
Construction of Statistical Shape Models
from Minimal Deformations

Darko Zikic1, Ben Glocker1, Micheal Sass Hansen2,
Ali Khamene3, and Nassir Navab1

1 Computer Aided Medical Procedures (CAMP), TUM, Munich, Germany,
2 Informatics and Mathematical Modeling (IMM), DTU, Copenhagen, Denmark,

3 Siemens Corporate Research (SCR), Princeton, USA.

Abstract. Statistical shape models (SSM) capture the variation of shape across
a population, in order to allow further analysis. Previous work demonstrates that
deformation fields contain global transformation components, even if global pre-
registration is performed. It is crucial to construction of SSMs to remove these
global transformation components from the local deformations - thus obtain-
ing minimal deformations - prior to using these as input for SSM construction.
In medical image processing, parameterized SSMs based on control points of
free-form deformations (FFD) are a popular choice, since they offer several ad-
vantages compared to SSMs based on dense deformation fields. In this work,
we extend the previous approach by presenting a framework for construction of
both, unparameterized and FFD-based SSMs from minimal deformations. The
core of the method is computation of minimal deformations by extraction of the
linear part from the original dense deformations. For FFD-based SSMs, the FFD-
parameterization of the minimal deformations is performed by projection onto
the space of FFDs. Both steps are computed by close-form solutions optimally
in the least-square sense. The proposed method is evaluated on a data set of 62
MR images of the corpus callosum. The results show a significant improvement
achieved by the proposed method for SSMs built on dense fields, as well as on
FFD-based SSMs.

1 Introduction

In this paper we consider the construction of statistical shape models (SSM) from defor-
mation fields which are computed by a non-linear registration method.4 This approach
is discussed for example in [1] and [2], while the advantages of this approach for med-
ical applications are discussed in [1].

Previous work [3, 4] demonstrates that in general, computed deformations contain
a substantial amount of global linear transformation, even if global pre-registration is
performed, please compare Fig. 1. In [4], an approach is presented to obtain minimal
deformations by extracting the global similarity transformation from dense deformation
fields in a post-processing step. Since SSMs should only describe variations in shape

4 Such shape models are also referred to as statistical deformation models (SDM).
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(a) original deformation Tlocal (b) extracted similarity Tlin (c) minimal deformation Tnl

Fig. 1: Illustration of the discussed setting. On a pair of pre-registered images of corpus callosum,
nonlinear registration is performed, resulting in a deformation Tlocal (a). A similarity component
Tlin (b) is extracted from the original field Tlocal , resulting in a minimal deformation Tnl (c).

and not e.g. in position, it is intuitive that they should be constructed on minimal de-
formations, rather than on deformations which still contain global linear transformation
components such as similarity. It is shown in [4] that it is not a minor effect, but crucial
to build SSMs on minimal deformation fields, in order to obtain correct shape models.
If similarity transformation components are not removed from deformation fields prior
to SSM construction, this will in general lead to shape models in which the first modes
do not necessarily describe the largest variations in shape [4], see also Fig. 3.

The major contribution of this work is to extend the previous approach to a frame-
work, in which we can create SSMs based on minimal deformations not only on dense
deformation fields, but also for deformations modeled as FFDs.5 This extension allows
groups using FFD-based SSMs to easily incorporate the advantages of using minimal
deformations for SSM construction, thus improving their results. FFD-based SSMs are
a popular choice due to the wide usage of FFDs for modeling displacement fields for de-
formable registration [5, 6] and further advantages, such as lower memory consumption
or the possibility to construct models capturing shape variations on different resolution
levels [1, 2]. Thus we consider the proposed method to be an important contribution.

2 Methods

The backbone of the method is the computation of minimal deformations from original
dense deformations (B) - please compare Fig. 2 for the following. This step is discussed
in Sec. 2.1. SSMs based on dense deformations can be now constructed from minimal
deformations (C), as described in Sec. 2.4.

For deformations modeled by FFDs, the following extension is proposed. In a first
step, the deformation is represented on the dense level (A). Then, after computation
of the minimal version of the deformation on the dense level, the resulting minimal
deformation is transfered to FFD representation (D). From here, the FFD-based SSM
can be constructed (E), compare Sec. 2.4.

The major requisite for the proposed framework is the ability to switch between
the dense and FFD representation of deformations. While the step from FFD to dense

5 For brevity, we refer to SSMs built on FFD parameters as FFD-based SSMs.
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Fig. 2: Sketch of the proposed framework

representation (A) is exact and simply performed by evaluation of the FFD function
with given parameters [5], the transfer of dense fields onto FFD models (D) involves
a projection and presents an approximation for general fields. This step is presented in
Sec. 2.3.

In the following, we present the single methods of the proposed framework.

2.1 Computing Minimal Deformations

In the context of registration, the transformation which aligns the target and source im-
ages IT and IS is a function T : Ω→Ω where Ω⊂Rd is the image domain of dimension
d = 2,3. T is assumed to establish point-to-point correspondence after the registration,
such that IT and IS ◦T are aligned. In most of the current methods for deformable sce-
narios, the transformation T is composed of a global, linear transformation Tglobal and
the non-linear local part Tlocal , resulting in T = Tglobal ◦Tlocal . In general, the global part
is computed prior to the local component and no joint computation of the two terms is
employed.

We model non-linear transformations as an addition of the identity function Id and
a certain displacement field U , and get Tlocal = Id+U with Tlocal(X) = Y .

Our goal is to extract the remaining linear transformation component from a given
deformation. To this end, we model the deformation as a composition of a linear part
Tlin and a non-linear part Tnl , that is Tlocal = Tlin ◦Tnl .

The task now is to estimate Tlin and Tnl , such that Tnl becomes minimal in some
meaningful sense. We reformulate Tlocal = Tlin ◦ Tnl , to arrive at a form which allows
us to minimize the norm of the displacement field Unl of the non-linear component Tnl
with respect to the linear transformation Tlin.

Tlocal(X) = (Tlin ◦Tnl)(X) (1)
Y = Tlin(X +Unl(X)) (2)

T−1
lin (Y )−X = Unl(X) . (3)

Please note that in step from (2) to (3), the invertibility of Tlin is assumed.
Thus, we can define a cost function, the optimization of which results in a linear

transformation (described by parameters p), such that the norm of the vectors of the
displacement field becomes minimal with respect to the mean squared norm. The cost
function E for dense displacement fields discretized by n points is given by

E(X ,Y, p) =
1
n ∑

i
‖Unl(Xi)‖2 =

1
n ∑

i

∥∥Xi−T−1
lin (Yi; p)

∥∥2
, (4)
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where the respective minimization is p = argminp′ E(X ,Y, p′).
Once the linear transformation T−1

lin is computed, the corresponding displacement
field is given by Equation (3) and the minimal deformation is Tnl = Id+Unl .

Please note that the minimal deformation Tnl is expressed in the reference frame of
the target image, which is important for application to SSMs, compare [2].

The above derivation is valid for any invertible transformation Tlin. Since the opti-
mization problem is defined on corresponding points, we can use any transformation
type, for which there is a method for point-based registration with given correspon-
dences. In Sec. 2.1.1 we present a collection of implemented methods which go beyond
[4]. For space reasons we give references to literature rather than detailed descriptions.

2.1.1 Supported Linear Transformation Types
In the presented framework, computation of minimal deformations with respect to

rigid, similarity and affine transformations is implemented. All methods are based on
techniques for solving the problem of registration of two point sets based on given
correspondences, have a closed-form solution and are optimal in the least-squares sense.
The similarity transformation is computed by the Umeyama method [7] for the absolute
orientation problem, and was used in [4]. The estimation of the rigid transformation can
be seen as a modification of the Umeyama method by fixing the scale parameter, and is
discussed for example in [8]. The method for the affine transformation can be seen as a
constrained version of the direct linear transform (DLT) method, compare for example
[9]. Further references can be found in for example in [10].

2.2 Free-form Deformations

In this work we focus on the B-Spline FFD to model deformations [5]. However, since
our method only uses the assumption of FFDs being a linear combination of certain
basis functions, the presented method can easily be adapted to other FFD models. In
this general form an FFD-based deformation can be written as T (x) = x +U(x), with
U(x) = ∑

K
k=1 Bk(x)ck, where Bk are the basis functions, weighted by K control points

ck on a uniform grid. The values ck are the parameters of the FFD-model. For the case
of B-Spline basis functions, the displacement of a 2D point x can be expressed by a
combination of univariate cubic B-Spline functions as

U(x) =
3

∑
l=0

3

∑
m=0

Bl(u)Bm(v)ci+l, j+m (5)

where i=bx/δxc−1, j=by/δyc−1, u=x/δx−bx/δxc, and v=y/δy−by/δyc where Bl rep-
resents the lth basis function of the B-Spline, and δx= nx

Lx−1 and δy=
ny

Ly−1 denote the
control point spacing for an Lx×Ly FFD grid and a discrete image of size nx×ny. For
details and the extension to 3D, please refer to [5].

2.3 Projection of Dense Displacement Fields onto FFD Models

A crucial step of the proposed method is the ability to project dense deformation fields
onto the used FFD model. This is done by computing the parameters of the FFD model,
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such that the difference between the dense minimal deformation field, and the approxi-
mation by the FFD parameterization is minimal in the least-squares sense. To this end,
a closed-form solution is available [8, 11].

As defined above, a dense displacement field U is modeled by an FFD transforma-
tion as y = U(x) = ∑

K
k=1 Bk(x)ck. For a set of points X = [x1 . . .xn] and Y = [y1 . . .yn], U

can be written as Y = U(X) = C B(X)>. With some abuse of notation we have

B(X) = [B(x1) . . .B(xn)] =

B1(x1) . . . BK(x1)
...

...
B1(xn) . . . BK(xn)

 ∈ Rn×K , (6)

and C = [c1 . . .cK ]. In our case we have ci,yi,xi ∈ Rd .
The least-squares solution for C can be given as C = Y B(X)

(
B(X)>B(X)

)−1. The
sparse structure of the matrix B(X) allows the computation also for large 3D problems.
Details can be found in [11].

2.4 Construction of SSMs

Principal component analysis (PCA) is the preferred method for statistical shape models
[1, 2]. The attractive properties of the PCA for shape modeling include optimal linear
reconstruction of the data set variance, the estimated modes of variation are orthog-
onal and uncorrelated, and a closed form solution exists for calculating the principal
components at a relatively low computational cost.

The shape model is built from m column vectors vi, also written as a matrix V =
[v1 . . .vm]. The vectors represent either linearized displacement fields, or control point
sets representing displacement fields, depending on the SSM type.

Given V , a linear shape model which approximates a given vector v is given by v̄
and Φ as v = v̄ + Φb. Here v̄ is the mean v̄ = 1

m ∑
m
i=1 vi. The matrix Φ is constructed

from the first k eigenvectors Φi of the covariance matrix C = 1
m−1V̄V̄>, where V̄ is the

de-meaned version of V . The eigenvalues corresponding to Φi are denoted by λi. The
eigenvectors Φi are also referred to as modes. Finally, b ∈ Rk is the parameter vector,
describing the scaling of the principal modes needed to approximate v by the model.

With respect to the proposed framework, the only modification of the standard
model construction process is that instead of the original displacement fields or control
point sets, we use the respective representation of the corresponding minimal deforma-
tion fields, from which the maximum amount of the respective linear transformation is
extracted by our method.

3 Results and Evaluation

In this section, we demonstrate the improvements achieved by the proposed method
and evaluate the critical steps. The improvement of SSMs by our method is discussed
in Sec. 3.2. The only component of the framework which includes an approximation is
the projection of minimal deformations onto the FFD model. In Sec. 3.3 we show that
this error is negligible and has no negative impact on the resulting FFD-based SSMs.
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(a) Analysis of standard SSM
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Fig. 3: Analysis of single modes of SSMs built on corpus callosum data. We evaluate the con-
tribution of the similarity transformation to the variance of each mode. (a) illustrates an SSM
constructed from the original deformations, for which several modes capture more information
about similarity transformation than shape. For comparison, the variance of the FFD-based SSM
built from minimal deformations (SSMMIN,FFD) is superimposed. In (b), we observe a signifi-
cant improvement for SSMMIN,FFD. The remaining similarity is due to approximation made by
projection of minimal deformations and the approximate orthogonality of similarity and minimal
deformation components.

3.1 The Setting: Test Data, Global and Local Registration

We test the proposed methods on real data which is part of the LADIS (Leukoaraiosis
And DISability) study [12]. The data set consists of 62 2D MR images of the midsagit-
tal cross-section of the corpus callosum. Each image is equipped with 72 landmarks
selected by clinical experts where the correspondences between the images are known.
For an example image of the data set, please see Fig. 1.

The global pre-registration is performed by a similarity transformation estimated by
minimizing the squared norm on the landmark correspondences.

In order to obtain the dense deformation fields, we use a recently proposed FFD-
based non-linear registration method using discrete optimization [13]. The method com-
putes the deformations Tlocali by registering the images Ii to the average image of the
data collection. After a whole run of 62 registrations, the average is recomputed to ob-
tain an improved version. This is done until the average does not change anymore. It
can be shown that under an assumption of Gaussian distribution of the noise, this choice
of reference image is optimal with respect to achieving an unbiased coordinate frame
for the shape model [14].

The following evaluations are performed with respect to similarity transformations.

3.2 Evaluation of Resulting Shape Models

Using non-minimal deformations for SSM construction in general leads to linear trans-
formation components in the resulting SSM, and can lead to SSMs in which the first
modes do not describe the largest variations in shape [4].

In order to evaluate this negative influence for a given SSM, we decompose the sin-
gle modes into a linear and a minimal deformation part as proposed by our method.
We measure the influence of the linear part for a given mode by the explained variance
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(a) Error of field projection onto FFD-model
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(b) Difference between SSMs

Fig. 4: (a) Approximation error caused by projection of the 62 minimal deformations onto a
9×12 FFD model. The low error values of less that 0.03mm and 0.8◦ demonstrate the quality
of the projection onto the FFD model. (b) Comparison of modes SSM based on dense minimal
deformations (SSMMIN) and the FFD-based SSM (SSMMIN,FFD). The relation to the difference
between the modes of SSMMIN and the SSM based on original dense fields (SSMORIG) shows
that the error introduced to SSMMIN,FFD is negligible for the relevant modes with large variance.

corresponding to the linear component. This is determined by distributing the variance
of the original mode to the linear and minimal deformation components proportional to
the squared norms of the components. This is possible, since the decomposition of the
original deformation into a linear and a minimal deformation component can be seen
as orthogonal in very good approximation [4]. The results of this experiment are sum-
marized in Fig. 3 and clearly demonstrate the improvement achieved by the proposed
method.

3.3 Influence of Projection of Fields onto the FFD Model
on Resulting FFD-based Shape Models

The following evaluation is performed in order to assure that the projection of the min-
imal deformations onto a given FFD model does not introduce errors which affect the
generation of the FFD-based SSM.

To this end, we measure the approximation error made by the projection of minimal
fields. We compute the difference between the minimal fields and their projections by
evaluating the standard measures for comparison of displacement fields, the Mean An-
gular Error (MAE) and Mean Endpoint Error (MEP) [15]. Results in Fig. 4a show that
the error is minimal.

To assure that this small error does not influence the final SSM, we compute the
difference between the FFD-based SSM and the SSM based on minimal deformations
(SSMMIN,FFD) by evaluating the MAE. To show the impact of this difference, which is
caused by the approximation error, we also compute the MAE of the difference between
the SSM built on original deformations and SSMMIN,FFD, which might be interpreted as
the improvement of the SSM achieved by using minimal deformations. Relating these
two differences shows that the approximation error is insignificant when compared to
the improvement for the modes with a large variance, please compare Fig. 4b.
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4 Discussion and Conclusion

The basic ideas underlying the proposed methods are the interpretation of displacement
fields as corresponding point sets and the ability to switch between representations of
deformations.

In summary, in this paper we propose a framework for construction of SSMs based
on minimal deformations. The proposed method is shown to significantly improve the
quality of the resulting SSM. The construction of FFD-based SSMs based on minimal
deformations is introduced, extending the previous approach. Finally, we extend the
previous work by allowing the computation of minimal deformations with respect to
rigid and affine transformations.
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