Few maths, lotsa demos

E
:
5

This page is a gathering of some mathematical stuff | found useful while coding demos. No code, a
priori. You might find that rather simplistic. | but agree: go read the Foley Van-Dam, or the Watt & Watt
books instead...:)

. All vectorial quantities/fields will be typed in CAPITAL, whereas scalar in lower case.
. Vector components will be accessed subscripted, when not independantly defined. For instance:
Vo = (Vo_x, Vo_y, Vo_z), or (xo, yo, zo) when defined.
. Color vectors will be denoted with angles, their components being r,g,b: [C];=(Cr,Cg,Cb)
. . stands for the scalar product if concerning vectorial fields, multiplication otherwise.
. is the vectorial product between two vector. Namely A”B is:
(Ay.Bz - Az.By)
(Az.Bx - Ax.Bz)
(Ax.By - Ay.BXx)

Used between scalar, it's the power raising operator. With matrices, M”-1is this matrix's inverse.
. We'll be here mostly dealing with polygons, and triangles in particular. For such a triangle defined
by its 3 vertices (Vo,V1,V2), we will defined dF1 to be dF1 = F1 - Fo, for any field F defined over
this triangle, and having values (Fo,F1,F2) at the vertices (Vo,V1,V2).
Similarly, dF2 = F2-Fo and dF12 = F2-F1 (less used, however).
For instance, the vector dV1 is V1-Vo, an edge of the triangle, having coordinate (dx1,dy1,dz1),
i.e (x1-xo, yl1-yo, z1-z0).
. At a point Po of an object's surface, we'll define several vectors most models will use:
* The normal N, whose euclidian norm is 1, pointing OUTSIDE the object. This vector is the
one perpendicular to the plane best approximating the object in the neighbourhood of Po.
For a surface given by f(x,y,z)=0, it is given by (df/dx, df/dy, df/dz). For a triangle defined by
its 3 vertices, this normal is given by the normalized vectorial product dvV1 * dV2.

* The view vector V, also normalized to 1. It is given by V = Vo - Po, Vo being the
observer's (camera) position.

* The light vector L, normalized to 1. It is given by L = Lo - Po, Lo being the light's position.
. With this three vectors, one defines 2 new useful ones:
* The reflected vector R. It is the symetrical of V around N:
R=2(N.V)N-V
It is automatically normalized to 1if Vand Nare. It is belonging to the same half-space
(bounded by the tangent plane Tporthogonal to Nand passing throught Po) as V. Thanks to

refraction laws :). Of course, we have N.V = N.R.

* The transmitted vector T. It is given by the refraction law: nl.sin(al) = n2.sin(a2). nl1
and n2 are the refraction indices (>=1) of the media 1 and 2, al and a2 are the angle of

http://localhost/~wagnerm/maths/maths.htm (1 of 6) [01.04.2003 8:40:14 Uhr]

http://skal.planet-d.net/demo/demos.html
http://skal.planet-d.net/demo/index.html
http://skal.planet-d.net/demo/demos.html

Few maths, lotsa demos

entering and transmitted light rays with respect to N.
Taking V as entering vector and belonging to medium 1, we have:

T=[n(N.V)-cos(a2)]N-nV

where: n = n1/n2 = sin(a2)/sin(al). You'll get cos(a2)from that...

It is automatically normalized to 1 if V and N are. It is belonging to the other half-space than
V.

Anmosphere

Figl: all what we've just defined...

. Scale-Rotation-Translation
Having an object's point Po (a poly vertex, e.g.) defined in the basic frame, one wants to
transform it in the world's referential. Namely: apply a scale transformation, then a rotation, and
eventually a translation to this object. Well, just compose the corresponding matrices and apply
the resulting one to the original vector !
What are this matrices ? One can use 4x4 matrices, using generalized -four dimensional-
coordinates, but it's mostly useful when one want to consider perspective transformation (see
below) as a matrix like others. That we won't, since perspective transform is more efficiently
coded (methink :) when considered independantly from 3D transformations (making demo is
not writting a general renderer - yet - :).
So, rotation of an angle ax around the X-axis, followed by an rotation of ay around the Y-axis,
plus a rotation of az around the Z-axis is given by the application of the following matrix:

Rz(az)o Ry(ay)oRx(ax) =

cz.cy, CZ.SYy.SX - SZ.cCX, CZ.SYy.CX + SZ.SsX
sz.cy, SZ.SYy.SX + CZ.cCX, SZ.SYy.CX - CZ.SX
- sy, Cy. SX, Cy. CcX

where

http://localhost/~wagnerm/maths/maths.htm (2 of 6) [01.04.2003 8:40:14 Uhr]

Few maths, lotsa demos

cx = cos(ax), sx =sin(ax)
cy =cos(ay), sy =sin(ay)
cz=cos(az),sz=sin(az)

. Some useful facts about matrix:
* Applying a matrix to a vector is done by multiplying on left: P = M.Po
* Taking the transpose of a matrix product reverses the order: t(A.B.C) = tC.tB.tA
Same thing for inversion: (A.B)*-1 = BM-1 . AM-1...
* Rotations in 3D do *not* commute. RXx 0 Ry 0 Rz != Rx 0 Rz o Ry. It would be too easy :)
* Inversion of a rotation matrix is easy, thanks to isometry property: just take the transpose !
* Always the same ol' dilemna with contra/co-variant tensors:
Normals are axial vectors (they can be written like a vectorial product). Hence if you're
transforming point Po with the matrix M, the normal attached to this point must be
transformed with t(M"-1). Lucky you, if M is only a rotation matrix, t(M~-1) = M. But be
careful when scaling are concerned ! Moreover, transforming a normal does not deal with
the translational components of the object !

A bit of explanation about where this comes from: take any vector Vo orthogonal to a
normal No. Transformed by M, the vector will be sent to V = M.Vo. If one wants the
tangential property Vo.No = 0 to still hold after the transformation (i.e. that N.vV=0), what
should be the matrix being applied to No ? Yep, t(M"-1).

Digression about quaternions
Quaternions are useful to represent and interpolate rotations in 3D space.

First, what is a quaternion ?

It's a generalization of complex numbers in 4 dimensions. The quaternion space has 4 vectors as
basis: 1, i, j and k. Whereas the additive rule is 'classical’, the multiplication follows the rules: ij = -ji = k,
plus the corresponding relation after cyclic permutation of (i,j,k). Hence, multiplication is *not*
commutative with quaternion.

You can represent a quaternion with a scalar s and a tri-dimentional vector V with: g=s+i.Vx+).Vy+k.Vz,
hence notated q = (s,V).

Now, you can check that a multiplication of 2 quaternions g1 = (s1,V1). and g2 = (s2,V2). is: q1.92 =
(s1.s2-V1V2,s1V2+s2V1+V1xV2). This notation has the advantage of using the 3d operation
‘dot product' and ‘cross product' (and making appear clearly that the non-commutative-ness is due to
the presence of this cross product).

The conjugate of a q=(s,V) is !q=(s,-V) and its norm is |g|*2 = g.!q.

Now, the main trick:
Take any 3d-vector V, make it quaternionic: v=(0,V). Now take the quaternion r=(cos t/2, sin t/2.N),
whose norm is 1. tis an angle, and N a unit 3d axis.

Now, compute v'=r.v.r'*1. You'll realize (the expression is heavy... | won't write it here :) that v' has the
form: v'=(0,V") where V' is the vector deduce from R by a rotation of axis N and of angle t !!

Hence, you can *also* represent a rotation with a quaternion (r) which accounts for 4 parameters (3 if
you recall that r has norm equal to 1), instead of usual representation. What's the advantage ? Since
this quaternion are embedded in a four-dimensional space, it allows much more freedom while
interpolating the corresponding rotation.

The correspondance is done as follow: a unit quaternion r=(W,X,Y,Z) correspond to the following
rotation matrix:

http://localhost/~wagnerm/maths/maths.htm (3 of 6) [01.04.2003 8:40:14 Uhr]

Few maths, lotsa demos

1-2Y12-27"2, 2XY-2WZ, 2XZ+2WY
2XY+2WZ, 1-2X12-272, 2YZ-2WX
2XZ-2WY, 2YZ+2WX, 1-2X"2-2Y"2

So you can convert easily between quaternion,rotation, and rotation matrix... Here are some additional
infos about quaterions.

So, if you want an object's rotation to be interpolated from, say, R1 to R2, just transform these rotation
into corresponding quaternions rl and r2, interpolate in quaternion space between these two, and
transform back this interpolated quaternion into a rotation matrix: you'll then have the intermediate
object's positionning.

Beware, you just can't simply interpolate linearly !! The norm of the interpolated quaternion between r1
and r2 *must* be 1 if you want it to represent a intermediate rotation. This is tricky.

Space transforms

Soresn

Fig2: Planar/spherical perspective

. Planar perspective transform:
Perspective transformation is the fact of projecting a 3-dimensional points P on a 2-D
dimensional surface -the screen-. You draw the line between P it and the camera’s position
(assuming this camera is centered at the origin, looking along the Z-axis), and find out where this
line intersects a plane perpendicular to the Z-axis, at a distance z = D from the camera. It's:

(X,y,2z)=>(xs=Dux/z,ys=D.y/z)

...and you scale that to fit your (real) screen size...

. Spherical perspective transform: If you want to project points on a spherical screen (fish-eye
effect) of radius R, just take:

(x,y, z)=>(xs =R/pi.atan(x/z), ys = R/pi.atan(y/z))

(for numerical reason, | but recommend making two different cases when x/z>1 and x/z<1. And
use atan2() instead of atan(), just to be safe with signs)
. Cylindrical perspective transform: Just mix the two above :)

Lighting models

http://localhost/~wagnerm/maths/maths.htm (4 of 6) [01.04.2003 8:40:14 Uhr]

http://mathworld.wolfram.com/Quaternion.html
http://mathworld.wolfram.com/Quaternion.html

Few maths, lotsa demos

So, you've got an object's point Po, illuminated with a light located at Lo, and viewed from position Vo
(see Figl). What should be this point's color ? There are many possible models, here are some
examples:

. Ambient light: just take a constant color [Co], supposed to be the object's one.
It models the ambient light of the environment the object is put in. Radiosity tries to model this
more accuratly, but shouldn't be considerated further here (for CPU's sake :)

. Diffuse lighting: A basic diffuse color [Cd], but scaled (i.e. each R,G,B channels. That's what's
great with R,G,B model) accordingly to the diffuse illumation coefficient cos(b) = (N.L).
One can also use raised to certain power nd:

[C] = [Cd].(N.L)*(nd)

. Phong model: this takes in account a certain reflective property of the material, hence reflecting
all the more light than it's in the reflected direction.

[C]=[Cp].(R.L)n)

Here, n accounts approximatively to the light's size throught the highlight this model produces on
the object's surface. Take n ~= 30, and you'll have a flat hightlight. Take it ~= 200, and you'll
have a tiny one...

. Other models: some more physically-based models are available (Blinn, Cook-Torrance,...), but
of little use when demos are at stake, since accuracy is less the matter than natural-
looking/speed considerations. With the 3 above, plus some reflection/env/texture mapping, most
effects will be great. Just adapt the [Co], [Cd], [Cp] coeffs...

Fig3: The poly we want to scan convert

Consider a polygon defined by its vertices (Vo,V1,V2), projected on the screen to points (Po,P1,P2) (
Vi are three-dimensional points, Pi two-dimensional ones...). We also have a field F defined at the
vertices throught its values (Fo,F1,F2) and we want to interpolate it over the whole polygon, under a
scan-line basis. F can be the color, the diffuse component, the U coordinate in a texture, anything...

We have sorted (3 lines of code) the vertices with respect to their y coordinates. We now have to
process the triangle between its vertices Po and P1, and then the part between vertices P1 and P2,
which is done almost the same way the first is...

. Basic interpolation:
It consists of linearly interpolating F with respect to the *SCREEN* coordinates (Po,P1,P2) of the
projected vertices. Perspective correction will consist in the same, but applied to the *SPACE*

http://localhost/~wagnerm/maths/maths.htm (5 of 6) [01.04.2003 8:40:14 Uhr]

Few maths, lotsa demos

coordinates (Vo,V1,V2).

Our scan-line S will go from Po to P1 as the variable t goes from 0.0 to 1.0. Actually, t = (y-
yo)/(y1l-yo). It intersects the edges of the triangle on the initial point Pi and the final one Pf (we're
scanning from left to right. That's the opposite of what a code should do, but we're not coding :).
The field values at Pi and Pf are:

Fi = Fo + tdF1
Ff = Fo + t*dF2

Now, we're going from Pi to Pf, interpolating along the X-axis with a variable s = (x-xi)/(xf-xi) also
going from 0.0 to 1.0. The desired field value is just:

F = Fi + S*(Ff-Fi)

. Perspective correction (planar projection only):

The problem with the previous scheme comes from Pi, the
interpolated point between the *screen* points Po and P1.
If we re-project Pi on the *real* poly, we obtain Vi. But...
the equivalent of the ratio t = (y-yo)/(y1-yo) for the space
vertices ist' = (Vi_y-Vo_y)/ (V1_y-Vo_y), which is not
egal to t.

The real relation between t and t' is:

t=t/(1+(1t).e)

heree =(V1_z-Vo_z)/Vo_z.
Hopefully, e is generally small. It is assumed null for the
Polygon usual, linear, mapping.

™ '.lll.'-l

So, are we left with an awful additional div/pixel to do
perspective correction ? Not really: since e is small, you
can approximate the div with:

1/(1+(1t.e)~=1-(11).e

which can be incrementally coded...

Here some rather old but still useful resources I've substracted from Internet oblivion:

. The quaternion/matrix FAQ

. fatmap.txt Made by Mats Byggmastar, it's about coding UV mapper efficiently...

. The comp.graphics.algorithms FAQ. Always a good basis.

. OPTIMIZE.TXT A text (originally by Michael Kunstelj) about what's going on in a CPU, Penti*m
especially.

. DJASM.TXT What's the AT&T syntax for ASM, by avly@remus.rutgers.edu.

skal@planet-d.net

http://localhost/~wagnerm/maths/maths.htm (6 of 6) [01.04.2003 8:40:14 Uhr]

http://skal.planet-d.net/demo/tmap1.html
http://skal.planet-d.net/demo/matrixfaq.htm
http://skal.planet-d.net/demo/algo.faq
http://skal.planet-d.net/demo/optimize.txt
http://skal.planet-d.net/demo/djasm.txt
mailto:skal@planet-d.net

Matrix and Quaternion FAQ

Matrix and Quaternion FAQ

g
:
=]
>

The Matrix and Quaternions FAQ

Version 1.2 2nd Septenber 1997

This FAQ i s mui ntained by "hexapod@etcom com'. Any additional suggestions
or related questions are wel cone. Just send E-nail to the above address.

Feel free to distribute or copy this FAQ as you pl ease.

Contri buti ons

Introduction 11: steve@red. bgmlink.com

| nt roducti on

1. Inportant note relating to OpenG and this docunent

Questions

Q VWhat is a matrix?

Q@. What is the order of a nmatrix?

(B. How do | represent a matrix using the C C++ progranm ng | anguages?
0]

b

What are the advantages of using nmatrices?
How do nmatrices relate to coordi nate systens?

ARl THVETI C

Q6 What is the identity matrix?

Q7 What is the major diagonal matrix of a matrix?
XB. Wat is the transpose of a matrix?
02]
Q

How do add two matrices together?

: I
0. How do | subtract two matrices?
Qll. How do | nmultiply two nmatrices together?
I
I

Ql2. How do square or raise a matrix to a power?
Q1l3. How do multiply one or nbre vectors by a matri x?

DETERM NANTS AND | NVERSES

Q4. What is the deternm nant of a matrix?
Ql5. How do | calculate the determ nant of a matri x?
Ql6. VWhat are |Isotropic and Anisotropic nmatrices?

http://localhost/~wagnerm/maths/matrixfaq.htm (1 of 37) [01.04.2003 8:40:58 Uhr]

http://skal.planet-d.net/fractals/index.html
http://skal.planet-d.net/index.html
http://skal.planet-d.net/coding/index.html
mailto:hexapod@netcom.com
mailto:steve@mred.bgm.link.com

Matrix and Quaternion FAQ

Ql7. What is the inverse of a matri x?

Q18. How do | calculate the inverse of an arbitary matri x?

Q9. How do | calculate the inverse of an identity matrix?

Q0. How do | calculate the inverse of a rotation matrix?

Q@1. How do | calculate the inverse of a matrix using Kraner's rul e?
Q@2. How do | calculate the inverse of a 2x2 matrix?

@3. How do | calculate the inverse of a 3x3 matrix?

Q4. How do | calculate the inverse of a 4x4 matri x?

25. How do | calculate the inverse of a matri x using linear equations?
TRANSFORNVS

Q@6. Wat is a rotation matrix?

Q7. How do | generate a rotation matrix in the X-axis?

8. How do | generate a rotation nmatrix in the Y-axis?

Q9. How do | generate a rotation matrix in the Z-axis?

@B0. What are Euler angles?

@B1. What are yaw, roll and pitch?

B2. How do | conbine rotation natrices?

@®B3. What is G nbal Lock?

XB4. What is the correct way to conbine rotation matrices?

(B5. How do | generate a rotation matrix from Eul er angl es?

(B6. How do | generate Euler angles froma rotation matri x?

B7. How do | generate a rotation matrix for a selected axis and angle?
(B8. How do | generate a rotation natrix to map one vector onto another?

XB9. Wat is a translation matri x?

A40. Wat is a scaling matri x?

A1, Wat is a shearing matrix?

2. How do | performlinear interpolation between two nmatrices?
A3. How do | performcubic interpolation between four matrices?
4. How can | render a matrix?

QUATERI ONS

M45. What are quaternions?
Q46. How do quaternions relate to 3D ani nati on?

QA47. How do | convert a quaternion to a rotation matrix?

A48. How do | convert a rotation nmatrix to a quaternion?

QA49. How do | convert a rotation axis and angle to a quaternion?

B0. How do | convert a gquaternion to a rotation axis and angl e?

B1l. How do | convert a spherical rotation angles to a quaternion?
B2. How do | convert a quaternion to a spherical rotation angles?
B3. How do | use quaternions to performlinear interpolation between
matri ces?

4. How do | use quaternions to performcubic interpolation between
matri ces?

| ntroducti on

http://localhost/~wagnerm/maths/matrixfaq.htm (2 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

In this docunment (as in nost math textbooks), all matrices are drawn
in the standard mat hemati cal manner. Unfortunately graphics |ibraries
like Iris@, OpenG and SA's Performer all represent themw th the
rows and col utmms swapped.

Hence, in this docunent you will see (for exanple) a 4x4 Transl ation
matri x represented as foll ows:

| 1 0 0 X
I I
| 0 1 0 VY
M= | |
| 0 0 1 Z|
| |
| 0 0 0 1
In Perfornmer (for exanple) this would be popul ated as foll ows:
MOJ[1] = MOJ[2] = MOJ[3] =
M1][0] = M1][2] = M1][3] =
M2][0] = M2][1] =M2][3] =0 ;
MOJ[O] = M1J[1] =M2][2] =ni3][3] =1 ;
M3][0] = X
M3JI[1] =Y
M3][2] =Z;

ie, the matrix is stored like this:

MoOlI[0] M1]J[0] MZ2][0] M3][Q]
MoJ[1] MI1J[1] M2][1] M3][1]
MOJ[2] M1][2] M2][2] M3][2]
MOI[3] M1J[3] MZ2][3] M3][3]

OpenGL uses a one-dinensional array to store matrices - but fortunately,
t he packing order results in the sanme |ayout of bytes in nmenory - so
taking the address of a pfMatrix and casting it to a float* will allow
you to pass it directly into routines |like gl LoadMatri xf.

I |
I I
I I
M= | |
I I
I I
| |

In the code snippets scattered throughout this docunent, a one-

di mensi onal
array is used to store a matrix. The ordering of the array elenents is
transposed with respect to OQpenG..

Thi s Docunent OpenCGL

| 0 1 2 3 | | 0 4 8 12

| I I I

| 4 5 6 7 | | 1 5 9 13|
M= | | M= | |

| 8 9 10 11 | | 2 6 10 14 |

| I | I

| 12 13 14 15 | | 3 7 11 15 |

Basi cs

http://localhost/~wagnerm/maths/matrixfaq.htm (3 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

A mtrix is a two dinmensional array of nuneric data, where each
row or columm consists of one or nore nuneric val ues.

Arithrmetic operations which can be performed with matrices include
addition, subtraction, nultiplication and division.

The size of a matrix is defined in terns of the nunmber of rows
and col ums.

Anmatrix with Mrows and N colums is defined as a MKN matri Xx.

I ndi vi dual elenments of the matrix are referenced using two index
val ues. Using mat hematical notation these are usually assigned the
variables '"i' and 'j'. The order is row first, colum second

For exanple, if a matrix Mwi th order 4x4 exists, then the el enents
of the matrix are indexed by the foll ow ng row col um pairs:

| 00 10 20 30 |
| 01 11 21 31 |
| 02 12 22 32 |
| 03 13 23 33 |

The el enment at the top right of the matrix has i=0 and j=3
This is referenced as fol |l ows:

M =M
i 0,3

In conputer animation, the nost commonly used matrices have either
2, 3 or 4 rows and colums. These are referred to as 2x2, 3x3 and 4x4
matrices respectively.

2x2 matrices are used to performrotations, shears and other types
of 1mage processing. General purpose NxN matrices can be used to
perform i mage processing functions such as convol uti on.

3x3 matrices are used to perform | ow budget 3D ani mati on. Operations
such as rotation and nultiplication can be perfornmed using matrix
operations, but perspective depth projection is performed using
standard optim sed into pure divide operations.

4x4 matrices are used to perform high-end 3D ani mati on. Operations
such as nmultiplication and perspective depth projection can be
performed using matri x mat hemati cs.

Q@. What is the "order" of a matrix?

The "order"” of a matrix is another nane for the size of the matri x.
A mtrix with Mrows and N columms is said to have order MN

http://localhost/~wagnerm/maths/matrixfaq.htm (4 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

The sinplest way of defining a matrix using the C C++ progranm ng
| anguages is to nmake use of the "typedef" keyword. Both 3x3 and 4x4
matrices may be defined in this way ie:

typedef float MATRI X3[9];
t ypedef fl oat MATRI X4[16] ;

Since each type of matrix has di nensions 3x3 and 4x4, this requires
9 and 16 data el enments respectively.

At first glance, the use of a single linear array of data val ues may
seem counter-intuitive. The use of two dinensional arrays nmay seem
nore conveni ent ie.

t ypedef float MATRI X3[3][3];
typedef float MATRI X4[4][4];

However, the use of two reference systens for each matrix el enent
very often |leads to confusion. Wth mathenetics, the order is row
first (i), colum second (j) ie.

M
Usi ng C/ C++, this becones

matrix[j][i]

Usi ng two di nensional arrays also incurs a CPU performance penalty in
that C conpilers will often make use of nultiplication operations to
resol ve array index operations.

So, it is nore efficient to stick with Iinear arrays. However, one issue
still remains to be resolved. How is an two di nensional matrix mapped
onto a linear array? Since there are only two nmethods (row first/colum
second or columm first/row col umm).

The perfornmance di fferences between the two are subtle. If all for-next
| oops are unravelled, then there is very little difference in the
performance for operations such as matrix-matrix multiplication.

Usi ng the C/ C++ progranm ng | anguages the |inear ordering of each
matrix is as foll ows:

mat[0] =M mat[3] =M
00 03
mat[12] = M mat [15] = M
30 33
| 0 1 2 3|
| I | 012]
| 4 5 6 7| | |
M= | | M=] 345
| 8 9 10 11 | | |

http://localhost/~wagnerm/maths/matrixfaq.htm (5 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

| I | 678 |
| 12 13 14 15 |

. Wat are the advantages of using matrices?

One of the first questions asked about the use of matrices in conputer
animation is why they should be used at all in the first place.
Intuitively, it would appear that the overhead of for-next |oops and
matrix multiplication would sl ow down an application.

Argunents that resolve these objections can be pointed out. These

i ncl ude
the use of CPU registers to handl e | oop counters on-board data caches
to optim se nmenory accesses.

Advant ages can al so be pointed out. By foll owing a mat hemati cal approach
to defining 3D algorithns, it is possible to predict and plan the

design of a 3D animation system Such mat hematical approaches all ow

for the inplenentation of character animtion, spline curves and inverse
ki nemati cs.

However, one objection that frequently conmes up is that it would be
qui cker to just nultiply each pair of coordinates by the rotation
coefficients for that axis, rather than performa full vector-matrix
mul tiplication

ie. Rotation in X transforns Y and Z
Rotation in Y transforns X and Z
Rotation in Z transforns X and Y

The argunent to this goes as foll ows:
Gven a vertex V = (x,y,z), rotation angles (A B and C) and translation

(D,E,F). A the algorithm
is defined as foll ows:

sx = sin(A) /1l Setup - only done once
cx = cos(A)
sy = sin(B)
cy = cos(B)
sz = sin(Q

cz = cos(0O

x1 = x*cz+ y * sz // Rotation of each vertex
yl = y * cz - X * sz
z1 = z

X2 = x1 * cy + z1 * sy
y2 = z1
z2 =21 * cy - x1 * sy
X3 = x2
y3 = y2 * ¢cx + z1 * sx
z3 =22 * cx - x1 * sx

Xr = x3 + D /1 Transl ation of each vertex

http://localhost/~wagnerm/maths/matrixfaq.htm (6 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

y3 + E
z3 + F

yr
zr

Al together, this algorithmw Il use the follow ng anobunts of processing

tine:

6 trigononetric functions
6 assi gnnment operations.

Per -vert ex

12 assi gnnent
12 mul tiplication
9 addition

Assune that the same operations is being perfornmed using matrix

mul tiplication

Wth a 4x4 matrix, the procesing tine

Set - up Change
6 trigononetric functions 0
18 assi gnnment operation -12
12 mul tiplication +12
6 subtraction +6

is used as follows:

Per - vertex Change
0

3 assignnent -9

9 nultiplication -3

6 addition -3

Conmparing the two tables, it can be seen that setting up a rotation
matri x costs at least 12 nmultiplication calculations and an extra

18 assignnent calls.

However, while this my seem extravagant, the savings cone from
processi ng each vertex. Using matrix nultiplication, the savings nade

fromprocessing just 4 vertices, wll
cost.

out wei gh the additional set-up

. How do matrices relate to coordinate systens?

Wth either 3x3 or 4x4 rotation, translation or shearing matrices, there

is a sinple relationship between each
coordi nate
system

matrix and the resulting

The first three colums of the matri x define the direction vector of the

X, Y and Z axii respectively.

If a 4x4 matrix i s defined as:

zZ—m>
ZwTm
OXM®O
U IO

I I
M= | I
I I
I I

Then the direction vector for each axis is as foll ows:

X-axis = [AEI]

http://localhost/~wagnerm/maths/matrixfaq.htm (7 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

Y-axis = [BF J]
Z-axis = [CGK]
Arithnetic

The identity matrix is matrix in which has an identical nunber of rows

and colums. Also, all the elenments in which i=] are set one. Al others

are set to zero. For exanple a 4x4 identity matrix is as follows:

[cN ool
oOOoOr o
o OO
O OO

The maj or diagonal of a matrix is the set of elenents where the
row nunmber is equal to the col unm nunber ie.

M where i =]

i
In the case of the identity matrix, only the elenents on the major
di agonal are set to 1, while all others are set to O.

The transpose of matrix is the matri x generated when every elenent in
the matrix is swapped with the opposite relative to the major di agona

Thi s can be expressed as the mathematical operation:

M =M
ij ji
However, this can only be perfornmed if a matri x has an equal nunber
of rows and col umms

If the matrix Mis defined as:
| 0.707 -0.866
M= | I
| 0.866 0.707
Then the transpose is equal to:
| 0.707 0.866
T =] I
| -0.866 0.707

http://localhost/~wagnerm/maths/matrixfaq.htm (8 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

If the matrix is a rotation matrix, then the transpose is guaranteed
to be the inverse of the matrix.

@®. Howdo | add two matrices together?

The rule of thunb with adding two matrices together is:
"add row and columm to row and col um"
This can be expressed mathematically as:

R =M +L
ij ij ij
However, both matrices nust be identical in size.

For exanple, if the 2x2 matrix Mis added with the 2x2 matrix L then
the result is as follow

R=M+1L

A+J B+K C+L |

I

| I
= | D+M E+N F+O |

I

I

I
G-P H+Q | +R |

Q0. How do | subtract two matrices?

The rule of thunb with subtracting two matrices is:
"subtract row and colum fromrow and col um"

This can be expressed mat hematically as:

However, both matrices nust be identical in size.

For exanple, if the 2x2 matrix L is subtracted fromthe 2x2 matrix M
t hen
the result is as foll ows:

R=M- L
| ABC| | JKL|
I | I
=| DEF| - | MNO|

http://localhost/~wagnerm/maths/matrixfaq.htm (9 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

A-J BKCGL |

|

| I
=| DMENF-O |

|

|

I
GPHQI-R |

Q1. Howdo | nultiply two matrices together?

The rule of thunb with nultiplying two matrices together is:
"multiply rowinto colum and sumthe result".

This can be expressed mathematically as:

i=1
If the two matrices to be nultiplied together have orders:
M= AxB and L = CxD
then the two values B and C nust be identical.
Al so, the resulting matrix has an order of AxD

Thus, it is possible to multiply a 4xN matrix with a 4x4 matrix
but not the other way around.

For exanple, if the 4x4 matrix Mis defined as:

| ABCD|
M=| EF GH|
| 1 J KL |
| MNOP |
and a 4x2 matrix L is defined as:
L=] QR
| ST
| UV |
| WX |

then the size of the resulting matrix is 2x4. The resulting matrix
is defined as:

R=Mx L
| ABCD| | QR
=| EFGH| x| ST|
| 1 JKL| | UV|
| MNOP| | WX |

http://localhost/~wagnerm/maths/matrixfaqg.htm (10 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

| AQ+BS+CU+DW AR+BT+CV+DX |
= | EQ+tFS+tGHHW ER+FT+GV+HX |

| 1 QrISHKU+LW | R+JT+KV+LX

| MANS+OUHPW NMR+NT+OV+PX

QL2. How do | square or raise a matrix to a power?

A matrix may be squared or even raised to an integer power. However
there are several restrictions. For all powers, the matrix nust be
orthogonal ie. have the sanme wi dth and hei ght

For exanpl e,

-1
M is the inverse of the matrix

0
M generates the identity matrix

M | eaves the matrix undanaged.

M squares the matrix and

3
M generates the cube of the matrix

Raising a matrix to a power greater than one involves multiplying a
matri x

by itself a specific nunmber of tines.
For exanpl e,

2
M =M. M

3
M =M. M. M

and so on.

Rai sing the identity matrix to any power always generates the identity
matrix ie.

Q3. Howdo | nultiply one or nore vectors by a matrix?

The best way to performthis task is to treat the list of vectors as
a single matrix, with each vector represented as a colum vector.

If N vectors are to be nultiplied by a 4x4 matrix, then they can be

http://localhost/~wagnerm/maths/matrixfaqg.htm (11 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

treated as a single 4xN matri x:

If the matrix is defined as:

|
M= |
|
|

zZ—m>
ZoeT W
OXOO
T IO

I
I
|
I
and the list of vectors is defined as:

x1l x2 x3 x4 x5]|
yl y2 y3 y4 y5|
z1 z2 z3 z4 z5|
1

|
Vo= |
|
| 1 1 1 |

Note that an additional row of constant terns is added to the vector
list, all of which are set to 1.0. Inreal life, this row does not
exist. It is sinply used to nake the orders of the matrix M and the

vector list V match.

Then the multiplication is performed as foll ows:

M. V=V
| ABCD)| | x1 x2 x3 x4 x5 | | A x1+B.yl1l+C z1+D A x2+B.y2+C. z2+D
.I L FGH]| . | yly2y3y4y5 | =| E x1+F.yl+G z1+H E. x2+F.y2+G z2+H
.I l J KL | | z1 z2 y3 y4 z5 | | I.x1+4J.y1+K z1+L |.x2+J.y2+K z2+L
..I h NOP| | 1 1 1 1 1 | | Mx1+N.y1+0O z1+P M x2+N.y2+0. z2+P
.
For each vector in the list there will be a total of 12 nmultiplication

16 addition and 1 division operation (for perspective).

If the matrix is known not to be a rotation or translation matri x then

t he
di vi si on operation can be ski pped.

Determ nants and | nver ses

Ql4. What is the determ nant of a matrix?

The determinant of a matrix is a floating point value which is used to
i ndi cate whether the matrix has an inverse or not. |If negative,
no i nverse exists. If the determinant is positive, then an inverse

exi sts.

For an identity matrix, the determnant is always equal to one.

Any matrix with a determinant of 1.0 is said to be isotropic.

Thus all rotation nmatrices are said to be isotropic, since the
determ nant is always equal to 1.0.

This can be proved as foll ows:

http://localhost/~wagnerm/maths/matrixfaqg.htm (12 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

| A B | | cos X -sin X|
M= | | =1 I
| CD| | sin X cos X
D= AD - BC
D=(cos X. cos X) - (-sin X. sin X
2 2
D= (cos X) + (sin X
2 2
But, cos X + sin X =1
Ther ef or e,
D=1

Ql5. How do | calculate the determ nant of a matri x?

The determinant of a matrix is calculated using Kraner's rule, where
the val ue can be cal cul ated by breaking the matrix into smaller
mat ri ces.

For a 2x2 matrix M the determnant Dis calculated as follows:

| AB|
M= | |
| CD|
D=AD- BC

For 3x3 and 4x4 matrices, this is nore conplicated, but can be sol ved
by net hods such as Kraner's Rule.

QL6. What are Isotropic and Anisotropic matrices?

An lsotropic matrix is one in which the sumof the squares of al
three rows or colums add up to one.

A matrix in which this is not the case, is said to be Anisotropic.

When 3x3 or 4x4 matrices are used to rotate and scale an object, it
is sonetinmes necessary to enlarge or shrink one axis nore than the
ot hers.

For exanple, with seism c surveys, it is convenient to enlarge the
Z-axis by a factor or 50 or nore, while letting the X and Y axii
remai n the sane.

Anot her exanple is the inplenentation of "squash" and "stretch"

wi th character animation. Wien a character is hit by a heavy object
eg. an anvil, the desired effect is to character stretched out

si deways and squashed vertically:

A suitable matri x would be as foll ows:

http://localhost/~wagnerm/maths/matrixfaqg.htm (13 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

|
M= |
|
|

coooo
P OOoOo

CQOON
O ONO

However, there is problem | oom ng ahead. While this matrix will cause
no problens with the transformati on of vertex data, it will cause
probl enms with gouraud shadi ng usi ng outward nornal s.

Because the transformation stage is inplenented using matrix
mul tiplication, both vertex data and outward normal data will be
multiplied with this matrix.

While this is not a problemwith vertex data (it is the desired effect)
it causes a maj or headache with the outward nornmal dat a.

After raw nultiplication, each outward normal will no | onger be
normal i sed and consequently will affect other cal cul ations such as
shadi ng and back-face culling.

QL7. What is the inverse of a matrix?

-1
Gven a matrix M then the inverse of that matrix, denoted as M , is
the matrix which satisfies the foll ow ng expression:

-1
M. M =

where | is the identity matrix.

Thus, nmultiplying a matrix with its inverse will generate the identity
matri x. However, several requirenments nust be satisfied before the
inverse of a matri x can be cal cul at ed.

These include that the width and height of the matrix are identical and
that the determ nant of the matrix i s non-zero.

Calculating the inverse of a matrix is a task often performed in order

to inmplenent inverse kinematics using spline curves.

Q8. How do | calculate the inverse of an arbitary matri x?

Dependi ng upon the size of the matrix, the calculation of the inverse
can be trivial or extrenely conplicated.

For exanple, the inverse of a 1x1 matrix is sinply the reciprical of
the single el enment:

ie. M=] x|
Then the inverse is defined as:
-1 | 1]
Moo= - |
| x|

http://localhost/~wagnerm/maths/matrixfaqg.htm (14 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

Sol ving 2x2 matrices and | arger can be achieved by using Kraner's Rul e
or by solving as a set of sinultaneous equati ons.

However, in certain cases, such as identity or rotation matrices, the
inverse is already known or can be determ ned fromtaking the transpose
of the matri x.

Q9. How do | calculate the inverse of an identity matrix?

Don't even bother. The inverse of an identity matrix is the identity
matrix. ie.

Any identity matrix will always have a determ nant of +1

@0. How do | calculate the inverse of a rotation matrix?

Since a rotation matrix always generates a determ nant of +1,
calculating the inverse is equivalent of calculating the transpose.

Alternatively, if the rotation angle is known, then the rotation

angl e can be negated and used to calculate a new rotation matri x.

Q1. How do | calculate the inverse of a matrix using Kraner's rul e?

Gven a 3x3 matrix M

A B C |

|

| I
M=| DEF |

| |

| GHI1 |

Then the determ nant is cal cul ated as foll ows:

wher e

submat M defines the matrix conmposed of all rows and colums of M
i
excluding row i and colum j. submat may be call ed recursively.
]

If the determinant is non-zero then the inverse of the matrix exists.
In this case, the value of each matrix elenent is defined by:

http://localhost/~wagnerm/maths/matrixfaqg.htm (15 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

-1 1 i+
M = ----- * det submat M* -1
j,i det M i,]

@2. How do | calculate the inverse of a 2x2 matri x?

For a 2x2 matrix, the calculation is slightly harder. If the matrix is
defined as foll ows:

| AB|
M= | |
| CD|
Then the determ nant is defined as:
det = AD - BC

And the inverse is defined as:

-1 1 | D -B |
Moo= - |
det | -C A |

This can be proved using Kramer's rule. Gven the matrix M
| AB|

M= | |

| CD|

Then the determ nant is:

0 1
det = M * submat M * .1+ M * submat M * o]
0,0 0,0 0,1 0,1
<=> M * M *1 + M * M -1
0,0 1,1 0,1 1,0
<=> A *D + B * C R
<=> AD + BC -1

And the inverse is derived from

-1 0+0 -1

M = det subnmt * -1 <=> M =M * 1 <=>D

0,0 0,0 0,0 1,1

-1 1+0 -1

M = det subnmt N <=> M =M * -1 <=>C* -1
0,1 1,0 0,1 1,0

-1 0+1 -1

M = det subnmt R <=> M =M * .1 <=>B* -1

http://localhost/~wagnerm/maths/matrixfaqg.htm (16 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

1,0 0,1 1,0 0,1

-1 1+1 -1
M = det submat * -1 <=> M =M * 1 <=> A
1,1 1,1 1,1 0,0

Then the inverse matrix is equal to:

-1 1| D -C|
Moo= - |
det | -B A |

Providing that the determinant is not zero.

@3. How do | calculate the inverse of a 3x3 matri x?

For 3x3 matrices and | arger, the inverse can be cal cul ated by
either applying Kraner's rule or by solving as a set of linear
equati ons.

If Kramer's rule is applied to a matrix M

® O >
Imw

| C |
M= | F
| I
then the determnant is calcul ated as foll ows:
det M= A* (Bl - HF) - B* (DI - GF) + C* (DH - GF

Providing that the determ nant is non-zero, then the inverse is
cal cul ated as:

-1 1 | El-FH -(BI-HC) BF-EC |
M = ----- .| -(D-FG AI-GC -(AF-DC) |
det M | DHCGE -(AHGB) AEBD |

This can be inplenented using a pair of 'C functions:

VFLOAT n8_det (MATRI X3 mat)

{

VFLOAT det;

det = mat[0] * (mat[4]*mat[8] - mat[7] *mat[5])
- mat[1] * (mat[3]*mat[8] - mat[6] *mat[5])
+ mat[2] * (mat[3]*mat[7] - mat[6] *mat[4]);

return(det);

void nB_inverse(MATRI X3 nr, MATRI X3 ma)
{

http://localhost/~wagnerm/maths/matrixfaqg.htm (17 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

VFLOAT det

if (fabs(det

= B _det(ma);

) < 0.0005)

{

n8 identity(ma);

return;

}
m[0] = ma[4] *ma[8] - ma[5] *ma[7] [det;
nm[l] =-(ma[1]*ma[8] - ma[7] *ma[2] / det;
(2] = ma[1] *ma[5] - ma[4] *ma[2] /| det;
n[3] =-(m[3]*m[8] - ma[5]*ma[6] /| det;
nr[4] = ma[0] *rma[8] - nmm[6] *ma|[2] / det;
nm[5] =-(ma[O0]*ma[5] - ma[3] *ma[2] / det;
nr[6] = ma[3] *ma[7] - ma[6] *ma[4] /| det;
m[7] =-(ma[O]*ma[7] - ma[6]*ma[1] /| det;
nr[8] = ma[O] *ma[4] - ma[1] *ma[3] det;
}

Q4. How do | calculate the inverse of a 4x4 matri x?

As with 3x3 matri ces,
matri x can be solved as a set of

ei t her

Kramer's rul e can be applied or the

I i near equati ons.

An efficient way is to nmake use of the existing 'C functions defined
to calculate the determ nant and inverse of a 3x3 matrix.

In order to inplenent Kramer's rule with 4x4 matrices, it
to determ ne individual sub-matrices.
routi ne:

IS necessary
This is achieved by the foll ow ng

void mi_submat (MATRI X4 nr, MATRI X3 nmb, int i, int j)
{
int ti, tj, idst, jdst;
for (ti =0; ti < 4; ti++)
{
if (ti <i)
idst = ti;
el se
if (ti >1i)
idst = ti-1;
for ((tj =0; tj < 4; tj++)
{
if (tj <j)
jdst =1tj;
el se
if (tj >j)
jdst =t)-1;
if (ti =1 &&tj =))

mb[idst*3 + jdst] = m[ti*4 + t]];

http://localhost/~wagnerm/maths/matrixfaqg.htm (18 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

VFLOAT m4_det (MATRI X4 nr)

{

VFLOAT det, result =0, i = 1;

MATRI X3 msub3;

i nt n;

for (N =0; n<4; nt+, i *=-1)
{
md_submat (nr, msub3, 0, n);
det = nB_det (nmsub3);
result += nr[n] * det * i;
}

return(result);

int m_inverse(MATRI X4 nr, MATRI X4 ma)

{

VFLOAT ndet = md_det(ma);
MATRI X3 mt enp;

i nt i, J, sign;

if (fabs(ndet) < 0.0005)
return(0);

for (i =0; i <4; i++)
for (j =0; j <4, j++)
{
sigh =1- ((i) %2) * 2;

md_submat (ma, ntenp, i, j);
nr[i+j*4] = (nB_det(ntenp) * sign) / ndet;
}

return(1);

Havi ng a function that can calculate the inverse of any 4x4 matrix is
an incredibly useful tool. Application include being able to cal cul ate
the base matrix for splines, inverse rotations and rearranging matrix
equat i ons.

http://localhost/~wagnerm/maths/matrixfaqg.htm (19 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

@5. How do | calculate the inverse of a matrix using |inear equations?

If a matrix M exists, such that:

I
M = |
I

®» o>
Imw
- 10

I
I
I
then the inverse exists:

I
M = |
I

<0T
=0
X C T

|
|
|
and the followi ng expression is valid:

-1

® o>
TMwWw =
s-H0 =
X C T

C
F
I

<0nT
or o
R OO

I
O o

The inverse can then be cal cul ated through the solution as a set of
linear equations ie.:

| AP + BS + CV | | 1 | Colum 0 (X)
| DP+ ES+ FV | =| 0 |
| GP+ HS + IV | | 0 |
| AQ + BT + CW| | 0 | Colum 1 (Y)
| DQ+ ET + FW| = | 1 |
| GQ + HT + W] | O |
| AR + BU + CX | | O | Colum 2 (2)
| DR+ EU+ FX | =] 0 |
| GR+ HU + I X | | 1 |

@6. What is a rotation nmatrix?

A rotation matrix is used to rotate a set of points within a
coordi nate system While the individual points are assigned new
coordi nates, their relative distances do not change.

Al'l rotations are defined using the trigononetric "sine" and "cosine"
functi ons.

For a two-di nensional coordinate system the rotation matrix is as
fol | ows:

| cos(A) -sin(A) |
I I

http://localhost/~wagnerm/maths/matrixfaqg.htm (20 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

| sin(A) cos(A) |

Wth the rotation angle A set to zero, this generates the identity
matri x:

| 1 0]
= I
| 0 1]

If the rotation is set to +90 degrees, then the matrix is as follows:

| 0 -1]
M= | I
| 1 0]
If the rotation is set to -90 degrees, then the matrix is as foll ows:

| 0 1]
M= | I
| -1 0]

Negating the rotation angle is equivalent to generating the transpose
of the matrix.

If a rotation matrix is multiplied with its transpose, the result is
the identity matrix.

@7. How do | generate a rotation matrix in the X-axis?

Use the 4x4 matri x:

0 0 0
cos(A) -sin(A O
sin(A) cos(A) O

1

I
M= |
I
| 0 0

oNeNoN

Q@8. How do | generate a rotation matrix in the Y-axis?

Use the 4x4 matri x:

| cos(A) 0 -sin(A 0|
M=] O 1 0 0 |
| sin(A) O cos(A) 0 |
| O 0O ©O 1 |

Use the 4x4 matri x:

| cos(A) -sin(A 0 0 |
M= sin(A) cos(A) 0 0 |
| O 0 1 0]

http://localhost/~wagnerm/maths/matrixfaqg.htm (21 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

Eul er angles are the nanme given to the set of rotation angles which
specify the rotation in each of the X, Y and Z rotation axii.

These are specfied in vector format eg. |x y z| and can be stored
as a VECTOR data structure.

For exanple, the set
| OO0 O] wll always generate the identity matri x.

O her angles are represented as foll ows:

| 90 0 O | is arotation of +90 degrees in the X-axis.
| 090 O | is arotation of +90 degrees in the Y-axis and
| O 090 | is arotation of +90 degrees in the Z-axis.

Eul er angl es can be represented using a single vector data structure.

@B1. What are Yaw, Roll and Pitch?

Yaw, Roll and Pitch are aeronautical terns for rotation using the
Eucl i dean coordi nate system (Eul er angles), relative to the | ocal
coordi nate system of an aeropl ane.

| magi ne you are viewi ng an aeroplane from above and fromdirectly
behi nd.

The Z-axis is lined up with the tail and nose of the aeropl ane.
The X-axis runs fromthe tip of the left wing to the tip of the right
Wi ng.

The Y axis points straight up fromthe ground.

Pitch then becones rotation in the X-axis, Yaw becones rotation in the
Y-axis and Rol|l becones rotation in the Z-axis.

(B2. How do | conbine rotation natrices?

Rotation matrices are conbined together using matrix nultiplication
As a result, the order of multiplication is very inportant.

@®B3. What is Gnbal |ock?

G nbal lock is the nane given to a problemthat occurs with the use of
Eul er angl es. Because the final rotation matrix depends on the order
of multiplication, it is sonmetinmes the case that the rotation in one
axis wll be mapped onto another rotation axis.

http://localhost/~wagnerm/maths/matrixfaqg.htm (22 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

Even worse, it nay becone inpossible to rotate an object in a desired
axis. This is called G nbal |ock

For exanpl e, assume that an object is being rotated in the order Z YV, X
and that the rotation in the Y-axis is 90 degrees.

In this case, rotation in the Z-axis is performed first and therefore
correctly. The Y-axis is also rotated correctly. However, after
rotation in the Y axis, the X-axis is rotated onto the Z-axis.

Thus, any rotation in the X-axis actually rotates the object in the
Z-axis. Even worse, it becones to rotate the object in the X-axis.

The only solution to this problemis to nmake use of Quaternions.

@B4. What is the correct way to conbine rotation matrices?

Really, there is no "correct way" of conbining rotation matrices.
However, in order to be able to predict the result of conbining
matri ces together, sonme organisation is required. This is also
necessary if a full 3D matrix library is to be built.

The sinplest way to rotate an object is to nultiply the matrices
usi ng the order:

M= XY.Z

where Mis the final rotation matrix, and X,Y,Z are the individua
rotation matrices. This defines a rotation in the X-axis (pitch) first,
followed by the Y-axis (yaw) and a final rotation in the Z-axis (roll).

However, whenever the view fromthe camera viewpoint is being
eval uated, then the order and signs of the rotation is reversed.

For exanple, if you are standing up, and turn to your left, everything
in your field of view appears to nove towards the right.

However, soneone else facing you will say that you turned towards their
right.

Thus the view fromthe canera is nodelled using the order
M= -2.-Y.-X

This is the inverse (or transpose) of the rotation matrix generated
if the canera were being rendered as anot her object.

@5. How do | generate a rotation matrix from Eul er angl es?

At first glance, the nost obvious nethod to generate a rotation nmatrix
froma set of Euler angles is to generate each matrix individually and
multiply all three together ie.

n8_rotx(mat_x, vec -> angle x);
n8_roty(mat_y, vec -> angle_y);
n3_rotz(mat_z, vec -> angle_z);

m8_rmult(mat _tnp, mat _z, mat_y);

http://localhost/~wagnerm/maths/matrixfaqg.htm (23 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ
nM8_ mult(mat_final, mat_tnp, mat_x);
This set of calls could be placed in a separate routine eg.
n8 _fromeuler(MATRI X *mat _final, VECTOR3 *eul er)

However, to performthis sequence of calls is very wasteful in terns
of processing tine. Gven that each 4x4 rotation matri x i s guaranteed
to have 10 elenents with value zero (0), 2 elenents with value one (1)
and four others of arbitary value, over 75% of every matrix operation
is wasted. This does not include the set up and initialisation of each
mat ri Xx.

Al toget her, over 75% of all matrix operations are spent processing
arithmetic expressions which |ead to either zero or one.

A nore efficient way nust be found. Fortunately, there is another way
of determining the final resulting matri x.

If all three matrices are conbined in algebraic format, the follow ng
expression is defined:

M= XY.Z

where Mis the final natrix,
Xis the rotation matrix for the X-axis,
Yis the rotation natrix for the Y-axis,
Zis the rotation natrix for the Z-axis.

Expanding into rotation matrices in algebraic format gives:

| 1 0 0|
X =| 0 A-B|
| 0 B A|
| C 0-D|
Y =] 0 1 0|
| D 0 C|
| E-F 0|
Z =| F E 0|
| 0 0 1|

where A B are the cosine and sine of the X-axis rotation axis,
C, D are the cosine and sine of the Y-axis rotation axis,
E,F are the cosine and sine of the Z-axis rotation axis.

Then the expression:
M = XY.Z
can be split into two matrix multiplications:

M XY

M =M.Z

Evaluating M first:

M = XY

http://localhost/~wagnerm/maths/matrixfaqg.htm (24 of 37) [01.04.2003 8:40:58 Uhr]

Matrix and Quaternion FAQ

| 1 0 O | | C 0 -D |
M =] 0 A-B| | 0 1 O |
| 0 B A | D 0 C|
| .C+ 0.0+ 0.D 1.0+ 0.2+ 0.0 1.-D+ 0.0 + 0.C |
M =] 00C+AO0+-BD 0.0+A1+-BO 0.-D+ AO + -B.C |
| 0.C+B.O0O+ AD 0.0+B1+ AO 0.-D+ B0+ AC|
Sinplifying M gives:
| C 0 -D |
M =] -BD A -BC
| AD B AC
Eval uati ng M gi ves:
M =M.Z
| C 0 -D | | E-F 0|
M =] -BD A -BC| | F E O |
| AD B AC | | 0 0 1|
| CE+0F+ -DO C-F+0.E+-DO C0+0.0+ -D1
I
M =| -BDLE+ AF+ -BCO -BD.-F+AE+-BCO0O -BD.O+ A0+ -BC1

| AD.E+ B.F + ACO AD.-F + BE+ ACO AD.0 + 0.0 + AC 1

Sinmplifying Mgives a 3x3 matri Xx:
| CE -CF -D |

M = | -BDE+AF -BDF+AE -BC |

| ADE+BF -ADF+BE AC |

This is the final rotation matrix. As a 4x4 matrix this is:

| CE -CF -D 0 |
M = | -BDE+AF BDF+AE -BC O |
| ADE+BF -ADF+BE AC O |
| o 0 0 1|

The individual values of A B,C, D E and F are evaluated first.
val ues of BD and AD are al so eval uated since they occur nore

Thus, the final algorithmis as foll ows:

A = cos(angl e_x);
B = sin(angl e_x);
C = cos(angle_y);
D = sin(angle_y);
E = cos(angle_2z);
F = sin(angle_z);
AD = A* D

BD = B* D

http://localhost/~wagnerm/maths/matrixfaqg.htm (25 of 37) [01.04.2003 8:40:59 Uhr]

Al so, the
t han once.

Matrix and Quaternion FAQ

mat[0] = C* E

mat[1l] = -C* F

mat[2] = -D

mat[4] = -BD* E+ A* F;
mat[5] = BD* F + A* E
mat[6] = -B* C

mat[8 = AD* E + B * F;
mat[9] = -AD* F + B * E
mat [10] = A* C

mat[3] = mat[7] = mat[11] = mat[12] = mat[13] = nat[14] = O;
mat [15] = 1;

Usi ng basic matrix cal cul ati ons,
128 mul tiplications,

Using the optimsed algorithm only 12 nultiplications,

and 18 assi gnment operations are required.

So, it

achi evement of 1000% i s achi eved!

6. How do |

t he operation count would reach
96 additions and 80 assignments operations.

6 subtractions

i s obvious that by using the optim sed algorithm a perfornmance

convert a rotation matrix to Eul er angl es?

This operation is the exact opposite to the one answered in the question

above. G ven that the rotation matrix is:
| CE - CF -D O
M = | -BDE+AF BDF+AE -BC O
| ADE+BF -ADF+BE AC O |
| O 0 0 1 |

where A, B are the
C D are the
E, F are the

cosi ne and sine
cosi ne and si ne
cosi ne and sine

of the X-axis rotation axis,
of the Y-axis rotation axis,
of the Z-axis rotation axis.

angle.y = D= -asin(mat[2]);
C = cos(angle_.y);
angl e_y *= RADI ANS;
if (fabs(angle_y) > 0.0005)
{
trx = mt[1l0] / C
try =-mat[6] [/ C
angle x = atan2(try, trx) * RAD ANS;
trx = mt[0] / C
try =-mat[1l] / C
angle z = atan2(try, trx) * RAD ANS;

http://localhost/~wagnerm/maths/matrixfaqg.htm (26 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

}
el se
{
angle x = 0;
trx = mat [5];
try = mat [4];
angle_z = atan2(try, trx) * RAD ANS;
}
angle x = clamp(angle_x, 0, 360);

angle y = clamp(angle_y, 0, 360);
angle_z = clamp(angle_z, 0, 360);

@B7. How do | generate a rotation matrix for a selected axis and angl e?

The only way to generate this type of rotation matrix is through the
use of quaterni on mat hemati cs.

See question [Q47. How do | convert a quaternion to a rotation matrix?]
for further details.

When devel opi ng ani mati on software, a conmon requirenent is to find
a rotation matrix that will map one direction vector onto anot her.

Thi s problem may be visualised by considering the two direction
vectors to be attached at their starting points. Then the entire
rotation space forms a unit sphere.

In theory, there are an infinite nunber of rotation axii and angl es

that will map one vector onto the other. Al of these axii lie on the
pl ane where all of the points are the exact same distance from both
vectors.

However, only one solution is of practical interest. This is the path
whi ch covers the shortest angul ar di stance between the two vectors.

The rotation axis to this path is calculated by taking the cross
product between the two vectors:

Vaxis = Vs x Vf

The rotation angle is calculated by taking the dot product between the
two vectors:

-1
Vangl e = cos (Vs . Vi)

One practical application of the solution to this problemis finding
the shortest flight path between two cities. In this case, each city
is represented as a direction vector generated from spherica

coordi nates. Since planet Earth is spherical, the desired flight path

http://localhost/~wagnerm/maths/matrixfaqg.htm (27 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

is the shortest angular rotation between the two cities.

@B9. What is a translation matrix?

A translation matrix is used to position an object within 3D space
wi thout rotating in any way. Translation operations using nmatrix
mul tiplication can only be performed using 4x4 matri ces.

If the translation is defined by the vector [XY Z], then the 4x4
matrix to inplement translation is as foll ows:

| 1 0 0 X|
| I
| 0 1 0 Y

M= | I
| 0 0 1 Z|
| I
| 0O 0 0 1|

If the vector is [0 O O] then the vertex list will remain as before.

0. What is a scaling matrix?

A scaling matrix is used to enlarge or shrink the size of a 3D
nmodel .

If the scaling vector is [XY Z] then the matrix to performthis is
as follows:

| X 0 0 0]
| I
| 0 Y 0 0]
M= | I
| 0 0 Z 0]
| I
| 0 0 0 1|

If the scaling vector is [1 1 1], then this generates the identity
matri x and vertex geonetry will remain unchanged.

A41. Wiat is a shearing matrix?

A shearing matrix is used to make a 3D nodel appear to slant sideways.
For exanple, "italic" text requires each character to slant towards the
right.

In three dinensions six possible shearing directions exist:

o shear X by Y
0 shear X by Z
0 shear Y by X
o shear Y by Z
o0 shear Z by X
0o shear Z by Y

http://localhost/~wagnerm/maths/matrixfaqg.htm (28 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

Al'l six shearing directions may be conbined into a single matri x:

1 Syx Szx O
Sxy 1 Szy O

| I
I I
I |
| I
| Sxz Syz 1 0 |
I |
| I
| I

VWhere Sij inplenents a shear of | by J
Thus, Sxy shears X by Y

In theory, rotation in three dinmensions may be considered a conbi nation
of six shearing directions.

A2. How do | performlinear interpolation between two natrices?

G ven two rotation matrices, the problemis to find a way of
determ ning intermedi ate positions specified by a paranetric
variable t, where t ranges from0.0 to 1.0

This can be achi eved by converting the two matrices into either
Eul er angl es or Spherical rotation angles (via quaternions) and

a translation vector.

In either case, each matrix is converted into a pair of 3D vectors.

I nt er pol ati on between these two vectors can then be perforned
t hrough the use of the standard |inear interpolation equation:

Vi =Va+1t .(VW - Va)

where Vr is the resulting vector
Va is the start position vector
Vb is the final position vector

This equation nmay be applied to both translation and rotation
vect ors.

Once determned, the resulting translation and rotation are then
converted back into the desired internediate matri x.

A3. How do | performcubic interpolation between four matrices?

G ven four rotation or translation natrices, the problemis to
find a way of determning internediate positions specified by a
paranmetric variable t.

Thi s can be achi eved by maki ng use of cubic interpolation. As with
linear interpolation, the four nmatrices are converted into their
corresponding translation and rotation vectors (Again, either Euler
angl es or spherical rotation angles).

Each set of four vectors is then converted into a single geonetry

http://localhost/~wagnerm/maths/matrixfaqg.htm (29 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

vector G Through the use of spline mathematics, this geonetry vector
is converted into an interpolation nmatrix M

If the geonetry vector is defined as:
| x1 x2 x3 x4
G=1] yly2y3y4|]
| z1 z2 z3 z4

Then multiplication by the base matri x:

I

I

|

I

will generate the 3x4 interpolation matrix M:
M =G.M

This can be inplenented through a standard matri x-vector mnultiplication.

I nterpolation can then be perforned by the use of the paranetric

vari able t:
R =M .t
| t 73]
| xr | | ABCD| | t~2]
| yr | =] EFGH]| . |t |
| zr | | I'J KL | |1 |

The result vector can then be converted back into a rotation or
transl ation matri Xx.

It should be noted that the rotation paths that are generated may
occasionally becone rather |oopy. This is normal, as the algorithm
is trying to find the path with the [east anount of rotation between
all four vectors.

O the two nethods, spherical rotation angles will usually be seen to

provi de the cl eanest interpolation paths for rotation.

4. How can | render a matrix?

When using a graphics wi ndow for 3D animation, it is convenient to be
able to view a rotation matrix concurrently with the ani mation.

However, displaying a rotation matrix as an array of nuneric val ues
does not provide a very meani ngful context.

An alternative to rendering nuneric data is to nake use of graphica
di spl ay nmethods such as bar-graphs.

Much |i ke a graphic equalizer on a stereo, a rotation matrix may be
di splayed in a bar graph format. Each el enment of the rotation matrix
is rendered as an individual bar-graph in the range -1 to +1.

A 3x3 matrix would | ook |ike the follow ng:

http://localhost/~wagnerm/maths/matrixfaqg.htm (30 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

Fo-t -t -+
[## | | | |
+o-t oot -+

R G S e S

S T L S e
|1 I## |
T i

Fo-t Aot -+

S S S N
|1 [##
+o-t oot -+

S L i e

In this case, the rotation matrix is the identity matrix, since each
element in the major diagonal is +1, and all others are zero.

For added visual clarity, paranmeters which are negative may shaded
in a different col our than those which are positive.

QUATERNI ONS

Quat erni ons extend the concept of rotation in three dinmensions to
rotation in four dinensions. This avoids the problem of "ginbal-Iock"
and allows for the inplenentation of snooth and conti nuous rotation.

In effect, they may be considered to add a additional rotation angle
to spherical coordinates ie. Longitude, Latitude and Rotation angles

A Quaternion is defined using four floating point values |xy z W.

These are calculated fromthe conbi nati on of the three coordi nates
of the rotation axis and the rotation angle.

QAU6. How do quaternions relate to 3D ani mati on?

As mentioned before, Euler angles have the di sadvantage of being
susceptible to "G nbal |ock” where attenpts to rotate an
object fail due to the order in which the rotations are perforned.

Quaternions are a solution to this problem Instead of rotating an
obj ect through a series of successive rotations, a quaternion allows
the programmer to rotate an object through a single arbitary rotation
axi s.

Because the rotation axis is specifed as a unit direction vector,
it may be cal cul ated through vector mathenmatics or from spheri cal
coordinates ie (longitude/latitude).

http://localhost/~wagnerm/maths/matrixfaqg.htm (31 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

Quat erni ons offer another advantage in that they be interpol at ed.
This allows for snpboth and predictable rotation effects.

A47. How do | convert a quaternion to a rotation matrix?

Assum ng that a quaternion has been created in the form

Q=|XYZW

Then the quaternion can then be converted into a 4x4 rotation
matrix using the foll ow ng expression:

I 2 2 I
| 1 -2y - 22z 2XY - 2ZW 2XZ + 2YW |
I I
I 2 2 I
M= | 2XY + 2ZW 1-2X - 2Z 2YZ - 2XW |
I I
I 2 2 |
| 2XZ - 2YW 2YZ + 2XW 1-2X - 2y |
I I

If a 4x4 matrix is required, then the bottomrow and right-nost col um
may be added.

The matrix may be generated using the follow ng expression:

XX = X * X

Xy = X*Y,;

Xz = X * Z

XW = X* W

vy =Y *Y,;

yz =Y * Z

yw =Y * W

Y4y =Z * Z

ZW =Z* W

mat[0] =1-2%* (yy + zz);
mat[1l] = 2 * (xy - zw);
mat[2] = 2 * (xz + yw);
mat[4] = 2 * (xy + zw);
mat[5] =1 - 2 * (xx + zz);
mat[6] = 2 * (yz - xw);
mat[8] = 2 * (xz - yw);
mat[9] = 2 * (yz + xw);
mat[10] =1 - 2 * (XX + yy);
mat[3] = mat[7] = mat[11 = mat[12] = mat[13] = mat[14] = O;
mat [15] = 1;

http://localhost/~wagnerm/maths/matrixfaq.htm (32 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

A48. How do | convert a rotation matrix to a quaternion?

A rotation may be converted back to a quaternion through the use of
the follow ng al gorithm

The process is perforned in the follow ng stages, which are as foll ows:
Calculate the trace of the matrix T fromthe equation

2 2 2
T=4- 4x - 4y - 4z

2 2 2
41 -x -y -2z)

mat[0] + mat[5] + mat[10] + 1

If the trace of the matrix is greater than zero, then
performan "instant" cal cul ati on.

S=0.5/ sqgrt(T)

W=10.25/ S

X=(mat[9] - mat[6]) * S
Y=(mt[2] - mat[8]) * S
Z=(mt[4] - mat[1l]) * S

If the trace of the matrix is | ess than or equal to zero
then identify which major diagonal elenent has the greatest
val ue.

Dependi ng on this value, calculate the follow ng:

Col um O:
S =sgrt(1.0 + nmr[O] - m[5] - nr[10]) * 2;
X =0.5/ S
Q = (m[1] + nr[4]) /| S
Q@ = (m[2] +nr[8]) / S
Qv = (m[6] + nr[9]) / S
Col um 1:
S =sgrt(1.0 + nr[5] - m[O0] - nr[10]) * 2;
X = (m[1] + nr[4]) /S
Q =05/ S
Q@ = (m[6] +nr[9]) / S
Qv = (m[2] + nr[8]) / S
Col um 2:

S = sdrt(1.0 + nmr[10] - nr[0O] - nm[5]) * 2

(nr[2] + nr[8]) / S
(nr[6] +nr[9]) / S

QL

http://localhost/~wagnerm/maths/matrixfaqg.htm (33 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

@ =0.5/ S
Qv = (mr[1] + nr[4]) / S

The quaternion is then defined as:

Q=] X ¥y Q@ Qu|

A49. How do | convert a rotation axis and angle to a quaternion?

G ven the rotation axis and angle, the follow ng al gorithm nay be
used to generate a quaternion

sin_a =sin(angle / 2)
cos_a = cos(angle / 2)
gx = axis ->x / sin_a
qy = axis ->y / sin_a
gz =z axis ->z / sin_a
qw = c0Ss_a

@®0. How do | convert a quaternion to a rotation axis and angl e?

A quaternion can be converted back to a rotation axis and angle
using the follow ng algorithm

cos_angle = qr -> gw,
angl e = acos(cos_angle) * 2 * RADI ANS;
sin_angle = sqrt(1.0 - cos_angle * cos_angle);

if (fabs(sin_angle) < 0.0005)
sa = 1,

axis -> vx gr -> gx / sa;
axis -> vy gr -> qy / sa;
axis ->vz =qgr -> qz / sa;

1. How do | convert spherical rotation angles to a quaternion?

A rotation axis itself nmay be defined using spherical coordinates
(latitude and longitude) and a rotation angle

In this case, the quaternion can be cal culated as foll ows:

sin_a = sin(angle / 2)
cos_a = cos(angle / 2)
sin_lat = sin(latitude)
cos lat = cos(latitude)
sin_long = sin(|ongitude)
cos_long = cos(|ongitude)

http://localhost/~wagnerm/maths/matrixfaq.htm (34 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

gx = sin_a * cos_lat * sin_long
qy = sin_a * sin_|lat

qz =sin_a * sin_lat * cos_Ilong
qw = cos_a

2. How do | convert a quaternion to spherical rotation angl es?

A quaternion can be converted to spherical coordi nates by extending
t he conversi on process:

cos_angle =g -> gw
sin_angle = sqrt(1.0 - cos_angle * cos_angle);
angl e acos(cos_angle) * 2 * RADI ANS;

if (fabs(sin_angle) < 0.0005)

sa = 1;
tx = q ->qgx / sa;
ty =g ->qy / sa;
tz =9 ->09z / sa;

latitude = -asin(ty);

if (tx * tx +tz * tz < 0.0005)
| ongi t ude = 0;
el se
| ongi tude = atan2(tx, tz) * RADI ANS;

if (longitude < 0)
| ongi t ude += 360. 0;

3. How do | use quaternions to performlinear interpolation between
matrices?

For many ani mation applications, it is necessary to interpol ate
between two rotation positions of a given object. These positions may
have been specified using keyframe ani mati on or inverse kinemati cs.

Using either nethod, at |east two rotation nmatrices nust be known, and
the desired goal is to interpolate between them The two matrices are
referred to as the starting and finish matrices(M5 and M).

Using linear interpolation, the interpolated rotation matrix is
generated using a blending equation with the paraneter T, which
ranges fromO0.0 to 1.0.

At T=0, the interpolated matrix is equal to the starting matri X.
At T=1, the interpolated nmatrix is equal to the finishing matri x.

Then the interpolated rotation matrix (M) is specified as:

M =F M5, M, T)

http://localhost/~wagnerm/maths/matrixfaqg.htm (35 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

where F is a blending function.

The first stage in interpolating between the two natrices is to
determne the rotation matrix that will convert M5 to M.
This is achieved using the foll ow ng expression:

where Ms is the start matri x,
M is the finish matri x,
and T is the internediate matri x.

The next stage is to convert this nmatrix into a rotation axis and
angle. This is achieved by converting the matrix into a quaternion
and finally into the required rotation axis and angl e.

In order to generate the interpolated rotation matrix, it is only
necessary to scale the rotation angle and convert this angle and
the rotation axis back into a rotation matri x.

Using a 4x4 matrix library, this is as foll ows:

md_transpose(n, nms); /[* lnverse */
md_mul t(ns, n, nmb); /* Rotation matrix */
md_to_axi sangle(nms, axis, angle); /* Rotation axis/angle */

for (t =0; t <1.0; t += 0.05)
{

md_from axisangle(m, axis, angle * t); /* Final interpolation */
what ever

}

where t is the interpolation factor ranging from0.0 to 1.0

@B4. How do | use quaternions to perform cubic interpolation between
matrices?

For some applications, it may not be convenient or possible to use

i near
interpolation for animation purposes. In this case, cubic interpolation
is another alternative.

In order to use cubic interpolation, at |east four rotation nmatrices
must
be known.

Each of these is then converted into a set of spherical rotations
via quaternions and spherical rotation angles (ie. longitude, latitude
and rotation angle).

These are then nmultiplied with the base matrix for a Cardi nal spline
curve. This interpolation matrix can then be used to determ ne the
i nternedi ate spherical rotation angl es.

http://localhost/~wagnerm/maths/matrixfaq.htm (36 of 37) [01.04.2003 8:40:59 Uhr]

Matrix and Quaternion FAQ

Once the interpol ated coordi nates are known (latitude, |ongitude and
rotation angle), the interpolated rotation matrix can then be generated
t hrough the conversion to quaternions.

Using a 4x4 matrix library, the algorithmis as foll ows:

for ((n =0;, n <4, nt+)
mi_to_spherical (mat[n], & _sph[n]); / * Spherical coordinates
*/

md_nmul tspline(mcardinal, v_sph, v_interp); /* Interpolation vector
*/

v3_cubic(v_pos, v_interp, t); /* Interpolation */
md_from spherical (mrot, v_pos); /* Back to a matrix */

skal.planet-d.net

http://localhost/~wagnerm/maths/matrixfaqg.htm (37 of 37) [01.04.2003 8:40:59 Uhr]

http://skal.planet-d.net/index.html

http://skal .planet-d.net/demo/fatmap.txt

Fast affine texture mapping (fatmap.txt)

by

Mat s Byggmast ar
a. k. a.

MRl / Doonsday

nri @enti.sit.fi

8 Jul. 1996 Jakobstad, Finl and
19 Jun. 1996 Espoo, Finland

Read this today, it m ght be obsol ete tonorrow.

Feel free to upload this docunment to wherever you find appropriate,
as long as you keep it init's original, unnodified form
This is free information, you may not charge anything for it.

Tabl e of contents

1 About this docunent

2 Di scl ai mer

3 Definition of terns

4. Assune the follow ng

5. The sl ow net hod

6 A faster nethod

7 General structure of the texture nmapping function
8 Equations for the constant deltas

9. Traditional inner |oops

10. Menories fromthe past

11. Sel fnodifying code

12. Unrolled and sel fnodifying inner |oops
13. Tabl e | ookup inner | oops

14. Problens with precal cul ated runs

15. Pre-stepping texture coordi nates

16. Special case code

17. dipping

18. dipping using natrices

19. Witing a byte, word, dword and ot her weird things
20. The data cache

21. The code cache

22. Sone pairing rules

23. Pipeline del ays

24. The tine stanp counter

25. Branch prediction

26. Reference

27. \Were to go fromhere

28. Credits and greetings

1. About this docunent

Thi s docunent tries to describe howto rmake fast affine texture mapping. The
docunent describes both the general structure as well as the nore critica
parts such as inner |oops. The information is ainmed at both begi nners and

al so at peopl e who maybe al ready have a working texture mapper but are

| ooking for nore speed. The goal was to make a good docunent that woul d be
useful today, not already be obsolete. So |I'm giving you the best information
| can possibly come up with.

You don't get the information for free though. You will have to invest sone

http://skal.planet-d.net/demo/fatmap.txt (1 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

of your own effort and actually learn what's going on in the inner |oops and
select the parts that will be nost suitable for you

The information is based on my own work and findings but also on information
found on the net, especially articles posted to the newsgroup

comp. graphi cs. al gorithns and on ideas given to me by other coders. IRC
channel #coders is usually a good place to get new i deas and hel p. Many of
the coders there are willing to share i deas and answer decent questions.

I amnot claimng that the nmethods described here are THE fastest nethods of
doi ng texture mapping. But these nmethods are what coders are using today and
they ARE fast.

To get the nobst out of this docunent you should have a good understandi ng of
386+ Assenbly and C. The asm code and optim zati ons are ai ned especially
for the Intel Pentium CPU.

Note that the C code given is only meant as sonme sort of pseudo code. Cis
most of the time nuch easier to read that asm For your information | have
the whol e texture mapping function in asm This is overkill, I know, but this
way | get full control over the optimzation. In C1l can only _hope_ that the
compi | er nakes the best code possible. I'mcertain that a human brain stil

is better to optim ze code than a conpiler. | do not say this because |I'ma
true asmfreak. In fact, | had progranmed C for a year before even

consi dering | earning asm

I should say that | do not have a nasters degree in conputer graphics. |I'm
merely a 24 year old conputer and tel ecomengineer (B.Sc.) that found
interest in this area. | have never taken any computer graphics related
course in school so if you think I m suses sone expressions or terns, or even
| eave out sone expressions or terns where | should use them you mght very
wel|l be right and | wong.

Also | have to confess that | haven't read Chris Hecker's articles in Ganme
Devel oper nmgazine (http://ww. gdmag. con). People tell me that they are good.
You shoul d probably take a | ook at them al so.

2. Disclaimer

Sone parts of the technical discussion at the end of the document m ght not
be 100% accurate as of the actual hardware in the Pentium But froma
programers point of view the guidelines given should apply anyway.

When | state that a inner loop is e.g. 5 clock ticks per pixel, this don't
mean that it will actually run at 5 clock ticks. This is just a theoretica
m ni mum when | assunme that the instructions pair as expected and there are
no cache msses and no delays witing to RAM

3. Definition of terns

Just so there won't be any confusion

triangl e side Each triangle has two sides, the left side and the right
si de.
triangl e edge These nmakes up the outline of the triangle. Usually one

interpol ates variables along the triangle edges, both on
the left and the right side of the triangle.

triangle section A triangle is always nade up of 3 sections. These are
straight lines which makes up the triangle edges. Wen
interpolating along the triangle edges we nust cal cul ate

http://skal.planet-d.net/demo/fatmap.txt (2 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt
deltas for each of the 3 sections.

triangle x The current x value of a triangle edge on the screen. There
are two triangle x, one on the left side and one on the
right side of the triangle. Between these is the current

scanl i ne.
u and v The x and y conponents in the bitmap.
dudx and dvdx Qur constant deltas for u and v, du/dx and dv/dx. (constant

texture gradients for u and v)

4. Assune the follow ng

We are only drawing triangles. (This is no problemto me as 3D Studio only
uses triangles anyway.) Well actually it doesn't have to be triangles, this
al so works on other types of polygons as long as the texture gradients are
constant for the whol e pol ygon surface.

You agree that a fractional part of 8 bit is enough for interpolating u and v
on the scanlines of the triangle. Wll actually a 16 bit fractional part is
better but inner |loops are usually nmuch sinpler to do if we only use 8 hits.

Bi t maps al ways has a width of 256 pixels and a naxi mum hei ght of 256 pi xel s.
In sone of the inner |oops we nust al so assune that the bitmaps are aligned
on 64Kk.

The CPU is a Pentiumand we are in 32 bit protected node and flat nenory
nodel (TASM-WATCOM+PMODE/ W .

5. The sl ow net hod

The sl ow nethod of doing texture mapping is to interpolate u and v (and
triangle x) on both the left and right side of the triangle and then

cal cul ate du/dx and dv/dx for each scanline. Then interpolate u and v when
drawi ng the scanline. To nake this even slower you could first interpolate
the u and v (and triangle x) on both sides of the triangle and store the
values in a edge buffer. Then pick the values fromthe edge buffer and draw
each scanl i ne.

6. A faster nethod

Don't use a edge buffer as described in the slow nethod above. Cal cul ate the
edge deltas when you need them and interpol ate along the edges at the sane
time you draw each scanline. It's just as sinple to do it this way and a | ot
faster.

One inportant thing you should realize is that when texture mapping a
triangle (or any type of polygon that has constant texture gradients), you
are interpolating two variables, u and v, whose deltas are constant over the

whol e triangle. | repeat, the deltas are constant for the whole triangle.
Make sure you understand this because this is the key to fast texture mapping
(or any other type of linear shading for that matter). | guess that the
correct termisn't constant deltas, rather constant gradients, but | |ike the

termdelta better.

Because the deltas (delta u and delta v) are constant, we only need to
cal culate themonce for the whole triangle. No need to cal culate themfor
each scanline. Also when interpolating u and v along the edges of the

http://skal.planet-d.net/demo/fatmap.txt (3 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

triangle you only need to interpolate u and v on one side of the triangle.
Triangle x must be interpolated on both sides.

General structure of the texture nmapping function

Here is the general structure of nmy texture mapping function
Wat com C/ C++ you can conpile it as is. Just initialize VGA node
it. I didn't want to include the clipping code as it only woul d

If you have
0x13 and cal
make it npre

difficult to read. No kind of pre-stepping or any other type of

compensati on

is presented here, this is just the bare bones of the function. It m ght | ook
big (?) but it is pretty dam sinple and efficient if | may say so nyself.
You should call the function by passing a pointer to an array of 3 vertex
structures and a pointer to the bitnmap.

extern char nyimage[]; // 256x256 256 col or bitnmap

vertex array[3];

[1 fill in the values for each vertex in the array here

Dr awText ur eTri angl e(array, nyinage);
Note that the function doesn't nove the vertex data to sone |ocal variables,

it uses pointers to each of the structures instead. This makes it extrenely
sinmple to later on add nmore variables in the vertex structure which you wll
be doing in the case of an environment-bunp or Phong-texture-bunp mapper.
The sane function structure can still be used, just add a few variables to
the vertex structure, calculate 2 nore deltas, interpolate 2 nore variables
along the left side and make a new i nner | oop.

11
11
11
11
11

This is the only Watcom C/ C++ specific part of the function. These
instructions take a 26:6 bit fixed point nunber and converts it

to 32:32 bit. Then divides it with another 16:16 bit fixed point
nunber. The result is 16:16 bit. This nust be done in asm where we
can do 64/32 bit divides.

int shl10idiv(int x, int y);
#pragma aux shl10idiv =\

" nmov edx, eax "\
" shl eax, 10 "\
" sar edx, 22 "\
"idiv ebx "\
parm [eax] [ebx] \

modi fy exact [eax edx] \
val ue [eax]

[l sizeof(int) is 4

struct vertex

{

int x,y; /'l screen coordi nates (integers)

int u,v; /1 vertex u,v (26:6 bit fixed point)
b
static vertex * left_array[3], * right_array[3];
static int left_section, right_section;
static int left_section_height, right_section_height;
static int dudx, dvdx;
static int left u, delta left u, left v, delta left v;
static int left_x, delta left_x, right_x, delta_right_x;
inline int R ghtSection(void)
{

vertex * vl

right _array[right_section];

http://skal.planet-d.net/demo/fatmap.txt (4 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt
vertex * v2 = right_array[right_section-1];
int height = v2->y - vi1->y;
i f(height == 0)
return O,

/1 Calculate the deltas along this section

delta right x = ((v2->x - vl1l->x) << 16) / height;
right x = vl->x << 16;

ri ght _section_hei ght = height;

return height; /1 return the height of this section
}
inline int LeftSection(void)
{

vertex * vl = left_array[left_section];

vertex * v2 = left_array[left_section-1];

int height = v2->y - vil->y;

i f(height == 0)

return O,

/1 Calculate the deltas along this section

delta left x = ((v2->x - v1->x) << 16) / height;

left x = vl->x << 16;

delta left u = ((v2->u - vl->u) << 10) / height;

left u = vl->u << 10;

delta left v = ((v2->v - vl1->v) << 10) / height;

left v = vl->v << 10;

| eft _section_height = height;

return height; /1 return the height of this section
}
voi d DrawTextureTriangl e(vertex * vtx, char * bitmap)
{

vertex * vl = vtx;

vertex * v2 = vtx+1

vertex * v3 = vtx+2

/1 Sort the triangle so that vl points to the topnost, v2 to the
/1 mddle and v3 to the bottom vertex.

if(vl->y > v2->y) { vertex * v = vl; vl =v2; v2 =v,; }
if(vl->y > v3->y) { vertex * v = vl; vl =v3; v3 =v; }
if(v2->y > v3->y) { vertex * v = v2; v2 =Vv3; v3 =v; }

/1l W start out by calculating the Iength of the |ongest scanline.

int height = v3->y - vl->y;
i f(height == 0)
return;
int temp = ((v2->y - vl->y) << 16) / height;
int longest = tenp * (v3->x - v1->x) + ((v1->x - v2->X) << 16);
i f(longest == 0)
return;

/1 Now that we have the length of the |ongest scanline we can use that
/1 to tell us which is left and which is the right side of the triangle.

i f(longest < 0)
{

/1 1f longest is neg. we have the mddle vertex on the right side.
/1 Store the pointers for the right and I eft edge of the triangle.

http://skal.planet-d.net/demo/fatmap.txt (5 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

right _array[0] = v3;
right_array[1l] = v2
right_array[2] = vl
right _section = 2;
left _array[0] = v3;
left _array[1l] = vi;
| eft _section = 1;

[/l Calculate initial left and right paraneters
if(LeftSection() <= 0)
return;
i f(Ri ghtSection() <= 0)
{
/1 The first right section had zero height. Use the next section
ri ght _section--;
i f(Ri ghtSection() <= 0)
return;

}

/1 Ugly conpensation so that the dudx, dvdx divides won't overfl ow
/1 if the longest scanline is very short.
i f(longest > -0x1000)

| ongest = -0x1000;

el se

/1 1f longest is pos. we have the mddle vertex on the |eft side.
[/l Store the pointers for the left and right edge of the triangle.
| eft_array[0] v3;

| eft _array[1] v2;

| eft_array[2] vl;
| eft_section 2;
right _array[0] v3;
right _array[1] vl;
ri ght _section 1;

[l Calculate initial right and |eft paraneters
i f(Ri ghtSection() <= 0)
return,
if(LeftSection() <= 0)
{
/1 The first left section had zero height. Use the next section
| eft _section--;
i f(LeftSection() <= 0)
return,

}

/1 Ugly conpensation so that the dudx,dvdx divides won't overfl ow
/1 if the longest scanline is very short.
i f(longest < 0x1000)

| ongest = 0x1000;

}
/1 Now we cal culate the constant deltas for u and v (dudx, dvdx)

int dudx
int dvdx

shl 10i di v(temp*(v3->u - v1->u)+((v1l->u - v2->u)<<16), | ongest);
shl 10i di v(tenmp*(v3->v - v1->v)+((vl->v - v2->v)<<16), | ongest);

char * destptr = (char *) (vl1l->y * 320 + 0xa0000);

/1 1f you are using a table | ookup inner |oop you should setup the
/1 | ookup table here.

/1l Here starts the outer |l oop (for each scanline)

for(;;)

http://skal.planet-d.net/demo/fatmap.txt (6 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

{
int x1 = left _x >> 16;
int width = (right_x >> 16) - x1;
if(width > 0)
{
[l This is the inner |oop setup and the actual inner |oop
/1 1f you keep everything else in Cthat's up to you but at
/1 least renpve this inner loop in C and insert sone of
/1 the Assenbly versions.
char * dest = destptr + xl1;
int u =left _u > 8;
int v =left v > 8;
int du = dudx >> 8;
int dv = dvdx >> 8;
/1 Watcom C/ C++ 10.0 can't get this inner |oop any tighter
/1 than about 10-12 clock ticks.
do
{
*dest++ = bitmap[(v & Oxff00) + ((u & Oxff00) >> 8)];
u += du;
vV += dv;
}
whi | e(--w dth);
}
destptr += 320;
/1 Interpolate along the left edge of the triangle
if(--left_section_height <= 0) // At the bottomof this section?
{
if(--left_section <= 0) /1 Al sections done?
return;
i f(LeftSection() <= 0) /1 Nope, do the last section
return;
}
el se
{
left x += delta_left x;
left u += delta_left _u;
left v += delta_left _v;
}
/1 Interpolate along the right edge of the triangle
if(--right_section_height <= 0) // At the bottomof this section?
{
if(--right_section <= 0) /1 Al sections done?
return;
i f(Ri ghtSection() <= 0) /1 Nope, do the |ast section
return;
}
el se
{
right_x += delta_right_x;
}
}

8. Equations for the constant deltas

Sort the vertices in the triangle so that the topnost vertex is known as

http://skal.planet-d.net/demo/fatmap.txt (7 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

x1l,yl and the bottomvertex is known as x3,y3. Like the draw ng bel ow.

x1,yl
pl
/
/1
/ /
/ /
/ /
/ /
x2,y2 |/ /
p2 / /
\ width /
\ /
\ /
\ /
\/
x3,y3
p3
XN, yn - X,y screen coordinates at vertex n (integers)
pn - Value of variable at vertex n to calculate the constant delta

for. Note that this variable is assumed to have a 6 bit
fractional part (26:6 bit fixed point).
wi dt h - Wdth of the I ongest scanline in the triangle

The reason why | have p as a 26:6 bit fixed point and not 16:16 or 24:8 bit
fixed point is just for being able to store u and v with a little higher
precision in the 3D structure and still use only words to save space.

Sorting 3 vertices is no nore that 3 conpares. Another thing: Don't | oad
all x,y,u and v values of the vertices into registers. Use pointers to the
vertex structures instead. This will also nake it easier when you | ater on
i mpl ement your Phong-texture-bunp mapper. Sonething like this:

; EDX -> vertex 1
; ESI -> vertex 2
; EDI -> vertex 3

nmov EAX, [EDX+vertex y]

cnp EAX, [ESI +vertex y]

jle short @®orta

xchg EDX, ESI ; swap vl - v2
@sort a:

nmov EAX, [EDX+vertex y]

cnp EAX, [EDI +vertex y]

jle short @®orthb

xchg EDX, EDI ; swap vl - v3
@ortb:

nmov EAX, [ESI +vertex y]

cnp EAX, [EDI +vertex y]

jle short @®ortc

xchg ESI, ED ; swap v2 - v3
@sortc:

; EDX -> topnost vertex
; ESI -> mddle vertex
; EDI -> bottom vertex

The following two equati ons needs only be cal cul ated once for all the
constant deltas in the triangle. Skip the triangle if y3 ==y1, i.e. if the
triangle has zero height. The width can be either positive or negative
dependi ng on which side the x2,y2 vertex is. This will be useful information
when sorting out which is left and which is the right side of the triangle.

(y2-y1l) << 16

http://skal.planet-d.net/demo/fatmap.txt (8 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

width = temp * (x3-x1) + ((x1-x2) << 16)
This will give you tenp and width as 16:16 bit fixed point.

The equation below is used to calculate the delta for a variable that should
be interpolated over the triangle, e.g. texture u. Beware of the denom nator
in this equation! Mike sure it won't cause divide overflow in case the width
is less than one pixel. (Renmenber that width is a 16:16 bit fixed point
number.) Note that shift by 10 in the equation. This is because p1l, p2, p3 has
a 6 bit fractional part. The resulting delta p is a 16:16 bit nunber. Note
that this divide should be done in asmwhere we can do 64/32 bit divides

(temp * (p3-pl) + ((pl-p2) << 16)) << 10

So for a texture mapper where we have 2 variables (u,v) to interpol ate over
the triangle, we have a total of 3 divs and 3 nuls to cal cul ate dudx and
dvdx.

Here is another equation that can be used to calculate the deltas with. It
was posted to the newsgroup conp. graphic.al gorithm by Mark Pursey.

There is a cleaner way, which doesn't rely on finding the w dest line:
A-B-C. a triangle with screen x and y conponents, as well as t, a

val ue which could represent |ightning, texture coordinates etc.

The foll owi ng equation gives you the increnment for t per horizontal pixel

(At-C)*(By-CQy) - (Bt-Q)*(Ay-Qy)

(Ax-Cx)*(By-Qy) - (Bx-Cx)*(Ay-Qy)

I"ve been told that this is the correct way to calculate the deltas (or
constant texture gradients). This mght very well be true but the other
equations gives me good results and the length of the | ongest scanline for
free. In this equation the denominator is reusable for both u and v. This
makes a total of 6 rmuls and 2 divs. Renenber to add the necessary shifts if
you do this in fixed point.

9. Traditional inner |oops

So assum ng you have cone so far that you have the triangle sorted, the
constant deltas calculated, the u and v deltas on the left side cal cul ated,
deltas for triangle x calculated for both sides, and you are actually

i nterpol ating those values for each scanline, we cone to the very core of the
texture mapper, the inner loop. I'll first present a few traditional inner

| oops that interpolates u and v while plotting the scanline. These | oops are
sinmple, fast and works very well.

The | oops assune the follow ng:

ebx = ptr to bitmap aligned on 64k. (the low 16 bits zero)

edi = ptr to first destination pixel to plot in this scanline

ebp = width of scanline (loop counter)

left_ u = current u on the left edge of the triangle (16:16 bit fixed point)
left_ v = current v on the left edge of the triangle (16:16 bit fixed point)
du = our constant delta u (24:8 bit fixed point)

dv = our constant delta v (24:8 bit fixed point)

The first loop interpolates the u and v in two 32 bit registers (ecx, edx).

http://skal.planet-d.net/demo/fatmap.txt (9 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

W are one register short here so we use the dudx variable directly in the

i nner loop. This loop should run at 6 ticks per pixel
anyt hing el se than hol di ng the pixel

a word or dword at a tine.

nmov

i nc
dec
j nz

ecx, [left_u]
edx, [left_v]
ecx, 8
edx, 8

bl, ch

bh, dh
esi, [du]
edx, [dv]
ecx, esi

al, [ebx]
bl, ch
[edi], al
bh, dh

edi

ebp

@@ nner

Just to show t hat

fractional

@ nner :
nmov
add
adc
add
adc
nov
inc
dec
j nz

The foll owing | oop uses a conbi nati on of

cl, byte
ch, byte
dl, byte
dh, byte
bl, byte
bh, byte
al, [ebx]
cl, dl
bl , byte
ch, dh
bh, byte
[edi], al
edi

ebp

@@ nner

so we could unrol

eax is not used for
this loop to plot

current u
current u
make them 28:8 bit fixed point

make ebx point to the first texte

update v
update u
get pixel fromaligned texture map

pl ot pi xel

t is also possible to directly interpolate u and v in ebx

ptr
ptr
ptr
ptr
ptr
ptr

ptr

ptr

[1eft_u+l]
[1eft_v+1]
[du]
[dv]
[left_u+2]
[left_v+2]

[du+1]

[dv+1]

present this one that uses the carry flag to add the "overflow' fromthe
part to the whole part of u and v.

fractional part of current u
fractional part of current v
fractional part of delta u
fractional part of delta v

whol e part of current u

whol e part of current v

get pixel fromaligned texture map

update fractional part of u
+ whol e part of dudx (+carry)
update fractional part of v
+ whol e part of dvdx (+carry)
pl ot pi xel

interpolation in one 32 bit register

(ecx) and the carry overflow nethod. W have just enough registers in this

| oop that we don't need to use any nenory vari abl es.
i mpossi ble to unrol

makes it

On the other hand this

it and plot a word or dword at a time. Anyway,

this version should run at 5 ticks per pixel

nov
shr

ecx, [left _u]
ecx, 8

esi, [du]

dl, byte ptr
dh, byte ptr
ah, byte ptr
bh, byte ptr
bl, ch

ecx, esi

al, [ebx]

[dv]
[left_v+1]
[dv+1]
[left_v+2]

make it 28:8 bit fixed point

fractional part of delta v
fractional part of current v

whol e part of delta v

whol e part of current v

update u

get pixel fromaligned texture map

http://skal.planet-d.net/demo/fatmap.txt (10 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

nmov bl, ch

add dh, dI
adc bh, ah
nmv [edi], al
inc edi

dec ebp

j nz @@ nner

The | oop counter (ebp)
registers a bit and plot the scanline fromright to left.

@@ nner :
add ecx, ebp
nmov al, [ebx]
nov bl, ch
add dh, dl
adc dh, ah

nmov [edi+esi],

dec esi
j nz @@ nner

a

in the above | oop can be renmoved if we reorder the

’
’

’

update fractiona

+ whol e part of of delta v (+carry)

pl ot pi xel

The [oop should now run at 4 clock ticks.

I"msure there are other ways to make these kind of

could come up with.

After | wote the above sentence,
conp. graphics. al gorithns by Sean L. Pal mer where he presented the follow ng

4 tick | oop:

there was a post

part of v

| oops but this is what

in the newsgroup

Texture rmust be aligned on a 64K boundary. Mist be 256x256.
Only 8 bits used for fractions,
Start at right end of scanline

T=t exture adr

D=dest adr+count (start)

E=dest adr (end)

means shaky textures.

X=tex X int

x=tex X frac
Y=tex Y int

y=tex Y frac
H=tex X step int
h=tex X step frac
V=tex Y step int
v=tex Y step frac

p=t exture pi xel

edi =DDDD
esi =EEEE
edx=TTYX
eax=000p
ebx=x0Yy
ecx=hnw
ebp=000H
esp=
nmov dh, bh
@.:
nmv al , [edx]
add ebx, ecx
adc edx, ebp
dec edi
nmov dh, bh
cnp edi , esi
nmv [edi], a

(fractional
(fractional
(fractional

(fractional
mraccount for borrow for negative Y step,

(whol e part of initial u)
part of initial u)
(whol e part of initial v)
part of initial v)
(whol e part of delta u)
part of delta u)
(whol e part of delta v)
part of delta v)

either 0 or OFFh

http://skal.planet-d.net/demo/fatmap.txt (11 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt
jne @

It's not necessary to simulate the | oop counter this way. esi is not really
used in the loop so we mght as well use it as a | oop counter and draw t he
scanline fromleft to right (the way | like to draw ny scanlines). Like this:

@@ nner :
nmov al, [edx]
add ebx, ecx
adc edx, ebp

i nc edi
nov dh, bh
dec esi

nmov [edi], a
j nz @@ nner

Both of these | oops uses eax only to hold the pixel so they can be unrolled
to plot a word or dword at a tinme. In fact, by unrolling this |loop to plot
a dword per turn it mght very well beat the table | ookup inner |oop
presented below. By unrolling this |oop we can renove 3 instructions,

"inc edi", "dec esi" and "jnz @nner". This will also nmean that the | oop
will becone too tight that will lead to AG del ays instead

10. Menories fromthe past

| as many others, started coding asmin real node and later on noved to
protected node and flat nodel. The thing | m ss about real node was the
ability to have a pointer in the low 16 bit and a variable in the high 16 bit
of a 32 bit register. In flat nodel we need all 32 bits for the pointer.

Sure, one can setup a selector and address the data with only the low 16 bits
but all prefix bytes can be seen as a 1 clock tick, nonpairable instruction
on the Pentium So addressing with only 16 bit and using a segnent override
will give 2 prefix bytes or 2 ticks del ay.

The following loop in real nbde was for a bitmap scaler | once used. W have
4 variables in only 2 registers (edi, ebx).

; ebx = neg(loop counter) . source ptr
; edi = decision variable . destination pointer
; ecx = frac. part of delta : 1
;o edx =1 . whole part of delta
; the delta is 16:16 bit
@ nner :
nmov al, [bx]
nmv es:[di], a
add edi, ecx ; update fractional part : nove dest. pointer
adc ebx, edx ; update | oop counter . whole step in bnp (+carry)
j nc @@ nner ; jump if loop counter didn't overflow

K, this loop is crap on a Pentiumbut ain't it pretty? Just two adds to nove
bot h pointers, update the decision variable and | oop counter. If we only had
64 bit registers on the Pentium..

11. Sel f nodi fyi ng code

One way to get rid of the nmenory variables in inner |loops is to use

sel f nodi fyi ng code. When you have cal cul ated a constant delta and are about
to store it in a nmenory variable, why don't you store it right into a
instruction as a constant in the inner loop? It's just as sinple. Just
renenber to not use CS as segnent override as we are in protected node

http://skal.planet-d.net/demo/fatmap.txt (12 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

I nmust warn you about this way of coding, especially on the Pentium (read
about the code cache at the end). It can actually nake the | oop sl ower even
if you think you cut away a few ticks

Doi ng nmore conpl ex shadings |ike environment-bunp or Phong-texture-bunp,

sel f nodi fyi ng code m ght be the only way to get it to run at all. I.e. not
having to wite to any nenory variables fromthe inner loop. If you are about
to nmake your |oop selfnodifying, conpare it with your old | oop by actually
timng a typical scene. Then you'll know if you gained anyt hing.

If your loop is faster with sel fnodi fying code and the environnment your
application is ained for allows selfnodifying code, |'d definitely say go for
it, use selfnodifying code

12. Unrolled and sel fnodifying inner |oops

I don't really see these as an alternative to the traditional inner |oops on
the Pentium | present them here just because they are interesting.

The deltas are constant so the offsets for each pixel in each scanline into
the bitmap will also be constant. |.e. we can precal cul ate a whole run and
use that in the inner |loop. The inner |oops for these type of texture nappers
can l ook very different. The nost radical nmust be to unroll it all the way
and to plug in the offsets right into the nmov instructions, i.e.

sel f nodi fyi ng code. These completely unrolled | oops will be pretty big al so.
The | oop below is 14 byte per pixel which means over 4k code for a whole 320
pi xel scanline. The loop will take up half of the code cache. Quch! (read
about the code cache at the end). Here is sonme code that shows the principle
of this type of "inner |oop":

jmp ecx ; Junp to the right place in the "l oop"
nmov al, [esi+12345]
nmov [edi +319], a

nmov al, [esi+12345] ; Get pixe

nmov [edi +318], al ; Plot pixe

nmov al, [esi+12345] ; '12345' is the selfnodifying part

nmov [edi +2], al ; that will be nodified once per triangle

nmov al, [esi+12345]
nmov [edi +1], a
nmov al, [esi+12345]
nmov [edi +0], a

Note that we are doing it backwards, fromright to left. This nmakes it easier
to setup esi and edi. As the code for each pixel in this loop is 14 byte you
will be doing a X*14 when calculating the junp offset. X*14 is (X<<4)-X-X

You shoul d of coarse not plug in the offsets for the whole loop if you only
have a small triangle. The |l ength of the |longest scanline is a byproduct from
the constant delta cal cul ati ons.

So what about the 1.5 tick per pixel |oop?

Well the following peace of code is usually what people think of. I'mnot
really sure that this is actually 1.5 tick per pixel as the 'nov [edi +?], ax
has a operand size prefix byte. This code will need sone work to nake the
instructions pair on the Pentium O coarse this |oop also suffers fromthe
same problens as the previous sel frnodi fying, unrolled | oop

jmp ecx

nmv al, [esi+12345]
nmv ah, [esi+12345]
nmv [edi +4], ax
nmv al, [esi+12345]

http://skal.planet-d.net/demo/fatmap.txt (13 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

nmv ah, [esi+12345]
nov [edi +2], ax
nmv al, [esi+12345]
nmv ah, [esi+12345]
nmv [edi], ax

13. Tabl e | ookup inner | oops

Now to a cooler nethod that is not selfnodifying and don't need to be
unrolled all the way. The idea is very sinmilar to the unrolled | oops above
but in this |loop we have the offsets stored in a | ookup table instead. For
each pixel we get the address of the next pixel fromthe | ookup table. This
met hod should be nuch nore Pentiumfriendly. Also this inner |oop don't need
to have the bitmap aligned on 64k as the traditional inner |oops.

The | oop assune the foll ow ng:

esi = ptr to bitmap (no alignnent needed)

edi = ptr to first destination pixel to plot in this scanline

ebp = width of scanline (loop counter)

left u = current u on the left edge of the triangle (16:16 bit fixed point)
left v = current v on the left edge of the triangle (16:16 bit fixed point)
| ookup = ptr to the precal cul ated | ookup table. The | ookup table is an

array of dwords.

nmov edx, [l ookup]

xor eax, eax

nmov al, byte ptr [left_u+2]
nmov ah, byte ptr [left_v+2]
add esi, eax

@@ nner :
nmov al, [esi+ebx] ; Get pixe
nmv ebx, [edx] ; Get offset for next pixe
nmv [edi], al ; Plot pixe
add edx, 4
inc edi
dec ebp

j nz @@ nner

The sane | oop could look Iike this in C

/] destptr = ptr to screen + y*320

/1 bitmap = ptr to bitmap

/1 lookup = ptr to |ookup table

/1 x1 = start screen x coordi nate of scanline
/1 width = width of scanline

char * dest
char * src

= destptr + x1;
= bitmap + (left_u>>16) + (left_v>>16)*256;

for(: width--;)

*(dest++) = src[*(lookup++)];

The above loop in asmshould be 4 clock ticks per pixel on a Pentium This
| oop can be changed to plot 4 pixels at a tine:

@@ nner :
nmov al, [esi+ebx] ; Get pixel #1
nmov ebx, [edx]

http://skal.planet-d.net/demo/fatmap.txt (14 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

nmov ah, [esi+ecx] ; Get pixel #2

nmov ecx, [edx+4]

shl eax, 16 ; Move pixels 1 and 2 to the high word
add edi, 4

nmov al, [esi+ebx] ; Get pixel #3

nmov ebx, [edx+8]

nmov ah, [esi+ecx] ; Get pixel #4

nmov ecx, [edx+12]

rol eax, 16 ; Swap the high and | ow words
add edx, 16

nmov [edi], eax ; Plot all 4 pixels

dec ebp

j nz @@ nner

Now this loop is 9 (8 if we assume that shl and rol are pairable in the U
pipeline) ticks per 4 pixel with the pixels witten as a dword. Very

good if we align the wite on dword. Use the other |oop for very short lines
or to get this one aligned on dword and use this for the rest of the
scanl i ne.

Cal cul ate the | ookup table with the following loop (this |oop can al so be
used to calculate the offsets in the sel fnodifying exanple):
(dudx and dvdx are 16:16 bit fixed point. |ookup is an array of dwords)

int du = dudx >> 8;

int dv = dvdx >> 8;

int u=0;

int v =0;

for(width of |ongest scanline)
{

*| ookup++ = (u>>8) + (v & OxffffffO0O0);

u += du;
v += dv;
}
; ebx = ecx =0
; esi = delta u (26:8 bit fixed point)
; edi = delta v (26:8 bit fixed point)
; edx = ptr to | ookup table
; ebp = length of table (the width of the | ongest scanline)
@@kl ookup
nov eax, ecx
add ecx, edi ; update v
nov al, bh
add ebx, esi ; update u
nmov [edx], eax ; | ookup[edx] = u+256*v
add edx, 4
dec ebp

j nz @@kl ookup

14. Problens with precal cul ated runs

The nore | play around with inner |oops that uses the same precal cul ated run
for each scanline, the nore skeptic | get. This is because they all suffers
fromthe same problem no matter if we use a | ookup table or if we have a
unrol l ed sel frnodified | oop

In the case of the | ookup table inner |oop we always start at the beginning
of the table when drawing a scanline. This is wong and will give very bad
distortion especially when the triangle is zoomed in close. Always starting
at the beginning of the table is the same as ignoring the fractional parts of

http://skal.planet-d.net/demo/fatmap.txt (15 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

the initial u and v of the scanline. So to fix this we should start somewhere
into the table depending on the initial fractional parts of u and v. But this
i s inpossible because u and v are interpol ated separately on the triangle
edge but are fixed to each other in the |ookup table. Wlco Dijkstra posted
the follow ng solution in conp.graphics.algorithns:

The basic idea is correct. Wat you nean i s using subpixel positioning
with one or two bits precision. For exanple, for 2 bits subpixe
positioning you have to create 4 * 4 tables of the |ongest scanline.

The first table starts at u =v =0, second u =0, v =0.25, third u 0,
v = 0.50 fourth u=0, v =0.75, fifthu=0.25 v =0, etc.

When st eppi ng down the scanlines, select the table giving the 2 nost
significant fractional bits of u and v. The maximumerror you get is 1/8
in each direction (when proper rounding is used!). Thus this is 64 tines
nore preci se than using no subpi xel positioning.

The problemis that it's only faster for very large triangles (eg. nore
than 32 scanlines deep), so it may be faster (and nore accurate) to draw
the texture in the standard way, w thout a table.

This nmethod will reduce the distortion. On the other hand the | ookup tables
will require nuch nore nmenory that in turn will push out other cached data,
not to nention the additional tine it takes to setup the tables.

15. Pre-stepping texture coordi nates

When we interpolate u, v and triangle x along the |eft edge of the triangle
we always truncates triangle x when drawing a scanline. This is natura
because we can only draw whol e pi xels. Wen we truncates x we nust al so
adjust the initial u and v of the scanline. Adjusting u and v will give much
cl eaner and stable textures. Note that this only applies if you use a
traditional inner |oop. Don't bother doing this if you are using a table

| ookup inner loop. Kevin Baca sent me the follow ng expl anation

No matter how you conpute screen pixels, you need to "pre-step" your
texture coordinates by the difference between actual screen coordinates
and screen pixels. 1t |ooks like this:

/1l sp = screen pixel, sc = screen coordi nate.
float sc, diff, u, v, dudx, dvdx;
int sp;

sp = (int) sc;

diff = sc - (float) sp;
u -= dudx * diff;

v -= dvdx * diff;

You can actually do this without nultiplies (by calculating a dda for
each edge that determ nes when to add an extra 1 to the texe
coordi nat es).

16. Special case code

It often pays off to make special case code that takes care of the edge delta
cal cul ations when a triangle section is 1, 2 or 4 pixels high. Then you can
skip the divs and use shifts instead.

I once made a hi stogram of the |ength of each scanline in the very popul ar
chrnface. 3ds object. This object has about 850 triangles and was scal ed up

http://skal.planet-d.net/demo/fatmap.txt (16 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

so it just touched the top and the bottom of a 320x200 pi xel screen. The
hi st ogram showed that nost scanlines was only 1 or 2 pixels wi de. This proves
that the outer loop is just as inportant as the inner loop and also that it

m ght be a good idea to have special case code for those 1 or 2 pixel I|ines.
wi dt h nurber of scanli nes

1 EOR R IR I I I I R R R S S I I I I I R

2 EOR R IR I I R R R I I

3 kkkkhkhkkikkkk*k

4 *kkkkk*

5 * k%

6 * %

7 * %
17. dipping

Clipping is nost of the time a real pain in the ass inplenmenting. It will

al ways nmess up a nice looking routine with extra junk. One possibility is to
have two separate functions, one with clipping and one with no clipping. Then
test the triangle if it needs clipping before calling any of the functions.

The actual clipping code is not that difficult to inplenent really. Say if
you need to clip a texture nmapped scanline, you first have to get the nunber
of pixels you need to skip at the end of the scanline and the nunber of

pi xel s in the beginning of the scanline. Then subtract the nunber of pixels
ski pped fromthe original scanline width. |If you skipped sone pixels at the
start of the scanline, the new starting u and v nust be calculated. This is
done by multiplying the pixels skipped by delta u and delta v respectively.
And adding the original starting u and v of coarse.

The following code is what I'"musing to sort out the stuff:

noVsX EBP, word ptr [left x+2] ; Get the integer part fromthe

noVsX ECX, word ptr [right x+2] ; 16:16 bit nunbers.

nmov EDX, EBP

sub EDX, ECX

; EDX = width of scanline

;o ECX = x1

; EBP = x2

nmov EBX, EDX

sub EBP, [Rightdip]

jle short @@i ght ok

sub EDX, EBP ; skip pixels at end
@i ght ok:

xor EAX, EAX

cnp ECX, [_Leftdip]

j ge short @@ eft ok

nmov EAX, [_Leftdi p]

sub EAX, ECX

nmov ECX, [_Leftdip]
@ ef t ok:

sub EDX, EAX ; skip pixels at start

jle @ot vi si bl e

; EAX = pixels skipped at start

; ECX = clipped x1

; EDX = clipped width of scanline

So now you just have to nmultiply EAX by delta u and add the original u to get
the clipped u. The sane apply for v.

18. dipping using matrices

http://skal.planet-d.net/demo/fatmap.txt (17 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

I"ve been told that clipping should not be done scanline by scanline in the
texture mapping function. But | have yet to find a sinple alternative
solution to this. Don't confuse the clipping |"'mreferring to with renoval of
nonvi si bl e pol ygons. When we arrive at the texture mappi ng function we should
al ready have rempved those triangles that are backface or outside the

Vi ewcone.

Kevin Baca sent nme the followi ng explanation on how to decide if vertices
shoul d be clipped or not.

If you use honpgeneous matrices to do your transformations
it's actually very sinmple to clip before you do the perspective
divide to get screen coordinates.

Usi ng honbgeneous coordi nates, you get vertices of the form[XY Z W
after doing the perspective projection. To get actual screen

coordi nates, you divide X and Y by W If you are going to
"Normal i zed Device Coordinates" the results of these divisions wll
be -1 <X <1land-1<Y < 1. Therefore, to do clipping you need
to performthe follow ng conpari son before the perspective divide

-W<s X< W -W<<Y < W

To clip along the Z axis, you can do the sane thing, but | usually
use the follow ng conparison instead:

0<Z<W

To do a perspective projection, nultiply the projection matrix, P, by
the viewmtrix, V. M= P * V.

The view matrix is the result of all your transformations
(transl ations, rotations, scalings, etc.) of both the nodel and the

camera. For the projection matrix, | use the foll ow ng:
1 0 0 O

0 a 0 O

0 0 b c

0O 0o f O

wher e

a = the aspect ratio (width / height of screen)

b=f* (yon/ (yon - hither))

c =-f * (yon * hither / (yon - hither))
f = sin(aov / 2) |/ cos(aov / 2)

aov = angle of view

yon = distance to far clipping plane
hither = distance to near clipping plane

These values allow ne to clip using:
-W< X< W
-W< Y < W
0<Z<W

After clipping, divide X and Y by Wand nultiply by the width and
hei ght of your screen to get final screen coordinates.

19. Witing a byte, word, dword and ot her weird things

Now to a weird thing on the Pentium The Pentiumhas a so called Wite-Back
cache. Well, the fact that the Pentiumhas a Wite-Back cache is not weird at
all. It's howthe Wite-Back cache works in practice that is weird if you are
used to a Wite-Trough cache that is used on the 486

http://skal.planet-d.net/demo/fatmap.txt (18 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

Wite-Trough:
VWen we wite a byte to nenory the byte is always witten to RAM If that
same byte is also present in the cache, the byte in the cache is al so
updat ed.

Wi te-Back
Wen we wite a byte to nenory the byte is only witten to RAMif the
sanme byte is not present in the cache. If the byte is present in the
cache, only the cache will be updated. It is first when a cacheline is
pushed out fromthe cache that the whole cacheline will be witten to
RAM

I have done tests on ny system (Pentium 120, L1:8+8k, L2:256k) using the
time stanp counter to see how it actually behaves. These are the results:

Witing to a byte (or aligned word or dword) that is not present in the L1
cache takes 8 clock ticks (no matter if the byte is present in the L2 cache).
If the byte is present in the L1 cache, the same "nov" instruction takes the
theoretical 0.5 clock tick.

This is very interesting and potentially useful. If we e.g. nmanage to keep
the cacheline where we have our nenory variables in the L1 cache, we can
wite to themat the sane speed as witing to a register. This could be very
useful in the case of a Phong-texture or Phong-texture-bunp inner |oop where
we need to interpolate many variables and only have 7 registers.

The problemis that our cacheline will be pushed out fromthe cache as soon
as we start getting cache nisses when reading the texture data. Then we are
back at 8 clock tick per wite. To fix this we nmust read a byte from our
cacheline so that it won't be narked as old and thrown out. But this is
usual Iy what we do anyway. W read a variable, interpolates it, uses it and
wites it back

Juan Carlos Areval o Baeza presented in an article to conp.graphics.algorithns
anot her way to make use of the Wite-Back cache in a texture mapping inner

| oop. The idea is to ensure that the destination pixel witten is al ways
present in the cache. This is done by reading a byte fromthe destination
cacheline first:

;edi ptr to first destination pixel (+1) to plot
; esi ptr to | ast destination pixel to plot
; The scanline is plotted fromright to left

push esi
mov al, [edi-1] ; read the first byte into the cache
@ 1:

lea esi,[edi-32]
cnp esi,[esp]

jae @@

mov esi, [esp]
@a:

mov al,[esi] ; read the last byte of the 32-byte chunk
@

mov al , [edx]
add ebx, ecx

adc edx, ebp
dec edi

mov dh, bh
cnp edi, esi
mov [edi],a
jne @

cnp edi,[esp]
jne @1

http://skal.planet-d.net/demo/fatmap.txt (19 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt
pop esi

Thi s ensures that whenever you wite a pixel, that address is already in
the cache, and that's a lot faster. A LOT. My P90 takes 20-40 cycles to
read a cache line, so that's around 1 nore cycle per pixel. Problens:
when painting polys, rows of very few pixels (let's say 1-8 pixels) are
the most conmon, and those don't feel so good about this |loop. You can
al ways have two | oops for the different |engths.

Anot her way to speed up wites (that al so works on 486) is to collect 4
pixels in a 32 bit register and wite all 4 pixels at a tine as a aligned
dword. This will split the 8 clock tick delay on all 4 pixels naking the
delay only 2 clock ticks per pixel. This method will al nbst al ways gai n speed
especially if the scanlines are |ong.

20. The data cache

Al though it is fun optimzing inner |oops there are other inportant factors
that one should | ook at. Wth the Pentium processor the cache aspects are
very inportant. Maybe nore inportant than the speed of the inner |oop. Don't
know how long this is true though as newer processors seens to get bigger and
bi gger caches that probably will become smarter al so.

The general idea of the cache is:

When the CPU has decoded an instruction that needs to get a variable from
menory, the CPU first checks the cache to see if the variable is already

in the cache. If it is there the CPU reads the variable fromthe cache.

This is called a cache hit. If the variable is not in the cache the CPU first
has to wait for the data to be read from RAM (or the secondary cache, L2)
into the cache and first after that get the variable fromthe cache. The
cache always loads a full cacheline at a tine so this will take a few cl ock
ticks. A cacheline is 16 byte on a 486 and 32 byte on Pentium The advantage
of this is when reading byte after byte fromthe nenory, the data will nost
of the tine already be | oaded into the cache because we have accessed the
same cacheline just before. Also a cacheline is always aligned on 16 byte

on the 486 and on 32 byte on the Pentium

| did a fewtests on ny system (Pentium 120 MHz, L1 cache 8+8k, L2 cache
256k) using the time stanp counter to check the actual time for |oading a
cacheline. In the first test | flushed the L2 cache so that each cacheline
must be read all the way from RAM This was done by allocating a 256k nenory
chunk and read each byte of that first. This would cause the menory | did the
test on to be pushed out of the L2 cache. The testloop | ooked like this:

mov ecx, 1000
next:

mov al, [esi]

add esi, ofs

dec ecx

jnz next

The overhead of the | oop was first tinmed by replacing the "nov al, [esi]"
by "nov al, cl". The loop ran at exactly 2 clock tick per turn. The "ofs"
val ue was replaced for each run with 1, 2, 4, 8, 16, 32, 64, ... In the
second test | first forced the L2 cache to load the nmenory by readi ng each
byte of a 128k nenory chunk and then run the testloop on the sane nenory.
Here are the results of both tests:

clock ticks

| * * * * *

40+ * * * *

http://skal.planet-d.net/demo/fatmap.txt (20 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

*

I
35 + from RAM *
| *
30 + *
| *
25 + *
| *
20 + * + + 4+ 4+ + + + + + o+ +
| - +
15 + * +
| * + from L2 cache
10 + * +
| £+
5 + * 4
| .+
0+ ----- S R S R S R S R S R S R S R S R S R of s
1 2 4 8 16 32 64 128 256 512

So this tells me that it takes 40-45 clock ticks minimumto | oad a cacheline
all the way from RAM and exactly 18 clock ticks fromthe L2 cache. Wen "ofs"
was 1 the "nov al, [esi]" ran at 2.0 ticks when loading fromRAM and 1.1
ticks fromthe L2 cache. 0.5+40/32=1.75 and 0.5+18/32=1.06 so this nmkes
sense.

This is pretty scary! 18 clock ticks to |load a cacheline fromthe L2 cache.
18 clock ticks mnimumfor the inner |oops if we assune that a cacheline nust
be filled for each byte read. Quch

So in the case of a texture mapper where we might be reading texels in a
vertical line in the bitmap, the inner loop will be accessing pixels that

are >256 bytes apart. The CPU will then be busy filling cachelines for each
texel. A 64k bitmap won't fit inside a 8k cache, you know. So what can we do?
Well, we can wait on Intel to invent bigger caches or we m ght consider
storing our bitmaps sone other, nore cache friendly way.

| got an interesting tip fromQto Chrons on channel #coders the other day
about this. He said that one should store the bitmap as a set of tiles, say
8 x 8 pixels instead of the usual 256 x 256 pixel. This nakes perfect sense.
It would nean that a snall part of the bitmap (8 x 4 pixel) would fit in the
same 32 byte cacheline. This way, new cachelines don't need to be | oaded that
often when reading pixels in a vertical line in the bitnmap.

The foll owi ng was suggested in a mail to nme by Dare Manojl ovic:

If you are saving bitmap as a set of tiles (8*4) the inner |oop wouldn't
have to be nore conplicated (this is my opinion - not yet tested).

For exanple, let's say that we have u&v texture coordi nates, we only have
to reorder bits to get the correct address (before the inner |oop):
Normal ly for a bitmap of 256*256 the texel address would | ook |ike:
EAX AH AL
0000 0000 0000 0000 0000 0000 0000 0000
v coordi nate u coordinate

And now:
EAX AH AL
0000 0000 0000 0000 0000 0000 0000 0000

v(other 6 bits) wu(other 5 bits) v(lower 2 bits) u(lower 3 bits)

Addi ng a constant value,that is also converted, in the |oop shouldn't be
a probl em

Now, as | understand cache | oading procedure,it always |oads 32 bytes of
data (Pentium), so the whole bitmap tile of (8*4 pixels) will be in cache.
O course bitmap tile nust be 32 bytes aligned.

http://skal.planet-d.net/demo/fatmap.txt (21 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

This would al so work faster on 486 where cache is |oaded with 16 bytes.

There is a small problemto the above method. We can't just add a constant
value to a nunber in this format (even if they both are converted). This

is because there is a gap between the bits. W nust nmake the bits junp over
the gap to nake the add correct. There is a sinple solution to this probl em
though. Just fill the gap with 1:s before adding the constant value. This
will cause the bit to junp over the gap. Filling the gap is done with a
bitwi se OR instruction.

Converting u and v (16:16 bit) to this format can be done with the follow ng
code:

int uc = (u & 0x0007ffff) | ((u<<2) & Oxffe00000);

int vc = (v & Ox0003ffff) | ((v<<5) & Oxff800000);

; eax = u o-------- wwwwwwwnf fFFFFFFFFFFFFFff (w=whole, f=fractional)
; ebx = v o-------- W ffFFFFfFFFFefffef

; ecx = scratch register

nov ecx, eax
shl eax, 2

and ecx, 00000000000001111111111111111111b
and eax, 11111111111000000000000000000000b
or eax, ecx

nmov ecx, ebx

shl ebx, 5

and ecx, 00000000000000111111111111111111b
and ebx, 11111111100000000000000000000000b

or ebx, ecx
eax = u ------ W - W FFFFFFFFEFFqffefef
ebx = v o---vWwWWWW - - - - W FFFFFFFffFfffffef

Addi ng dudx and dvdx to u and v in this format can be done with the follow ng
code (all variables are in the converterd format):

uc = (uc | 0x00180000) + dudx;

vc = (vc | 0x007c0000) + dvdx;

; eax = U ------ WWWW- - W FFFFFFFFfFqefeffef

;oebx = v o---wwwwwe - - - - FFFFFFFFFFFfFfqffef

; dudx, dvdx = 16:16 bit converted to this fornmat

or eax, 00000000000110000000000000000000b ; fill the bit-gap in u
or ebx, 00000000011111000000000000000000b ; fill the bit-gap in v

add eax, [dudx]
add ebx, [dvdx]

In a mil sent to ne, Russel Sinmmons preresented the follow ng nethod to
reorder the bits to acheive a sinpler inner loop by elimnating a bit-gap

I n one post, soneone suggested a bit structure to find the corect
position in your tiled texture given u and v. He suggested sonethi ng
I'ike:

high bits of v | high bits of u| lowbits of v | lowbits of u

This way the high bits of u and v determine which tile our texel is in,
and the low bits of u and v deternmine where in our tile the texel is.
If we store our tiles in a different manner, we can sinplify this to:

high bits of u | high bits of v | lowbits of v | lowbits of u

which is in other words:

http://skal.planet-d.net/demo/fatmap.txt (22 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

high bits of u| all bits of v | lowbits of u

In order to facilitate this, instead of storing our tiles in this order

| O] 1] 2] 3] ... (here i amshow ng the upper 4x4 tiles of a 256x256
............. texture store in 8x8 tiles)

| 32] 33| 34| 35| ..

_____________ Original Method

| 64] 65| 66| 67|

| 96] 97| 98| 99|

| 0/32]64]96] ... (here i amshowing the upper 4x4 tiles of a 256x256
————————————— texture store in 8x8 tiles)

| 1] 33| 65| 97|

————————————— New Method, in order to acheive a sinpler inner |oop
| 2] 34| 66| 98|

| 3] 35| 67| 99|

Also, if we are storing our bitrmap in a tiled fashion, then it would
greatly inprove our cache performance if we can back and forth across
scan lines.. in other words alternate the direction we scan across |ines.
Say we have just scanned forward across one scan line. |If we start
backwards across the next scan line, we are likely to be pulling texels
fromthe sane tiles as we were at the end of the previous scan line.

The | ast part about alternating the drawing direction is definitely sonething
to try out

I was hoping | would be able to present some code here that uses all these
techni ques and 16:16 bit interpolation in a slick inner |oop but due to |ack
of time and the fact that I'mfed up with this docunent, | leave this to you

21. The code cache

The cool thing about Pentiuns is that it can execute two instructions in
parallel. This is called instruction pairing. But there is a lot of rules
that must be fulfilled for the pairing to take place. One rule is that both
instructions must already be in the code cache. This means that the first

time trough a inner loop, no instructions will pair. There is one exception
tothis rule. If the first instructionis a 1 byte instruction, e.g. inc eax,
and the other is a sinple instruction, then they will pair the first tine.

If by chance our inner |oop happens to be in the code cache, by nodifying an
instruction in the inner |oop (selfnodifying code) the cacheline where we
did the nodification will be marked as not up to date. So that cacheline
must be | oaded into the cache again before we can execute the inner |oop
agai n. Loadi ng of code cachelines seens to be exceptionally slow also. In

ot her words, we have found yet another source of del ay.

So to have a conpletely unrolled |oop that alnost fills up the whol e code
cache and also is selfnodifying is a pretty bad idea on the Pentium On the
other hand, we are not nodifying the loop for each scanline so chances are

http://skal.planet-d.net/demo/fatmap.txt (23 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

that parts of it will be in the code cache fromdraw ng the previous
scanl i ne.

22. Sone pairing rules

As nentioned above, the Pentium can execute two instructions in parallel
This is possible because the CPU has dual integer pipelines, they are
called the U and V pipelines. The Pentium has a so called superscal ar
architecture. The U pipeline is fully equi pped and can execute all integer
instructions. The V pipeline on the other hand is a bit crippled and can only
execute sinmple, R SC type instructions.

Sinple instructions are:

nmov, inc, dec, add, adc, sub, sbb,
and, or, xor, cnp, test, push, pop,
lea, jnmp, call, jcc, nop, sar, sal,
shl, shr, rol, ror, (rcl), (rcr)

(What |'ve heard there are different opinions on if the shift/rotate
instructions are pairable or not. The book | have here states that these
instructions are pairable but can only execute in the U pipeline)

The first pairing rule is that both instructions nust be sinple instructions.
Al so, no segnment registers can be involved in the instructions.

Another rule is that the two instructions nust be conpletely independent of
each other. Also they nust not wite to the sanme destination register/ menory.
They can read fromthe sanme regi ster though. Here are sone exanpl es:

add ecx, eax ; store result in ecx
add edx, ecx ; get result fromecx. No pairing!

nov ecx, eax

nmv edx, ecx ; No pairing!

nmov al, bh ; al and ah is in the same register
nmov ah, ch ; No pairing!

nmv ecx, eax ; read fromthe sane register

nov edx, eax ; Pairs ok.

nmov ecx, eax ; nhote eax in this exanple

add eax, edx ; Pairs ok

There are two exception to this rule. Nanely the flag register and the stack
pointer. Intel has been kind enough to optim ze these.

dec ecx ; nodifies the flag register

j nz @@ nner ; Pairs ok.

push eax ; both instructions are accessing esp
push ebx ; Pairs ok

So for exanple the loop we used to calculate the | ookup table with, al
instructions are sinple and not dependent on the previous one. The 8
i nstructions should execute in 4 clock ticks.

@kl ookup:
nmov eax, ecx
add ecx, edi ; Pairs ok.

nmov al, bh

http://skal.planet-d.net/demo/fatmap.txt (24 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

add ebx, esi ; Pairs ok
nmv [edx], eax

add edx, 4 ; Pairs ok
dec ebp

jnz @@kl ookup ; Pairs ok.

23. Pipeline del ays

There are a whol e bunch of these that will delay the pipelines:

- data cache nmenory bank confli ct

- address generation interlock, AG
- prefix byte del ay

- sequenci ng del ay

| personally think that the AG is nost inmportant to consider in the case

of tight inner |oops. Because that is what's happening in a inner |oop, where
we are calculating an address and need it right away to access sone data.
There will be a AG delay if a register used in a effective address
calculation is nodified in the previous clock cycle. So if we have our
instructions nicely pairing we mght have to put 3 instructions in between to
avoi d the AG del ay.

add esi, ebx ; Move the array pointer.
nmov eax, [esi+8] ; AG delay. You just nodified esi
add esi, ebx ; Move the array pointer
add ebx, ecx ; Do sonething useful here
inc edi "
add ebp, 4 ;"
nmv eax, [esi+8] ; Nowit's OKto access the data. No AG del ay.
If you don't have any useful instructions to fill out the gap with you could

try to swap the two instructions so that you access the data first and then
nmodi fy the index register.

nmv eax, [esi+8]
add esi, ebx ; Pairs ok. No AG del ay.

There are a ot nore rules one nust follow so | suggest you buy a good book
on the subject. | don't know of any free info about this on the net as of
this witing. Maybe you' |l find something at Intel's wwsite
(http://ww.intel.con). Anyway, a book that got nme started was: "Pentium
Processor Optinization Tools" by Mchael L. Schmit |SBN 0-12-627230-1

Thi s book has a few mnor errors and sone of the explanations are a bit
cryptic but it is a good starting point. The way to really learn is to get
the basics frome.g. a book and then tinme actual code to see what is faster
and what's not.

24. The tine stanp counter

The Pentiumhas a built in 64 bit counter called the Time Stanp Counter that
is incremented by 1 for each clock tick. To read the counter you use the
sem - undocunented i nstructi on RDTSC (db Ofh,31h). This will |oad the | ow 32
bit of the counter into EAX and the high 32 bit into EDX. Perfect for timng
code!

; First tinme the overhead of doing the RDTSC instruction

http://skal.planet-d.net/demo/fatmap.txt (25 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

db 0f h, 31h ; hex opcode for RDTSC
nmov ebx, eax ; save low 32 bit in ebx
db 0f h, 31h

sub eax, ebx ; overhead = end - start
nmv [oh_low, eax

; Now do the actual timng

db 0f h, 31h
nmov [co_low, eax
nmov [co_hi], edx

; Run sone inner |oop here of whatever you want to tine

db 0f h, 31h

sub eax, [co_| ow ; ticks = end - start
sbb edx, [co_hi]

sub eax, [oh_|ow ; subtract overhead
sbb edx, O

; Number of clock ticks is nowin edx:eax

You'll notice that |I first tinme the overhead of doing the RDTSC instruction
This mght be a bit overkill but it's no harmin doing it. Note also that |
ignore the high 32 bit. The overhead should not be nore than 2732 cl ock

ti cks anyway. The RDTSC can be a privileged instruction under sone extenders
(?) but still be available (under the control of the extender) so there m ght
actually be a overhead to tine.

You can usually ignore the high 32 bit. Using only the low 32 bit will allow
a maxi mum of 2732 clock ticks which is 35 seconds on a Pentium 120 MHz.

When you are timng your code e.g. when you have done sone optim zations on
your texture mapper, don't tine just one triangle over and over. Tinme how
long it takes to draw a conpl ete object with hundreds (thousands) of
triangles. Then you'll know if that optim zation made any difference.

25. Branch prediction

The Pentium has sone sort of |ookup table called the Branch Target Buffer
(BTB) in which it stores the last 256 branches. Wth this it tries to
determne the destination for each junp or call. This is done by keeping a
hi story of whether a junp was taken or not the last tinme it was executed. If
the prediction is correct then a conditional junp takes only 1 clock tick to
execut e.

Because the history nmechanismonly renmenbers the last tinme the junp was
executed, the prediction will always fail if we junp different each tine.
There is a 4-5 clock tick delay if the prediction fails.

The branch prediction takes place in the second stage of the instruction

pi peline and predicts if whether a branch will be taken or not and its
destination. Then it starts filling the other instruction prefetch queue
with instructions fromthe branch destination. If the prediction was w ong,
then both prefetch queue must be flushed and prefetching restarted.

So to avoid this delay you should strive to use sinple |oops that always
takes the junp or always not takes the junp. Not like the follow ng that
junps di fferent depending on the carry flag.

jmp @ nner

@m@xtra:
R ; Do something extra when we get carry overfl ow
dec ebp

http://skal.planet-d.net/demo/fatmap.txt (26 of 28) [01.04.2003 8:41:29 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

jz @@one
@ nner :

e ; Do sonething useful here
add eax, ebx

jc @@xtra ; Junp on carry overfl ow
dec ebp
j nz @@ nner
@dlone:
In this loop it's the '"jc @®@xtra' instruction that will ness up the branch
prediction. Sometinmes the junp will be taken and sonetimes not. The typica

way of doing masking with conpares and junps has this probl em al so.

26. Reference

Most of the Pentium specific information on optimization was found in the
book: "Pentium Processor Optim zation Tools" by Mchael L. Schmt
| SBN 0-12-627230-1

27. \Were to go fromhere

When you have i npl enented your texture mapper you autonatically al so have
Phong shadi ng and environment mapping. It's only a matter of making a
suitable bitmap and to use the normal vectors at each triangle vertex to get
the u and v val ues.

Fromthere the step is not far from conbining Phong shadi ng and texture
mappi ng. And then adding bunps to all this. The only difficult part is that
you need to interpolate 4 variables in the inner |oop when you do

Phong-t exture, environment-bunp or Phong-texture-bunmp and still have
registers left for pointers and | oop counter. These shadings can't really be
called "fast" as the inner |oops will become pretty ugly. They can definitely

be called real tine though.

28. Credits and greetings

Juan Carl os Areval o Baeza (JCAB/ | guana-Vangel i STeam) <jareval o@ai m . aau. dk>

Wlco Dijkstra <wdi j kst r @zsbg01. att. conp
Kevi n Baca <kbaca@kyganes. conr

Sean L. Pal ner <sean@lel t a. con»

Ti zi ano Sar done <tiz@mil.skylink.it>

Mar k Pur sey <ner ner @wr | d. net >

Dare Manoj | ovic <t angor @el j e. eunet . si >
Russel Si mmons (Armtage/ Beyond) <resimon@i uc. edu>

Aat u Koskensilta (Zaphod. B) <zaphod@ci . fi >

Qto Chrons (CCoke) (a | egend)

Ni x/ Logi ¢ Desi gn (a cool coder)

Phi | Car nody (FatPhil) (The optim zing guru, why all this silence?)
Jmagi ¢/ Conpl ex (anot her | egend)

MacFeeni x (you are young)

BX (keep on coding)

t hef ear (a cool swede)

John Gronvall (M PS R8000 rul es!)

LoZEr (when will PacMan for Linux be out?)

Addi ct, Damac, Dice, Doom Swallow, Wde / Doonsday (a bunch of finns ;)

When | started out witing this document | didn't know half of what | now

http://skal.planet-d.net/demo/fatmap.txt (27 of 28) [01.04.2003 8:41:30 Uhr]

http://skal .planet-d.net/demo/fatmap.txt

know about texture mapping. |1've learned a lot and this is nuch because of
those 12 first persons in the credits and greetings list. Thanks a lot for
the help. | hope that the readers of this docunent also will |earn sonething.

If you truly find this document useful, you could consider giving ne a smal |
greeting in your production. That woul d be cool.

<ECF>

http://skal.planet-d.net/demo/fatmap.txt (28 of 28) [01.04.2003 8:41:30 Uhr]

	Few maths, lotsa demos
	Matrix and Quaternion FAQ
	Fast affine texture mapping

