

Multi-View 3D-Reconstruction

Slobodan Ilic

Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany

3D Models

- "Digital copy" of real object
- Allows us to
 - Inspect details of object
 - Measure properties
 - Reproduce in different material
- Many applications
 - Cultural heritage preservation
 - Computer games and movies
 - City modelling
 - E-commerce
 - 3d object recognition/scene analysis

Applications: cultural heritage

SCULPTEUR European project

Applications: art

Block Works Precipitate III 2004 *Mild steel blocks* 80 x 46 x 66 cm

Domain Series Domain VIII Crouching 1999 *Mild steel bar* 81 x 59 x 63 cm

Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland

5

Applications: computer games

Applications: 3D indexation

Applications: archaeology * "forma urbis romae" project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy

Proc. Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology supplement, 2006.

forma urbís romae

Applications: large scale modelling

[Cornelis08]

[Goesele07]

Scanning technologies

- Laser scanner, coordinate measuring machine
 - Very accurate
 - Very Expensive
 - Complicated to use

Minolta

Contura CMM

Scanning technologies Structured light

3D shape from photographs

"Estimate a 3d shape that would generate the input photographs given the same material, viewpoints and illumination"

3d shape from photographs

"Estimate a 3d shape that would generate the input photographs given the same material, viewpoints and illumination"

3d shape from photographs

Appearance strongly depends on the material and lighting

3d shape from photographs Appearance strongly depends on the material and lighting No single algorithm exists dealing with any type of scene textured deforming rigid textureless

3D shape from photographs Photograph based 3d reconstruction is:

- practical
- ✓ fast
- non-intrusive
- ✓ low cost
- Easily deployable outdoors
- × "low" accuracy
- × Results depend on material properties

Multi-view reconstruction pipeline

Image acquisition

- Studio conditions controlled environment
- La Uncontrolled environment hand-held unknown illumination

Internet

Unknown content

· Video

small motion between frames huge amount of data

Studio image acquisition

Outdoor image acquisition

Internet image acquisition

Search

The Colosseum was

444 × 275 - 113k - aif

library.thinkquest.org

Find similar images

Battle Arena

500 × 375 - 38k - jpg

Find similar images

The Colosseum and

667 × 500 - 128k - jpg

nomadicmatt.com

Find similar images

thetheexcitingtraveldesti.

....

Advanced search

Page 3 of about 1,290,000 results (0.05 seconds)

colosseum

the colosseum

1600 × 1200 - 616k - jpg

manywallpapers.com

Image of Colosseum

500 × 375 - 41k - jpg

traveladventures.org

Find similar images

Colosseum,

colosseum.net

470 × 340 - 54k - jpg

Find similar images

Find similar images

The Colosseum Rome 405 × 261 - 34k - jpg traveltheroads.com Find similar images

700 × 466 - 192k - jpg fags.org Find similar images

Italy Rome Colosseum

720 × 480 - 20k - jpg

solarnavigator.net

Free Warez:

350 × 500 - 40k - jpg

Find similar images

550 × 382 - 74k - jpg

antsmagazine.com

Find similar images

Recreating The

Find similar images

Roman Colosseum 458 × 360 - 46k - jpg mariamilani com Find similar images

AMPRICATION CONTRACTOR

IIIIIIA FIRM TRADELLI .

Issan III

MITTIN

colosseum.jpg 500 × 320 - 50k - jpg salem.k12.va.us Find similar images

Colosseum An 576 × 449 - 191k - jpg freewarezps2.blogspot.com learnlangs.com Find similar images

Colosseum 1500 × 880 - 435k - jpg news.satimagingcorp.com Find similar images

SafeSearch moderate v

Roman Colosseum 375 × 500 - 58k - jpg 437 × 300 - 59k - ipg agirlsnotebook.page.ph goitaly.about.com Find similar images Find similar images

The Colosseum is a 337 × 450 - 46k - jpg trinadvisor coluk Find similar images

Roman Colosseum « 450 × 360 - 68k - jpg issa-italy.org Find similar images

The mighty 800 × 600 - 378k - jpg travelerfolio.com Find similar images

anim365.wordpress.com

Find similar images

holing

Find similar image

webecoist.com

Find similar images

cs.urm.edu

Find similar images

famouswonders.com

Find similar images

Video image acquisition

Multi-view reconstruction pipeline

Image acquisition

Camera pose

3d reconstruction

Camera pose

Robotic arm

Small Scenes

Fiduciary markers

Structure-from-Motion

Large scenes SfM from unorganized photographs

Robotic arm

• ARToolkit

Bouguet's MATLAB Toolbox

www.vision.caltech.edu/bouguetj/calib_doc/

Robust planar patterns

Structure from motion

Input sequence

2d features

2d track

3d points

Motion estimation result

Structure-from-Motion from unordered image collections

[Brown05, Snavely06, Agarwal09]

- Image clustering
- Pose initialization
- Bundle-adjustment

phototour.cs.washington.edu/bundler

Multi-view reconstruction pipeline

3d reconstruction = 3d segmentation

ПΠ

CAMP

Problem Statement

Given several calibrated views of an object ...

...how can we automatically build a 3D model of it ?

The Middlebury datasets

- Provides two datasets: "Temple" and "Dino"
 - Images corrected for radial distortion.
 - Camera calibration (intrinsics & extrinsics)
- Three versions for each dataset
 - Full hemisphere (> 300 images)
 - Ring (48 images)
 - Sparse Ring (16 images)
- They keep Ground Truth to evaluate results.

Mul	ti-V	iew	S	ter	eo
in a			-		

Evaluation • Datasets • Submit • Code

Comp. Threshold: 125 mm mate: View 1 and Ground Truth mage Size Small Tip: Mousing over any portion of a method's row will show its reference Dinc Dinc Dinc Full Sort By One One One Dinc Dinc Dinc Sort By One	Threshold: 1.25
Tip: Mousing over any portion of a method's row will show its reference Temple Temple Temple Temple Dino Dino Dino Ring Sparse Full Ring Sparse Spa	ousing over any po
Temple Temple Temple Temple Temple Dino	
Full Ring 312 views Sparse 47 views Full 16 views Ring 363 views Ring 48 views Sparse 16 views Sort By G <t< td=""><td></td></t<>	
312 views 47 views 16 views 363 views 48 views 16 view Acc Comp A	
Acc Comp Ac	
Sort By Image Image <thimage< th=""> Image Image <t< td=""><td></td></t<></thimage<>	
Auclair 0.86 96.2 1.03 92.5 0.62 96.7 0.74 95 Bradley 0.57 98.1 0.48 93.7 0.39 97.6 0.38 9 Campbell 0.41 99.9 0.48 99.4 0.53 98.6	Sort By
Bradley 0.57 98.1 0.48 93.7 0.39 97.6 0.38 8 Campbell 0.41 99.9 0.48 99.4 0.53 98.6	ir
Campbell 0.41 99.9 0.48 99.4 0.53 98.6 Chang 0.54 99.0 0.73 94.5 0.51 94.6 0.66 8 Continuous Probab 1.89 92.1 24.4 91.4 1.4	әу
Chang 0.54 99.0 0.73 94.5 0.51 94.6 0.66 8	bell
Continuous Probab 189 921 261 914	g
CONTINUOUS FTUDAD 1.00 02.1 2.01 91.4	nuous Probab
Delaunoy 0.73 95.9 0.89 9	inoy
Deng 0.54 98.5 0.43 9	
ECCV_216 0.53 99.5 0.72 96.8 0.46 99.5 0.42 9	/_216
Furukawa 0.65 98.7 0.58 98.5 0.82 94.3 0.52 99.2 0.42 98.8 0.58 9	awa
Furukawa 2 0.54 99.3 0.55 99.1 0.62 99.2 0.32 99.9 0.33 99.6 0.42 9	awa 2
Furukawa 3 0.49 99.6 0.47 99.6 0.63 99.3 0.33 99.8 0.28 99.8 0.37 9	awa 3
Gargallo 0.88 84.3 1.05 81.9 0.6 92.9 0.76 9	allo
Goesele 0.42 98.0 0.61 86.2 0.87 56.6 0.56 80.0 0.46 57.8 0.56 2	ele
Goesele 2007 0.42 98.2 0.46 96.7	ele 2007
Guillemaut 0.43 99.0 0.71 97.6 0.86 96.2 0.35 100 0.58 99.5 0.68 9	maut
Habbecke 0.66 98.0 0.43 99.7	ecke
Hernandez 0.36 99.7 0.52 99.5 0.75 95.3 0.49 99.6 0.45 97.9 0.6 9	andez
Honaxina 0.83 95.7 0.79 96.3 0.97 93.9 0.62 96.3 0.5 99.1 0.52 9	xina
Hornung 0.58 98.7 0.79 95.1	ina
Jancosek-3DIM09 0.65 85.8 0.7 78.9 0.59 74.9 0.91 73.8 0.71 76.6 0.66 7	sek-3DIM09
JancosekCVWW 0.79 95.9	sekCVWW
Koley 0.79 96.0 0.53 96.9	
Kolev2 0.72 97.8 1.04 91.8 0.43 99.4 0.53 9	2
Kolev3 0.7 98.3 0.97 92.7 0.42 99.5 0.48 9	3
Kolmogorov 1.86 90.4 2.81 86.0	ogorov
Kun Li 0.81 92.1 0.47 §	i
Ladikos 0.89 g	OS
Lambert 0.55 99.7 0.76 99.0	ert
Lambert3 0.48 99.7 0.48 99.4	ert3
Li 0.64 98.2 0.43 99.7	
Liu 0.96 89.6 0.59 S	
Liu2 0.65 96.9 0.51 9	
Massively Parallel 0.79 92.2	ively Parallel
Merrell Confidence 0.83 88.0 0.84 83.1	Il Confidence
Merrell Stability 0.76 85.2 0.73 73.1	Il Stability
NIPS 829 2.83 81.3 1.07 9	829
Pons 0.6 99.5 0.9 95.4 0.55 99.0 0.71 9	
Sinha 0.79 94.9 0.69 97.2	
Song 0.61 98.3 0.38 99.4 0.54 9	
Sormann 0.69 97.2 0.81 95.2	ann
Starck 127 877 101 9	k

Representing Shape

Implicit

Represent the surface as the 0 level-set of a scalar function f:

f(x) = 0	surface
f(x) > 0	inside
f(x) < 0	outside

Explicit

Discretize the interface itself with a mesh:

M = (V, T) V are the vertices T are the triangles

Representing Shape

Implicit

- heavy in memory. In 2D: hold Nx*Ny scalar values In 3D: hold Nx*Ny*Nz scalar values

- possible refinements:

- octrees

- uniformity of sampling.

Explicit

- lightweight representation.
- easy to render on the GPU.
- versatile:
 - * adaptive sampling
 - * open meshes
 - * non manifoldness

Dealing with moving interfaces (in time or iterations of an algorithm)

- Eulerian point of view.

- handles naturally changes of topology.

Can maintain point correspondence.
(Lagrangian)
difficult to preserve correct sampling.

- * non uniformity
 - * non manifoldness

From Implicit Surfaces to Meshes

The main idea:

• From a given implicit surface create a triangular mesh that approximates this surface

 Compute normals of the mesh surface at each vertex of created triangles

• Use marching cubes algorithm

Marching Cubes Algorithm

2D Marching cubes: 16 cases 3D Marching cubes: 256 cases

- Assign zero to vertices outside the surface
- Assign one to vertices inside the surface
- Surface intersects squares/cubes at places where the surface passes, i.e. between vertices that are inside and outside the implicit surface

Reconstruction I Shape From Silhouette

SFS - Principle

The visual hull is the shape maximally consistent with the silhouettes

SFS

Does it converge to the true shape as we add more and more cameras ?

SFS - concavities

The visual hull cannot capture concavities not visible in the silhouettes

SFS – concavities

This can lead to severe reconstruction artifacts such as erroneous additional connected components.

SFS – silhouette errors

All the previous slides were considering **<u>perfect</u>** silhouettes.

SFS – Volumetric Approach

- Define the scene's bounding box and discretize it.
- Evaluate for each voxel: "am I in the object ?"

SFS – Octree speed up

In the integral images of each camera, these 4 points gave the same value. \rightarrow do not check next level

SFS – Polyhedral Approach

PROS :

- silhouettes are backprojected to cones which are intersected in 3D.

- Good performance in real-time systems

- Does not suffer from discretization artifacts. The precision is only limited by the resolution of silhouette images.

CONS :

- Involved implementation.
- Problematic when silhouettes contain errors
- Does not scale very well with the number of images.
- Gives non uniformly sampled geometry

SFS - Summary PROS:

- Only silhouette images are required
- No need for correspondences or texture
- Robust
- Efficient and easy to implement

CONS:

- Cannot recover concavities not seen in the silhouette images

- Artifacts for complex scenes and low number of cameras
- Needs calibrated input images
- Silhouettes have to be available (difficult outside of controlled studio environments)

Beyond the Visual Hull

Reconstruction II Photoconsistency

Lambertian assumption

- Far away light source
- small piece of surface

Question 1:

- How much light power does it receive ? (Surface Irradiance)
 - \rightarrow proportional to cos(incident ray, normal)

Question 2:

- How much light power gets reflected ? Where ?

The Lambertian model (roughly) says: - All these cameras are going to see the same color, no matter where they are looking from. (i.e the surface elements equally reflects in all directions)

Are not modeled:

- Specularities (lat. "Speculum" mirror)
- Cast shadows, ambient occlusion (important when matching across time)
- More complex BRDF (Bidirectional Reflectance Distribution Function)

Space Carving

One of the earliest methods.

- Initialize a volume with a superset of the true scene
- Repeat until convergence :
 - Project a surface voxel into all images in which it is visible.
 - Remove if not photoconsistent.

The photoconsistent surface is called the **photo hull** and is the tightest possible bound on the true scene

Space Carving

Problem: occlusions

- The photoconsistency is only evaluated in the views in which a voxel is visible

- When a voxel is deleted new voxels become visible and the visibility has to be updated

- This is efficiently done using a multi-pass plane-sweep algorithm.

Scene is swept with a plane in each of the six principle directions and only cameras on one side of the plane are considered

Figure taken from: K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving, IJCV 2000

Space Carving - Limitations

- The photohull is only guaranteed to be the tightest superset of the true reconstruction.

- If a voxel is wrongly removed it can lead to the removal of other correct parts of the object.

- The choice of the photoconsistency measure is critical.

Figure taken from: K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving, IJCV 2000

Space Carving: Limitations

- Needs calibrated input images
- Problematic for non-lambertian objects
- No regularization (e.g. smoothing)

- The Photo Hull is only a superset of the true shape
- Greedy approach
- Removed voxels cannot be re-added to the reconstruction
- Accuracy limited by voxel resolution
 - Voxels should be small
 - Discretization artifacts

Space Carving: Results

Space Carving: Results

(f)

Photo-consistency of a 3d point

Photo-consistency of a 3d point

Photo-consistency of a 3d patch

Window comparison: Normalized Cross Correlation Square window

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

CAMP

homography-based window

Challenges of photo-consistency

Camera visibility

- Failure of comparison metric
 - repeated texture
 - lack of texture
 - specularities

76-

ТΠ

CAMP

Multi-view stereo algorithms Comparison and evaluation:

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, S. Seitz et al., CVPR 2006, vol. 1, pages 519-526.

Quick history of algorithms:

Representing stereo data with the Delaunay triangulation,

O. Faugeras et al., Artificial Intelligence, 44(1-2):41-87, 1990.

A multiple-baseline stereo,

M. Okutomi and T. Kanade, TPAMI, 15(4):353-363, 1993.

Object-centered surface reconstruction: Combining multi-image stereo and shading,

P. Fua, Y. Leclerc, International Journal of Computer Vision, vol. 16:35-56, 1995.

A portable three-dimensional digitizer,

Y. Matsumoto et al., Int. Conf. on Recent Advances in 3D Imaging and Modeling, 197-205, 1997

Photorealistic Scene Reconstruction by Voxel Coloring,

S. M. Seitz and C. R. Dyer, CVPR., 1067-1073, 1997.

Variational principles, surface evolution, PDE's, level set methods and the stereo problem,

O. Faugeras and R. Keriven, IEEE Trans. on Image Processing, 7(3):336-344, 1998.

Multi-view stereo algorithms Comparison and evaluation:

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, S. Seitz et al., CVPR 2006, vol. 1, pages 519-526.

http://vision.middlebury.edu/mview/

Recently many new algorithms

Very good accuracy & completeness

Almost all deal with small number of images (~100) main exception [Pollefeys08]

Offline algorithms, no feedback

	Ter	nple	Temple		Temple		Dino		Dino		Dino	
	F	ull	Ring		Sparse		Full		Ring		Sparse	
	312	views	47 views 16 views		363 views		48 views		16 views			
	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp	Acc	Comp
Sort By	C [mm]	C [%]	€ [mm]	C [%]	C [mm]	C [%]	C [mm]	C [%]	C [mm]	C [%]	C [mm]	0 [%]
Furukawa 3	0.49	99.6	0.47	99.6	0.63	99.3	0.33	99.8	0.28	99.8	0.37	99.2
Campbell	0.41	99.9	0.48	99.4	0.53	98.6						
Hernandez	0.36	99.7	0.52	99.5	0.75	95.3	0.49	99.6	0.45	97.9	0.6	98.5
Furukawa 2	0.54	99.3	0.55	99.1	0.62	99.2	0.32	99.9	0.33	99.6	0.42	99.2
Zaharescu			0.55	99.2	0.78	95.8			0.42	98.6	0.45	99.2
Zach2	0.51	98.8	0.56	99.0			0.55	98.7	0.51	99.1		
SurfEvolution			0.56	98.9	0.78	96.8			0.56	97.7	0.66	97.6
Bradley			0.57	98.1	0.48	93.7			0.39	97.6	0.38	94.7
Zach			0.58	99.0					0.67	98.0		
Furukawa	0.65	98.7	0.58	98.5	0.82	94.3	0.52	99.2	0.42	98.8	0.58	96.9
Pons			0.6	99.5	0.9	95.4			0.55	99.0	0.71	97.7
Goesele	0.42	98.0	0.61	86.2	0.87	56.6	0.56	80.0	0.46	57.8	0.56	26.0
Zaharescu2			0.62	98.5					0.5	98.5		
Vogiatzis2	0.5	98.4	0.64	99.2	0.69	96.9						
Sormann			0.69	97.2			i —		0.81	95.2		
ICCV 1500	0.65	85.8	0.7	78.9	0.59	74.9	0.91	73.8	0.71	76.6	0.66	74.9
Kolev2			0.72	97.8	1.04	91.8	1		0.43	99.4	0.53	98.3
Surfel Cut			0.73	97.5					0.69	98.7		
Merrell Stability			0.76	85.2			i —		0.73	73.1		
Vogiatzis	1.07	90.7	0.76	96.2	2.77	79.4	0.42	99.0	0.49	96.7	1.18	90.8
Kolev			0.79	96.0					0.53	96.9		
Sinha	_		0.79	94.9					0.69	97.2		
Merrell Confidence			0.83	88.0					0.84	83.1		
Auclair			0.86	96.2	1.03	92.5			0.62	96.7	0.74	96.8
Strecha			0.86	97.6	1.05	94.1			1.21	92.4	1.41	91.5
Gargallo	_		0.88	84.3	1.05	81.9			0.6	92.9	0.76	90.7
Tran			1.12	92.3	1.53	85.4			1.12	92.0	1.26	89.3
Kolmogorov			1.86	90.4					2.81	86.0		
Continuous Probab			1.89	92.1					2.61	91.4		
3DIM 155	0.55	99.7					0.76	99.0				
Delaunoy					0.73	95.9					0.89	93.9
Goesele 2007	0.42	98.2					0.46	96.7				
Habbecke	0.66	98.0					0.43	99.7				
Hornung	0.58	98.7					0.79	95.1				
JancosekCVWW									0.79	95.9		
Ladikos											0.89	95.0
Liu					0.96	89.6					0.59	98.3
Liu2					0.65	96.9					0.51	98.7
Massively Parallel	0.79	92.2										
Starck					1.27	87.7					1.01	90.7

Different approaches*

*Disclaimer: classifying 3d algorithms is challenging

Best flexible algorithms

	Region growing	Depth-map fusion
summary	Starts from a cloud of 3d points, and grows small flat patches maximizing photo-consistency	Fuses a set of depth-maps computed using occlusion-robust photo- consistency
bros	Provides best overall results due to a plane-based photo- consistency	Elegant pipeline Plug-n-play blocks Easily parallelizable
cons	Many tunable parameters, i.e., difficult to tune to get the optimal results	Photo-consistency metric is simple and not optimal. The metric suffers when images are not well textured or low resolution

Overview: region growing

1. Fitting step

A local surface patch is fitted, iterating visibility

2. Filter step

Visibility is explicitly enforced

3. Expand step

Successful patches are used to initialise active boundary

Overview: depth-map fusion

1. Compute depth hypotheses

2. Volumetrically fuse depth-maps

3. Extract 3d surface

CAMP