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Summary

- An implementation of the Ubiquitous Tracking concepts
needs middleware infrastructure

- DWARF contains decentralized, adaptive middleware
which is well-suited to this task

- The DWARF middleware can contribute to:
— Communication between software components
— Discovery of new devices in environment
— Configuration and adaptation of components
— Formation of data flow networks

- However, it will need to be extended for
— Scalability
— Performance
— Ad hoc networks
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Motivation

Within the Ubiquitous Tracking project:

— Distribution is part of the game

— Ad hoc discovery and configuration of trackers

— Formation of data flow graph
- Within the DWARF project:

— For ubiquitous AR, we need ubiquitous tracking

— Using DWAREF in lets us leverage existing components

- My personal motivation:
— DWAREF architecture and middleware are basis of my Ph.D. thesis

— Ubiquitous tracking is a good application to “harden” the
framework and the middleware

T
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Data Flow Graph from Spatial Graph
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Attributes

- Spatial relationships have attributes
— E.g. latency, frequency, cost, confidence, accuracy

- Two basic assumptions about attributes:

— Attributes change “more slowly” than measurements themselves...

...thus, it pays off to set up a data flow graph in the background

— Attributes of inferred measurements can be described without
actually inferring the measurements

...thus, we can compare the results of speculative data flow graphs
without actual data flow
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DWARF in Brief

- Framework for Mobile AR in
ubiquitous computing environments

- Example scenarios:
— Navigation (Pathfinder)
— Maintenance (TRAMP)
— Multi-Player Game (SHEEP)

— Collaborative Building Design
(ARCHIE)

— Medical (HEART)
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DWARF Consists of Distributed Services

During design...

Tracking

Presentation

...and at run time
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Services in DWARF

- Services have Needs and Abilities, which have types

/
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View

/ / <<service>>

----- Filter —C— -

___>O_

<<service>>
Tracker

.PoseData :PoseData :PoseData :PoseData
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I(User=Alice) User=Alice l(User=Alice) User=Alice
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/ \

« Abilities have Attributes, Needs have Predicates.
« These can be set at runtime.
«  One service’s Needs depend on other services’ Abilities.

 Distributed CORBA-based Middleware establishes connections for
communication between services (management, lookup, connection)

T
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Communication mechanisms

Needs and Abilities communicate via connectors, which have protocols

/
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Notification
Channel
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 Connectors so far:

— CORBA structured “push” events, using strongly typed data,
* e.g. struct PoseData { double x,y,z; ... }in IDL

— CORBA method calls
— Shared memory (for local video transfer)
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Mapping Ubitrack onto DWARF

| propose a simplistic mapping:

Data flow components are DWARF Services

« Trackers, filters, interpolators, extrapolators, inference components...
For each spatial relationship a service can compute, it has one

ability of type PoseData

The relationship’s attributes, and the identity of the objects related,

are mapped onto the Ability’s attributes

The COmmunICatlon ‘PoseData <<service>>
protocol uses CORBA Thing=AlicesHead (O)——
events or CORBA get...() Freqjir::::)sg —(
method calls Drift=1 2 Optical- :VideoData
Components like trackers :PoseData Tracker _C
have other needs, e.g. for Thing=AlicesHand (_J— _
] ] k Frequency=30 :MarkerData
configuration or video data r
itter=0.5
...but that isn’t relevant here Drift=1.2
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Starting Services on Demand

-  Some of a service’s
attributes are relatively
independent of the
actual data it processes

« ...thus, we can describe
services that are not
actually running...

« ...and start them on
demand, when they’re
needed

<service name="OpticalTracker”

startCommand="/usr/bin/mytracker Alice.conf”>

<attribute name="Room" value="Studio"/>
<attribute name="Lag" value="0.01"/>
<attribute name="Jitter" value="0.5"/>
<attribute name="Drift" value="1.2"/>

<need name="markerData" type="MarkerData" ../>
<need name="videoStream" type="VideoStream”../>

<ability name="relationl" type="PoseData">
<attribute name="Thing" value="AlicesHead"/>
<attribute name="RelativeTo" value="Studio"/>
<connector protocol="NotificationPush"/>
</ability>

<ability name="relation2" type="PoseData">
<attribute name="Thing" value="AlicesHand"/>
<attribute name="RelativeTo" value="Studio"/>
<connector protocol="NotificationPush"/>
</ability>

</service>
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Dynamic Attribute Changes

- So far, all attributes were specified in static XML files

- However, they can be changed at run time as well...

— By services

« e.g. when a tracker recognizes its accuracy is going down (optical
tracker in failing light conditions)

...Then, the middleware can select a “better” tracker for the
application requesting it
— And by the middleware
« depending on other services found in the system
« according to certain rules

...that lets the middleware construct adaptive data flow graphs
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Binding Attributes: Configuration

e The attributes of a <service name=" Optical'I.‘racker" |
service’s abilities startCommand="/usr/bin/mytracker Alice.conf”>

depends on how its’
needs are satisfied

<need name="markerData" type="MarkerData"
predicate=" (Thing=*)">

e For example an optical <connector protocol="ObjrefImport"/>
’ </need>
tracker can only detect
things it has marker <ability name="relationl" type="PoseData”
descriptions for Letemplates true >
P <attribute name="Thing"
° For each marker value="$gmérkeJI:Data.Thing) ">
.. <connector protocol="NotificationPush"/>
description found, the </ability>

service gets a new ability

- The middleware can do
this in the background,
before an ability is
actually requested
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Binding Attributes: Cloning

« Some services can exist <service name="MyFilter” isTemplate="true">
arbitrarily often startCommand="/usr/bin/myfilter”>

. <need name="input" type="PoseData"
For exam_ple’ the predicate=" (& (Thing=*) (RelativeTo=%*)
Interpolation, (Jitter>0.2))"../>

Extrapolation, and .
] ) <ability name="output" type="PoseData”>
Fl|tel’lng Components <attribute name="Thing"

« The middleware can value="$ (input.Thing)">

<attribute name="RelativeTo "

instantiate these value="$ (input.RelativeTo)"> ..
(“Cloning”) in the <attribute name="Jitter "

) value="$ (input.Jitter*0.1)"> ..
background, depending </ability>
on other available </service>
services
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Binding Attributes: Cloning (2)

- The same technique
works for the Inference
components, t00

- The middleware can
instantiate these
background, depending
on other available
services

- Recursively, this forms
chains of services

. even forests that grow
exponentially
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<service name="MyInferrer” isTemplate="true">
startCommand="/usr/bin/myinferrer”>

<need name="inputl" type="PoseData"
predicate=" (& (Thing=*) (RelativeTo=%*))"../>

<need name="input2" type="PoseData"
predicate=" (& (Thing=%*)
(RelativeTo=$ (inputl.Thing))) "../>

<ability name="output" type="PoseData”>
<attribute name="Thing"
value="$ (input2.Thing) ">
<attribute name="RelativeTo "
value="$ (inputl.RelativeTo) "> ..
</ability>
</service>




Branching and Selection

« Middleware finds graphs of “potential” services in background
- When user (or application) requests a particular ability of a particular

service, the appropriate chain is started up
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Adaption: Feedback Loop

» Feedback loop:

— Services change their attributes according to measurements or
calculations they make

— Depending on the attributes, the middleware constructs data flow
graphs

— Depending on the data flow graphs, services are reconfigured to
make different measurements or to calculate different values

 Inputs:

— the measurements depend on the environment

— And the data flow depends on the Needs of the application
« Such feedback loops can

— Adapt to changing circumstances

... but also be chaotic and unstable
... or end up in degenerate attractors
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Decentralized Algorithm

- The proposed algorithm is fairly simple to implement in a
distributed fashion

— The implementation of the DWARF middleware is based on
Service Managers, which run on each computer in the network

- In fact, the branching of service graphs benefits from
distribution

- Of course, scalability and performance may become

Issues
— “Damping” rules needed to keep service graphs from exploding

— Local middleware must react quickly to attribute changes of
“relevant” services
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Implementation Status

Binding of attributes works only during cloning
— E.g. create new filter for a certain tracker

Evaluation of expressions not implemented yet
— No “$(myNeed.myAttribute+1)” expressions
— Only “Wildcard attributes”:

- <attribute name="Thing" value="*">
in Need definition; is equivalent to
- <attribute name="Thing" value="$(need.Thing)>"

- Attribute changes of connected services are not
propagated
+ Services are not notified when their attributes change

- Service Managers do not scale well to thousands of
services
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What Needs to be Done

Formalize it:

— A template service description maps Q onto Q’

Investigate it:

— Find set of attributes that can be evaluated decentrally

— Test middleware behavior with thousands of service descriptions
Implement it:

— Implement attribute evaluation scheme

— Notify Services of attribute changes

— Propagation of attribute changes between service managers
Improve current middleware performance:

— Better service location: beyond SLP (...)

— Colocated communication to improve performance (...)

Ubiquitous Tracking Using the DWARF Middleware
Asa MacWilliams, macwilli@in.tum.de Feb 6 2004 20




Service Location: Beyond SLP

 Currently, the service location mechanism uses SLP,
which
— uses broadcast/multicast queries
— supports attributes and boolean predicates
— is designed for fairly static services, e.g. printers
— could span networks using federated directory agents
- If we had an implementation of that
« What else could we use?
— Multicast DNS: announcements, but no boolean predicate support

— Implement some peer-to-peer resource finding algorithm using
distributed indexes

— Perhaps implement an own SLP directory agent
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Efficient Communication: Colocation

- Currently, each DWAREF service is a separate process
— That creates communication overhead However, there is no
compelling reason for that
- One process can implement multiple services and
— register them all with registerService()
— create new services on demand with registerServicelLoad()
— if these service communicate using method calls, the ORB passes
the call through directly
- We could support this generally by copying from COM
— compiling C++ Services to shared libraries
— write a loader process to load them
— keep transparent for Services, using Corbalnit or Template Service

« However, Notification Service channels are in notifd, so...
— handle 1-to-1 connections directly in loader process
— link libAttNotification into loader process, too
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Discussion

» Strengths

— One solution for resource discovery, configuration,
adaption

— Completely decentralized
— Builds on existing framework

« Weaknesses

— It may not be possible to evaluate all attributes in a
piecewise, decentralized fashion

— Distributed, “heavyweight” middleware creates
overhead

— It may not scale, in practice
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Looking forward

* Where are we now?
— We have an idea for a distributed solution
— We have a partial implementation
« Open questions:
— |Is a decentralized attribute evaluation scheme enough?
— Can we keep exploding search graphs under control?
— Which attributes should we choose?
— How should we specify the attribute dependencies?
— Will it scale?
— How do we integrate with OpenTracker / Studierstube?
- What should happen next?
— Formalize, investigate, implement, optimize

L1011
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Ubiquitous Tracking using
the DWARF Middleware

Thank You for Your Attention!
Any Questions?
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