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Applications
Face modeling form video

S. Ilic, M. Salzmann, P. Fua, Implicit Meshes for Effective Silhouette Handling, International Journal of 
Computer Vision, Vol. 72, Nr. 2, pp. 159 - 178, 2007.

http://cvlab.epfl.ch/publications/publications/2007/Fua07a.pdf
http://cvlab.epfl.ch/publications/publications/2007/Fua07a.pdf
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Applications
Model based tracking of rigid objects

L. Vacchetti, V. Lepetit and P. Fua, Stable Real-Time 3D Tracking Using Online and Offline Information, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, Nr. 10, pp. 1391 - 1391, 2004.

http://cvlab.epfl.ch/publications/publications/2004/VacchettiLF04.pdf
http://cvlab.epfl.ch/publications/publications/2004/VacchettiLF04.pdf
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Applications
Deformable surface tracking

M. Salzmann, J.Pilet, S.Ilic, P.Fua, Surface Deformation Models for Non-Rigid 3--D Shape Recovery, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Nr. 8, pp. 1481 - 1487, August 2007.

http://cvlab.epfl.ch/publications/publications/2007/Salzmann07a.pdf
http://cvlab.epfl.ch/publications/publications/2007/Salzmann07a.pdf
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Text books
• Practical Methods of Optimization, R. Fletcher, Wiley, 1987. 

Note: Covers unconstrained and constrained optimization. 
Very clear and comprehensive.

• Numerical Recipes in C (or C++) : The Art of Scientific Computing, William H. Press, 
Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, CUP 1992/2002. 
Note: Cook book with good chapters on optimization and data modeling with
available implementations. 

Available on-line at http://www.nrbook.com/a/bookcpdf.php

• Convex Optimization, Stephen Boyd and Lieven Vandenberghe, 
CUP 2004, 
Note: Available on-line at: http://www.stanford.edu/~boyd/cvxbook/

http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf.php
http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvxbook/
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Introduction 
Problem definition

•Consider the objective or cost function:

•The goal is to find the values of parameters       which minimize this 
function:

•subject to constraints:

•We do not impose constraints! 

•We do unconstrained optimization.

f(x) : Rn → R

x∗ = arg min
x

f(x)

x

ci(x) ≥ 0, i = me + 1 , . . . ,m
ci(x) = 0, i = 1 , . . . ,me
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Unconstrained optimization

•down-hill search (gradient descent) algorithms can find local minima 

•which of the minima is found depends on the starting point 

•such minima often occur in real applications

min
x

f(x)

function of 
one 

variable



3DCV I                                                                     Slobodan Ilic

Example: template matching in 2D 
images
• Input are two point sets:

•Objective:

Determine the transformation     which minimizes 
the error between the model                      
      and the data      . 

Model M

T

D

Transformation 

Data 

M = {Mi}
D = {Di}

T

M D

model points

data points
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Cost function

f(θ, tx, ty) =
�

j

min
i
�R(θ)Mi + t−Dj�2

for each 
data point

find the closest 
model point

Model point: 

Transformation parameters:
 rotation
 translation

Mi = (xi, yi)T

θ
t = (tx, ty)T

s = {θ, tx , ty}State vector:
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Linear vs. non-linear cost functions
•Cost function linear wrt. its parameters:

•Cost function is non-linear in respect to its parameters:

•Where the non-linearity comes from? 

f(tx, ty) =
�

j

min
i
�Mi + t−Dj�2

f(θ, tx, ty) =
�

j

min
i
�R(θ)Mi + t−Dj�2
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Cost function and least squares
•Cost function represents a sum of squared differences between the model 

and the data:

•can be represented as a system of equations:

•Given system of equations            has a solution     precisely  
when the above function  has a minimal value: 

f(s, D) =
�

j

fj(s, Dj)2

f1(s, D1) = 0
f2(s, D2) = 0

fN (s, DN ) = 0

...

∂f

∂si
=

N�

j

2fj(s1, s2, ..., sP , D)
∂fi

∂si
= 0

f(s, D) s∗
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Linear least squares

xi

yi

yi = f(xi, s) yi = axi + b

f(xi, s) = axi + b, s = [a, b]T
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Linear least squares
Problem definition and notation
•Given the data pairs          :

•    are independent data points (points at which the measurements are 
taken or observed)

•   are dependent(measured or observed) data points

•          is a function parameterized by   , which we use to approximate 
the observations

•   is a state vector (parameter vector)

•The objective is to estimate the parameters of the function   by 
minimizing:

(xi, yi)

xi

yi

f(x, s)

f

s
(xi, yi)

s

E(x, s) = 1
2

�N
i=1(yi − f(xi, s))2
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Linear least square 
(linear regression)
•Find the minimum of the energy(cost) function wrt. the parameters of the 

state vector s=[a,b]:

•Minimum of this function minimizes the least square distance between 
the model and the data points.

∂E

∂a
= −2

N�

j=1

(yi − axi − b)xi = 0

∂E

∂b
= −2

N�

j=1

(yi − axi − b) = 0

a
N�

i=1

x2
i + b

N�

i=1

xi =
N�

i=1

yixi

a
N�

i=1

xi + bN =
N�

i=1

yi

s∗ = arg min
s=[a,b]T

�

i

(yi − f(xi, s))2, i = 1, N



3DCV I                                                                     Slobodan Ilic

Derivation of the normal equation
•From the previous slide, the linear system in a matrix form is: 

•Minimizing the cost(energy) function is the same as solving the overdetermined 
system of linear equations(note that in case of line fitting above we do not solve over 
determined system of equations. However, we do this in case of homography 
estimation using DLT algorithm):

•where     is Moore-Penrose pseudo inverse matrix, which has to be positive definite.

arg min
a,b

N�

i=1

(yi − axi − b) =⇒ As = d

AT As = AT d
s = (AT A)−1AT d

s = A†d, A† = (AT A)−1AT

A†

��N
i=1 x2

i

�N
i=1 xi�N

i=1 xi N

� �
a
b

�
=

��N
i=1 yixi�N
i=1 yi

�

sA d



3DCV I                                                                     Slobodan Ilic

Iterative methods
Non-linear least squares
•We consider for the moment that we are not far from the global 

minimum. 

•We will consider three types of methods:

•gradient descent methods

•polynomial interpolation and

•Newton methods

min
x

f(x)
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Gradient descent

x1 = x0 + δx = x0 − α
df
dx

Given the initial solution move downhill in the 
direction opposite to the gradient, which cause the 
decrease of the function value at the next point: 

How do we determine 
the step size       ?δx

x1 = x0 + δx
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Polynomial interpolation
Algorithm

•Bracket the minimum between two given points

•Fit a quadratic or cubic polynomial which interpolates f(x) at some points 
in the interval. 

•Jump to the (easily obtained) minimum of the polynomial. 

•Throw away the worst point and repeat the process

f(x) = 0.1 + 0.1x + x2/(0.1 + x2) x1x2 x3
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Newton’s methods

•Fit a quadratic approximation to f(x) using both gradient and curvature 
information at x.

•Expand f(x) locally using Taylor series:

•Find the      which minimizes this local quadratic approximation.

•Update x

f(x + δx) = f(x) + δxf
�
(x) + δx2

2 f”(x) + h.o.t

δx = − f
�
(x)

f”(x)

xn+1 = xn − f
�
(x)

f”(x)

δx
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•Avoids the need to bracket the root

•Quadratic convergence (decimal accuracy doubles at every iteration)

Newton iterations Quadratic approximation

Newton’s methods
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•Global convergence of the Newton’s methods is poor

•Often fails if the starting point is far from the minimum

• in practice it must be used with the adaptive step length until the function 
decrees in not assured

Newton’s methods
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Extension to N dimensions

•Problem size can vary from several to thousands of parameters

•The 2D example will be used in the examples for easier visualization:
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An optimization algorithm

•Start with initial point      and iterate:

•compote a search direction 

•compute a step length     , such that 

•update 

•check the convergence

x0

pk

∇f = 0

xk+1 = xk + αkpk

αk f(xk + αkpk) < f(xk)
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Taylor expansion
•Function can be approximated locally around a give point x0 with its Taylor 

expansion series:

•where the gradient is:

•and the Hessian H(x) is:

•The Taylor expansion to second order is quadratic function:

f(x) = a + g
T
x + 1

2x
T
Hx

f(x0 + x) ≈ f(x0) +∇f(x0)T
x + 1

2x
T
H(x0)x + h.o.t.

∇f(x0) =
�

∂f
∂x1

, . . . , ∂f
∂xN

�

H(x0) =





∂2f
∂x2

1
. . .

∂2f
∂x1∂xN

...
. . .

...
∂2f

∂x1∂xN
. . .

∂2f
∂x2

N




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Properties of quadratic functions

•Taylor expansion:

•Expand about stationary point               in direction

•since at the stationary point

•At stationary point behavior is determined by H.

f(x) = a + g
T
x + 1

2x
T
Hx

x0 = x∗ p

f(x∗ + αp) = f(x∗) + gT
αp + 1

2α
2pT

Hp

= f(x∗) + 1
2α

2pT
Hp

g = ∇f |x∗ = 0
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•H is a symmetric matrix and has orthogonal eigenvectors

•As     is increasing than                   is increasing, decreasing or is not 
changing according to whether      is positive, negative or zero.

•Suppose x is 2D and          , then:

• If     and      are both positive  then     is  a minimum.

|α|

Hui = λiui, , �ui� = 1

= f(x∗) + 1
2α2λi

f(x∗ + αui) = f(x∗) + 1
2α

2uT
i Hui

f(x∗ + αui)
λi

�p� = 1

f(x∗ + αp) = f(x) + 1
2α

2(cos θu1 + sin θu2)T
H(cos θu1 + sin θu2)

pu1 = cos θ and p = cos θu1 + sin θu2

= f(x∗) + 1
2α2(cos2 θλ1 + sin2 θλ2)

λ1 λ2 x∗
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Examples of quadratic function
Case 1: Eigenvalues are both positive

a = 0, g =
�
−50
−50

�
, H =

�
6 4
−4 6

�
f(x) = a + g

T
x + 1

2x
T
Hx

Both eigenvalues are positive, so it has unique minimum.
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Case 2: Eigenvalues have different 
signs

a = 0, g =
�
−30
20

�
, H =

�
6 0
0 −4

�
f(x) = a + g

T
x + 1

2x
T
Hx

Saddle surface. There is extrema, but it is not a minimum.
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Case 3: Eigenvalues are zero

f(x) = a + g
T
x + 1

2x
T
Hx

a = 0, g =
�
0
0

�
, H =

�
6 0
0 0

�

The minimum is in the infinite valley, i.e the shape of the objective 
function is parabolic cylinder 
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Steepest-descent 

•Basic principle is to minimize the N-dimensional function by a series of 
1D line minimizations:  
                              

•The steepest descent method chooses pn  to be parallel to the negative 
gradient:           

•Step-size        is  chosen to minimize                  . For quadratic forms 
there is a closed form solution: 

xn+1 = xn + αnpn

pn = −∇f(xn)

f(xn + αnpn) = f(xn) +∇fαnpn + 1
2α

2
np

T
nHpn

αn = p
T
n pn

pT
n Hpn

∂f
αn

= ∇fpn + αnp
T
nHpn = 0→ −p

T
npn + αnp

T
nHpn = 0

Derivation of       : 

αn

αn

f(xn + αnpn)
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Steepest descent - Example

•Gradients are perpendicular to the contour lines 

•The gradients of two successful steps are orthogonal, and the 

•Slowly converges to the minimum in a zig-zag manner  

f(x) = a + g
T
x + 1

2x
T
Hx

a = 0, g =
�
−50
−50

�
, H =

�
6 4
−4 6

�

∂f(xk+1)
∂αk

= ∂f
∂xk+1

∂xk+1
∂αk

= 0→ ∇f(xk+1)∇f(xk) = 0
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Conjugate Gradient

•The method of conjugate gradients chooses successive descent 
directions pn such that it is guaranteed to reach the minimum in a finite 
number of steps.

•Each pn    is chosen to be conjugate to all previous search directions 
with respect to the Hessian H: 

•The resulting search directions are mutually linearly independent.

•Remarkably,  pn  can be chosen using only knowledge of pn, ∇f(xn−1)
and ∇f(xn) (see Numerical Recipes) 

p
T
nHpn = 0, 0 ≤ j < n

pn = ∇fn +
�

∇fT
n∇fn

∇fT
n−1∇fn−1

�
pn−1
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Conjugate gradient 
Example

•An N-dimensional quadratic form can be minimized in at most N 
conjugate descent steps. 

•3 different starting points. 

•Minimum is reached in exactly 2 steps.
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Rosenbrock’s function

f(x, y) = 100(y − x2)2 + (1− x)2

Minimum of this function is in (1,1)
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Minimum of Roesnbrock’s function 
with steepest descend

 It does  not converge after 100 iterations
 It crawls very slowly down the valley



3DCV I                                                                     Slobodan Ilic

Minimum of Roesnbrock’s function 
with conjugate gradients

 It converged after 101 iterations
 It is much faster then steepest descend
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Newton methods
•Function can be approximated locally around a give point xn being a 

solution at n-th iteration with its Taylor expansion series:

•where the gradient is:

•and the Hessian H(x) is:

•For minimum we require that

•finally the Newton update step is:

gn = ∇f(xn) =
�

∂f
∂x1

, . . . , ∂f
∂xN

�

Hn = H(xn) =





∂2f
∂x2

1
. . .

∂2f
∂x1∂xN

...
. . .

...
∂2f

∂x1∂xN
. . .

∂2f
∂x2

N





∇f(x) = 0

∇f(x) = gn + Hnδx = 0 δx = −H
−1
n gn

xn+1 = xn −H
−1
n gn

f(xn + δx) ≈ f(xn) + g
T
n δx + 1

2δxT
Hδx + h.o.t.
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• If H is positive definite (all eigenvalues are greater then zero) we have 
solution at one iteration step:

• If f(x) is quadratic, then the solution is found in one step. 

•The method has quadratic convergence(as in the 1D case). 

•The solution                    is guaranteed to be a down hill direction. 

• Rather than jump straight to the minimum, it is better to perform a line 
minimization which ensures global convergence:

 

xn+1 = xn −H
−1
n gn

δx = −H
−1
n gn

xn+1 = xn − αnH
−1
n gn

Newton methods



3DCV I                                                                     Slobodan Ilic

Newton method - Example

 The algorithm converges in only 15 iterations compared to the 101 for 
conjugate gradients 
 However, the method requires computing the Hessian matrix at each 
iteration –this is not always feasible
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Non-linear least squares

• It is very common in applications for a cost function f(x) 
to be the sum of a large number of squared residuals:

• If each residual depends non-linearly on the parameters x then the 
minimization of f(x) is a non -linear least squares problem. 

•Examples in computer vision are maximum likelihood estimators of image 
relations (such as homographies and fundamental matrices) 

frompointcorrespondences.

f(x) =
M�

i=1

r2
i
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•For the non-linear least squares Jacobian matrix is:

•Consider

•Hence:

J(x) =





∂r1
∂x1

. . . ∂r1
∂xN

...
. . .

...
∂rM
∂x1

. . . ∂rM
∂xN





f(x) =
M�

i=1

r2
i

∂

∂xk

�

i=1

r2
i =

�

i

2ri
∂ri

∂xk

∇f(x) = 2JT r

Non-linear least squares
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•For the Hessian we require:

•Hence:

∂2

∂xl∂xk

�

i

r2
i = 2

∂

∂xl

�

i

ri
∂ri

∂xk

= 2
�

i

∂ri

∂xk

∂ri

∂xl
+ 2

�

i

ri
∂2ri

∂xk∂xl

Non-linear least squares

H(x) = 2J
T
J + 2

M�

i=1

riRi
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•Note that the second-order term in the Hessian H (x) is multiplied by the 
residuals ri . 

• In most problems, the residuals will typically be small. 

•Also, at the minimum, the residuals will typically be distributed with mean = 0. 

•For these reasons, the second-order term is often ignored, giving the Gauss-
Newton approximation to the Hessian : 

•Hence, explicit computation of the full Hessian can again be avoided.

H(x) = 2JT
J

Non-linear least squares
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Gauss-Newton - Example
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Comparison

 Requires computing Hessian
 The exact solution is quadratic

 Approximation of the Hessian 
by a product of Jacobians
Requires only derivatives
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Summary of the minimization 
methods 
•Update 

•Newton

•Gauss-Newton

•Gradient descent

xn+1 = xn + δx

Hδx = −g

2JT Jδx = −g

λδx = −g
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Levenberg-Marquardt Algorithm

•Away from the minimum, in regions of negative 
curvature, the Gauss Newton approximation is 
not very good.

• In such regions, a simple steepest-descent step 
is probably the best plan. 

•The Levenberg-Marquardt method is a 
mechanism for varying between steepest-
descent and Gauss-Newton steps depending on 
how good the           approximation is locally. JT J
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•The LM method uses modified Hessian

 

•When      is small H approximates Gauss-Newton Hessian.

•When      is large, H is close to the identity, causing steepest-descent 
step to be taken. 

H(x, λ) = 2J
T
J + λI

λ

λ

Levenberg-Marquardt Algorithm



3DCV I                                                                     Slobodan Ilic

LM Algorithm outline

•Set  

•Solve 

• If                             , increase                     and go to 2.

•Otherwise, decrease                  , update parameters                      
                           and jump to 2.

λ = 0.001

δx = −H(x, λ)−1g→ H(x, λ)T
H(x, λ)δx = −H(x, λ)T g

f(xn + δx) > f(xn) λ = 10 ∗ λ

λ = 0.1 ∗ λ

xn+1 = xn + δx

H(x, λ) = 2J
T
J + λI

This algorithm does not require explicit line search.
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LM Algorithm - Example

Minimization using LM algorithm with no line search took 31 
iteration. What is more then Gauss-Newton, but no explicit line 

search is required and it converges more frequently.
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Application - Bundle Adjustment

•Given n matching image points      over m views

•Find the cameras       and scene points 

arg min
PiXj

�

j∈points

�

i∈views

d(xi
j , PiXj)2

xj

XjPi
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Application - Structure From Motion


