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Abstract In this work we discuss the generalized treatment of the de-
formable registration problem in Sobolev spaces. We extend previous
approaches in two points: 1) by employing a general energy model which
includes a regularization term, and 2) by changing the notion of distance
in the Sobolev space by problem-dependent Riemannian metrics. The
actual choice of the metric is such that it has a preconditioning effect
on the problem, it is applicable to arbitrary similarity measures, and
features a simple implementation. The experiments demonstrate an im-
provement in convergence and runtime by several orders of magnitude
in comparison to semi-implicit gradient flows in L2. This translates to
increased accuracy in practical scenarios. Furthermore, the proposed gen-
eralization establishes a theoretical link between gradient flow in Sobolev
spaces and elastic registration methods.
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1 Introduction

The goal of intensity-based deformable registration is the minimization of the
similarity measure between a source image IS , warped by a deformation φ, and
a target image IT . The d-dimensional images are defined as I : Ω ⊂ Rd → R,
and the deformation φ∈H, φ :Ω→Rd is defined in a Hilbert space H, and is
expressed in terms of the identity transformation and the displacement u∈H as
φ = Id + u. The problem is generally modeled as a minimization of an energy
consisting of a similarity measure ED and a regularization term ER, that is

E(φ) = ED(φ) + λER(φ) . (1)

There are numerous choices for ED and ER, cf. [1,2]. The optimization of (1)
by a gradient flow in H consists of iterative application of the evolution rule

∂tφ = −τ · ∇HE(φ) // update as negative multiple of gradient (2)

φ = φ⊕ ∂tφ // application of the update (3)

Here,∇H is the gradient inH, and⊕ defines the appropriate update operation [3].
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A common choice for H is the space of square integrable functions L2, cf.
e.g. [2]. In [4,3], Sobolev spaces are discussed as a choice for H. Compared to
L2, Sobolev spaces have the advantage to contain only functions with certain
regularity properties, which is favorable for deformable registration. Due to this
inherent regularity, problems which are ill-posed in L2 can be well-posed in
Sobolev spaces. This is the case for the minimization of (1) with λ= 0. In L2,
this is an ill-posed problem and a regularization term ER is necessary to allow a
numerical treatment, while the problem is well-posed in an appropriate Sobolev
space. This has been recognized and put to use in [4,3]. In these approaches, no
regularization term ER is used, and the required smoothness is instead achieved
by choosing an appropriate “geometric setting” by employing Sobolev spaces [3].

The motivation behind omitting ER in these works was to enable the re-
covery of large deformations, which can be prohibited by strong regularization.
This motivation is the same as in the so-called fluid approaches [5], which were
shown to be equivalent to minimization of ED in a suitable Sobolev space [4].
The increased flexibility of fluid approaches comes at the cost of inhibited propa-
gation of φ into homogeneous and low contrast image regions, which is otherwise
achieved by ER in the general model (1). Thus, depending on input data, omit-
ting ER altogether can present a drawback.

In this work, we generalize previous approaches for deformable registration
in Sobolev spaces in two points. The first point is that we consider the complete
energy from (1), including the regularization term ER. Compared to traditional
fluid-type Sobolev-based approaches (obtained for λ=0), the inclusion of ER is of
advantage for treatment of images with large low contrast regions. Besides, this
generalization provides a theoretically interesting interpretation of elastic regis-
tration methods, by identifying the semi-implicit time discretization of a gradient
flow in L2 (cf. e.g. [2]) as steepest descent in a suitable Sobolev space. In [6],
regularization is used together with a Sobolev space setting. This is conceptu-
ally quite a different approach and the regularization is performed on velocities,
adding a temporal dimension to the problem.

The second generalization is the use of problem-dependent Riemannian met-
rics for definition of Sobolev spaces. The use of Sobolev spaces in [4,3] is di-
rected at restricting the space of deformations to a certain class, such as diffeo-
morphisms. Our approach builds on these results by preserving the geometric
setting, and extends it by changing the notion of distance in these spaces by
Riemannian metrics. This provides us with a flexible theoretical framework, al-
lowing to change the properties of the underlying space, such that its numerical
treatment becomes more efficient. We design the Riemannian metrics based on
the specific problem and the input data, such that the metric has a precondi-
tioning effect on the optimization problem. We present a strategy to generate
the Riemannian metric for arbitrary similarity measures used for registration of
medical images, and show that the resulting algorithm exhibits a significantly
improved convergence, resulting in much shorter overall runtimes.

By the rationale for the metric choice, our method relates to work on pre-
conditioned gradient descent [7,8]. In contrast to these methods which assume a
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mono-modal scenario and employ SSD, the proposed technique makes no such
assumptions, and is shown to work in multi-modal settings with MI.

It is important to note that while the choice of H influences the path of
the optimization process and the resulting local minimum, it does not affect the
definition of (1), such that the optimization operates on the same energy. Thus,
by selection of an appropriate metric, we can hope to construct “shorter” paths
on the given energy, resulting in more efficient methods.

2 Method

After a brief introduction of Sobolev spaces, and a discussion of previous uses
for deformable registration in Sec. 2.1, we generalize the standard approach by
using Riemannian metrics for definition of Sobolev spaces in Sec. 2.2. Section
2.3 motivates the selection of metrics based on preconditioning, and in Sec. 2.4,
we propose the construction of such metrics for registration purposes. Section
2.5 highlights relations of some well-known methods to the proposed approach.

2.1 Sobolev Spaces and Sobolev Gradients

The following discussion is based on [9,10]. The Sobolev space Hk on Rn is
a Hilbert space of functions whose derivatives up to the order k are square
integrable, that is Hk = {f : ‖f‖Hk <∞}, with

‖f‖Hk =

(
k∑
i=0

〈f (i), f (i)〉L2

) 1
2

≡ 〈f, f〉
1
2

Hk . (4)

The Hk scalar product can be written in terms of the L2 scalar product with
the use of the vector-valued differential operator L : H → Hk, L = (D0 . . . Dk),
consisting of differential operators Di of order i, as

〈f, f〉Hk =

k∑
i=0

〈f (i), f (i)〉L2 = 〈Lf,Lf〉L2 = 〈L∗Lf, f〉L2 , (5)

where L∗ is the adjoint of L, and the differential operator L∗L has the form

L∗L =

k∑
i=0

(−1)i∆i . (6)

To express the Sobolev gradient by the L2 gradient, we use the definition of
gradient in the space H as the entity ∇Hf which can be used to represent the
directional derivative ∂hf by ∂hf = 〈∇Hf, h〉H. By applying this for H=L2 and
H=Hk, we can equate the resulting right hand sides, and use (5), yielding

〈∇L2f, h〉L2 = 〈∇Hkf, h〉Hk = 〈L∗L∇L2f, h〉L2 . (7)
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From this, we can express the Sobolev gradient in terms of the L2 gradient as

∇Hkf = (L∗L)
−1∇L2f . (8)

In previous works, some modifications of the operator L∗L have been pro-
posed. In [3], a general form

L ∗αLα = (αL)∗(αL) =

k∑
i=0

(−1)iαi∆
i , (9)

is considered, with αi∈R. Two specific instances of (9) are considered in more
detail in [3]. We focus on the first one with α0 =1, and α1 =α∈R, resulting in

L ∗αLα = Id− α∆ . (10)

2.2 Generalization of Sobolev Gradients to Riemannian Manifolds

We generalize (4), by introducing Riemannian metric tensors Mi to the single
scalar products by

‖f‖Hk
M

=

(
k∑
i=0

〈Mif
(i), f (i)〉L2

) 1
2

, (11)

thus treating the single derivatives in Riemannian manifolds. In contrast to
the use of scalars αi in (9), we employ Riemannian metric tensors Mi=M ′i

∗
M ′i ,

which are by definition symmetric positive definite, and vary smoothly in the
space of deformations. With the operator LM = (M ′0D

0 . . .M ′kD
k), we get

L ∗MLM =

k∑
i=0

(−1)i ∇i>Mi∇i . (12)

According to (8), the gradient with respect to H1
k reads

∇Hk
M
f = (L ∗MLM )

−1∇L2f . (13)

Please note that we do not change the class of functions contained in the
Sobolev space, but only the notion of distance, because the positive definiteness
of all Mi ensures the existence of 0 < c,C <∞ such that

c · ‖f‖Hk ≤ ‖f‖Hk
M

= (〈LMf,LMf〉L2)
1
2 ≤ C · ‖f‖Hk . (14)

Thus Hk = {f : ‖f‖Hk <∞} = {f : ‖f‖Hk
M
<∞} = Hk

M .
In the remainder of the paper, we will restrict our treatment to k=1. The ob-

tained results are however readily transferable to general settings. Corresponding
to (10), for the generalized formulation of H1

M we get

L ∗MLM = M0 − div(M1∇) . (15)

In summary, the computation of the update in (2) for H1
M is now based on

∇H1
M
E(φ) = (M0 − div(M1∇))

−1
(∇L2ED(φ) + λ∇L2ER(φ)) . (16)
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2.3 Selection of Metric Based on Preconditioning

The general formulation from (16) provides us with a framework in which we
can choose the metrics Mi such that the resulting algorithms have advantageous
properties. We propose to select these metrics such that the convergence of
the algorithm is improved. This can be done by interpreting (13) as the result
of preconditioning of the given problem in the L2 setting. Preconditioning is
a standard technique for improvement of convergence rate [11]. To this end,
consider the second-order Taylor approximation of f in a Hilbert space H

f(x+ αh) = f(x) + α〈h,∇Hf(x)〉H +
α2

2
〈h,HH(f)h〉H +O(α3) . (17)

For a critical point x′ with ∇f(x′) = 0, the first order term in (17) disappears
and H dominantly describes the shape of f about x′, so that the condition of H
has a direct impact on the convergence of gradient-based methods, see also [10].

As for the gradient in Eq. (8), we can express HH1
M

in terms of HL2 by

HH1
M

= (L ∗MLM )
−1
HL2 . (18)

Now, we can influence the condition of HH1
M

by an appropriate choice of L ∗MLM
as an approximation to HL2 , thus improving the convergence properties. The
choice of L ∗MLM should be simple, efficient, and numerically stable.

2.4 Metric Selection for Deformable Registration

While the structure of ED=
∫
DD is general as the integration can be performed

over the spatial domain (e.g. for SSD), or the intensity domain for statistical mea-
sures (CC, CR, MI), the regularization is mostly formulated as a least-squares
term in the spatial domain, so that with a differential operator DR we can rewrite
(1) as E(φ)=ED(φ) + 1/2 ·λ〈DRu,DRu〉H. The corresponding L2 Hessian reads

HL2(E) = HL2(ED) + λHL2(ER) = HL2(ED) + λD∗RDR . (19)

2.4.1 Preconditioning of Regularized Energies by Sobolev Gradients
The first observation is that the use of Sobolev spaces can result in precondition-
ing of the general energy from (1). To this end, the Sobolev space must be based
on the same differential operator DR which is employed for the regularization,
that is L=(Id,DR). Thus, with M0 = Id and M1 = λId in (15) we get

L ∗MLM = Id + λD∗RDR , (20)

which provides a preconditioner for general energies with regularization terms,
since L∗L from (20) is an approximation to HL2(E) in (19). This tells us that
the steepest descent can be expected to converge much faster in Sobolev spaces
than in L2, since it can be seen as a preconditioned version.

Please note that Sobolev spaces based on (20) are of the form (9) and were
employed in [4,3]. In these works however, the above preconditioning argument
does not hold since no regularization term ER is employed.
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(a) source (b) GT exampl. (c) L2 displ. (d) our result (e) convergence plot

Figure 1: Mono-modal random study. Results in (e) are the mean of 100 trials, w.r.t.
computation time. Displacements in (b)-(d) are color-coded, c.f. (a). The proposed
method clearly outperforms the semi-implicit L2 flow in terms in speed and accuracy.

2.4.2 Further Preconditioning by Generalized Sobolev Gradients
The next step to improve the condition of HH1

M
in (18) is to choose M0 such

that M0≈HED
. It is crucial that: 1) the approximation can be computed ef-

ficiently, and 2) the approximation is applicable to arbitrary similarity mea-
sures. Simple standard preconditioning techniques such as Jacobi precondition-
ing (M0 =diag (H)) proved ineffective in our experiments.

We propose to compose the Riemannian metric M0 as a block diagonal ma-
trix, where each d×d block M0(x)∈Rd corresponds to a spatial position x∈Ω.
The single blocks M0(x) are scaled structure tensors of the energy term for single
spatial positions x∈Ω, evaluated at the current estimate u, that is

M0(x) = σId +
1

‖∇L2ED(u)(x)‖
∇L2ED(u)(x) ∇L2ED(u)(x)> , (21)

where σ ∈ R is a small stabilization parameter, which assures the positiveness
of M0, and ∇L2ED(u)(x)Rd are the sub-vector of the energy gradient at single
spatial positions x∈Ω. This choice is applicable for arbitrary similarity measures,
it results in a highly sparse, symmetric positive definite d-diagonal metric M0,
which is extremely efficient to compute as ∇L2ED(u) is already calculated in
every iteration. Furthermore, the solution of the resulting linear system with the
operator (M0−λ∆) can be performed by standard fast linear system solvers [12].

The motivation for the choice of (21) is based on the analysis of the Gauß-
Newton optimization for an energy based on SSD and diffusion regularization.
It can be shown that in this case, the effect of the preconditioning by the Gauß-
Newton method can be seen as an approximate normalization of the magni-
tudes of the point-wise sub-vectors ∇L2ED(u)(x). This choice is closely related
to the analyses of the demons method provided in [13] and [14]. For more
details please see the supplementary material at http://campar.in.tum.de/

personal/zikic/miccai2010/index.html.

2.5 Relation to Other Methods

It is interesting to observe that some well-known methods can be seen as special
cases of the proposed approach. Starting from the evolution rule derived in Eq.
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(a) source (b)target (c) GT (d)L2 displ. (e)our result (f) convergence plot

Figure 2: Random study in a multi-modal setting, using MI, demonstrates appli-
cability to statistical similarity measures. (b)-(e) depict entities from one trial.

(16), we note that for M0 =Id, and M1 =λτ Id the Sobolev flow is equivalent to
semi-implicit discretization of time in the Euler-Lagrange term arising in the L2-
based gradient flow approach [2]. Furthermore, the classical optical flow method
by Horn and Schunck [15] can be seen as a generalized Sobolev flow, and is
obtained by employing diffusion regularization, and SSD as similarity measure,
with M0 =J>f Jf , with Jf being the Jacobian of f=IT − IS ◦ φ, and M1 =λId.

3 Evaluation

We perform 2D random studies in a controlled environment with known ground
truth to demonstrate the improvement in convergence and precision, which result
from the proposed approach. We compare the proposed method to the standard
semi-implicit approach as described in Sec. 2.5. Per study, we perform 100 trials
in each of which the source image is warped by a random ground truth de-
formation φGT , generated by B-Spline FFDs, with maximal displacements of
5mm. Method parameters (α, τ) for the semi-implicit approach are carefully
tuned for best possible performance. We monitor the mean euclidean distance
between φGT and the estimated deformation (end-point error) in every iteration.
A standard multi-level scheme is employed.

The first study is performed on a CT image with SSD as similarity mea-
sure, cf. Fig. 1. We demonstrate the applicability of the proposed approach to
statistical similarity measures by a study with MI in a multi-modal scenario
(Fig. 2). To this end, we employ an MR-T2 image (from http://www.insight-
journal.org/RIRE/), with intensities rescaled to [0, 1] as IS , and register it

to IT = ĨS ◦ φGT which includes a non-linear modification of intensities by
ĨS(x)=IS(x) · (1− IS(x)), in order to simulate a multi-modal scenario. We ob-
serve a clear improvement in terms of convergence speed and the actual runtime
for the proposed method. The effectively resulting accuracy is also drastically
improved, especially in low gradient regions. This is consistent with our choice of
the metric in 2.4.2. We observed the same behavior in experiments for SAD and
CC as similarity measures. While the single iterations of the proposed method
take longer than for the semi-implicit approach, due to the extreme improvement
of convergence rate, far less iterations are needed, which results in a significant
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reduction of the overall runtime. For example, the results in Fig. 1 feature 30
iterations for the proposed, and 550 for the semi-implicit method.

It is important to note that the decrease of the energy is very similar for both
approaches (cf. supplementary material) . Based on the inspection of energy logs
alone, the semi-implicit method might be considered converged even if the actual
error is still significant, c.f. Figs. 1, 2. This premature convergence is a serious
pitfall for real applications in which the actual error cannot be measured.

4 Summary

We propose a generalization of previous work on deformable registration in
Sobolev spaces by using an explicit regularization term in the energy model, and
by modification of the notion of distance by introduction of Riemannian met-
rics. The general framework in combination with the choice of the Riemannian
metric based on the idea of preconditioning leads to a simple and yet powerful
method, which outperforms flow strategies in L2 in terms of speed, and improves
the resulting accuracy, especially in low-gradient areas, thus preventing possible
premature convergence in real applications.
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