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Abstract

We propose a framework for intensity-based registration of images by linear transformations, based on a discrete Markov Ran-
dom Field (MRF) formulation. Here, the challenge arises from the fact that optimizing the energy associated with this problem
requires a high-order MRF model. Currently, methods for optimizing such high-order models are less general, easy to use, and
efficient, than methods for the popular second-order models. Therefore, we propose an approximation to the original energy by an
MRF with tractable second-order terms. The approximation at a certain point p in the parameter space is the normalized sum of
evaluations of the original energy at projections of p to two-dimensional subspaces. We demonstrate the quality of the proposed
approximation by computing the correlation with the original energy, and show that registration can be performed by discrete opti-
mization of the approximated energy in an iteration loop. A search space refinement strategy is employed over iterations to achieve
sub-pixel accuracy, while keeping the number of labels small for efficiency. The proposed framework can encode any similarity
measure, is robust to the settings of the internal parameters, and allows an intuitive control of the parameter ranges. We demon-
strate the applicability of the framework by intensity-based registration, and 2D-3D registration of medical images. The evaluation
is performed by random studies and real registration tasks. The tests indicate increased robustness and precision compared to
corresponding standard optimization of the original energy, and demonstrate robustness to noise. Finally, the proposed framework
allows the transfer of advances in MRF optimization to linear registration problems.
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1. Introduction

In the last years, the solution of computer vision problems by
Markov Random Fields (MRFs) [1, 2] and discrete optimiza-
tion has become increasingly popular. Different image analysis
problems have been solved by this approach, such as segmenta-
tion [3] or non-linear registration [4], just to name some. Recent
advances [5, 6, 7, 8] in discrete optimization methods make this
approach very attractive.

However, the MRF-based optimization has not yet been ap-
plied to the classical problem of intensity-based registration of
images by linear transformations [9, 10, 11]. When analyzed
closely, this problem turns out to be rather different in nature
from many other problems which have so far been success-
fully addressed by MRF-based techniques. The differences are
twofold.

For many MRF-based methods, the parameters can be as-
signed to certain points in the image domain at which the pa-
rameters are located, and the parameters have a limited local
region of influence. In most cases, the parameters are directly
identified with pixels and they only influence a direct neighbor-
hood. That is, the parameters are localized in space and have
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local effects. This is in strong contrast to the parameters of a
linear transformation which act globally and cannot be assigned
to a certain point in the image domain. Also, most MRF-based
methods share a similar modeling approach. They employ a
second-order MRF model which is composed of two terms: A
first-order term which encodes a certain cost function (often re-
ferred to as data term), and a second-order term responsible for
the regularization (prior term). Due to the mentioned funda-
mental difference in the nature of the parameters, the estimation
of linear transformation parameters requires a different model-
ing, as will be discussed in Section 2.

The second difference originates from the fact that the solu-
tion for the linear registration problem cannot be determined by
optimizing the single parameters independently of each other.
In consequence, the original problem of estimating the linear
transformation with n degrees of freedom (DOF) requires an
nth-order MRF model. Compared to the second-order models,
the current higher-order optimization algorithms are often com-
plex to use or pose additional constraints on the class of ener-
gies they can be applied to. Also, the optimization of higher-
order terms was until now mostly only demonstrated for regu-
larization terms - a setting that does not translate to the linear
registration problem. And finally, as of now, the efficiency of
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Input: images I,J

Output: transformation parameters p

Algorithm: Basic MRF-based Linear Registration

0: set initial parameters p|;

1: set initial discretization L;

2: set initialize parameter range refinement factor α;
3: until convergence do repeat3: until convergence do repeat

4:     ∆p := optimize_E_approx(I,J,L,p|); 

5:     if (E(p|+∆p)<E(p|)) //test for decrease of original energy

6:         p| := p| + ∆p ;p p p

7: end

8:     L = refine_label_ranges(L,α); 
9: end

Figure 1: Outline of the basic algorithm for linear intensity-based reg-
istration by optimization of a discrete MRF energy.

recent methods for second-order models cannot be matched by
methods for higher-order models. This is a major point, since
the single similarity evaluations for the linear registration prob-
lem are computationally demanding.

In order to be able to use the current efficient MRF opti-
mization techniques for the intensity-based estimation of lin-
ear transformations, we present an approximation of the origi-
nal energy by a second-order MRF model. This approximated
MRF energy term is optimized by a suitable discrete optimiza-
tion method inside an iteration loop. In every iteration, the
range of the discrete search space for the single parameters is
refined, eventually resulting in sub-pixel precision. In order to
guarantee convergence, the descent of the original energy is en-
sured. The resulting algorithm is outlined in Figure 1.

The remainder of this paper is organized in the following
way. In Section 2, the actual method is presented. After for-
mulating the general problem of intensity-based estimation of
linear transformations, we introduce the basic terms of discrete
MRF models in Section 2.1, and argue that the estimation of
the transformation parameters of the original energy requires a
higher-order MRF model. Following this, in Section 2.2 we in-
troduce the approximation to the original energy by a tractable
second-order model. In order to complete the description of
the actual resulting registration method, the Sections 2.3 - 2.6
provide details on parameterization, discretization of the search
space, the employed discrete optimization method, and imple-
mentation. Section 2.7 summarizes and discusses the properties
of the proposed method. In Section 3, we evaluate the quality of
the proposed energy approximation, as well as the dependency
of the method on the settings of the internal parameters. We
demonstrate and evaluate an exemplary application to registra-
tion of 3D images in Section 4, and an application to 2D-3D
registration of medical images in Section 5. Finally, Section 6
concludes the paper.

This paper extends and unifies our initial work from [12, 13].
We provide a revised presentation, including a new interpre-
tation of the approximation, an evaluation of the approxima-
tion quality, as well as the influence of the internal parameters,
extended experiments and a comparison to other optimization
methods.

2. Intensity-based Estimation of Linear Transformations
by Markov Random Fields

We consider the task to estimate a linear transformation T
which aligns the source image I to the target image J, such that
this alignment optimizes a suitable similarity measure ξ1. Tp de-
notes that the transformation T is parameterized by parameters
p. Thus, the estimation can be written as

p̂ = arg min
p
ξ
(
I ◦ Tp, J

)
, (1)

where p̂ are the optimal transformation parameters. Further-
more, we express the parameter p in terms of the initial estimate
p′ and an update ∆p as p = p′ + ∆p, so that the optimal param-
eters are represented by the optimal update as p̂ = p′ + ∆̂p.

For future reference we explicitly define the original energy
E associated with the problem as

E(p) ≡ ξ
(
I ◦ Tp, J

)
. (2)

2.1. Discrete Markov Random Fields

Let V = {p1, . . . , pn} be a set of n parameter variables pi,
which are also represented by the parameter vector p. A clique
is a subset of the parameters from V, and is denoted either by
explicitly stating the set, or by the usage of the multi-index c ⊆
{1, . . . , n}, which contains the indices of the involved variables,
such that pc ⊆ V. The set of all defined cliques is denoted as
C. Then a Markov Random Field (MRF) can be defined as a
hypergraph G in which the nodes correspond to the parameters,
and the cliques constitute the hyperedges, that is G= (V,C). In
the case of discrete MRFs, each parameter variable pi can take a
discrete value (also referred to as label) from a discrete label set
Li with Li = { x | x∈R }. The number of labels per parameter is
denoted by |Li|= N. In the context of MRFs, the term labeling
describes a set of labels assigned to the parameters. A potential
is a scalar-valued function ψc, which assigns a certain energy to
a labeling of a clique pc as ψc : pc 7→ ψc(pc) ∈ R+

0 . The general
discrete MRF energy is a sum of the defined potentials

EMRF(p) =
∑
pc∈C

ψc(pc) . (3)

The order of the MRF model is the maximum size of the in-
volved cliques.

For the following, the model containing exclusively all pos-
sible second-order terms will play an important role, thus we
define it explicitly as

EMRF−2(p) =
∑

{pi,pj}∈C2

ψij(pi, pj) . (4)

Here, C2 denotes the set of all possible second-order cliques,
and correspondingly, cliques containing all possible kth-order
cliques will be denoted as Ck.

1We use the term similarity measure as a generic term for both similarity
and difference measures.
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Figure 2: Topology of the proposed MRF model for an affine 2D
transformation. The transformation parameters are represented by the
nodes. The edges encode the image similarity costs associated with the
variation of the labeling of the adjacent nodes.The MRF determines the
parameters by optimizing the sum of the edge costs.

2.1.1. Second- and Higher-order MRF Models
The arguably most common MRF model used in computer

vision tasks is the second-order (pairwise) model containing at
most cliques of size two (used e.g. for segmentation, image
denoising, restoration, deformable registration). Often, second-
order MRFs are used synonymously with MRF models, and the
modeling consists of assigning the first-order potentials to the
data term, and the second-order term to the regularization. Pre-
sumably, the major reason for this is that for the second-order
MRFs, many efficient and general optimization methods have
been proposed over the last years [5, 6, 7, 8].

Only recently, optimization methods for higher-order mod-
els have been proposed. Compared to the second-order ap-
proaches, these methods are still not as general and efficient,
and not as easy to use. Also, these methods have in common
that the higher-order models are applied for implementing reg-
ularization terms. While this is applicable to many computer
vision problems, it is not obvious how this modeling and corre-
sponding optimization can be transfered to the linear registra-
tion problem. Here, we give a brief overview of recent higher-
order optimization methods and discuss their applicability to
the problem at hand. Kohli et al. [14, 15] consider an ef-
ficient optimization for generalized higher-order Pott’s model
[16]. The Pott’s model is an energy function applicable for
regularization by enforcing label consistency in neighborhoods.
However it is not applicable to modeling the linear registration
problem with arbitrary similarity measures. The same issue re-
garding the regularization term holds also for the applications
considered in [17, 18, 19]. Lan et al. [17] as well as Potetz and
Lee [18] consider efficient versions of Belief Propagation (BP)
algorithm for encoding label consistency in 2×2 neighborhoods
for image denoising. Ishikawa [19] considers the same applica-
tion with a different optimization strategy, by combining the
reduction of higher-order terms with the fusion-move [8] and

quadratic pseudo-boolean optimization (QPBO) [20]. Rother
et al. [21] address the optimization of sparse higher-order en-
ergies, using soft pattern-based representation of the energy
functions, and by transforming the problem into an equivalent
quadratic function minimization problem. The linear registra-
tion however - in contrast to many others in image analysis - is
not a sparse problem. Komodakis and Paragios [22] employ a
general framework for solving the higher-order model based on
a master-slave decomposition - with many application examples
for which the method can be applied. The proposed decompo-
sition profits from a high degree of independence of the single
slave problems. However, this independence is not given for
the linear registration problem, and the efficient optimization of
higher-order slave potentials is not straight-forward in the case
of linear registration.

2.1.2. MRF Order for Linear Registration
The order of an MRF model expresses the degree of condi-

tional dependence of parameters on each other [23]. Take for
example a simple first-order model: in this case labeling one
parameter with a certain value does not influence the choice
for the labeling of the other parameters inside the MRF energy
term. Thus, the labeling of the single parameters can be per-
formed independently. Going one step further and looking at
a second-order model, we see that the choice of the label for
one parameter pi will influence the choice for the labeling of all
the parameters pj, which form cliques together with pi, that is
{pi, pj} ∈ C. Finally, we observe that for an MRF model with
n parameters, the most complex model is an nth-order model,
in which all the nodes are directly dependent on all the other
nodes. Due to the conditional dependence of the parameters for
the linear registration problem in (2), it follows that in general
the estimation of a linear transformation with n DOFs requires
an nth-order clique model.

Since direct optimization of this high-order energy is diffi-
cult, in the next section we show how to circumvent this by
introducing an approximation to the original energy E which
involves only tractable second-order terms.

2.2. Energy Approximation for Estimation of Linear Transfor-
mations by Second-Order MRFs

The key idea of the proposed approximation is to use the
second-order cliques to encode a cost of a simultaneous vari-
ation of two parameters, while the other parameters are fixed
to their current values. This encodes the dependency of the
similarity measure on the two respective parameters, while the
dependency on all the other parameters is ignored. However, by
simultaneously taking into account all possible combinations of
parameter pairs, we construct the overall energy term such that
the selection of one parameter value depends on all the others.

Formalized, this results in an MRF model represented by a
fully-connected graph G∗=(V,C2), where the nodes V repre-
sent the transformation parameters, and the edges C2 are the
set of all possible parameter pairs (all possible second-order
cliques). The potential ψ̃ij determines the cost of a simultane-
ous variation of the transformation parameters pi and pj while
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2D 3D
Type Rig. Sim. Aff. Rig. Sim. Aff.
#params (n) 3 5 6 6 9 12
#cliques (|C2|) 3 10 15 15 36 66

Table 1: The number of cliques (or potentials/edges) in the approx-
imated MRF model in Eq. (7), for rigid, similarity with anisotropic
scaling, and affine transformations.

the other parameters are held fixed at their initial values (the so
created parameter set is denoted as pij) and can be written as

ψ̃ij(pi, pj) = ξ
(
I ◦ Tpij , J

)
(5)

Here, the k-th entry of pij is explicitly defined as

pij
k =


pi , k = i
pj , k = j
p′k , k , i, j

, (6)

which simply means that the parameter vector pij takes the
value of pi as the i-th entry, and the value of pj as the j-th entry,
and has the corresponding values of the initial parameters p′

at all other entries. Substituting (5) in (4), and normalizing by
the number of cliques |C2|, we define the approximative second-
order MRF energy for estimation of linear transformations as

Ẽ(p) =
1
|C2|

∑
{pi,pj}∈C2

ψ̃ij(pi, pj) . (7)

In general, the number of cliques is |Ck |=

( n
k

)
, where k is the

order of the used terms so that for the second-order model we
have k=2. We give |C2| for relevant cases in Table 1.

In summary, the presented approximation allows us to model
the conditional dependence of the parameters while efficient op-
timization methods for second-order models can be used. A
simple example of the resulting MRF topology is illustrated in
Figure 2. In Section 3.1, we evaluate the quality of the proposed
approximation. By sampling of the original and the approxi-
mated energy, we demonstrate that they strongly correlate for
reasonable initializations.

2.2.1. Interpretation of the Approximation
An interpretation of the approximative energy term (7) pro-

vides further insight into the proposed method. In Equation (7),
the single potentials ψ̃ij as defined in (5) are carving out two-
dimensional subspaces in the original n-dimensional parameter
space. These subspaces are parallel to the respective ij-planes
of the parameter space and are all passing through the point p′

representing the initial parameters. By construction, the sub-
spaces are orthogonal to each other.

The approximated energy can now be compared to the orig-
inal energy in the following way. The original energy E(p) is
simply the evaluation of the chosen similarity term at the point
p. The approximated energy Ẽ(p) is computed by projecting
the point p to the single subspaces and averaging the energy

t0

Á0

t0
y

ty

Á

t0
x

tx

y

Figure 3: Visualization of the energy approximation by a second-order
MRF model for rigid 2D registration. Here, tx, ty, φ denote the trans-
lation and rotation parameters, with initial values t′x, t′y, φ

′. The eval-
uation of the original energy at the parameter point p (black) is ap-
proximated by the normalized sum of the energy evaluations at the
projections of p to the 2D subspaces (red, green, blue). The subspaces
are orthogonal and all pass through the initial point p′ (gray).

evaluations at the projected points. If we denote the projections
of the point p to the ij-subspace by Πij(p), we can write the
approximated energy from (7) also as

Ẽ(p) =
1
|C2|

∑
i, j

E(Πij(p)) . (8)

This interpretation is illustrated for the simple case of a rigid
2D transformation in Figure 3.

It is important to notice that the quality of the approxima-
tion depends on the choice of the initialization p′. Obviously,
if we evaluate the approximated energy at the initial point, that
is p = p′, the approximated energy equals the original energy,
since all the projections of p equal to the initial point p′. With
increasing distance of p from p′, the error made by the pro-
jection increases and deteriorates the approximation. This is
demonstrated in Section 3.1 where the quality of the approxi-
mation is evaluated.

The stated interpretation can be used to reason about extend-
ing the proposed approximation, by utilizing cliques of higher
orders. The approximation would then read

Ẽk(p) =
1
|Ck |

∑
{pi,...,pk}∈Ck

ψ̃i...k(pi, . . . , pk) (9)

=
1
|Ck |

∑
i,...,k

E(Πi...k(p)) , (10)

and the order k would equal the dimension of the subspaces.
For example, using first-order terms would lead to projecting to
lines parallel to the space axes and passing through the initial
point, and third-order terms would imply projecting to three-
dimensional volumes. This generalization might become inter-
esting since using higher-order building blocks can be expected
to increase the quality of the approximation. Also, efficient op-
timization for single third-order terms used as building blocks
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N 3 5 7 9 11 13 15 17
FastPD 105 190 300 390 500 600 700 800
exhaust. 135 375 735 1215 1815 2535 3375 4335

Table 2: Average number of evaluations of similarity measure per it-
eration for FastPD, in comparison to exhaustive search. We give an
example for the 6 DOF 3D rigid case with k=2.

can be expected to arise earlier than for example for the 12th-
order model required for the full 3D affine transformation.

2.3. Parameterization
In this section we present the parameterization of linear

transformations used in this work. Linear transformations in
homogeneous coordinates can be written in the form

A =

 Â

v> 1

 , (11)

where Â ∈ Rd×(d+1) and v ∈ Rd for d-dimensional problems.
Since our work is motivated by medical applications, in the
following we do not consider projective transformations and
we restrict ourselves to affine transformations [10] by assum-
ing that v=0. This results in 6 degrees of freedom in 2D and 12
DOF in 3D.We employ a parameterization in which the affine
transformation is decomposed as

A = Mt Rφ R−1
θ DsRθ . (12)

Here, Mt represents a translation, Rφ a rotation, and R−1
θ DsRθ

represents the shearing transformation. For the shearing, Rθ is
a rotation and Ds is a diagonal matrix, representing anisotropic
scaling. We parameterize the single matrices of Equation (12)
by respective parameters, compare also [24]. The 3D rotation
matrices are parameterized by Euler angles. The resulting pa-
rameter vectors for the 2D and 3D case are

p =
[
tx, ty, φ, sx, sy, θ

]
(13)

p =
[
tx, ty, tz, φx, φy, φz, sx, sy, sz, θx, θy, θz

]
. (14)

Please note that we always consider the parameter p in terms of
an initial guess p′ and an update ∆p, such that p= p′+∆p.

With this representation, restricting the general affine model
from (12) to a more constrained one is simply performed re-
moving the corresponding nodes and the adjacent edges from
the MRF model. Since our implementation performs these
modifications automatically if the search range for one param-
eter is set to zero, there is no need for explicit implementation
of the registration for the different transformation types.

2.4. Discretization of the Parameter Space
An important part of the proposed method is the discretiza-

tion of the parameter search space, that is, the definition of the
label space L. On one hand, one would like to keep the num-
ber of labels small for efficient optimization of Equation (7).
On the other hand, we want to avoid a too coarse sampling of
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Figure 4: Number of evaluations of the similarity measure needed to
compute the approximated energy at all points in the parameter space.
We give an example for a transformation model with 6 parameters,
depending on the order k∈{1, . . . , 6} of the potentials used for approx-
imation, and with N = {3, . . . , 17} samples per dimension. The method
proposed in this paper has k = 2, while the original energy is repre-
sented by k=6. Please note that this is only a theoretical upper bound,
and that the actual optimization methods require less computations.

the parameter search space since it might result in inaccurate
registration results. To achieve a trade-off between these two
objectives, we employ a successive strategy for the refinement
of the search space. This results in refined parameter updates in
every iteration.

We discretizeL in the following manner. For each parameter
pi we define a search range which is discretized by uniformly
sampling the range between preset values minpi = p′i +min∆pi

and maxpi = p′i+max∆pi about the initial value p′i.
Since the algorithm is guaranteed to reduce the energy in ev-

ery step (by explicitly assuring that the new solution decreases
the original energy, cf. Figure 1), we can assume that the new
estimate is closer to the locally optimal solution, and reduce the
search ranges for the parameters. In iteration k, we rescale the
range delimiters min∆p and max∆p by a parameter range re-
finement factor αk (α<1) which defines the new possible values
for the parameter updates. The iterative label space refinement
allows us to keep the number of labels small and we can start
with a large parameter range, while being able to achieve sub-
pixel registration accuracy. In practice, the number of labels
N ranges between 5 and 11 and the maximal possible values
for the parameters are used to limit the parameter ranges (e.g.
±180◦ for rotation), which allows for the fixed setting of the
ranges. We evaluate the performance of the method for different
choices of α as well as the number of labels N in Section 3.2.

An interesting observation is that the proposed approxima-
tion also strongly reduces the number of similarity evaluations
which would be necessary to evaluate the energy at all points in
the complete parameter space. The discretized n-dimensional
parameter space with N sampling points per dimension con-
tains altogether Nn points. Thus, the computation of the origi-
nal energy at all points in the parameter space requires Nn sim-
ilarity evaluations, since it is simply evaluated once at every
point in the parameter space. On the other hand, the approx-
imated energy at one point is computed as a sum of |Ck | sim-
ilarity evaluations at points in the two-dimensional subspaces,
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while the subspaces require Nk evaluations each. This means
that only |Ck |Nk evaluations have to be performed (with k = 2
for our second-order terms).2 From these evaluations, the ap-
proximated energy can be computed for every point by simply
averaging the |Ck | scalar values. The number of needed evalua-
tions, depending on the order k of the potentials used as build-
ing blocks in the approximation, and the number of labels N, is
illustrated in Figure 4. This implies that a brute force exhaus-
tive search would be much more efficient for the approximated
energy. For small label sets (N ≈ 5) and low-order (k = 2, 3)
this might even be a viable option. Please note that |Ck |Nk is
only a theoretical upper bound, and that the actual optimization
methods (e.g. FastPD as used in our work) require less compu-
tations. For an example, please refer to Table 2. Advances in
discrete optimization, leading to less evaluations, would have a
direct impact on the proposed method.

2.5. Optimization
For the optimization of our MRF energy defined in Equa-

tion (7), we use the recently proposed FastPD algorithm3 [7].
FastPD is able to handle non-submodular functions [25], such
as general intensity-based similarity measures. Furthermore,
FastPD performs well both in terms of computational efficiency
and optimization quality [26]. Other optimization methods such
as move algorithms based either on QPBO (Fusion Move [8])
or iterative graph-cuts (e.g Expansion Move, Swap Move [5]),
or message-passing strategies [27, 28] (e.g. Belief Propagation,
TRW-S [6]) might be considered as well. However, we should
note that due to the non-submodularity of the pairwise energy
terms, classical graph-cut based methods [5] have to be modi-
fied to be able to handle such energies (cf. [25]). On the other
hand, message-passing algorithms can handle general energies,
however with the cost of lower computational efficiency [29].

2.6. Implementation Details
The described registration method is implemented with a

standard multi-resolution strategy realized by Gaussian image
pyramids with a downsampling factor of two between levels.
No downsampling is performed below 32 voxels per dimen-
sion. The method also supports random subsampling strategies,
which are often used to improve the runtime, cf. e.g. [30] and
references therein. In terms of performance, the evaluation of
the given similarity measure presents the most computationally
demanding part of the method. This is especially the case for
large 3D data sets. To this end, we also implemented the eval-
uation of the 3D similarity measures on the GPU which results
in a significant speedup of the method.

2.7. Method Discussion
Formulating the linear registration as an MRF problem

shares the advantages of some standard optimization methods
such as Nelder-Mead Simplex or Powell’s method [31], that the

2Actually, slightly less evaluations than |Ck |Nk are needed, since the single
subspaces share points where they intersect.

3Available at: http://www.csd.uoc.gr/∼komod/FastPD/.

similarity measure is easily interchangeable, since no deriva-
tives of the measure are required. The integration of novel and
more complex measures – where the derivatives might be com-
plicated to compute – is simple to achieve in our framework.
With freely available discrete optimization libraries, the imple-
mentation of the proposed approach is straight forward.

A possible alternative for decreasing the order of the MRF
model is the usage of high-dimensional labels, where one label
encodes the values for multiple parameters. This is done for ex-
ample in [4] for encoding the local translations for deformable
registration. For rigid registration for example, one could en-
code the translations in x/y/z direction as one parameter with a
high-dimensional label consisting of the combinations of values
for tx, ty, and tz, and rotation as a second one for φx, φy, and φz.
Such an MRF model would be of second-order and have only
one clique, which would consist of the two parameters. The
problem with this approach is that the size of the label spaces
increases too much, such that no efficient solution is possible.
For the above example, in which a high-dimensional label rep-
resents 3 ordinary labels, the size-of the high-dimensional label
space would be N3. We performed several tests following this
approach, however, the computation times were prohibitive.

A different possible future line of work would consist of test-
ing different parameterizations. For example, the label values
could be sampled from the ranges in a non-uniform manner, or
different parameterizations of the rotation angles could be used.

In this work, we only used second-order potentials as build-
ing blocks for the energy approximation. One interesting option
would be to also employ first-order terms, for example to en-
code the prior probability of the single parameters. Please note
that this way, for the linear registration problem, the standard
MRF philosophy in which the first-order terms encode the data
term, and the second-order terms encode the prior knowledge is
reversed. Also, a possible future modification as efficient, gen-
eral, and easy to use optimization methods for third-order MRF
models become available would be to build the proposed ap-
proximation on third-order instead of second-order potentials.
This can be expected to improve the approximation quality. The
generalization using kth-order potentials for the approximation
is discussed in Section 2.2.1.

3. Method Evaluation

In this section, we evaluate two important aspects of the pro-
posed framework. In Section 3.1, we evaluate the quality of
the proposed energy approximation from Equation (7). In Sec-
tion 3.2, we test the influence of the internal parameters of the
proposed method on the registration results.

All experiments are performed on a standard desktop system
with an Intel R© CoreTM 2 Quad 2.83GHz, 3GB of RAM, and an
NVIDIA R© GeForce R© GTX 285 GPU with 1GB RAM.

The following stopping criterion is used in all experiments,
and for all levels of the image pyramid. The iterations are
stopped when the relative decrease of the energy (compared to
the energy at the initial state) falls below a threshold. We use a
conservative threshold of 0.0001.
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Test Type n N #eval=Nn CC Test 1 CC Test 2
2D rigid 3 80 ∼0.5×106 0.9590 0.9687
2D similarity 5 14 ∼0.5×106 0.8925 0.9169
2D affine 6 9 ∼0.5×106 0.8595 0.8976

3D rigid 6 9 ∼0.5×106 0.8446 0.8510
3D similarity 9 4 ∼2.0×106 0.7864 0.8169
3D affine 12 4 ∼16.8×106 0.7961 0.8120

Table 3: Evaluation of the quality of the energy approximation Ẽ. We
compute the correlation coefficient (CC) between sampled versions of
the original and the approximated energy. This is done for different
transformations with n parameters, and with N sampling points per di-
mension, resulting in Nn energy evaluations per test. Transformation
parameters increase from Test 1 to Test 2. We observe increased ap-
proximation quality for simpler models and “smaller” transformations.

3.1. Quality of Approximation
In this section we evaluate the quality of the energy approx-

imation, that is how similar the approximated energy Ẽ from
Eq. (7) is to the original energy E in Eq. (2). The idea is to
compare the original and the approximated energy by sampling
these functions and computing the correlation coefficient (CC)
between them. This test assesses the error introduced by the
approximation, which is independent of the particular method
chosen for the optimization.

We perform this test for 2D and 3D images, and 3 types of
transformations: rigid, similarity with anisotropic scaling, and
general affine transformations.

In 3D, the tests are performed on an MR-T1 volume of the
brain from The Retrospective Image Registration Evaluation
Project (RIRE)4 database [32]. The 2D tests are conducted on
a slice from the above 3D volume. Since the random tests are
mono-modal, we employ the sum of squared differences (SSD)
as similarity measure. We sample the parameter space equidis-
tantly about the initial parameters p′ representing the identity
transformation. Two different ranges are tested, Test 1 repre-
senting the larger parameter ranges at the beginning of the reg-
istration process, while Test 2 covers smaller parameter ranges
and represents the setting towards the end of the registration.
The ranges for the sampling of the transformation parameters
for Test 1 are as follows: Translations result from ±10mm, ro-
tations lie between ±45◦, scalings range between 1±0.2, and
the shearing angles θ are drawn from ±20◦. For Test 2, the
ranges are: ±2mm for translations, ±4◦ for rotations, 1±0.04
for scaling, ±4◦ for shearing angles. The number of sampling
points per dimension N is set such that per test at least 500,000
energy evaluations are performed. In order to keep the com-
putation time reasonable, the tests were performed on the third
finest levels of the image pyramid, that is on 64×64×26 images
in 3D and 64×64 images in 2D. Altogether, approximately 21
million energy evaluations were performed. Details and results
of the tests are summarized in Table 3.

The tests show that the proposed approximation correlates
well for the tested settings. The average CC over all tests is

4Available at: http://www.insight-journal.org/rire/

0.86, where CC=0 indicates that two signals are linearly unre-
lated and CC=1 indicate perfect linear correlation. As expected,
the correlation is higher for simpler models, that is, increases
from affine over similarity to rigid, and it is higher for the 2D
than for 3D transformations. Also, the correlation is higher for
the smaller parameter ranges.

These findings are supported by inspecting the energy logs of
the original and approximated energy, acquired during the ran-
dom registration experiments performed in Section 4.1. This
results in sampling of the energies along the paths in the pa-
rameter space, which are being traced out by the single regis-
trations. We observe higher correlation coefficient in the logs
(CC > 0.98), compared to the coefficients from the 3D evalua-
tion in Table 3 (CC< 0.85), caused by a large number of eval-
uations close to the optimum, which are performed towards the
end of the registration. This shows that the proposed approxi-
mation improves during the registration process. A sample plot
of the logs and the quantitative evaluation is given in Figure 7.

3.2. Dependency on Parameters
In this section we perform an evaluation on the sensitivity of

the proposed method on the internal parameters: N, the number
of labels for the discretization of the parameter space, and α the
parameter range refinement factor.

We perform the evaluation by varying the setting of the pa-
rameters for 1000 random registration tests, and assessing the
resulting performance. The random tests consist in registering a
2D MR-T1 source image to a randomly displaced target image.
The target image is created by applying a random affine trans-
formation to the source image. The random transformation is
generated by uniformly drawing the transformation parameters
from the following ranges: translations result from ±10mm, ro-
tations lie between ±60◦, scalings range from 1±0.2, and the
shearing angles θ are drawn from ±20◦. We test all possible
combinations for N between 3 and 17, and α between 0.4 and
0.8, resulting in 40,000 registration runs. For faster computa-
tion, the registration is performed on a downsampled image.

The registration error is computed as the average distance
(AD) of the corner points of a centered 200mm rectangle, which
are warped once by the ground truth transformation and once by
the estimated transformation. Please note that since the AD is
measured at the corners, it will in general measure larger errors,
than for the region of interest in the center of the volume.

Figure 5 summarizes the results of the experiment. Except
for N = 3, we observe no large difference between the differ-
ent parameter settings. For N>3, the number of failed runs is
similar very low (below 0.3%). For finer discretization of the
search space (higher N) the precision is slightly improved, how-
ever, this comes at a higher computational cost. With respect to
the resolution, the majority of results exhibit a sub-pixel preci-
sion. Based on the results of this evaluation, we set the values
to α=0.6 and N =5 keep them fixed throughout the registration
experiments in Section 4.

On a side note, we also performed the same 1000 trials by
registration with optimization of the original energy with the
Nelder-Mead Simplex method [31] and otherwise same set-
tings. This test resulted with a similar error distribution as the
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Figure 5: Evaluation of the performance of the proposed framework with respect to the internal parameters: the number of sampling points per
dimension N, and the parameter range refinement factor α. For each different setting of N and α, 1000 random tests are performed. Except for
N = 3, we observe no large difference between different parameter settings. The precision is slightly improved for finer discretization of the
search space (higher N). This however comes at a higher computational cost.

proposed method, however it had 7 failed trials, which is infe-
rior to any of the different settings of the MRF-based method
for N>3.

4. Application: Linear Intensity-based Image Registration

In this section, we present results of the direct application
of the proposed framework to the problem of linear intensity-
based registration between 3D images. We test the proposed
method by a random study on 3D brain data in Section 4.1,
and by a series of 3D multi-modal registrations in Section 4.2.
In this section we use 3D brain images (CT, MR-PD, MR-
T1, MR-T2) provided by the RIRE data base. The CT im-
age has a resolution of 512×512×29 and a physical voxel size
of 0.65×0.65×4mm and the MR images have a resolution of
256×256×26 and a voxel size of about 1.25×1.25×4mm.

4.1. 3D Random Study
The 3D random study is performed by registering a source

image to a target image generated by a random transforma-
tion. The source image is an MR-T1 volume. The target image
is created by applying a random transformation to the source
image, with transformation parameters uniformly drawn from
the following ranges: Translation t ∈ [−30, 30]mm, rotation
φ ∈ [−45, 45]◦, scaling s ∈ [0.8, 1.2], and shearing angles
θ ∈ [−20, 20]mm.

Due to the mono-modality of the test, we use the SSD as
the similarity measure. The similarity term for this test is per-
formed on the GPU and without a sub-sampling strategy. A
multi-resolution approach with 3 levels is used, and the reg-
istration is initialized by aligning the intensity masses of the
two volumes. To speed up the computation and allow for a
large number of tests, the registrations are performed only on
the coarsest level of the image pyramids where the number of
voxels in the first two dimensions is reduced by a factor of
four while the number of slices is preserved. Since the tests
are performed at lower pyramid levels at which noise is elimi-
nated, we restrain from adding noise to the original images in

Test Type Mean Median Std. Dev Failed

Rigid
MRF 0.561 0.422 0.401 0%
Simplex 0.526 0.432 0.403 0%

Similarity
MRF 0.935 0.657 0.805 0.2%
Simplex 1.222 0.931 1.209 1.2%

Affine
MRF 4.277 3.876 2.279 11.2%
Simplex 4.594 4.093 2.395 19.6%

Table 4: Summary of the results of the 3D random study from Sec-
tion 4.1. The proposed MRF-based method is compared to Simplex
optimization of original energy. Per transformation type 1000 trials
were performed. Results with an AD error (given in mm) of more than
10mm are discarded as failed, and excluded from the computation of
the statistics. (see also Figure 6). For all runs, the proposed method
results in fewer failed runs and exhibits slightly better accuracy.

the first place. The registration error is computed as the aver-
age distance (AD), which in 3D is defined on the corner points
of a centered 200mm cube. We perform the study for 3 types
of transformations: rigid, rigid with anisotropic scaling, and
affine. For each type we perform 1000 trials.

We compare the results of the proposed approach to the re-
sults obtained by using the Nelder-Mead Simplex optimization
method [31] on the original energy function corresponding to
the chosen similarity measure. To this end, the same general
settings as for our approach are used. In all our experiments,
the internal parameters of the Simplex method (step sizes for
the transformation parameters) are set to the same values as the
corresponding search space ranges of the MRF method. Con-
vergence criteria are thresholds on the difference of function
values at subsequent estimates (1e−20), and changes in param-
eters (1e−15), as well as the maximum number of iterations
(500). We have tested these settings for different registration
problems, with consistently good results. The results are sum-
marized in Table 4 and the statistics are represented by box
plots5 in Figure 6. Please note that due to the chosen resolu-

5Box plot notation in the paper: The box denotes 50% of data between
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Figure 6: Statistics of the AD error in mm for the 3D random study
described in Section 4.1, represented by box plots (please see footnote
5 for description). Please refer to Table 4 for a brief description and
the numerical representation of the results. With respect to resolution,
all errors less than 4mm indicate sub-voxel accuracy.

tion, errors of less than 4mm are below the physical voxel size.
In Figure 7, we give an exemplary energy log acquired over the
iterations, in which we record the approximated and the origi-
nal energy. Also, the correlation of the energy logs for all trials
is analyzed.

Two observations can be made from the results of the exper-
iment. The first one is that the proposed MRF-based method
seems to be more robust, such that more registrations are suc-
cessful. We classify the registration as successful if the AD
is below 10mm. With this threshold, all experiments for both,
the Simplex and MRF-based optimization, for the rigid case are
successful. However, for the case of similarity with anisotropic
scaling, the Simplex method (1.2%) fails 6 times as often as
the MRF-based method (0.2%). For the affine case, the Sim-
plex method (19.6%) fails 1.75 times as often as MRF-based
method (11.2%). Similar results are also obtained by using dif-
ferent thresholds. The second observation is that for the suc-
cessful registrations, the MRF-based method yields higher pre-
cision. Generally, the MRF-based method exhibits lower mean
and median errors, and the corresponding standard deviations
are also lower. The only exception is the rigid test, in which
the mean error for the Simplex method is lower. However, the
more robust median error is lower for the MRF-based method
also in this case.

With respect to the runtime, one must note that the MRF-
based optimization of the approximated energy is more compu-
tationally intensive than the Simplex optimization of the origi-
nal energy since it requires more similarity evaluations. Also,
the difference is smaller for simpler models, since the number
of evaluations needed for the evaluation of the approximated
MRF energy is smaller. For the performed random tests, the
average runtimes were 20.4 seconds for the rigid case, 45.6 sec-

lower and upper quartiles Q1, and Q3, i.e. the medians of the upper and lower
half of the sorted data; Median denoted by green line; Whiskers determined
by extreme values within Q1−1.5 IRQ and Q3+1.5 IRQ (interquartile range
IRQ = Q3−Q1); The mean and outliers denoted by blue crosses; Red lines at
Q1−1.5 IRQ, Q1−3 IRQ, Q3+1.5 IRQ, Q3+3 IRQ.
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Figure 7: Comparison between the original and approximated energy.
(a) A typical energy log. (b) The CC statistics between the logs of
all runs performed in Section 4.1 exhibit a high correlation (mean al-
ways >0.98), and indicate that correlation (and thus the approximation
quality) increases over iterations (cf. Section 3.1).

onds for similarity, and 85.6 seconds for affine transformations.

4.2. 3D Multi-Modal Rigid Registration
In this experiment we demonstrate the performance of the

proposed approach for a real multi-modal rigid registration sce-
nario, from the RIRE database. We perform the registration of
CT images to MR-PD, MR-T1, and MR-T2 images. As the
similarity measure, we use the entropy correlation coefficient
(ECC) proposed in [33]. A multi-resolution approach with 4
pyramid levels is used. The transformations are initialized by
aligning the intensity masses of the two volumes.

We perform two tests, the first one on data of one patient
with available ground truth which can be used for training, and
an extensive test on 10 patients, for which the evaluation is per-
formed by the RIRE system. For the training data set, ground
truth transformations between a CT volume and 6 MR images
of one patient (original and rectified scans) are given. We com-
pute the error by measuring the AD at the corner points of the
CT volume, using the ground truth.

In order to assess the accuracy of the proposed method, we
perform the same tests also by two other methods. The first one
is the Simplex optimization on the original ECC energy term, as
discussed in the previous sections. The second one is the mod-
ule of rigid registration from the Elastix toolkit6 [34]. With re-
spect to Elastix parameters, we did our best to provide a setting

6Available at: http://elastix.isi.uu.nl/
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Target Initial pre-al. Simplex Elastix MRF
MR-PD 67.61 26.52 2.79 2.74 2.90
MR-PD rect. 49.64 22.69 4.10 2.85 3.43
MR-T1 46.18 22.49 3.41 3.02 1.82
MR-T1 rect. 65.00 15.63 2.32 1.93 2.66
MR-T2 56.13 22.00 4.08 2.52 3.60
MR-T2 rect. 62.94 22.87 4.43 4.08 4.28

mean 57.92 22.03 3.52 2.86 3.11
median 59.54 22.59 3.75 2.80 3.17

Table 5: Results of the 3D multi-modal CT-MR registrations on train-
ing data, described in Section 4.2. Given is the initial AD (in mm)
before registration, after alignment of the intensity masses, and after
registration using the Simplex, Elastix, and our MRF-based method.

as similar as possible to the other two methods, and followed
the recommendations from the Elastix manual for other param-
eters. We use the same number of image pyramid levels, and
employ the Normalized Mutual Information (NMI) [35] as the
closest fit to the ECC. As the optimization method we selected
the adaptive stochastic gradient descent [36], for which the in-
ternal parameters are estimated automatically. The maximum
number of iterations was set to 250. We verified the validity
of the settings on the training data. The results show a similar
performance by the methods, with best average results obtained
by Elastix, followed closely by the proposed methods, and then
the Simplex based approach, please compare Table 5.

For obtaining comparable runtimes, the similarity evaluation
is performed on the CPU in this experiment. To decrease the
running time, we perform a subsampling strategy for all meth-
ods, in which 10% of voxels are uniformly drawn and used for
similarity computation. Our method performed on average 27
iterations per registration (ca. 7 per level), resulting in average
runtimes of 190 seconds. Elastix on average took 200 seconds,
and the Simplex method converged after 30 seconds. Please
note that due to the differences in the implementation of the
different methods, this gives only a rough estimate of the order
of magnitude for the runtimes. Furthermore, since the focus of
this work is not on the speed of registration, different tuning
options were not used. For example, while we employ 10% of
all voxels in the sub-sampling, it was shown in [37] that already
2000-3000 samples can yield accurate results, corresponding to
ca. 0.15% of all voxels on the finest level.

For the actual multi-modal test, we used all data sets from
the RIRE data base, for which the MR-PD, MR-T1, and MR-
T2 data sets are available, resulting in 10 patients with 3 regis-
trations per patient. All registrations were performed with the
same parameters as for the training data set. The evaluation is
performed by the RIRE system. The tests show a consistent per-
formance of the proposed method. Table 6 summarizes the re-
sults and shows that the proposed method consistently slightly
outperforms the other tested methods in terms of accuracy. Fur-
thermore, we performed the registrations with the MRF-based
method also with different settings of the internal parameters
in order to support the findings from Section 3.2. For N = 3
and α=0.6 the error statistics (in mm) are: mean=1.845, me-

(a) PD Initial (b) PD MRF Result

(c) T1 Initial (d) T1 MRF Result

(e) T2 Initial (f) T2 MRF Result

Figure 8: Checkerboard visualization of the multi-modal CT-MR reg-
istration using MRFs on patient P04.

dian=1.708, max=4.409. On average, 22 iterations were per-
formed per registration (ca. 5 per level), resulting in an average
computation time of 86 seconds. For N =17 with α=0.8, we
have: mean=1.746, median=1.695, max=3.849. On average,
33 iterations were performed per registration (ca. 8 per level),
resulting in an average computation time of 858 seconds.

In this scenario, the dependency on parameter settings is even
less prominent than in Section 3.2 so that even the smallest pos-
sible label set (N=3) leads to accurate and efficient results.

5. Application: Intensity-based 2D-3D Registration

The second exemplary application is the 2D-3D registration
of medical images, which shows the applicability of the pro-
posed framework to variations of the standard registration prob-
lem. 2D-3D registration is a challenging task, since a transfor-
mation of 3D space is computed from 2D measurements, so
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Mean Error Median Error Maximal Error
Target Simplex Elastix MRF Simplex Elastix MRF Simplex Elastix MRF
PD - P01 1.831 2.200 1.870 1.743 2.042 1.781 2.387 2.807 2.501
PD - P02 0.972 1.237 1.001 0.952 1.226 0.996 1.460 1.826 1.479
PD - P03 16.438 16.784 16.407 16.569 16.550 16.472 17.427 18.690 17.495
PD - P04 3.359 4.749 3.226 3.260 4.663 3.133 4.052 6.310 3.884
PD - P05 1.706 1.493 1.746 1.724 1.434 1.733 2.047 1.783 2.029
PD - P06 1.534 1.769 1.587 1.506 1.589 1.525 2.819 3.079 2.902
PD - P07 1.880 2.026 1.891 1.924 2.036 1.938 2.047 2.880 2.026
PD - P08 3.069 3.300 3.063 2.959 3.255 2.962 3.711 4.287 3.716
PD - P09 2.591 2.400 2.574 2.398 2.297 2.385 3.668 3.915 3.634
PD - P10 2.180 1.999 2.190 2.262 2.061 2.263 2.416 2.362 2.416

PD overall 2.067 2.226 2.078 2.005 2.018 1.986 4.052 6.310 3.884
T1 - P01 1.218 1.520 1.215 1.313 1.487 1.090 1.680 2.444 1.688
T1 - P02 0.592 0.723 0.608 0.695 0.705 0.690 0.820 1.069 0.872
T1 - P03 1.306 1.205 1.423 1.424 1.286 1.484 1.880 1.937 2.006
T1 - P04 2.080 1.944 2.126 2.206 2.057 2.274 2.873 2.240 3.003
T1 - P05 0.933 0.917 0.956 0.929 0.961 0.953 1.064 1.215 1.084
T1 - P06 1.253 1.288 1.253 1.186 1.327 1.148 2.159 2.088 2.301
T1 - P07 0.908 1.012 0.907 0.874 1.058 0.863 1.054 1.655 1.136
T1 - P08 1.775 2.020 1.886 1.818 1.937 1.954 1.971 2.364 2.068
T1 - P09 1.569 1.737 1.521 1.405 1.553 1.465 2.495 3.172 2.589
T1 - P10 1.417 1.175 1.296 1.416 1.241 1.302 1.458 1.377 1.395

T1 overall 1.275 1.334 1.286 1.259 1.230 1.154 2.873 3.172 3.003
T2 - P01 2.909 2.099 2.247 2.826 1.957 2.268 4.271 2.707 2.835
T2 - P02 2.132 1.370 1.512 1.938 1.364 1.414 3.647 1.898 2.636
T2 - P03 1.224 2.018 1.160 1.236 1.938 1.113 1.536 3.060 1.518
T2 - P04 2.817 3.541 2.899 2.793 3.569 2.696 3.245 4.192 3.647
T2 - P05 1.614 1.828 1.652 1.743 1.879 1.799 2.376 2.678 2.299
T2 - P06 1.266 1.264 1.276 1.210 1.222 1.240 2.094 2.232 2.324
T2 - P07 1.952 1.986 1.842 1.945 1.875 1.840 2.168 2.750 1.877
T2 - P08 2.673 3.053 2.686 2.575 2.975 2.580 3.099 3.748 3.556
T2 - P09 2.218 2.220 1.899 2.104 2.072 1.735 3.331 3.598 2.737
T2 - P10 2.027 2.110 1.799 2.080 2.106 1.804 2.374 2.900 2.076

T2 overall 2.053 2.085 1.856 1.979 1.950 1.853 4.271 4.192 3.647
OVERALL 1.789 1.870 1.729 1.743 1.815 1.739 4.271 6.310 3.884

Table 6: Results of the 3D multi-modal CT-MR registrations on patient data, described in Section 4.2, with α=0.6 and N =5. Given is the mean,
median and maximal error (in mm) after registration using the Simplex, Elastix, and our MRF-based method. The results for PD - P03 are not
taken into account, since all three methods failed in this case.

that for the 1-view case, the problem is ill conditioned in the
projection direction. In this application we also demonstrate
the robustness of the proposed method to high noise levels.

The task of 2D-3D registration is to recover a rigid 3D trans-
formation T which relates the coordinate frame of the 3D vol-
ume I to the coordinate system of the 2D imaging devices,
which generate the 2D projection images Jl. The transforma-
tion is estimated by optimizing the similarity measure ξ be-
tween the perspective projections of the transformed 3D image
Pl(I ◦ Tp) and the m available 2D images Jl

E2D3D(p) =
1
m

m∑
l=1

ξ
(
Pl(I ◦ Tp), Jl

)
, (15)

We apply our MRF-framework to the 2D-3D problem, by
using Equation (7) and approximate E2D3D as

Ẽ2D3D(p) =
1
|C2|

∑
{pi,pj}∈C2

ψ̃ij(pi, pj) , (16)

with

ψ̃ij(pi, pj) =
1
m

m∑
l=1

ξ
(
Pl(I ◦ Tpij ), Jl

)
. (17)

5.1. Evaluation
We assess the performance of the proposed approach by com-

paring it to the optimization of the original energy by the Sim-
plex method. In order to perform the evaluation in a controlled
setting, we conduct the 2-view tests on real 3D data, but with
synthetically created projections, compare Section 5.1.2. This
way, the choice of the similarity measure plays a smaller role
and we can compare the performance of the optimization ap-
proaches. This also has the advantage that we can test on a large
number of different views with known ground truth, rather than
performing the tests on only a few real views by randomly dis-
turbing the initialization. The robustness and applicability to
real settings is demonstrated in experiments by adding noise to
the projections. Furthermore, we test our algorithm in a more
challenging real 1-view test scenario in Section 5.1.3, in which
a real fluoroscopic image is used.
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(a) 3DCBR (b) DRR View 1 (c) DRR View 2

(d) Fluoroscopic Image (e) Noisy DRR View 1 (f) Noisy DRR View 2

Figure 9: Visualization of input data for the 2D-3D tests: (a) 3D cone beam reconstruction (3DCBR), which is used in all experiments; (b,c)
Exemplary DRRs which are computed in the iterations of the algorithm; (d) Fluoroscopic image used as target in the 1-view test; (e,f) Exemplary
DRRs with 20% uniform noise used as targets in the 2-view tests.

5.1.1. General Setting
As input data for the experiments we use a 3D cone beam re-

construction (3DCBR) of a phantom head with a cerebral ves-
sel structure, computed from a single sweep of a monoplane
stationary C-arm with flat-panel detector (Siemens Axiom Ar-
tis dTA). As 2D input we use a fluoroscopic image obtained by
the same device, with ground truth transformation obtained by
feature-based registration, and verified by careful inspection.
An overview of the data is given in Figure 9.

The 2D projections required inside the algorithm and syn-
thetically generated targets are computed as digitally recon-
structed radiographs (DRRs) by GPU accelerated ray-casting.
A conversion operator is used to remap the intensity values to
X-ray energies.

All tests are performed with a set of random offset poses.
The poses are generated by uniform random sampling of the
parameters from certain ranges. For the 2-view test, we have
t∈ [−30, 30]mm, and φ∈ [−80, 80]◦. For the 1-view test, we use
t∈ [−15, 15]mm, and φ∈ [−40, 40]◦. We evaluate the results by
the Target Registration Error (TRE). The TRE is computed as
the mean of the distances between a set of points transformed
by the ground truth transformation and the same point set trans-
formed by the estimated transformation. The point set consists
of points of a regular 10×10×10, 20cm large grid, centered at
the phantom head.

As the similarity measure we use the local version of the Nor-

malized Cross Correlation [38]. We also performed tests with
the Gradient Difference measure [38], with very similar results.

The registrations are performed with a standard multi-
resolution strategy using a Gaussian image pyramid. In all 2D-
3D experiments, the initial search space ranges for the MRF-
based method are ± 50mm for the translations and ± 90◦ for the
rotations. We use N = 7 and α= 0.66. For these settings, the
average registration run takes about 4 minutes. Again, differ-
ent parameter values were tested for the parameters, resulting
in very similar registration results.

5.1.2. 2-View Test with DRRs as Target Image

We carry out the 2-view test by performing 400 runs. In each
run, a new pair of orthogonal DRRs J1,J2 is generated by ap-
plying a random pose to the 3DCBR image. In order to test the
robustness of the approach in a challenging scenario, uniform
noise in the range of 20% of the intensities is added to all gen-
erated DRRs, please compare Figures 9e and 9f. The same test
was also performed without noise, yielding comparable results.
The tests show that both, the Simplex and the MRF approach
perform well, with a small number of failed registrations only
for very large initial misalignments, for details please compare
Figure 10.
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Figure 10: Results of 400 random 2-view test runs with 20% uniform noise. The x and y-coordinates of the graph points represent the TRE before
and after registration. The diagonal is the line of no improvement. (b) shows a zoom of the area of successful test runs.
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Figure 11: Results of the 200 random 1-view test runs with fluoroscopic image. In (a), the TRE is shown, while (b) illustrates the projection error.

5.1.3. 1-View Test with Fluoroscopic Image as Target

The second series of experiments is performed in a 1-view
scenario by registering the 3DCBR volume to a real fluoro-
scopic image. Here, we use 200 random poses as initial off-
sets to the 3D transformation. Similar to Section 4.1, we em-
ploy only the two coarsest levels of a five-level image pyramid
to speed up the computation (resulting in projection images
of size 128×128). Additionally to the TRE, we also evaluate
the Projection Error (PE), which is computed by projecting the
transformed 3D samples used for TRE computation to the im-
age and computing their mean distance. The PE measures the
pixel error visible in the image, such that it is not very sensitive
to misalignments in the viewing direction. By comparing the
TRE and PE measures in Figure 11, we observe that while the
PE is approximately the same for both approaches, the TRE (in
mm) is slightly better for the MRF-based approach (Simplex:
mean=27.48, median=15.43, std.=25.09; MRF: mean=14.7,
median=8.86, std.=14.8). With respect to the used resolution,
the minimal errors are within sub-voxel accuracy. This suggests
that the MRF optimization is able to better recover the transla-
tion along the viewing direction.

6. Overall Conclusion

In this paper we present an MRF-based framework for linear
intensity-based registration of medical images. The key idea is
to approximate the original energy corresponding to the cho-
sen similarity measure by tractable second-order terms. To our
best knowledge, this is the first time that an approach for linear
intensity-based registration based on MRFs and discrete opti-
mization is presented. The proposed model deviates from the
common MRF problem modeling since it involves only pair-
wise terms, which do not encode a regularization term but are
used as building blocks to represent the cost function. While
the number of parameters is lower than for classical MRF prob-
lems, the parameters are not localized in space, and they influ-
ence the problem globally and not only in their direct neigh-
borhood. The experimental evaluation confirms the quality of
the proposed approximation and shows that the method is not
sensitive to the setting of the internal parameters.

Furthermore, we demonstrate the applicability of the method
for standard mono- and multi-modal image registration, as well
as 2D-3D image registration. The registration experiments indi-
cate increased robustness and precision of the proposed method
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in comparison to standard optimization of the original energy
function. The 2D-3D experiments show the applicability of the
framework also to less well-conditioned problems, such as 1-
view 2D-3D registration. These tests also demonstrate the ro-
bustness of the method to high noise levels.

Regarding the computation time, we find that our method is
less efficient than the Simplex method due to the higher number
of similarity evaluations. However, our running times are simi-
lar to the stochastic gradient descent when using the same num-
ber of sub-samples. Further tuning options, such as reducing
the number of sub-samples were shown to decrease the compu-
tation time of the stochastic gradient descent with similar accu-
racy. This might also be an option for our method.

Due to the active development in discrete optimization, the
proposed method has a strong further potential as it allows to
transfer the advances in MRF optimization to linear registra-
tion problems, for example the integration of faster methods, or
upcoming methods for third-order models.
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