value.

ertheless, confronting those parameters to the participants characteristics indicated that σX and ∆X are strongly
correlated to different predictor variables (Table IV). These preliminary findings suggest that σX do not simply
replicate the information already captured by ∆X but instead represents a complementary measure of cardiovascular
risk. A comprehensive analysis of the association of motion-derived parameters with risk factors was beyond the scope
of the present study. Future work involving a greater number of participants will be conducted to confirm the clinical
usefulness of analyzing the spatial inhomogeneity of the motion along the wall to characterize at-risk individuals.

V. CONCLUSION

The main contribution of this article is the introduction of a novel motion estimation framework, called DBM for
Dynamic Block Matching, specifically designed to extract the temporal trajectory of a large collection of points along
a direction of interest. The method was applied in ultrasound cine-loops of the common carotid artery to analyze
the motion of the intima-media complex in the direction parallel to the blood flow (i.e., longitudinal kinetics, LOKI)
and extract a dense motion field. Evaluated in vivo in 42 participants, the proposed method demonstrated good
tracking performances compared to manually established references. The analysis of the inhomogeneity of the tissue
motion across the entire length of the artery showed a strong association with the presence of coronary artery disease.
These findings suggest that the proposed method may provide complementary information for cardiovascular risk
assessment.
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