Exercises in 3D Computer Vision I

Exercise 1 Recap: Linear Algorithm for Homography Computation

This exercise aims to quickly repeat the basics of the Direct Linear Transform algorithm (DLT) for homography computation. It is very similar to a linear algorithm for computation of the fundamental matrix which we will discuss in Exercise 2.

- a) Outline the main steps of the DLT algorithm for homography computation. Assume you are given point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}_{i=1...N}$, where $\mathbf{x} = (x, y, w)^{\top}$. How many point correspondences are required to compute a homography **H** such that $\mathbf{x}' = \mathbf{H}\mathbf{x}$?
- b) In practice, the DLT as described above often does not give satisfactory results. Outline why normalization has to be applied to the point correspondences and how you would perform normalization and denormalization.

Exercise 2 Linear Computation of the Fundamental Matrix

In this exercise, we will introduce a linear algorithm for computing the fundamental matrix **F** from point correspondences in two images. Assume again you are given point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}_{i=1...N}$ in two images, originating from common 3D points \mathbf{X}_i . We write $\mathbf{x} = (x, y, w)^{\top}$ and similarly for \mathbf{x}' .

- a) Starting from the defining equation of the fundamental matrix, $\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} = 0$, think of how to obtain a homogeneous linear system of equations of the form $\mathbf{A}\mathbf{f} = \mathbf{0}$. Specifically, answer the following questions:
 - How many constraints do you obtain per point correspondence?
 - How many point correspondences do you need to fully determine the entries of **F**?
 - What are the dimensions of **A** and **f**?
- b) How do you solve the linear system of equations in order to get a solution for **F**?
- c) An additional constraint on **F** is that its rank is 2, i.e. **F** is a singular matrix. Does the matrix computed in the step before necessarily satisfy this constraint? If not, how can the singularity constraint be enforced algebraically when computing **F**?
- d) As in the case of the DLT algorithm, normalization is required to avoid numerical instability. Explain how to apply normalization and denormalization when computing **F**.

Exercise 3 Computing the Fundamental Matrix based on 6 Point Correspondences

At least 8 point correspondences are required to determine \mathbf{F} when the 3D points generating the correspondences are assumed to be in a general configuration (e.g. no collinear or coplanar points). However, special configurations allow us to compute the fundamental matrix between

two views from less than 8 point correspondences. For example, six point correspondences are sufficient, if four of the 3D points lie on a plane and two of the 3D points are out-of-plane. The resulting method of computing the fundamental matrix is called the **6-point algorithm**.

Assume that there are four coplanar 3D points $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4$ and two out-of-plane points $\mathbf{X}_5, \mathbf{X}_6$. The respective projections in the two views are denoted by \mathbf{x}_i and \mathbf{x}'_i , $i \in \{1, ..., 6\}$.

- a) The projections of the four coplanar points in the two views can be used to obtain a homography **H** between the two images. How can you compute this homography?
- b) Show that $\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{H}$, where \mathbf{e}' is the epipole in the second view. Remember from last week's exercise that such a homography induced by a 3D plane can be decomposed as $\mathbf{H} = \mathbf{K}_2(\mathbf{R} + \mathbf{tn}_1^{\top}/d_1)\mathbf{K}_1^{-1}$, where $\mathbf{K}_1, \mathbf{K}_2$ are the intrinsic parameters matrices of the two cameras, \mathbf{R} and \mathbf{t} is the rotation and translation between the camera centers, and \mathbf{n}_1 is the normal of the 3D plane.

Hint: Use the following properties:

- $\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$.
- $\mathbf{F} = \mathbf{K}_2^{-\top} \mathbf{E} \mathbf{K}_1^{-1}$.
- For any non-singular $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ and any $\mathbf{b} \in \mathbb{R}^3$: $[\mathbf{A}\mathbf{b}]_{\times} = \mathbf{A}^{-\top}[\mathbf{b}]_{\times}\mathbf{A}^{-1}$.
- c) Applying **H** to the projections of the out-of-plane points $\mathbf{x}_5, \mathbf{x}_6$ in the first image will not necessarily give you the corresponding true projections $\mathbf{x}'_5, \mathbf{x}'_6$ in the second image. However, the mapped points $\mathbf{H}\mathbf{x}_5, \mathbf{H}\mathbf{x}_6$ will lie on the correct epipolar lines in the second image. Think of why this is the case, e.g. with a drawing.
- d) You have seen in part b) of this exercise that you can compute the fundamental matrix based on the homography H induced by the coplanar points and the epipole in the second image e'. Now, think of how you can obtain this epipole.

Exercise 4 (H) 8-Point Algorithm in MATLAB

In this exercise, you are asked to implement the 8-point algorithm as discussed above in MATLAB. Your algorithm should contain normalization/denormalization and it should enforce the singularity constraint on your estimated matrix \mathbf{F} .

- a) Write a MATLAB function eightpoint that takes an arbitrary number (≥ 8) of point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$ and outputs the fundamental matrix \mathbf{F} such that $\mathbf{x}'_i^{\top} \mathbf{F} \mathbf{x}_i = 0$.
- b) Write a MATLAB script that performs the following steps: Load and display the images mag_table_1.jpg and mag_table_2.jpg from the previous homework (Exercise 3) and ask the user to manually specify at least 8 point correspondences between the two images (e.g. using ginput). Use your function eightpoint to compute the fundamental matrix consistent with the selected points.
- c) Repeat the tasks in Exercise 3 of the previous homework, this time not using the provided matrix **F** but one you computed using your own code, and compare the results.