
Software Project Management and UML

Ali Bigdelou

Computer Aided Medical Procedures (CAMP),

Technische Universität München, Germany

Outline

• Intro to Software Project Management

• Project Requirements Specification

• Intro to UML

• UML Use Case Diagram

• UML Class Diagram

• UML Sequence Diagram

• UML Activity Diagram

• UML Resources

What is software project management?

Software project management is the art and science of

planning and leading software projects.

It is a sub-discipline of project management in which software

projects are planned, monitored and controlled.

3

Laws of Project Management

• Projects progress quickly until they are 90% complete. Then they

remain at 90% complete forever.

• When things are going well, something will go wrong. When things just

can’t get worse, they will. When things appear to be going better, you

have overlooked something.

• If project content is allowed to change freely, the rate of change will

exceed the rate of progress.

• Project teams detest progress reporting because it manifests their lack

of progress.

5

Project Management Skills

• Leadership

• Communications

• Problem Solving

• Negotiating

• Influencing the Organization

• Mentoring

• Process and technical expertise

Four Project Dimensions

• People

• Process

• Product

• Technology

6

Project Phases

• All projects are divided into phases

• All phases together are known as the Project Life Cycle

• Each phase is marked by completion of Deliverables

• Identify the primary software project phases

7

Deliverables by Phase

Software

Concept

Requirements

Analysis

Design

Coding and

Debugging

Systems

Testing

Deployment &

Maintenance

Possible Deliverables by Phase

 Concept Document

 Statement of Work (SOW)

 Project Charter

 RFP & Proposal

 Requirements Document (Software Requirements Specification)

 Work Breakdown Structure (WBS)

 Functional Specification (Top Level Design Specification)

 Entity Relationship Diagram

 Data Flow Diagram

 Detailed Design Specification

 Object Diagrams

 Detailed Data Model

 Coding Standards

 Working Code

 Unit Tests

 Acceptance Test Procedures

 Tested Application

 Maintenance Specification

 Deployed Application

 Project Development Plan

 (Software Development Plan)

 Baseline Project Plan

 Quality Assurance Plan

 Configuration Management Plan

 Risk Management Plan

 Integration Plan

 Detailed SQA Test Plan

 SQA Test Cases

 User Documentation

 Training Plan

Requirement Specifications

• Capture key project objectives

• In collaboration with Clinical Partner and Technical Advisor

• The RS is a communications tool among the development team, the

customer, and the advisors

• It should be a short document (around 5 pages).

• A presentation should be followed after confirming the document with

customers (clinical partners) and technical advisors.

8

Content of the Requirements Specification

• Problem/opportunity

• Goal

• Objectives

• Users and Key features of the system

– Documented as well using the Use-Case diagram

• Key System Components

– Hardware Requirements

– Third Party Library Dependencies

– Component diagrams (to show how the different component are combined in the

system)

• Usage Scenarios

– Documented as well in Activity Diagram

• Basic Design of the System

– Documented in Class diagram

9

UML

What is UML?

• UML stands for “Unified Modeling Language”

• UML is a notational system which is principally graphical and aims

at modeling system using object oriented concepts.

• UML is termed as a “Visual Modeling Language’.

• Generally UML is used for modeling software systems.

• It is an industry-standard graphical language for specifying,

visualizing, constructing, and documenting the artifacts of an object-

oriented system under development.

• The UML uses mostly graphical notations to express the OO

analysis and design of software projects.

• Simplifies the complex process of software design

12

• The UML is a graphical language for

– specifying

– visualizing

– constructing

– documenting

the artifacts of software systems

• Added to the list of OMG adopted technologies in November 1997 as
UML 1.1

• Most recent minor revision is UML 1.3, adopted in November 1999

• Next minor revision will be UML 1.4, planned to be adopted in Q2 2001

• Next major revision will be UML 2.0, planned to be completed in 2002

Quick Tour

Why UML for Modeling?

• A model is a simplified representation of a complex reality.

• Complex systems and software cannot be understood without properly

modeling them.

• Provide structure for problem solving

• Today, software are getting complex and consequently we need to

understand them through modeling.

• A graphical notation to communicate more clearly than natural

language (imprecise) and code(too detailed).

• Help acquire an overall view of a system.

• UML is not dependent on any one language or technology.

• UML moves us from fragmentation to standardization.

In simple words, we need simpler representations for complex models
and modeling is a mean for dealing with complexity.

Key UML Components

• UML consists of

– Views: shows different faces of the system and links with the process

– Diagrams: are basically the graphs that explain the contents of view.

– Model Elements: are contained within the diagrams.

• Main UML Diagrams

– Use case diagram

– Class diagram

– State diagram

– Object diagram

– Sequence diagram

– Collaboration diagram

– Component diagram

– Deployment diagram

– Activity diagram

Usecase Diagram

Use Case Diagram

• Used for describing a set of user scenarios

• Mainly used for capturing user requirements

• Work like a contract between end user and software developers

Model Elements in Use-Case Diagrams

ACTOR

USE-CASE

INTERACTION:
denotes set of messages exchanged among objects

NOTES/COMMENTS

Use-Case Diagram (University Management System)

Student

Instructor

Submit
Assignments

Mark
Assignments

Upload
Results

View Results

SYSTEM
BOUNDARY

Package: University Management System

Class Diagram

Class diagram

• Used for describing structure and behavior in the use cases

• Provide a conceptual model of the system in terms of entities and their

relationships

• Used for requirement capture, end-user interaction

• Detailed class diagrams are used for developers

• Elements of class diagram

– Classes

– Composition

– Generalization

– Dependency

– Association

21

Classes

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}

22

Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

Header Panel

2
1 1

Slider

1
11

23

Composition

scrollbar:Slider

Window

2

title:Header
1

body:Panel
1

24

Generalization
Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

25

Dependencies

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine»
ClassC combines

two logical classes

26

Derived Attributes and Associations

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }







1

1

1
employer

employer
department

27

Class Diagram Example

+getOrderStatus

+setOrderStatus

+getLineItems

+setLineItems

+getCreditApproved

+setCreditApproved

...

OrderBean

{abstract}

LineItem

{abstract}

Product

1

*

1

*

<<interface>>

EntityBean

CreditCard

{abstract}

Customer

PMOrder

PMLineItem

PMCreditCard

*

1

*

buyer

order

order

item

item

commodity

Sequence Diagram

Sequence diagram

• Sequence diagrams demonstrate the behavior of objects in a use case by

describing the objects and the messages they pass.

• The horizontal dimension shows the objects participating in the interaction.

• The vertical arrangement of messages indicates their order.

Sequence diagram

Activity Diagram

32

Activity Diagram

• Intended for applications that need control flow or

object/data flow models …

• For example: business process modeling and

workflow.

• Kinds of Steps in Activity Diagrams

Action Action (State)

Subactivity Subactivity (State)

33

Action (State)

• An action is used for anything that does not

directly start another activity graph, like

invoking an operation on an object, or running

a user-specified action.

• However, an action can invoke an operation

that has another activity graph as a method

(possible polymorphism).

Action

34

Subactivity (State)

• A subactivity (state) starts another activity

graph without using an operation.

• Used for functional decomposition, non-

polymorphic applications, like many workflow

systems.

• The invoked activity graph can be used by

many subactivity states.

Subactivity

35

Example

POEmployee.sortMail Deliver Mail

POEmployee

sortMail() Check Out

Truck

Put Mail

In Boxes

Deliver Mail

36

POEmployee

sortMail()

Activity Graph as Method

• Application is completely OO when all action states

invoke operations

• All activity graphs are methods for operations.

POEmployee.sortMail POEmployee.deliverMail

deliverMail()
«realize»

Check Out

Truck

Put Mail

In Boxes

PO Employee Deliver Mail Method

37

Object Flow (State)

• A special sort of step (state) that represents

the availability of a particular kind of object,

perhaps in a particular state.

• No action or subactivity is invoked and control

passes immediately to the next step (state).

• Places constraints on input and output

parameters of steps before and after it.

Class

[State]

38

Object Flow (State)

• Take Order must have an output parameter

giving an order, or one of its subtypes.

• Fill Order must have an input parameter

taking an order, or one of its supertypes.

• Dashed lines used with object flow have the

same semantics as any other state transition.

Order

[Taken]
Take Order Fill Order

39

Coordinating Steps

 Initial state

 Final state

 Fork and join

40

• Decision point and merge.

• For modeling conventional flow chart decisions.

Coordinating Steps

Calculate

Cost

Charge

Account

Get

Authorization

[cost < $50]

[cost >= $50]

41

Convenience Features (Synch State)

• Forks and joins do not require composite states.

• Synch states may be omitted for the common

case (unlimited bound and one incoming and

outgoing transition).

Build

Frame

Install

Foundation

Install

Electricity

in Foundation

Put

On

Roof

Install

Electricity

In Frame

Install

Electricity

Outside

Install

Walls

Inspect

Activity diagram

notation

42

Convenience Features

• Partitions are a grouping mechanism.

• They do not provide domain-specific semantics.

Register

Bug

Evaluate

Impact

Fix

Bug

Revise

Plan

Release

Fix

Test

Fix

[priority = 1]

Management

Support

Engineering

43

Activity Diagram Modeling Tips

Request
Return

Get Return
Number

Ship Item

Item
[returned]

Receive
Item

Restock
Item

Credit
Account

Item
[available]

Customer Telesales WarehouseAccountingFrom UML

User Guide:

UML Modeling Tools

• Rational Rose (www.rational.com) by IBM

• TogetherSoft Control Center, Borland (http://www.borland.com/together/index.html)

• ArgoUML (free software) (http://argouml.tigris.org/)

• OpenSource; written in java

• Others (http://www.objectsbydesign.com/tools/umltools_byCompany.html)

http://www.rational.com/
http://www.borland.com/together/index.html
http://www.objectsbydesign.com/tools/umltools_byCompany.html

Reference

1. UML Distilled: A Brief Guide to the Standard Object Modeling Language

Martin Fowler, Kendall Scott

2. IBM Rational http://www-306.ibm.com/software/rational/uml/

3. Practical UML --- A Hands-On Introduction for Developers

http://www.togethersoft.com/services/practical_guides/umlonlinecourse/

4. Software Engineering Principles and Practice. Second Edition; Hans van Vliet.

http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Martin+Fowler
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Martin+Fowler
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Martin+Fowler
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Kendall+Scott
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Kendall+Scott
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Kendall+Scott
http://www-306.ibm.com/software/rational/uml/
http://www-306.ibm.com/software/rational/uml/
http://www-306.ibm.com/software/rational/uml/
http://www.togethersoft.com/services/practical_guides/umlonlinecourse/

