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Applications

Face modeling form video

S. llic, M. Salzmann, P. Fua, Implicit Meshes for Effective Silhouette Handling, International Journal of
Computer Vision, Vol. 72, Nr. 2, pp. 159 - 178, 2007.

3DCV | Slobodan llic


http://cvlab.epfl.ch/publications/publications/2007/Fua07a.pdf
http://cvlab.epfl.ch/publications/publications/2007/Fua07a.pdf

Applications
Model based tracking of rigid objects

Face Tracking
Live Demo

L.Vacchettl, V.Lepetit, P. Fua

(lab  IEPA W

L. Vacchetti, V. Lepetit and P. Fua,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, Nr. 10, pp. 1391 - 1391, 2004
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http://cvlab.epfl.ch/publications/publications/2004/VacchettiLF04.pdf
http://cvlab.epfl.ch/publications/publications/2004/VacchettiLF04.pdf

Applications

Deformable surface tracking
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M. Salzmann, J.Pilet, S.llic, P.Fua, . |IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Nr. 8, pp. 1481 - 1487, August 2007.
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http://cvlab.epfl.ch/publications/publications/2007/Salzmann07a.pdf
http://cvlab.epfl.ch/publications/publications/2007/Salzmann07a.pdf

lext books

M  * Practical Methods of Optimization, R. Fletcher, Wiley, 1987 .
pinn Note: Covers unconstrained and constrained optimization.

Optimization Ee.
Very clear and comprehensive.

R. Fetcher

Numerical Recipes in C (or C++) : The Art of Scientific Gomputing, Willam H. Press,
Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, CUP 1992/2002.
Note: Cook book with good chapters on optimization and data modeling with

avallable implementations.

Available on-line at http://www.nrbook.com/a/bookcpdf.php

Stephen Boyd and
Liewen vandenberghe

onvex. @ CONvex Optimization, Stephen Boyd and Lieven Vandenberghe,

Optimization CU D 2004,
Note: Available on-line at: http://www.stanford.edu/~boyd/cvxbook/
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http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf.php
http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvxbook/

INtroduction
Problem definition

® Consider the objective or cost function:

Fx) s R™ =

® [he goal Is to find the values of parameters X which minimize this
function:

x* = arg min f(x)
e subject to constraints: =
Gilx) = 0 bl m.
KX e =m.+ 1,...47

®\/\e do not Impose constraints!

®\/\\e do unconstrained optimization.
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Unconstrained optimization

function of
one
variaple
min f(x)

X local global
minimum minimum

® down-hill search (gradient descent) algorithms can find local minima

e \Wwhich of the minima Is found depends on the starting point

® such minima often occur In real applications
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Example: template matching in 2D
mages

Model M

® [nput are two point sets:
M = {M;} model points
D ={D;} datapoints

® Objective:

Determine the transformation 7 which minimizes

the error between the model
M and the data D .
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Cost function

f(0,te,ty) = Zmin IR(O)M; +t — DjH2
1 ;\/—/

|j
for each \Tind the closest
data point  model point

Model point: M, = (x;, y;)*

Transformation parameters:

rotation 0 =
translation S AN ~ f -
correct closest point

correspondences correspondences

State vector: SR L gk
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L Inear vs. non-linear cost functions

® Cost function linear wrt. its parameters:

S : 2
itz ty) = Zmim |M; +t — D]
J
® Cost function is non-linear in respect to its parameters:

f(0,tz,ty) = me IR(O)M; +t — DjH2
J

e \Vhere the non-linearity comes from?
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Cost function and least squares

® Cost function represents a sum of squared differences between the model
and the data:
s, D) =N s, D;)°
j

® can be represented as a system of equations:

fl(S,Dl) = ()
f2(svl?2) = (
fN(S,bN) ==1()

® Given system of equations f(s, D) has a solution s* precisely
when the above function has a minimal value:

Bf e Of;
LS i ok
]
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| Inear least squares

yi = ax; + 0

f(zi,s) = ax; +b,s = [a,b]"
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| Inear least squares
Problem definition and notation

® Given the data pairs (i, ¥i)

® 7; are independent data points (points at which the measurements are
taken or observed)

® y; are dependent(measured or observed) data points

® f(xz,s)Is afunction parameterized by s, which we use to approximate
the observations (z;, v;)

® S |S a state vector (parameter vector)

® The objective is to estimate the parameters of the function J by
MG g = 50— f(on )
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| Inear least square
(linear regression)

® Find the minimum of the energy(cost) function wrt. the parameters of the
state vector s=[a,b]:

X

s® = arg min (e~ f(zs8)) e —1.N

—la.bl?T
s=[a,b]" <

® Minimum of this function minimizes the least square distance between
the model and the data points.

N

N N N
6_E:_22(yi_ag;i_b)xi:() aZx?anZCI%:Z%ZE@
et 1=1 N L=

oa

N

N N
OF
%:—2;(%—&%—19):0 CL;%—FZ?N:;%
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Derivation of the normal equation

® -rom the previous slide, the linear system in a matrix form is:

N N - - N
22\71 5137,2 Zz’:l Ti| |Q 217\[1 Y; Ty
Zi:l L g N _b_ Z@':1 Y1
\ 3 A U _J

N

A S d

® Minimizing the cost(energy) function is the same as solving the overdetermined
system of linear equations(note that in case of line fitting above we do not solve over
determined system of equations. However, we do this in case of homography

estimation using DLT algorithm): ~

arg mibn (yi — ax; —b) — As =d

P
Al As = ATd
s=(ATA)~1A47d
s= Atd, Af =(ATA)71AT
® where AT Is Moore-Penrose pseudo inverse matrix, which has to be positive definite.
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terative methods
Non-linear least squares

e \\Ve consider for the moment that we are not far from the global
minimum.

®\/\e will consider three types of methods:
® gradient descent methods
® polynomial interpolation and

® Newton methods
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Gradient descent

ZClZZC()_I_5ZC

How do we determine
the step size ox ?

¥ . Initial x

- doa.a:n}iill gr&fdiem.. ¥ . S .
¢ ? \ /

Given the initial solution move downhill in the
direction opposite to the gradient, which cause the

decrease of the function value at the next point:
df

r1 = %o+ 0xr =29 — O—

dx
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Polynomial interpolation

Algorithm
® Bracket the minimum between two given points

® [t a quadratic or cubic polynomial which interpolates f(x) at some points
N the Interval.

® Jump to the (easily obtained) minimum of the polynomial.

® [ hrow away the worst point and repeat the process

ar T T T T 2 T T T T .

...................................................................

f(z) =0.1+0.1z +2%/(0.1 + z°) EPTs " X3
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Newton’s methods

e it a quadratic approximation to f(x) using both gradient and curvature
iInformation at Xx.

e Expand f(x) locally using Taylor series:
fx +6z) = f(z) + dzf (z) 5‘;2 f () + h.ot

e Find the dx which minimizes this local quadratic approximation.

e
0T = — )

e Update X |
i1 =20 = 3
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Newton’s methods

Newton iterations Quadratic approximation

® Avoids the need to bracket the root

® Quadratic convergence (decimal accuracy doubles at every iteration)
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Newton’s methods

® Global convergence of the Newton’s methods Is poor

® Often fails if the starting point is far from the minimum

® N practice It must be used with the adaptive step length until the function
decrees In not assured
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Extension to N dimensions

® Problem size can vary from several to thousands of parameters

® [he 2D example will be used in the examples for easier visualization:

3DCV | Slobodan llic



An optimization algorithm

e Start with initial point o and iterate;
® compote a search direction P«
® compute a step length a4, such that f(zx + arpr) < f(zk)
® Update Tkt+1 = Tk + QD

® check the convergence Vf =0
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laylor expansion

® Function can be approximated locally around a give point xO with its Taylor
expansion Serles:

flzo+z) = f(x0) + Vf(zo)' v+ 321 H(zo)x + h.o.t.

® where the gradient Is: Vf(zg) = _5)’7’0, o aif _
1 N
- & 82f —
Ox? ot O0x10x N
® and the Hessian H(x) is: H(xp) = , . ,
0° f 0° f
L 0x10xT N 8:8?\, 3

® [he [aylor expansion to second order Is quadratic function:

f(x)=a+g'x+ zxTHx
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Properties of quadratic functions

® [aylor expansion:
f(x)=a+gtx+ 2xTHx

e Expand about stationary point o = 2™ in direction p
f(x* 4+ ap) = f(x*) + g'ap + 50°p" Hp
= ey g %aszHp

® since at the stationary point g = Vf|x =0

® At stationary point behavior Is determined by H.
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® H S a symmetric matrix and has orthogonal eigenvectors
Hlli — )\iui, Hllz ‘ —ul

f(x* +aw;) = f(x*) + sa*u Hu,
:f( )—|—5042)\@'

® As|a|is increasing than f(x* + au;) is increasing, decreasing or is not
changing according to whether A; is positive, negative or zero.

® Suppose x Is 2D and |p|| = 1, then:

pu; = cosf and p = cosfui + sinfus
f(x* + ap) = f(x) + 2a?(cosfu; + sinfus)? H(cos fuy + sin fuy)

= f(x*) + 2a?(cos? OA; + sin” O)2)

o|f \yand X are both positive then x*is a minimum.
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Examples of quadratic function
Case 1: Eigenvalues are both positive

f(x)=a+gtx+ 2xTHx

—50 6l
Gl gy | s

Both eigenvalues are positive, so It has unigue minimum.
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Case 2: Eigenvalues have different
SIgNsS

Saddle surface. There is extrema, but it IS not a minimum.
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Case 3: Eigenvalues are zero

The minimum is in the Infinite valley, I.e the shape of the objective
function Is parabolic cylinder
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Steepest-descent

® Basic principle is to minimize the N-dimensional function by a series of
1D line minimizations:

Lnt+1 = Ln + QpPn
® | he steepest descent method chooses pn to be parallel to the negative
gradient: pn = —V f(x,)

® Step-size @ IS chosen to minimize f(x, + anp,). FOr quadratic forms
there is a closed form solution: «, = Zatx

P A,

Derivation of a,, : f(zn + anpn) = f(zn) + Vanp, + sa2pl Hp,

oL =V fpp + onpt Hpn = 0 — —pZpn + ompZ Hpy =0
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Steepest descent - Example

® Gradients are perpendicular to the contour lines
® [ he gradients of two successful steps are orthogonal, and the

® Slowly converges to the minimum in a zig-zag manner

Of(xri1 Oif QTR A
Hoae) — 0105k = 0 — Vf(2r41) VS () =

3DCV | Slobodan llic



Conjugate Gradient

® [ he method of conjugate gradients chooses successive descent
directions pn such that it is guaranteed to reach the minimum in a finite
number of steps.

eEach pn Is chosen to be conjugate to all previous search directions
with respect to the Hessian H:

prHp, =0,0<j<n
® | he resulting search directions are mutually linearly independent.

® Remarkably, pn can be chosen using only knowledge of pn, Vf(xn—1)
and Vi(xn) (see Numerical Recipes)

A B T
W= vfn Sl (vfg{iv;n_l)pn—l
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Conjugate gradient
Example

® An N-dimensional guadratic form can be minimized in at most N
conjugate descent steps.

e 3 different starting points.

® Minimum IS reached In exactly 2 steps.
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ROSenbrock's tunction

flz,y) =100(y — %)* + (1 — z)*

Minimum of this function is in (1,1)
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MINnimum of Roesnbrock’s function

't does not converge after 100 iterations
't crawls very slowly down the valley
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MINnimum of Roesnbrock’s function
with conjugate gradients

't converged after 101 iterations
't Is much faster then steepest descend
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Newton methods

® -unction can be approximated locally around a give point xn being a
solution at n-th iteration with its Taylor expansion series:

flx, + 0x) = filx,) +g:6x + %5XTH5X - 1.0.1.

® \where the gradient Is; g WX, ) = [g—afl, o ;’U—{V
. . L R e
® and the Hessian H(x) Is: 9z  ''' DuiPan
H, = H(x,) = X
0% f Q&f
L 0x10x N 8:1:?\, 3.

® For minimum we require that v f(x) = 0

Vfx)=g,+ H,0x=0 0x=—-H 'g,

e finally the Newton update step is:
D, & R e, G ¢ e Hglgn
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Newton methods

o |[f H Is positive definite (all eigenvalues are greater then zero) we have
solution at one iteration step:

Xnt+1 — Xpn — H_ 1gn
o [f f(X) IS quadratic, then the solution is found in one step.
® [he method has quadratic convergence(as in the 1D case).

® The solution éx = —H,, 'g, is guaranteed to be a down hill direction.

e Rather than jump straight to the minimum, it is better to perform a line
minimization which ensures global convergence:

s 1
Xn—|—1 = X5 .7 OénH gn

3DCV | Slobodan llic



Newton method - Example

gradient < 1e-3 after 15 terations
ellipses show successive
quadratic approximations

The algorithm converges in only 15 iterations compared to the 101 for
conjugate gradients

However, the method requires computing the Hessian matrix at each
teration —this is not always feasible
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Non-linear least squares

e[t s very common in applications for a cost function f(x)
to be the sum of a large number of squared residuals:

fx) =) i

1=1

® [f each residual depends non-linearly on the parameters x then the
minimization of f(x) is a non -linear least squares problem.

® Examples iIn computer vision are maximum likelihood estimators of image
relations (such as homographies and fundamental matrices)

3DCV | Slobodan llic



Non-linear least squares

M
hars E ( 2
s T
=)

® -or the non-linear least squares Jacobian matrix Is:

87“1 87"1
8x1 ER 8xN
iaedi - a0
87"M 87“M
82131 Ry, 8%]\[

® Consider ] ZT = ZQT @xk
® Hence: Vf(x) = 2J r
3DCV | Slobodan llic



Non-linear least squares

® For the Hesslan we require:

82 9 87“7;
£ 2_ ;
@Qflaaj‘k i @xl ZT (9xk

6’7“2 or; | 0°r,
o ZL: &vk 8$l | ; Zri 8$k8$l

® Hence:

M
Hizy—=2000+2> R

3DCV | Slobodan llic



Non-linear least squares

_2\\e}

e that -

eS

duals ri .

he second-order term in the Hessian H (x) is multiplied by the

® |n most problems, the residuals will typically be small.

® Also, at the minimum, the residuals will typically be distributed with mean = O.

® [For these reasons, the second-order term is often ignored, giving the Gauss-
Newton approximation to the Hessian :

Hir=2J"J

® Hence, explicit computation of the full Hessian can again be avoided.

3DCV |
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Gauss-Newton - Example

Xp41 = Xn — aply gn With Hp(x) = 23, I,

(auss-Newton method with line search Gauss-Newton method with line search

gradient < 1e-3 after 14 iterations gradient < Te-3 after 14 llerations
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Comparison

Newton

Newton method with line search

3 \ \ ) \
2L &\ \\\ \
\ \§

N
st\ AN \

RN

\\\\\ e

gradient < 1e-3 after 15 iterations

Requires co
The exact so

mpL

ting Hessian

utlio

N IS quadratic

Gauss-Newton

Gauss-Newton method with line search

3 .
AR
2.5 \\\NN\\ S
2 \ '\\\\ \:\\. ,‘S': %
11_" \k \\\\.\

SO X
\ \ ‘.‘\.\_"\ _—r-.__ﬂ 4

1.5k \} \%\‘%\\\

AN
PN

gradient < 1e-3 after 14 iterations

Approximation of the Hessian
by a product of Jacobians
Requires only derivatives
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Summary of the minimization
methods

e Update
Xn—l—l — Xn —I— 5X
® Newton Héx = —g
® Gauss-Newton 2JT Jox = —g
e Gradient descent X = —g
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|_evenberg-Marguardt Algorithm

mecna

Newton gradient
descent

® [he Levenberg-Marquardt met

nism for varying betwee

® Away from the minimum, Iin regions of negative
curvature, the Gauss Newton approximation Is
not very good.

® |n such regions, a simple steepest-descent step
IS probably the best plan.

Nod IS a

N Steepest-

descent and Gauss-Newton steps depending on
how good the J*.J approximation is locally.

3DCV |
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|_evenberg-Marquardt Algorithm

® [he LM method uses moditied Hessian

Hx: ) =2J1J + M

e\Vhen A is small H approximates Gauss-Newton Hessian.

e\\Vhen A is large, H is close to the identity, causing steepest-descent
step to be taken.
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| M Algorithm outline

® Scit A=:0.061
® Solve ox = —H(x, A)_lg — H(x, )\)TH(X, A)ox = —H(x, )\)Tg
H(x,A) =2Jt T+ X

o|f f(x,+dx)> f(x,) ,INCrease A\ =10x )\ and go to 2.

® Otherwise, decrease ) = 0.1 x )\ , update parameters
Xnt1 = Xn + 0x and jump to 2.

This algorithm does not require explicit line search.
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| M Algorithm - Example

Levenberg-Marquardt method

Levenberg-Marquardt method

gradient < 1e-3 after 31 iterations gradient < 1e-3 after 31 iterations

Minimization using LM algorithm with no line search took 31
teration. What is more then Gauss-Newton, but no explicit line
search Is required and It converges more frequently.
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Application - Bundle Adjustment

® Given n matching image points X; over m views

® -ind the cameras FP; and scene points X,

argmm Z Z dx et Sy

JEpozntS 1EvIews
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Application - Structure From Motion

Towards Internet-scale
Multi-view Stereo

CVPR 2010

. | . . >
Yasutaka Furukawa  Brian Curless

Steven M. Seitz'~ Richard Szeliski®

Google Inc.
University of Washington®
Microsoft Research’
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