

Hauptseminar/Master Seminar:

# Machine Learning Methods for Computer Vision Applications

Diana Mateus, Olivier Pauly, Loren Schwarz, Nassir Navab,

Advanced Seminar Course Module IN8901 Master Seminar Module IN2107 Seminar Module IN0014

> CAMP TUM - I16



### **Goals of the Seminar**

### Seminar Topic Machine Learning and Computer Vision

### Learn how to:

- Read scientific papers.
- Research the state of the art on a specific topic.
- Write a scientific **report**.
- Do a scientific **presentation**.



#### **Scientific Communication**

- **During your studies:** Understand and discuss existing literature related to your own thesis (Bachelor's, Master's, Diploma).
- Scientific publications (Conference / Journals / Workshops):
  - Hundreds of conferences and journals on different topics
  - Present your own research and contribution to other researchers
  - Exchange of knowledge, make contacts
  - Confirmation and validation of contributions



#### **Related Conferences / Journals**

#### Conferences

- (CVPR) IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- (ICCV) International Conference on Computer Vision
- (ECCV) European Conference on Computer Vision
- (NIPS) Neural Information Processing Systems
- (SIGGRAPH) Special Interest Group on GRAPHics and Interactive Techniques

#### Journals

- (PAMI) IEEE Transactions on Pattern Analysis & Machine Intelligence
- (IJCV) Springer International Journal on Computer Vision
- (CVIU) Elsevier Computer Vision and Image Understanding



# **Previous Years' Papers**



#### **Image Processing: Super-resolution**



 Glasner, Bagon and Irani: Super-Resolution from a Single Image, ICCV (2009).



#### **Image Processing: Reconstruction**



 Takeda, Farsiu and Milanfar: Kernel Regression for Image Processing and Reconstruction, IEEE TIP (2007).



#### **Image Processing: Segmentation**



 Duchenne, Audibert, Keriven, Ponce and Ségonne: Segmentation by Transduction, CVPR (2008)



#### **Tracking: Learning similarity**



 Nguyen and de la Torre: Metric Learning for Image Alignment, IJCV (2009).



#### **Tracking: Deformable objects**



(a)



Mathieu Salzmann, Raquel Urtasun, Pascal Fua. Local Deformation Models for Monocular 3D Shape Recovery. CVPR 2009



#### **Tracking by Detection**

 Keypoint Signatures for Fast Learning and Recognition, ECCV (2008).





#### **Human Motion Modeling and Analysis**



• Style-Based Inverse Kinematics, ACM TOG (2004).



#### **Image Classification**

 Guillaumin, Verbeek and Schmid: Is that you? Learning Approaches for Face Identification, CVPR (2009).





#### **Learning in Medical Imaging**



 Justin P. Haldar, Bo Zhao, Cornelius Brinegar, Zhi-Pei Liang. Low Rank Matrix Recovery for Real-Time Cardiac MRI.



## In Practice...



#### The Seminar in Practice....

- SWS: 2+0 ECTS: 4 Credits. Course Language: English
- ~ 2-3 presentations per session.
- **Presentation**: 20 min presentation / 10 min questions. Download the template from the seminar webpage.
- Write a report (max 8 pages). Download the template from the seminar webpage.
- Attendance and participation of the seminar meetings
  - Participation: read the abstract, see figures, read introduction and conclusions.
  - Prepare questions.



#### The Seminar in Practice....

1 Prepare

- Read, read and read.....
- Prepare the presentation and report.
- 2 weeks before ->
- 3 1 week before —
- Fix a meeting (send a mail to your supervisor)
- Discuss the report and presentation with your supervisor
- (4) Presentation  $\rightarrow$  · (5) 1 week after  $\rightarrow$  ·
  - + questions, exchange of ideas, feedback.
  - Send the final report



### **Contents of the Presentation**

As a rule of thumb: max 1 slide per minute (max 20 slides for 20 mins)

- Present the paper
  - Type and year of publication: journal, conference, workshop, etc.
  - Authors/Institution
- Motivation and Goal
  - What is the problem that the authors try to solve?
  - Name potential applications: what for?
  - General motivation: why is it interesting?
  - Related Work (state of the art)
    - Mention most similar approaches and explain how your paper is different from them?
    - Citing/Referencing other people's work [Lastname-Conference-Year].
  - Method

٠

۰

- Overview (1 or 2 slides): input, output, contribution (the proposed new elements).
- Method/Algorithm (Only key ideas).
- Results (short version)
  - Explain the type of **data** used.
  - Validation: what is being validated and how.
- Conclusion (include your own conclusions!!)



#### **Related Work: Access to Scientific Publications**

- Access to the most publications is not free
- Many publications can be accessed for free using the TUM-proxy
- Some places to look for publications:
  - Google Scholar <u>http://scholar.google.de</u>
  - Citeseer http://citeseer.ist.psu.edu/
  - Our library
    - Books and electronic media...
    - Link to instructions how to access/download electronic media: <u>http://www.biblio.tu-muenchen.de/medien/emedien.html</u>
    - Link to access/download media outside of the campus: <u>http://www.lrz-muenchen.de/services/netzdienste/proxy/</u> <u>documentweb/</u>



### **Contents of the Report (Max 8 pages)**

#### Follow the structure of a scientific publication.

- Abstract and Introduction (~1 page)
  - General motivation.
- State of the Art and Contributions (~2 pages)
  - Look for related papers, books, websites, videos etc. e.g. Papers citing the studied work.
  - How is this paper different from (SoA)? e.g What is new? What is better? What is faster?
- Problem statement (~1 page)
  - Mathematical formulation
- Method (~2 pages)
  - Overview: input, output.
  - Method/Algorithm.
- Results (~1 page)
  - Summary of experiments and results (what type of data and validation).
  - YOUR CRITIQUE of the methodology, set-up and validation (what else could have been done?, is it enough to demonstrate the contribution?, is the data biased?, are there non mentioned assumptions?, can it be easily reproduced?)
- Conclusion (~1 page)
  - YOUR PERSONAL CONCLUSION & IDEAS
- References (~1 page)



#### **Instructions for the Report**

- Do NOT copy and paste!,
- not even a single phrase!
- Use the LATEX template that is on the seminar webpage.

### LaTeX

- Document Typesetting System
- Most widely used by mathematicians, scientists, engineers, philosophers, economists and other scholars in academia and the commercial world [Wikipedia]
- Available free for Windows, Linux and Mac OS
- Download and install LaTeX distribution
  - Windows: MikTeX
  - Мас: МасТеХ
- Download and install LaTeX editor
  - TeXicCenter, TexMaker, TexShop







### **Evaluation Criteria**

- Presentation (50%)
  - Understanding (Prepare in advance!)
  - Quality of slides/material
  - Clarity of motivation
  - Clarity of method overview
  - Appropriate use of formulas
  - Personal conclusion
- Report (50%)
  - USE OF OWN WORDS
  - Presentation, language and structure
  - State of the art
  - Personal conclusion



#### Finally .....

- Seminar groups are usually heterogeneous. So it is normal if you do not understand the details of each presentation.
- DO ASK questions about what is not clear. This will not penalize the presenter, they will give you participation points and everybody might learn something from it.
- To get detailed feedback after your presentation come to our office.
- The duration of the presentation will be **strictly controlled**. We will ask you to jump to your conclusions if the indicated duration is exceeded.



### **Papers & Dates**

- Paper list is online will be finalized by 8<sup>th</sup> of May
  <u>http://campar.in.tum.de/Chair/TeachingSs11MLCVSeminar</u>
- Beginning Monday, 9<sup>th</sup> of May, send a mail with your paper of choice (and maybe an alternative choice) to <u>schwarz@in.tum.de</u> (first come first served)
- After 15<sup>th</sup> of May, the exact calendar will be put online
- Presentation dates will be in
  - end of June till end of July
  - once a week, Thursdays, 16:00 17:30