
3D Object Instance Recognition and Pose Estimation Using Triplet Loss
with Dynamic Margin

Sergey Zakharov1,2, Wadim Kehl1, Benjamin Planche2, Andreas Hutter2, Slobodan Ilic1,2

Abstract— In this paper, we address the problem of 3D object
instance recognition and pose estimation of localized objects
in cluttered environments using convolutional neural networks.
Inspired by the descriptor learning approach of Wohlhart et al.
[1], we propose a method that introduces the dynamic margin in
the manifold learning triplet loss function. Such a loss function
is designed to map images of different objects under different
poses to a lower-dimensional, similarity-preserving descriptor
space on which efficient nearest neighbor search algorithms
can be applied. Introducing the dynamic margin allows for
faster training times and better accuracy of the resulting
low-dimensional manifolds. Furthermore, we contribute the
following: adding in-plane rotations (ignored by the baseline
method) to the training, proposing new background noise
types that help to better mimic realistic scenarios and improve
accuracy with respect to clutter, adding surface normals as
another powerful image modality representing an object surface
leading to better performance than merely depth, and finally
implementing an efficient online batch generation that allows
for better variability during the training phase.

We perform an exhaustive evaluation to demonstrate the
effects of our contributions. Additionally, we assess the per-
formance of the algorithm on the large BigBIRD dataset [2]
to demonstrate good scalability properties of the pipeline with
respect to the number of models.

I. INTRODUCTION

3D pose estimation and object instance recognition are
very well known problems in computer vision. They have
various applications in the fields of robotics and augmented
reality. Despite their popularity, there is still a large room
for improvement. The current methods often struggle from
clutter and occlusions and are sensitive to background and
illumination changes. Moreover, the most common pose
estimation methods use a single classifier per object, making
their complexity grow linearly with the number of objects for
which the pose has to be estimated. For industrial purposes,
however, scalable methods that work with many different
objects are often desirable.

The recent advances in object instance recognition can
be examined by taking a glimpse at the field of 3D object
retrieval, where the goal is to retrieve similar objects from a
large database given some query object. 3D retrieval methods
are mainly divided into two classes based on their used
object representation: model-based [3] and view-based [4].
The first class works on 3D models directly, whereas the
latter works on 2D views of the objects making it more
suitable for practical applications that work with RGB-D

1Technical University of Munich, Munich, Germany.
sergey.zakharov@tum.de, {kehl, ilics}@in.tum.de

2Siemens AG, Munich, Germany
{benjamin.planche, andreas.hutter}@siemens.com

images. Depending on the object representation, 2D or
3D features are used to compare different objects. Most
recent approaches in this field learn features by task-specific
supervision using convolutional neural networks (CNNs).
Such features outperform available handcrafted features that
had dominated in previous years. The view-based models
currently show state-of-the-art performance, benefiting from
very fast 2D convolutions (as opposed to 3D), advances in the
field of image processing, and a richer object representation.
However, due to their retrieval nature, these approaches
do not consider clutter typical for real scenes and mainly
concentrate on retrieving the object class rather than the
instance.

In this work, we study the problems of 3D pose esti-
mation and object instance recognition to propose an ef-
ficient view-based solution inspired by the recent work of
Paul Wohlhart and Vincent Lepetit [1]. The authors of [1]
tackle both pose estimation and object instance recognition
of already-detected objects simultaneously by learning a
discriminative feature space using CNNs. Particularly, given
a single RGB-D image patch containing an already-detected
object in the center surrounded with the cluttered back-
ground, the descriptor CNN is used to map this patch to
a lower-dimensional manifold of the computed descriptors.
This manifold preserves two important properties: the large
Euclidean distance between the descriptors of dissimilar
objects, and the distance between the descriptors of the
objects from the same class is relative to their poses. Once the
mapping is learned, efficient and scalable nearest neighbor
search methods can be applied on the descriptor space
to retrieve the closest neighbors for which the poses and
identities are known. This allows us to efficiently handle
a large number of objects together with their view poses,
resolving the scalability issue.

The manifold learning in [1] is performed using the
triplet loss function, where the triplet is a group of samples
(si,s j,sk) selected such that si and s j represent similar views
of the same object and sk comes either from the same
object with a slightly different pose or from a completely
different object. The fixed margin term in the triplet loss
sets the minimum ratio for the Euclidean distance between
descriptors of similar and dissimilar sample pairs. Using
a fixed margin throughout the training results in a slow
separation of the manifolds for different objects and similar
objects with different poses, causing long training times
and limited accuracy in case of short-sized descriptors. To
overcome this problem, we introduce a dynamic margin in
the loss function by explicitly setting the margin term as

a function of an angular difference between the poses for
the same object and to a constant value that is larger than
the maximal possible angular difference in case of different
objects. This allows faster training and better quality of
the resulting lower-dimensional manifolds, which, in turn,
enables the use of smaller-sized descriptors with no loss of
accuracy.

Apart from this main contribution, we propose the follow-
ing additions to the baseline method to improve robustness
to clutter and usability in real-world scenarios:
• adding in-plane rotations existing in real-world scenarios

and ignored by the initial method;
• introducing surface normals as a powerful image modal-

ity representing the object surface; normals are calculated
based on the depth map images and require no additional
sensor data;

• introducing new background noise types for synthetic
patches that help to better mimic realistic scenarios and
allow for better performance when no real data is used
in training;

• implementing the efficient online batch generation that
enables better variability during the training phase by
filling a different background noise for synthetic patches
at every solver step.

In the evaluation section, we validate the method to
demonstrate the importance of the newly introduced im-
provements. In addition, the performance of the algorithm
on a larger dataset is evaluated, proving its good scalability
with respect to the number of models. For that purpose,
we have adapted the BigBIRD dataset [2], which has many
more models available compared to the LineMOD dataset
[5] initially used.

II. RELATED WORK

The great increase in the number of freely available 3D
models gave rise to the methods allowing for a search in
large 3D object databases. They are usually referred to as 3D
retrieval methods since their task is to retrieve similar objects
given some 3D object query. Our method is closely related
and can be looked upon as a representative of 3D retrieval
methods. However, in 3D object retrieval, the queries are
taken out of the real-scene context and are thus completely
clutter- and occlusion-free. Moreover, for retrieval tasks, it is
not usually necessary to estimate the pose of the object that
is crucial for the other applications, like grasping in robotics.
Finally, typical 3D retrieval benchmarks aim to retrieve the
object class rather than the instance which limits us to
using datasets for the object instance recognition. Since our
approach is following manifold learning approaches, we will
also review the most closely related works of this domain.

3D retrieval methods are mainly divided into two classes
[6]: model-based and view-based. Model-based methods
work with 3D models directly, trying to represent them
using different kinds of features. View-based methods, on the
other hand, work with 2D views of the objects. Therefore,
they do not require explicit 3D object models, making them

more suitable for practical applications. Moreover, view-
based methods benefit from working with 2D images, which
makes it possible to use dozens of efficient methods from the
field of image processing. In the past, there has been a huge
amount of literature related to designing features suitable for
this task [7], [8], [9].

More recent approaches learn features using deep neural
networks, most commonly CNNs. The reason for this is
that the features learned by task-specific supervision using
CNNs show better performance than handcrafted ones [10],
[11]. Some of the popular model-based methods, such as
ShapeNet [12] and VoxNet [3], take 3D binary voxel grids as
an input for a 3D CNN and output a class of the object. These
methods show outstanding performance and are considered
state-of-the-art model-based methods. However, it was shown
that even the latest volumetric model-based methods are
outperformed by CNN-based multi-view approaches, e.g. by
the method of Hang Su et al. [4]. FusionNet [13] proposes
fusing information from two networks, one operating on
volumetric shape representation and the other using model
projections represented with depth images. It seems that 2D
projections capture local spatial correlations, while voxels
capture long range spatial correlations. Our algorithm falls
into the group of view-based methods, but instead of defining
the class of the object, a specific instance is given as an
output. Moreover, robustness to the background clutter is
necessary since we test on real-scene scenarios.

Another aspect that is closely related to our work is
manifold learning [14]. Manifold learning is an approach to
non-linear dimensionality reduction, motivated by the idea
that high-dimensional data, e.g. images, can be efficiently
represented in a lower-dimensional space. This concept using
CNNs is well studied in [15]. In order to learn the mapping,
they use the so called Siamese network, which takes two
inputs instead of one, and a specific cost function. The cost
function is defined such that the squared Euclidean distance
between similar objects is minimized and for dissimilar
object the hinge loss is applied forcing them to be pulled
apart using a margin term. In the article, they apply this
concept to a problem of pose estimation. The work [16]
extends this idea even further. They present a framework for
multi-modal similarity-preserving hashing where an object
coming from single or multiple modalities, e.g. text and
images, is mapped to another space where similar objects
are mapped as close together as possible and dissimilar as
distant as possible.

The latest manifold learning approaches use recently intro-
duced triplet networks, which outperform Siamese networks
in generating well separated manifolds [17]. A triplet net-
work, as the name suggests, takes three images as an input
(instead of two in the case of Siamese networks), where two
images belong to the same class and the third one to another
class. The cost function tries to map the output descriptors
of the images of the same class closer together than those
of a different class. This allows for faster and more robust
manifold learning since both positive and negative samples
are taken into account within a single term. The method,

recently proposed by Paul Wohlhart and Vincent Lepetit
[1] and inspired by these recent advances, maps the input
image data directly to the similarity-preserving descriptor
space using a triplet CNN with a specifically designed loss
function. The loss function imposes two constrains: the
Euclidean distance between the views of dissimilar objects
is large, whereas the distance between the views of objects
of the same class is relative to their poses. Therefore, the
method learns the embedding of the object views into a low-
dimensional descriptor space. Object instance recognition
is then resolved by applying efficient and scalable nearest
neighbor search methods on the descriptor space to retrieve
the closest neighbors. Moreover, apart from only finding the
object’s pose, it also finds its identity, solving two separate
problems at the same time and further increasing the value
of this method. The approach of [18] adds classification
loss to the triplet loss and learns the embedding from the
input image space to a discriminative feature space. This
approach is tailored to the object class retrieval task and
performs training using real images only, not rendered 3D
object models.

In this paper, we follow the approach of [1] and improve
it in various ways, first by introducing dynamic margin in
the loss function, allowing for faster training and shorter
descriptors, then by making it rotation-invariant by learning
in-plane rotations, including surface normals as strong and
complementing modality to RGB-D data and providing better
modeling of the background, making it more robust to the
background clutter.

III. METHOD

In this section, the theoretical and implementation details
of the method are presented. More specifically, such aspects
as dataset generation, loss function, and improvements of the
method are addressed.

A. Dataset Generation

The datasets we use contain the following data: 3D mesh
models of the objects and RGB-D images of the objects in
real environments with their camera poses. Using these data,
we generate three sets: the training set Strain, the template set
Sdb and the test set Stest . The training set is used exclusively
for the purpose of training the network. The test set Stest ,
as its name suggests, is used only in the test phase for
evaluation. The template set Sdb is used in both training and
test phases. Each set consists of samples, where each sample
s = (x,c,q) is made of an image x, the identity of the object
c, and the pose q.

The first step in preparing the data is the generation of
samples for the sets. Our sets are constructed from two types
of imaging data: real and synthetic. The real images represent
the objects in real-world environments and are generated
using a commodity RGB-D sensor, e.g. Kinect or Prime-
sense. They have to be provided together with the dataset.
The synthetic images, however, are not initially available and
must be generated by rendering provided textured 3D mesh
models.

(a) Template set sampling (b) Training set sampling

Fig. 1: Different sampling types: each vertex represents a
camera position from which the object is rendered.

Given 3D models of the objects, we render them from
different view points covering the upper part of the object
in order to generate synthetic images. In order to define the
rendering views, an imaginary icosahedron is placed on top
of the object, where each vertex defines a camera position.
To make the sampling finer, each triangle is recursively
subdivided into four triangles. The method defines two
different sampling types: a coarse one (Fig. 1a), achieved
by two subdivisions of the icosahedron, and a fine one
(Fig. 1b), achieved by three consecutive subdivisions. The
coarse sampling is used to generate the template set Sdb,
whereas the fine sampling is used for the training set Strain.
For each camera pose (vertex) an object is rendered on an
empty (black) background and both RGB and depth channels
are stored.

When all the synthetic images are generated and we
have both real and synthetic data at hand, samples can be
generated. For each of the images, we extract small patches
covering and centered on the object. This is done by virtually
setting a cube, of 40 cm3 in dimension, centered at the
object’s center of mass as shown in Fig. 2. When all the
patches are extracted, we normalize them. RGB channels are
normalized to the zero mean and unit variance. The depth
values within the defined bounding cube are normalized and
mapped to the range [0,1] and the rest of the values are
clipped. Finally, each patch x is stored within a sample in
addition to the object’s identity c and its pose q. The next
step is to divide the samples between the sample sets Strain,
Sdb and Stest , accordingly.

The template set Sdb contains only synthetic samples with

Fig. 2: Patch extraction: the object of interest (shown in
yellow) is covered by the cube of 40 cm3 in dimension;
only RGB and depth data covered by the cube is taken to
generate a single patch.

(a) Training set Strain (b) Test set Stest

Fig. 3: Datasets: The training set Strain consists of both
real and synthetic (fine sampling); the test set Stest consists
of the real data not used for the training set Strain.

the renderings coming from the coarse sampling (Fig. 1a).
It is used in both training (to form triplets) and test (as
a database for the nearest neighbor search) phases. The
samples of Sdb define a search database on which the nearest
neighbor search is later performed. This is the main reason
for coarse sampling: We want to minimize the size of the
search database for faster retrieval. However, the sampling
defined for the template set also directly limits the accuracy
of the pose estimation.

The training set Strain (Fig. 3a) consists of a mix of
synthetic and real data. The synthetic data represent samples
coming from the renderings defined by the fine sampling
(Fig. 1b). Approximately 50% of the real data is added to the
training set. This 50% is selected by taking the real images
that are close to the template samples in terms of the pose.
The rest of the real samples are stored in the test set Stest
(Fig. 3b), which is used to estimate the performance of the
algorithm.

B. Loss Function

When the Strain and Sdb sets are generated, we have all
the data needed to start the training. The next step is to set
the input format for the CNN, which is defined by its loss
function. In our case, the loss function is defined as a sum
of two separate loss terms Ltriplets and Lpairs:

L = Ltriplets +Lpairs. (1)

The first addend Ltriplets is a loss defined over a set T of
triplets, where a triplet is a group of samples (si,s j,sk)
selected such that si and s j always come from the same object
under a similar pose, and sk comes from either a different
object or the same object under a less similar pose (Fig. 4a).
In other words, a single triplet consists of a pair of similar
samples, si and s j, and a pair of dissimilar ones, si and sk. In
our terminology, we call si an anchor, s j a positive sample
or a puller, and sk a negative sample or a pusher. The triplet
loss component has the following form:

Ltriplets = ∑
(si,s j ,sk)∈T

max
(

0,1− || f (xi)− f (xk)||22
|| f (xi)− f (x j)||22 +m

)
,

(2)
where x is the input image of a certain sample, f (x) is the
output of the neural network given the input image, and m
is the margin, which introduces the margin for classification

(a) Triplet-wise term (b) Pair-wise term

Fig. 4: CNN input format: triplets are used to learn a
well-separated manifold, whereas pairs make the mapping
invariant to various imaging conditions.

and sets the minimum ratio for the Euclidean distance of the
similar and dissimilar pairs of samples.

By minimizing Ltriplets, one enforces two important prop-
erties that we are trying to achieve, namely: maximizing the
Euclidean distance between descriptors from two different
objects and setting the Euclidean distance between descrip-
tors from the same object so that it is representative of the
similarity between their poses.

The second addend Lpairs is a pair-wise term. It is defined
over a set P of sample pairs (si,s j). Samples within a single
pair come from the same object under either a very similar
pose or the same pose but with different imaging condi-
tions. Different imaging conditions may include illumination
changes, different backgrounds, or clutter. It is also possible
that one sample comes from the real data and the other from
synthetic data. The goal of this term is to map two samples
as close as possible to each other:

Lpairs = ∑
(si,s j)∈P

|| f (xi)− f (x j)||22. (3)

By minimizing the Lpairs, or the Euclidean distance be-
tween the descriptors, the network learns to treat the same
object under different imaging conditions in the same way
by mapping them onto the same point. Moreover, it ensures
that samples with similar poses are set close together in the
descriptor space, which is an important requirement for the
triplet term.

C. In-plane Rotations

The initial method proposed in [1] has a major limitation
of not considering in-plane rotations or, in other words,
omitting one additional degree of freedom. However, in
real-world scenarios, it is hardly possible to omit in-plane
rotations.

In order to introduce in-plane rotations to the algorithm,
one needs to generate additional samples with in-plane rota-
tions and define a metric to compare the similarity between
the samples in order to build triplets.

Generating synthetic in-plane rotated samples is relatively
simple. What we need is to rotate the view camera at each
sampling point (vertex) around its shooting axis and record
a sample with a certain frequency as shown in Fig. 5.
Currently, for the LineMOD dataset, we generate seven
samples per vertex, going from -45 to 45 degrees with a
stride of 15 degrees.

Fig. 5: In-plane rotations: At each vertex extra views are
rendered by rotating the camera around the axis pointing
at the object center.

As for the similarity metric, we cannot use the dot product
of the sampling point vectors anymore, as was proposed in
the initial method, since we cannot incorporate an additional
degree of freedom this way. Instead it was decided to use the
quaternions Q to represent rotations of the models and the
angle between the samples’ quaternions as a pose comparison
metric θ(qi,q j) = 2arccos(|qi ·q j|).

D. Triplet Loss with Dynamic Margin

The triplet loss function, in the way it is used in [1], has
one significant drawback. The margin term is a constant and
is the same for all the different types of negative samples.
This means that we are trying to push apart the objects of
same and different classes with exactly the same margin
term, whereas the desired goal is to map the objects of
different classes farther away from each other. This slows
down the training in terms of classification and results in
a worse separation of the manifold. The logical solution to
this is to set the margin term to be a variable and change it
depending on the type of the negative sample.

Fig. 6: Triplet loss with dynamic margin: better separation
achieved by setting different inter- and intra-class margins.

We propose the following solution. If the negative sample
belongs to the same class as the anchor, the margin term is set
to be the angular distance between the samples. If, however,
the negative sample belongs to a different class, the distance
is set to a constant value that is larger than the maximal
possible angular difference. The effect of the dynamic margin
is illustrated in Fig 6. The updated loss function is defined
as follows:

Ltriplets = ∑
(si,s j ,sk)∈T

max
(

0,1− || f (xi)− f (xk)||22
|| f (xi)− f (x j)||22 +m

)
,

where m =

{
2arccos(|qi ·q j|) if ci = c j,

n else, for n > π.
(4)

E. Surface Normals
Surface normals were considered an extra modality rep-

resenting an object image, in addition to existing RGB
and depth channels, to improve the algorithm accuracy. By
definition, a surface normal defined at point p is a 3D
vector that is perpendicular to the tangent plane to the model
surface at point p. Applied to many points on the model,
surface normals result in a powerful modality describing its
curvature.

In our pipeline, surface normals are calculated based on
the depth map images (no additional sensor data required)
using the method for the fast and robust estimation in dense
range images proposed in work [19] and resulting in a
3-channel modality. This approach allows smoothing of the
surface noise and, therefore, allows for better surface normal
estimates around depth discontinuities.

F. Background Noise Generator
One of the most difficult problems for computer vision

methods is the treatment of clutter and different backgrounds
in images. Since our samples do not have any background
by default, it is difficult or sometimes impossible for the
network to adapt to the real data full of noise and clutter in
the background and foreground.

One of the easiest approaches to solving this problem is to
use real images for training. Then, the network might adapt
to the realistic data, but the major problem comes when no or
very limited real data are available. In these cases, we have
to teach the network to ignore the background or simulate
the backgrounds as well as we can.

In our implementation, we have a separate class generating
different kinds of noise: white noise, random shapes, gradient
noise, and real backgrounds.

The first and the simplest type of noise is white noise
(Fig. 7a). To generate it, we simply sample a float value
from 0 to 1 from a uniform distribution for each pixel. In
the case of RGB, we do that three times for each pixel in
order to fill all the channels.

The second type of noise is the random shape noise
(Fig. 7b). The idea is to represent the background objects
such that they have similar depth and color values. The color
of the objects is again sampled from the uniform distribution,
from 0 to 1, and the position is sampled from the uniform
distribution, from 0 to the width of the sample image. This
approach can also be used to represent foreground clutter by
placing random shapes on top of the actual model.

(a) White noise (b) Random shapes

(c) Fractal noise (d) Real backgrounds

Fig. 7: Background noise types for synthetic data shown
for different channels, i.e. RGB, depth, and normals.

TABLE I: Test setups: each underlined entry represents the tested parameter for a given test.

Dataset Training
data

Testing
data

In-plane
rotations

Background
augmentation

Data
channels

Descriptor
dimension

Triplet
margin type

Test A LineMOD,
15 objects synthetic + real real with and

without fractal noise RGB-D 32 static

Test B LineMOD,
6 objects synthetic + real real with fractal noise RGB-D 3, 32 static, dynamic

Test C LineMOD,
15 objects synthetic real with white noise, fractal noise,

random shapes, real backgrounds RGB-D 32 dynamic

Test D LineMOD,
15 objects synthetic + real real with fractal noise depth, normals,

normals + depth 32 dynamic

Test E BigBIRD,
50 objects synthetic + real real without fractal noise RGB-D 32 static, dynamic

The third type of noise we used is fractal noise (Fig. 7c),
which is often used in computer graphics for texture or land-
scape generation and is the most advanced synthetic noise
presented here. The fractal noise implementation we use is
based on summing together multiple octaves of simplex noise
first introduced by Ken Perlin in [20]. It results in a smooth
sequence of pseudo-random numbers avoiding rapid intensity
changes, as in the case of white noise, which is much closer
in spirit to the real-world scenarios.

The fourth and last type of noise is real backgrounds
(Fig. 7d). Instead of generating the noise, we use RGB-D
images of real backgrounds in a similar way to [21]. Given a
real image, we randomly sample a patch of a needed size and
use it as a background for a synthetically generated model.
This noise modality is useful when we know beforehand
in what kinds of environments the objects are going to be
located.

One of the drawbacks of the baseline method is that the
batches are generated and stored prior to execution. This
means that at each epoch we use the same filled backgrounds
over and over again, limiting the variability. To overcome
this problem, in our implementation we generate batches
online. At each iteration we fill the background of the chosen
positive sample with one of the available noise modalities.

IV. EVALUATION

This section is devoted to the validation and evaluation
of the implemented pipeline. After reproducing the results
provided by the authors of the method [1], we performed
a series of tests to evaluate the effect of the newly intro-
duced modifications, e.g. in-plane rotations, surface normals,
background noise types. Apart from that, we evaluated the
performance of the algorithm on a larger dataset (BigBIRD).
Note that all tests are preformed with the same network
architecture as in [1] for comparison reasons. For complete
test setups refer to Table I.

A. Tests on In-plane Rotations

As we already know, the authors of the initially proposed
method [1] do not take in-plane rotations into account and
do not include them in training, which is, however, needed
for working in real-world scenarios. This test compares
the performances of two networks: the one that is trained
with in-plane rotations and the other that is trained without
them. The goal is to see how avoiding in-plane rotations

in training affects the performance on the test data with
in-plane rotations and also to demonstrate the ability of
the network to perform well with an additional degree of
freedom introduced.
Results: Given the setup, we compare the two above men-
tioned networks, labeled as baseline (without in-plane ro-
tations) and baseline+ (with in-plane rotations), and obtain
the results shown in Table II.

TABLE II: Comparison of the network trained without
in-plane rotations (baseline) with the one trained using
in-plane rotations (baseline+).

Angular error Classification
10◦ 20◦ 40◦

Baseline 34.6% 63.8% 73.7% 81.9%
Baseline+ 60% 93.2% 97% 99.3%

The evaluation is performed only for a single nearest
neighbor. As can be seen from Table II, one gets a radical
improvement over the results shown by the first modality,
which is not trained to account for in-plane rotations.
The results also demonstrate a successful adaptation to an
additional degree of freedom.

B. Tests on the Loss Function

To evaluate the new loss function with dynamic margin,
a set of tests comparing it with the old loss function
was performed. Particularly, two tests were executed on
six LineMOD objects (the lower amount is chosen for
visualization purposes) using the best-performing training
configurations for 3- and 32-dimensional output descriptors.
Results: Fig. 8 compares the classification rates (Fig. 8a)
and mean angular errors for correctly classified samples

(a) Classification rate (b) Mean angular error

Fig. 8: Comparison of triplet loss with (DM) and without
(SM) dynamic margin for the 3D output descriptor.

(Fig. 8b) over the set of training epochs (one run through
the training set) for two modalities, i.e. the networks trained
using the loss function with static and dynamic margins. It
is clearly seen from the results that the new loss function
makes a huge difference on the output result. It enables
the network to learn a better classification much faster
in comparison to the original. While the dynamic margin
modality reaches 100% classification accuracy very quickly,
the older modality fluctuates around 70%. Moreover, Fig. 8b
shows that we get a lower angular error for around 30%
more correctly classified samples.

(a) Static margin (b) Dynamic margin

Fig. 9: Test set samples mapped to a 3D descriptor space:
each color represents a separate object.

Fig. 9 shows the test samples mapped to the 3D descriptor
space using the descriptor network trained with the old
(Fig. 9a) and new (Fig. 9b) loss functions. The difference
in the degree the objects are separated is explicit: in the
right figure, the objects are well-separated preserving the
minimal margin distance, resulting in a perfect classification
score; the left figure still shows well-distinguishable object
structures, but they are placed very close together and over-
lap, causing the classification confusion that is quantitatively
estimated in Fig. 8a.
In practice, however, we use dimensionally higher descrip-
tor spaces, which improves both classification and angular
accuracies. Fig. 10 shows the same charts as Fig. 8 but for a
descriptor of a higher dimension, i.e. 32D. This results in a
significant quality jump for both modalities, but the tendency
stays the same: the new modality learns the classification
much faster and provides a better angular accuracy for a
larger number of correctly classified test samples.

C. Tests on Background Noise Types

Since we often do not have real RGB-D sequences on hand
in real-world applications, but only 3D models provided, it

(a) Classification rate (b) Mean angular error

Fig. 10: Comparison of triplet loss with (DM) and without
(SM) dynamic margin for 32D output descriptor.

would be beneficial to avoid using real data in training. The
purpose of the following test is to show how well the network
can adapt to the real data by only using the synthetic samples
with artificially filled backgrounds in training. Specifically,
we compare four different background noise modalities in-
troduced in Section III-F: white noise, random shapes, fractal
noise, and real backgrounds.
Results: Fig. 11 shows the classification and pose accura-
cies for the four mentioned background noise modalities.
The white noise modality shows the overall worst results,
achieving around 21% of classification accuracy (Fig. 11a),
a marginal improvement over randomly sampling objects
from a uniform distribution.

(a) Classification rate (b) Mean angular error

Fig. 11: Comparison of four different background noise
modalities without any real data used for training.

By switching to the random shapes modality, we get better
results and fluctuate around 30% of classification accuracy.
The fractal noise modality shows the best results among the
synthetic noise types and reaches up to 40% of recognition
rate. However, the real backgrounds modality outperforms
fractal noise in classification terms and, moreover, shows
better pose accuracy for a larger quantity of correctly classi-
fied samples (Fig. 11b). As a result, if we can collect images
from environments similar to the test set, the best option is
to fill the backgrounds with the real images. If this is not
the case or we do not have the environment specification
beforehand, fractal noise is the preferred option.

D. Tests on Input Image Channels

In this test, we show the effect of the newly introduced nor-
mals channels. To do that, we demonstrate the influence of
three input image channel modalities, i.e. depth, normals, and
their combination on the output accuracy. More precisely,
we use one of the most powerful pipeline configurations and
train the network using the patches exclusively represented
by the aforementioned channels.

(a) Classification rate (b) Mean angular error

Fig. 12: Comparison of three modalities representing
different input image channels used in training.

Results: Fig. 12 demonstrates the classification rate and pose
error charts for three different networks trained on three dif-
ferent combinations of input patch channels: depth, normals,
and normals+depth. It can be observed that the network
trained on the newly introduced surface normals modality
performs better than the one trained on the depth maps
only. This is beneficial since surface normals are generated
entirely based on the depth maps and no additional sensor
data is needed. Additionally, by combining the surface
normals and depth channels into a single modality, we get
even better results compared to using them separately. More
importantly, the same effect holds true when RGB channels
are added to the presented modalities.

E. Tests on Larger Datasets

The goal of this experiment is to see how well the
algorithm generalizes to a larger number of models. In
particular, we want to evaluate how the increased amount of
models in training affects the overall performance. Since the
LineMOD dataset has only 15 models available, the adapted
BigBIRD dataset, which offers many more models, is used
for this test.

Results: Given one of the most powerful pipeline configu-
rations, we have trained the network on 50 models of the
BigBIRD dataset. After finishing the training, we achieved
the results shown in Table III.

TABLE III: Angular error histogram computed using the
samples of the test set for a single nearest neighbor.

Angular error Classification
10◦ 20◦ 40◦

SM 67.4% 79.6% 83.5% 85.4%
DM 67.7% 91.2% 95.6% 98.7%

Table III shows the histogram of classified test samples for
several tolerated angle errors. The results are encouraging:
for 50 models each represented by approximately 300 test
samples, we get a classification of 98.7% and a very good
angular accuracy, the significant improvement over the old
loss function. As a result, this approach proves to scale well
with respect to the number of models, making it suitable for
industrial applications.

V. CONCLUSIONS

In this work, the method first introduced in [1] was
improved in terms of its learning speed, robustness to clutter,
and usability in real-world scenarios. We have implemented
a new loss function with dynamic margin that allows for
a faster training and better accuracy. Furthermore, we intro-
duced in-plane rotations (present in real-world scenarios) and
new background noise types (to better mimic the real envi-
ronments), added surface normals as an additional powerful
image modality, and created an efficient method to generate
batches allowing for higher variability during training.

REFERENCES

[1] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[2] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter
Abbeel. Bigbird: A large-scale 3d database of object instances. In 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014.

[3] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE, 2015.

[4] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. Multi-view convolutional neural networks for 3d shape
recognition. In Proceedings of the IEEE International Conference
on Computer Vision, 2015.

[5] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer,
Gary Bradski, Kurt Konolige, and Nassir Navab. Model based training,
detection and pose estimation of texture-less 3d objects in heavily
cluttered scenes. In Asian conference on computer vision. Springer,
2012.

[6] Ilknur Icke. Content based 3d shape retrieval, a survey of state of the
art. Computer science phd program 2nd exam part, 1, 2004.

[7] Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc
Van Gool. Hough transform and 3d surf for robust three dimensional
classification. In European Conference on Computer Vision. Springer,
2010.

[8] Ryutarou Ohbuchi and Toshiya Shimizu. Ranking on semantic
manifold for shape-based 3d model retrieval. In Proceedings of the
1st ACM international conference on Multimedia information retrieval.
ACM, 2008.

[9] Petros Daras and Apostolos Axenopoulos. A 3d shape retrieval
framework supporting multimodal queries. International Journal of
Computer Vision, 89(2-3), 2010.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, 2012.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014.

[12] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[13] Vishakh Hegde and Reza Zadeh. Fusionnet: 3d object classification
using multiple data representations. 3D Deep Learning Workshop at
NIPS 2016.

[14] Robert Pless and Richard Souvenir. A survey of manifold learning for
images. IPSJ Transactions on Computer Vision and Applications, 1,
2009.

[15] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2. IEEE, 2006.

[16] Jonathan Masci, Michael M Bronstein, Alexander M Bronstein, and
Jürgen Schmidhuber. Multimodal similarity-preserving hashing. IEEE
transactions on pattern analysis and machine intelligence, 36(4), 2014.

[17] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network.
In International Workshop on Similarity-Based Pattern Recognition.
Springer, 2015.

[18] Haiyun Guo, Jinqiao Wang, Yue Gao, Jianqiang Li, and Hanqing Lu.
Multi-view 3d object retrieval with deep embedding network. IEEE
Transactions on Image Processing, 25(12), 2016.

[19] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm,
Nassir Navab, Pascal Fua, and Vincent Lepetit. Gradient response
maps for real-time detection of textureless objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(5), 2012.

[20] Ken Perlin. Noise hardware. Real-Time Shading SIGGRAPH Course
Notes, 2001.

[21] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for
cnn: Viewpoint estimation in images using cnns trained with rendered
3d model views. In Proceedings of the IEEE International Conference
on Computer Vision, 2015.

