

Multi-View 3D-Reconstruction

Cedric Cagniart

Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany

Problem Statement

Given several calibrated views of an object ...

... can we automatically build a 3D model of it ?

This lecture is not about

Active 3D sensing

Time Of Flight

Passive 3D sensing

Point Based Large Scale (MS Photosynth)

Stereo

The Middlebury datasets

- Provides two datasets: "Temple" and "Dino"
 - Images corrected for radial distortion.
 - Camera calibration (intrinsics & extrinsics)
- Three versions for each dataset
 - Full hemisphere (> 300 images)
 - Ring (48 images)
 - Sparse Ring (16 images)

- They keep Ground Truth to evaluate results.

Multi-View Stereo Evaluation • Datasets • Submit • Code													
Acc. meshold. 90%			ata in new window Upen Data Window							<u> </u>			
Comp. Threshold: 1.25 mm V Data: View 1 and Ground Truth V Image Size Small V													
Tip: Mousing over any portion of a method's row will show its reference													
	Ter	nple	Ter	nple	Ter	nple	Di	no	Di	no	Di	no	
	F	ull	R	ing	Spa	arse	F		Ri	ng	Spa	irse	
	312	Comp	47	Comp	16 \	Comp	363	Comp	48 \	Comp	16 \	Comp	
Sort By	~~~~	Comp		Comp		Comp	~~~~	Comp		Comp	~~~~	Comp	
Gont by	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]	
Auclair			0.86	96.2	1.03	92.5			0.62	96.7	0.74	96.8	
Bradley			0.57	98.1	0.48	93.7			0.39	97.6	0.38	94.7	
Campbell	0.41	99.9	0.48	99.4	0.53	98.6							
Chang			0.54	99.0	0.73	94.5			0.51	94.6	0.66	89.9	
Continuous Probab			1.89	92.1					2.61	91.4			
Delaunov					0.73	95.9					0.89	93.9	
Deng			0.54	98.5							0.43	97.8	
ECCV 216			0.53	99.5	0.72	96.8			0.46	99.5	0.42	97.8	
Eurukawa	0.65	98.7	0.58	98.5	0.82	94.3	0.52	99.2	0.42	98.8	0.58	96.9	
Furukawa 2	0.54	99.3	0.55	99.1	0.62	99.2	0.32	99.9	0.33	99.6	0.42	99.2	
Furukawa 2	0.49	99.6	0.47	99.6	0.63	99.3	0.33	99.8	0.28	99.8	0.37	99.2	
Fulukawa 5 Gargallo	0.43	33.0	0.99	84.3	1.05	81.0	0.55	33.0	0.20	92.9	0.76	90.7	
Gargallo	0.42	08.0	0.00	96.2	0.97	56.6	0.56	80.0	0.0	57.9	0.70	26.0	
Goesele	0.42	90.0	0.61	00.2	0.07	00.0	0.36	00.0	0.46	57.0	0.36	20.0	
Goesele 2007	0.42	90.2	0.74	07.0	0.00	00.0	0.46	90.7	0.50	00 F	0.00	00.0	
Guillemaul	0.43	99.0	0.71	97.0	0.00	90.2	0.35	00.7	0.56	99.0	0.00	90.0	
Нарреске	0.66	98.0	0.50	00.5	0.75	05.0	0.43	99.7	0.45	07.0		00.5	
Hernandez	0.36	99.7	0.52	99.5	0.75	95.3	0.49	99.6	0.45	97.9	0.6	98.5	
Hongxing	0.83	95.7	0.79	96.3	0.97	93.9	0.62	96.3	0.5	99.1	0.52	98.4	
Hornung	0.58	98.7					0.79	95.1					
Jancosek-3DIM09	0.65	85.8	0.7	78.9	0.59	74.9	0.91	73.8	0.71	76.6	0.66	74.9	
JancosekCVWW									0.79	95.9			
Kolev			0.79	96.0					0.53	96.9			
Kolev2			0.72	97.8	1.04	91.8			0.43	99.4	0.53	98.3	
Kolev3			0.7	98.3	0.97	92.7			0.42	99.5	0.48	98.6	
Kolmogorov			1.86	90.4					2.81	86.0			
Kun Li					0.81	92.1					0.47	97.4	
Ladikos											0.89	95.0	
Lambert	0.55	99.7					0.76	99.0					
Lambert3	0.48	99.7					0.48	99.4					
Li			0.64	98.2					0.43	99.7			
Liu					0.96	89.6					0.59	98.3	
Liu2					0.65	96.9					0.51	98.7	
Massively Parallel	0.79	92.2											
Merrell Confidence			0.83	88.0					0.84	83.1			
Merrell Stability			0.76	85.2					0.73	73.1			
NIPS_829					2.83	81.3					1.07	91.0	
Pons			0.6	99.5	0.9	95.4			0.55	99.0	0.71	97.7	
Sinha			0.79	94.9					0.69	97.2			
Song			0.61	98.3					0.38	99.4	0.54	95.5	
Sormann			0.69	97.2					0.81	95.2			

Scope of this lecture

Multi View 3D reconstruction is a very popular problem with a vast body of literature (see the number of submissions to the Middlebury evaluation).

- Preliminary: 3D shape

- Shape From Silhouette

- Definition
- Limitations
- Approaches
- Applications

- Photoconsistency

- Definition
- Light, Color
- A Simple Approach: Space Carving
- More Involved Approaches

Acc. Threshold: 90% 🔻		D	ata in n	new win	dow	Оре	n Data	Window	v			
Comp. Threshold: 1.25	mm •		ata: V	iew 1 a	nd Gro	und Tr	uth	•	mage S	Size Sr	nall	•
Tip: Mousing over any po	ortion o	famet	hod's ro	w will s	how its	referer	nce					
	Temple		Temple		Temple		Dino		Dino		Dino	
	F	ull	Ri	ing	Spi	arse	F	ull	Ri	ng	Spa	arse
	312	views	47 \	views	16 \	riews	363	views	48 \	riews	16 \	views
	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp
Sort By	0	0		0	0				0	0		
Auglair	fund	[70]	0.86	[70]	1.02	02.5	fund	[70]	0.62	06.7	0.74	[70]
Auciali Dradlav			0.00	09.1	0.49	02.0			0.02	07.6	0.74	04.7
Compholi	0.41	99.9	0.48	90.1	0.40	98.6			0.35	57.0	0.30	54.7
Campbell	0.41	33.5	0.40	00.0	0.33	04.5			0.51	04.6	0.66	80.0
Continuous Brobob			1.90	99.0	0.73	94.0			0.01	94.0	0.00	09.9
Continuous Probab			1.09	92.1	0.72	05.0			2.01	91.4	0.90	02.0
Delaunoy			0.54	09.5	0.73	90.9					0.89	93.9
			0.54	98.5	0.70	00.0			0.40	00.5	0.43	97.8
EUUV_216	0.05	00.7	0.53	99.0 00.5	0.72	96.8	0.50	00.2	0.46	99.0	0.42	97.8
Furukawa	0.65	98.7	0.58	98.5	0.82	94.3	0.52	99.2	0.42	98.8	0.58	96.9
Furukawa 2	0.54	99.3	0.55	99.1	0.62	99.2	0.32	99.9	0.33	99.6	0.42	99.2
Furukawa 3	0.49	99.6	0.47	99.6	0.63	99.3	0.33	99.8	0.28	99.8	0.37	99.2
Gargallo			0.88	84.3	1.05	81.9			0.6	92.9	0.76	90.7
Goesele	0.42	98.0	0.61	86.2	0.87	56.6	0.56	80.0	0.46	57.8	0.56	26.0
Goesele 2007	0.42	98.2					0.46	96.7				
Guillemaut	0.43	99.0	0.71	97.6	0.86	96.2	0.35	100	0.58	99.5	0.68	98.0
Habbecke	0.66	98.0					0.43	99.7				
Hernandez	0.36	99.7	0.52	99.5	0.75	95.3	0.49	99.6	0.45	97.9	0.6	98.5
Hongxing	0.83	95.7	0.79	96.3	0.97	93.9	0.62	96.3	0.5	99.1	0.52	98.4
Hornung	0.58	98.7					0.79	95.1				
Jancosek-3DIM09	0.65	85.8	0.7	78.9	0.59	74.9	0.91	73.8	0.71	76.6	0.66	74.9
JancosekCVWW									0.79	95.9		
Kolev			0.79	96.0					0.53	96.9		
Kolev2			0.72	97.8	1.04	91.8			0.43	99.4	0.53	98.3
Kolev3			0.7	98.3	0.97	92.7			0.42	99.5	0.48	98.6
Kolmogorov			1.86	90.4					2.81	86.0		
Kun Li					0.81	92.1					0.47	97.4
Ladikos											0.89	95.0
Lambert	0.55	99.7					0.76	99.0				
Lambert3	0.48	99.7					0.48	99.4				
Li			0.64	98.2					0.43	99.7		
Liu					0.96	89.6					0.59	98.3
Liu2					0.65	96.9					0.51	98.7
Massively Parallel	0.79	92.2										
Merrell Confidence			0.83	88.0					0.84	83.1		
Merrell Stability			0.76	85.2					0.73	73.1		
NIPS_829					2.83	81.3					1.07	91.0
Pons			0.6	99.5	0.9	95.4			0.55	99.0	0.71	97.7
Sinha			0.79	94.9					0.69	97.2		
Song			0.61	98.3					0.38	99.4	0.54	95.5
Sormann			0.69	97.2					0.81	95.2		
Ctoroly			1		4.07	077					4.04	00.7

Multi-View Stereo Evaluation • Datasets • Submit • Code

Representing Shape

Representing Shape

Implicit

Represent the surface as the 0 level-set of a scalar function f:

 $\begin{array}{ll} f(x) = 0 & \text{surface} \\ f(x) > 0 & \text{inside} \\ f(x) < 0 & \text{outside} \end{array}$

Explicit

Discretize the interface itself with a mesh:

M = (V, T) V are the vertices T are the triangles

Representing Shape

Implicit

- heavy in memory. In 2D: hold Nx*Ny scalar values In 3D: hold Nx*Ny*Nz scalar values

- possible refinements:
 - octrees
 - narrow band
- uniformity of sampling.

Explicit

- lightweight representation.
- easy to render on the GPU. -15-10-05 00 05 10 15
- versatile:
 - * adaptive sampling
 - * open meshes
 - * non manifoldness

Dealing with moving interfaces (in time or iterations of an algorithm)

- Eulerian point of view.
- handles naturally changes of topology.

- Can maintain point correspondence. *(Lagrangian)*

difficult to preserve correct sampling.
* non uniformity
* non manifoldness

x4

Representing shape

x4

2D Marching cubes: 16 cases 3D Marching cubes: 256 cases

x1

Nice openGL algorithm for watertight oriented meshes:

Under Orthographic Projection For z in slices : Zfar = zmax Znear = z

Render :

Frontface: stencil++ Backface: stencil--

The point x,y,z was inside \leftrightarrow stencil value != 0

Representing shape

- Depth Maps
- Displacement Maps (wrt. a base surface)
- Point clouds
- Patch clouds (oriented)

Reconstruction I Shape From Silhouette

SFS - Principle

The **visual hull** is the shape maximally consistent with the silhouettes

SFS

Does it converge to the true shape as we add more and more cameras ?

SFS - concavities

The visual hull cannot capture concavities not visible in the silhouettes

SFS – concavities

This can lead to severe reconstruction artifacts such as erroneous additional connected components.

SFS – silhouette errors

All the previous slides were considering **<u>perfect</u>** silhouettes. Many errors in the geometry are **<u>caused by errors in 2D segmentation</u>**.

Even in tightly controlled studio environments, there can be artifacts.

This gets much worse whithout the green screen, proper lighting, etc...

SFS – Volumetric Approach

- Define the scene's bounding box and discretize it.
- Evaluate for each voxel: "am I in the object ?"

SFS – Octree speed up

In the integral images of each camera, these 4 points gave the same value. \rightarrow do not check next level

Integral images ? The 1D silhouette case

On 2D silhouettes

SFS – Polyhedral Approach

PROS:

- silhouettes are back-projected to cones which are intersected in 3D.

- Good performance in real-time systems

- Does not suffer from discretization artifacts. The precision is only limited by the resolution of silhouette images.

CONS :

- Involved implementation.

- Problematic when silhouettes contain errors

- Does not scale very well with the number of images.

- Gives non uniformly sampled geometry

SFS - Applications

Provided there are no major reconstruction artifacts: Put a texture on it... it will look good

SFS - Applications

Augmented Reality. Real time interaction with physical systems.

SFS – The CAMP System

- 16 synchronized cameras mounted on the ceiling
- Working volume 3.5m x 3.5m x 2.5m
- Runs at 30 Hz

Shape-from-Silhouette: CAMP system

Shape-from-Silhouette: CAMP system

SFS - Summary

PROS:

- Efficient and easy to implement.
- Only silhouette images are required (no need for correspondences or texture).
- Robust.

CONS:

- Cannot recover concavities not seen in the silhouette images.
- Artifacts for complex scenes and low number of cameras.
- Needs calibrated input images.
- Silhouettes have to be available

(difficult outside of controlled studio environments)

Beyond the Visual Hull

Reconstruction II Photoconsistency

Photoconsistency

A point on the surface is said to be **<u>photoconsistent</u>** if its color is consistent in all cameras where it is visible.

In practice:

- We have two images I_1 , I_2 and a current guess for the surface orientation.
- We assume that the surface is locally planar.
- We can compute the homography from I_2 to I_1 and compute in a small image area a

photoconsistency score:

- SSD Sum of Squared Differences
- NCC Normalized Cross Correlation

Other options : Color histograms, statistical measure, Mutual Information

Lambertian assumption

- Far away light source
- small piece of surface

Question 1:

- How much light power does it receive ? (Surface Irradiance)
 - \rightarrow proportional to cos(incident ray, normal)

Question 2:

- How much light power gets reflected ? Where ?

The Lambertian model (roughly) says: - All these cameras are going to see the same color, no matter where they are looking from. (i.e the surface elements equally reflects in all directions)

Are not modeled:

- Specularities (lat. "Speculum" mirror)
- Cast shadows, ambient occlusion (important when matching across time)
- More complex BRDF (Bidirectional Reflectance Distribution Function)

	$\sqrt[n]{}$	>
atching across time)		

Radiometric calibration

The light flux received in the image plane is not all...

...the signal still has to go through some electronics

Space Carving

One of the earliest methods.

- Initialize a volume with a superset of the true scene
- Repeat until convergence :
 - Project a surface voxel into all images in which it is visible.
 - Remove if not photoconsistent.

- The volume we are looking for is called the **photo hull.**

- It is the tightest possible bound we can recover from images, in absence of **a priori** scene information.

- It is not necessarily the true surface.

Space Carving

Problem: occlusions

- The photoconsistency is only evaluated in the views in which a voxel is visible
- When a voxel is deleted new voxels become visible and the visibility has to be updated
- This is efficiently done using a multi-pass plane-sweep algorithm.

The scene is swept with a plane in each of the six principle directions and only cameras on one side of the plane are considered

Space Carving - Limitations

- The choice of the photoconsistency measure is critical.

- The photohull is only guaranteed to be the tightest superset of the true reconstruction.

- If a voxel is wrongly removed it can lead to the removal of other correct parts of the object \rightarrow no noise handling.

Space Carving: Limitations

- Needs calibrated input images
- Problematic for non-lambertian objects
- No regularization (e.g. smoothing)
- The Photo Hull is only a superset of the true shape
- Greedy approach
 - Removed voxels cannot be re-added to the reconstruction
- Accuracy limited by voxel resolution
 - Voxels should be small
 - Discretization artifacts

Space Carving: Results

Space Carving: Results

(e)

(f)

Reconstruction III "Photoconsistency is not enough" Regularized methods

" optimize a tradeoff between smoothness and photoconsistency"