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Exercises in 3D Computer Vision I

Exercise 1 Recap: Camera Models

The projection matrix P ∈ R3×4 of a camera relates points X in the 3D world (in homogeneous
coordinates) to their images x on the camera plane as x = PX. Intrinsic parameters (such as
the focal length) and extrinsic parameters (such as the location of the camera in the world) are
encapsulated in the projection matrix. The projection matrix an be decomposed as P=KR[I|−C̃],
where C̃ is the camera center in the world coordinate system, R is the rotation matrix representing
the orientation of the camera and K is the matrix of intrinsic camera parameters.

a) Give the entries of the intrinsic parameters matrix K for each of the following camera mod-
els: (a) basic pinhole camera, (b) CCD camera, (c) finite projective camera. How many
degrees of freedom does P have in each of the cases?

• Pinhole Camera:

Kpinhole =

 f px
f py

1

 , (1)

where f is the focal length of the camera and px, py is the principal point in image
coordinates. P has 9 degrees of freedom.

• CCD Camera:

Kccd =

 αx x0
αy y0

1

 , (2)

with αx = f mx, αy = f my, x0 = mx px, y0 = my py. mx and my are the number of pixels
per unit in image coordinates. P has 10 degrees of freedom.

• Finite Projective Camera:

Kfinite =

 αx s x0
αy y0

1

 , (3)

where s is the skew parameter. P has 11 degrees of freedom.

b) Explain the geometric meaning of the columns and rows of P. Hint: Use the follow-
ing notation: columns are written pi, such that P = [p1,p2,p3,p4]. Rows are written
r>i , such that P = [r1,r2,r3]

>. Then, for the columns, consider the products of the form
p1 = [p1,p2,p3,p4](1,0,0,0)>. For the rows, consider the products r>i X.

• Columns are particular image points: p1,p2,p3 are the vanishing points for the 3 co-
ordinate axes of the world coordinate system. These columns are the images of the
directions of the world corrdinate axes, e.g. (1,0,0,0) for the X axis. p4 is the image
of the world coordinate origin (0,0,0,1).
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• Rows are particular world planes: For instance, all points on the plane r>1 satisfy
r>1 X = 0 and are therefore imaged at PX = (0,y,w)> (i.e. on the image y axis). Simi-
larly, the points on the plane r>2 are projected on the image x axis. In other words, the
world plane r>1 is defined by the camera center and the line x = 0 in the image, r>2 is
defined by the camera center and the line y = 0. The plane r>3 is the principal plane,
i.e. the plane through the camera center and parallel to the image plane. All points on
this plane are imaged at PX = (x,y,0)>, i.e. on the line at infinity.

c) Outline an algorithm to determine the projection matrix P from point correspondences
{xi ↔ Xi} between points Xi in 3D space and points pi on the 2D image. How many
points are required?

The objective is to find a 3× 4 camera matrix P such that xi = PXi for all i. This task is
very similar to computing a homography in 2D, except that now we are computing a 3×4
matrix instead of a 3×3 matrix – we can thus use the DLT algorithm.

• Write pi×PXi = 0. The homogeneous vectors xi and PXi will not be identical, but
will have the same direction. Therefore their cross product must be zero.

• Set up a system of linear equations Aip = 0 for every point correspondence {xi↔Xi}.
Here, p is a 12×1 vector containing the sought entries of P and Ai is a 2×12 matrix.

• Create a system Ap = 0 by stacking up the matrices Ai for all point correspondences.
Minimize ‖Ap‖ under the constraint that ‖p‖= 1 using the SVD decomposition.

Since P is a homogeneous 3× 4 matrix, it has 12 entries and 11 degrees of freedom (the
representation is up to scale). Each point correspondence between the world and the image
provides 2 constraints (x and y coordinates in the image). This leads to the result that we
need at least 5.5 point correspondences in order to compute the camera matrix. So A is a
2n×12 matrix, with n being the number of used point correspondences.

Exercise 2 Projection Matrices

a) Decomposition of the Camera Matrix
Now that we have P we can extract the intrinsic and extrinsic parameters from it. We do
so by decomposing P into P = KR

[
I|R>t

]
. Here K is a 3× 3 upper triangular matrix

containing the intrinsic parameters. R and t represent the extrinsic parameters: the rotation
(3× 3 matrix R) and translation (3× 1 vector t). R and t take all points from the world
coordinate system into the camera coordinate system of the camera.

We can get K and R by applying the QR-decomposition to the left 3× 3 submatrix of
P. The QR-decomposition gives for a matrix M the decomposition M = QR such that
Q is an orthogonal matrix and R is an upper triangular matrix. Let us assume we have
P = [KR|Kt] = [M|p4]. By feeding M−1 to the QR-decomposition, we get M−1 = QR. It
follows that M = (QR)−1 = R−1Q−1. Since Q is orthogonal Q−1 = Q> and thus Q> is
orthogonal and can be interpreted as a rotation matrix. Since the inverse of an upper trian-
gular remains upper triangular we can interpret R−1 as the matrix containing the intrinsic
parameters.

After doing the QR-decomposition, it is crucial to assure that the signs of the focal length
from the computed matrix K are positive since the focal length can not be negative in the
pinhole model.

Finally, the translation t is given by: t = K−1p4.
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b) Recovery of Camera Center from P
For the camera center, the equation Pc = 0 holds since c is the only point that can’t be
imaged by the camera. So solving Pc = 0 yields c. 1

If P is already decomposed as P = K [R|t] then we can use the relationship c =−R>t.

1By the way: c can be described as a point in which the three planes described by the rows of P intersect.


