Ubiquitous Tracking using
the DWARF Middleware

Ubiquitous Tracking Project Workshop

Asa MacWilliams

Lehrstuhl fur Angewandte Softwaretechnik
Institut fur Informatik, Technische Universitat Munchen

macwilli@in.tum.de

Feb 6 2004

Summary

- An implementation of the Ubiquitous Tracking concepts
needs middleware infrastructure

- DWARF contains decentralized, adaptive middleware
which is well-suited to this task

- The DWARF middleware can contribute to:
— Communication between software components
— Discovery of new devices in environment
— Configuration and adaptation of components
— Formation of data flow networks

- However, it will need to be extended for
— Scalability
— Performance
— Ad hoc networks

Ubiquitous Tracking Using the DWARF Middleware 80
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 2 _}.i é

Motivation

Within the Ubiquitous Tracking project:

— Distribution is part of the game

— Ad hoc discovery and configuration of trackers

— Formation of data flow graph
- Within the DWARF project:

— For ubiquitous AR, we need ubiquitous tracking

— Using DWAREF in lets us leverage existing components

- My personal motivation:
— DWAREF architecture and middleware are basis of my Ph.D. thesis

— Ubiquitous tracking is a good application to “harden” the
framework and the middleware

T

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de

Feb 6 2004

3

Data Flow Graph from Spatial Graph

From technical report... "0“‘
: Quplt) = Pyglt) Q) = Pacll)
- Every edge Qg in e e U

spatial relationship AGp(t) Q)

graph must be ﬂ
measured or o D) = pacl) B~
~ a,.(b) _,IIH/

computed

* For this, we can set up
data flow graph of

communicating | [
components q4(t) ala(t) —

component for

Qi)

« (Construction of data
flow graph is based on i | wnscense A
attributes Q5c(t) Qg (t)

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 4

Attributes

- Spatial relationships have attributes
— E.g. latency, frequency, cost, confidence, accuracy

- Two basic assumptions about attributes:

— Attributes change “more slowly” than measurements themselves...

...thus, it pays off to set up a data flow graph in the background

— Attributes of inferred measurements can be described without
actually inferring the measurements

...thus, we can compare the results of speculative data flow graphs
without actual data flow

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 5

DWARF in Brief

- Framework for Mobile AR in
ubiquitous computing environments

- Example scenarios:
— Navigation (Pathfinder)
— Maintenance (TRAMP)
— Multi-Player Game (SHEEP)

— Collaborative Building Design
(ARCHIE)

— Medical (HEART)

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 6

DWARF Consists of Distributed Services

During design...

Tracking

Presentation

...and at run time

o
W =adapier servioes endapier sofvics
AHT | ART Tracker I } Viewer VML
D¥enck L ! | PaseDatn Edl v
i [PoseDa
\(?j\(?j\(;l/ PaseData : :Rl'nngl'.'lnl:l""j"\
e -
o : <mdapher Soricms P :
- Sound = |
1 el
Calibration | Sarvice Sound Player :
! 1
v yoll | ol ;
b Sounciuipud : I
i
o i !
Sheep Simulation [1 == =~ | Interaction l : :
[(E—— | : T JI
PosaData I 1 1 : :
i 1
SranpData — -u_, : "ELVIOE : wxodemaks :
,____} ‘5;;:“’* - L____)_. Caollisian '| Speecn |
! " Detection i | Recognition | |
: . & ‘Pesalata fm ! 1
i Saart Process Anput SoundCutpat e :
| y
| - Shaspliala b -'.a:ie:\‘.-:rI:nn' ot :
] Sheep mrviEs
: } Startar Ul Controlier [{CH :;:E:: :
] Input :
i)
e --"------}éé -------------- 1
SheapData

&~ DWARF Inter: BEE
Eile View Help
DIVE ServiceManage
servicemanagers| ServiceManager
CalibrationService, ARTTracke
CollisionDetection| ElfriedeRaw BDMarker#2
objects HWDRaw BDMarker#4|
shee EandRaw BDMarker#5
& ointer BDMarker#6
g?:tljlsonsender STLaptopRaw BDMarker#7
‘WandRaw BDMarker#8
iPAGRaw status
Elfriede
HIVD
Hand
MagicWand
SeeThroughLap
ipag
status
UlCWizardNet1|
collisionData
playwizardsound
userlnput
GODIE sheepdata
Pl il ; status
PoseData F
UICGodNet

SheepDataUser
/CnlurDataSupplier
status

BeamerView1
ColorData
PoseData
SheepData |,
status

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de

\col(isionData

Sheep2 \ playgodsound|
controller IA isheepdata
status

UlClpagNet
collisionData
scenegraphmanipulato
sheepdata

[Service Managers: 1 Services: 51 Visible: 12

Feb 6 2004 7

Services in DWARF

- Services have Needs and Abilities, which have types

/

<<service>>
View

/ / <<service>>

----- Filter —C— -

___>O_

<<service>>
Tracker

.PoseData :PoseData :PoseData :PoseData
(I(Thing=Head) Thing=Head (I(Thing=Head) Thing=Head
I(User=Alice) User=Alice l(User=Alice) User=Alice
|(Quality=max)) Quality=2 [(Quality=1)) Quality=1

/ \

« Abilities have Attributes, Needs have Predicates.
« These can be set at runtime.
« One service’s Needs depend on other services’ Abilities.

 Distributed CORBA-based Middleware establishes connections for
communication between services (management, lookup, connection)

T

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de

Feb 6 2004

8

Communication mechanisms

Needs and Abilities communicate via connectors, which have protocols

/

' Push- I Push- |

Notification
Channel

<<service>>
View

I Consumer 1 I Supplier 1

k- - - | B —
C‘ data flow :-J

<<service>>
Tracker

:PoseData :PoseData

 Connectors so far:

— CORBA structured “push” events, using strongly typed data,
* e.g. struct PoseData { double x,y,z; ... }in IDL

— CORBA method calls
— Shared memory (for local video transfer)

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de

Feb 6 2004 9

Mapping Ubitrack onto DWARF

| propose a simplistic mapping:

Data flow components are DWARF Services

« Trackers, filters, interpolators, extrapolators, inference components...
For each spatial relationship a service can compute, it has one

ability of type PoseData

The relationship’s attributes, and the identity of the objects related,

are mapped onto the Ability’s attributes

The COmmunICatlon ‘PoseData <<service>>
protocol uses CORBA Thing=AlicesHead (O)——
events or CORBA get...() Freqjir::::)sg —(
method calls Drift=1 2 Optical- :VideoData
Components like trackers :PoseData Tracker _C
have other needs, e.g. for Thing=AlicesHand (_J— _
]] k Frequency=30 :MarkerData
configuration or video data r
itter=0.5
...but that isn’t relevant here Drift=1.2
Ubiquitous Tracking Using the DWARF Middleware 1e
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 10 é

Starting Services on Demand

- Some of a service’s
attributes are relatively
independent of the
actual data it processes

« ...thus, we can describe
services that are not
actually running...

« ...and start them on
demand, when they’re
needed

<service name="OpticalTracker”

startCommand="/usr/bin/mytracker Alice.conf”>

<attribute name="Room" value="Studio"/>
<attribute name="Lag" value="0.01"/>
<attribute name="Jitter" value="0.5"/>
<attribute name="Drift" value="1.2"/>

<need name="markerData" type="MarkerData" ../>
<need name="videoStream" type="VideoStream”../>

<ability name="relationl" type="PoseData">
<attribute name="Thing" value="AlicesHead"/>
<attribute name="RelativeTo" value="Studio"/>
<connector protocol="NotificationPush"/>
</ability>

<ability name="relation2" type="PoseData">
<attribute name="Thing" value="AlicesHand"/>
<attribute name="RelativeTo" value="Studio"/>
<connector protocol="NotificationPush"/>
</ability>

</service>

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 11

Dynamic Attribute Changes

- So far, all attributes were specified in static XML files

- However, they can be changed at run time as well...

— By services

« e.g. when a tracker recognizes its accuracy is going down (optical
tracker in failing light conditions)

...Then, the middleware can select a “better” tracker for the
application requesting it
— And by the middleware
« depending on other services found in the system
« according to certain rules

...that lets the middleware construct adaptive data flow graphs

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 12

Binding Attributes: Configuration

e The attributes of a <service name=" Optical'I.‘racker" |
service’s abilities startCommand="/usr/bin/mytracker Alice.conf”>

depends on how its’
needs are satisfied

<need name="markerData" type="MarkerData"
predicate=" (Thing=*)">

e For example an optical <connector protocol="ObjrefImport"/>
’ </need>
tracker can only detect
things it has marker <ability name="relationl" type="PoseData”
descriptions for Letemplates true >
P <attribute name="Thing"
° For each marker value="$gmérkeJI:Data.Thing) ">
.. <connector protocol="NotificationPush"/>
description found, the </ability>

service gets a new ability

- The middleware can do
this in the background,
before an ability is
actually requested

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 13

</service>

Binding Attributes: Cloning

« Some services can exist <service name="MyFilter” isTemplate="true">
arbitrarily often startCommand="/usr/bin/myfilter”>

. <need name="input" type="PoseData"
For exam_ple’ the predicate=" (& (Thing=*) (RelativeTo=%*)
Interpolation, (Jitter>0.2))"../>

Extrapolation, and .
]) <ability name="output" type="PoseData”>
Fl|tel’lng Components <attribute name="Thing"

« The middleware can value="$ (input.Thing)">

<attribute name="RelativeTo "

instantiate these value="$ (input.RelativeTo)"> ..
(“Cloning”) in the <attribute name="Jitter "

) value="$ (input.Jitter*0.1)"> ..
background, depending </ability>
on other available </service>
services

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 14

Binding Attributes: Cloning (2)

- The same technique
works for the Inference
components, t00

- The middleware can
instantiate these
background, depending
on other available
services

- Recursively, this forms
chains of services

. even forests that grow
exponentially

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 15

<service name="MyInferrer” isTemplate="true">
startCommand="/usr/bin/myinferrer”>

<need name="inputl" type="PoseData"
predicate=" (& (Thing=*) (RelativeTo=%*))"../>

<need name="input2" type="PoseData"
predicate=" (& (Thing=%*)
(RelativeTo=$ (inputl.Thing))) "../>

<ability name="output" type="PoseData”>
<attribute name="Thing"
value="$ (input2.Thing) ">
<attribute name="RelativeTo "
value="$ (inputl.RelativeTo) "> ..
</ability>
</service>

Branching and Selection

« Middleware finds graphs of “potential” services in background
- When user (or application) requests a particular ability of a particular

service, the appropriate chain is started up

:PoseData FPoselata Poselaia

Thing=Head Thing=" Thinge=*
User Alice User=" Limara®
Cuality=max Qualitysns] Quakiby=n

Thing=Head Things=Fead
s ersflice (M ET e] LPmaraflice
Caalilys=max Cuality=2 Dluality=1

O— AII.:ﬂ“:l;d _t:_' -0

Thing=Fead Things=Head

(1 Tracker —!:)
:PoseData :MarkarData MarkarData
Thing=* Thing=" Thing=Haad
[FE=ST R Usar=" Liser=Alica
Chualibys=1

PoseData

Usersflice
Chualibys=1

Pos=Data PoseDats :PaoseData
Thing=Hard Thing=Hand Thing=Hand
[METE Y Pt e radlice User=flice
Cuality=2 Cualitys=1 Cuadily=1

Ubiquitous Tracking Using the DWARF Middleware

m Asa MacWilliams, macwilli@in.tum.de

Usar="

Y

Markerbpta -MarkerData
Thimg="

C)_

Markarata

Flarkars-
Allca

Thing=Hand
Lisar=5a s

"'_‘_ Thing=Haad
~ User=Alica
b

h S
LY

“Mark=rata
Thing=Hard
s ers=flice

Feb 6 2004

i

Adaption: Feedback Loop

» Feedback loop:

— Services change their attributes according to measurements or
calculations they make

— Depending on the attributes, the middleware constructs data flow
graphs

— Depending on the data flow graphs, services are reconfigured to
make different measurements or to calculate different values

 Inputs:

— the measurements depend on the environment

— And the data flow depends on the Needs of the application
« Such feedback loops can

— Adapt to changing circumstances

... but also be chaotic and unstable
... or end up in degenerate attractors

Ubiquitous Tracking Using the DWARF Middleware :
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 17 s

Decentralized Algorithm

- The proposed algorithm is fairly simple to implement in a
distributed fashion

— The implementation of the DWARF middleware is based on
Service Managers, which run on each computer in the network

- In fact, the branching of service graphs benefits from
distribution

- Of course, scalability and performance may become

Issues
— “Damping” rules needed to keep service graphs from exploding

— Local middleware must react quickly to attribute changes of
“relevant” services

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 18

Implementation Status

Binding of attributes works only during cloning
— E.g. create new filter for a certain tracker

Evaluation of expressions not implemented yet
— No “$(myNeed.myAttribute+1)” expressions
— Only “Wildcard attributes”:

- <attribute name="Thing" value="*">
in Need definition; is equivalent to
- <attribute name="Thing" value="$(need.Thing)>"

- Attribute changes of connected services are not
propagated
+ Services are not notified when their attributes change

- Service Managers do not scale well to thousands of
services

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 19

What Needs to be Done

Formalize it:

— A template service description maps Q onto Q’

Investigate it:

— Find set of attributes that can be evaluated decentrally

— Test middleware behavior with thousands of service descriptions
Implement it:

— Implement attribute evaluation scheme

— Notify Services of attribute changes

— Propagation of attribute changes between service managers
Improve current middleware performance:

— Better service location: beyond SLP (...)

— Colocated communication to improve performance (...)

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 20

Service Location: Beyond SLP

 Currently, the service location mechanism uses SLP,
which
— uses broadcast/multicast queries
— supports attributes and boolean predicates
— is designed for fairly static services, e.g. printers
— could span networks using federated directory agents
- If we had an implementation of that
« What else could we use?
— Multicast DNS: announcements, but no boolean predicate support

— Implement some peer-to-peer resource finding algorithm using
distributed indexes

— Perhaps implement an own SLP directory agent

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 21

Efficient Communication: Colocation

- Currently, each DWAREF service is a separate process
— That creates communication overhead However, there is no
compelling reason for that
- One process can implement multiple services and
— register them all with registerService()
— create new services on demand with registerServicelLoad()
— if these service communicate using method calls, the ORB passes
the call through directly
- We could support this generally by copying from COM
— compiling C++ Services to shared libraries
— write a loader process to load them
— keep transparent for Services, using Corbalnit or Template Service

« However, Notification Service channels are in notifd, so...
— handle 1-to-1 connections directly in loader process
— link libAttNotification into loader process, too

Ubiquitous Tracking Using the DWARF Middleware :
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 22 ii é

Discussion

» Strengths

— One solution for resource discovery, configuration,
adaption

— Completely decentralized
— Builds on existing framework

« Weaknesses

— It may not be possible to evaluate all attributes in a
piecewise, decentralized fashion

— Distributed, “heavyweight” middleware creates
overhead

— It may not scale, in practice

Ubiquitous Tracking Using the DWARF Middleware :
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 23 s

Looking forward

* Where are we now?
— We have an idea for a distributed solution
— We have a partial implementation
« Open questions:
— |Is a decentralized attribute evaluation scheme enough?
— Can we keep exploding search graphs under control?
— Which attributes should we choose?
— How should we specify the attribute dependencies?
— Will it scale?
— How do we integrate with OpenTracker / Studierstube?
- What should happen next?
— Formalize, investigate, implement, optimize

L1011
Ubiquitous Tracking Using the DWARF Middleware g lg
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 24 _}.i é

Ubiquitous Tracking using
the DWARF Middleware

Thank You for Your Attention!
Any Questions?

macwilli@in.tum.de

