MICCAI 2010 Tutorial
Intensity-based Deformable Registration

Random Fields for Image Registration

Bridging the Gap between
Continuous Transformations and Discrete Optimization

Ben Glocker

Computer Aided Medical Procedures (CAMP), TU Minchen, Germany



PART |

Introduction to Random Fields

09/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration



Random Fields

e Arandom field X is an undirected graphical model
— corresponding graph G=(V,E) with a set of nodes V and a set of edges E

* Each node iV corresponds to a random variable X;

* Random variables take values from a set of labels L,

— probability of a label assighnment is p(X.=x;) or p(x;) with x.€L,

e Vector x={x,,x,,...,x,.} is called a labeling of the random field
— the joint probability is denoted by p(X=x) or simply p(x)



Neighborhoods, Cliques, and Order

e Two nodesiandj are neighbors if (i j)eE

e Aclique is a subset of nodes CCV

— If |C|>1, every node ieC is a neighbor of all other jeC
— aclique is either a single node, or a fully-connected subgraph

X2

 The order of a random field is |C,,|-1

— first-order fields have cliques of size up to two
— second-order fields have cliques of size up to three
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Markov Random Fields

* Neighborhood system N={ N, | Y ieV }

— N, is the set of all neighbors of node i

Definition (MRF): A random field is said to be a Markov Random
Field if and only if it satisfies the following two conditions

p(x) >0 VxeX (Positivity)
p(xil{z; 1 7 € Ni}) = plai|{x; 1 j € V\{i}}) (Markovian)



Markov-Gibbs-Equivalence

e The Hammersley-Clifford-Theorem (1971) allows to define the
joint probability as a factorization over the set of cliques C

p(x) = [ exv (~vo(x)

CeC

* The functions . are the so called potential functions
— potential functions evaluate the quality of a clique labeling



Posterior, Likelihood, and Prior

e Often, some of the variables are observed (y) while others are
unobserved or hidden (x)

 We are interested in the posterior probability p(x|y)

— posterior probability is hard to compute

e Rules of probability yield
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Maximum A Posteriori

e The labeling with the maximum posterior probability

X = arg max p(x|y)
X

= argmax p(y|x)p(x)
1
= arg m}E{lX E H €XP (_wC(Xa y))
CeC

 Problem: the computation of Z is often intractable

72 U B PN Y A S O
Z=) |]exp(—vcx,y))
xeX CeC



Energy Minimization

e Convert the problem of maximum probability into an
equivalent problem of minimum energy

£(x) = —log (p(x))



Discrete Markov Random Fields

 In discrete MRFs, the set of labels is finite

e Powerful combinatorial optimization techniques

— lterative graph-cuts: expansion moves, fusion moves, FastPD, ...

— Message-passing: efficient belief propagation, TRW-S, ...

e Various applications in computer vision
— segmentation, restoration, stereo, stitching, ...



Motivation for Discrete Optimization

Optimization of Non-Convex Functions

@ Gradient-Descent
@ Discrete Optimization
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Example: Image Restoration

e 4-connected pixel neighborhood

Random variables correspond to pixels
Labels correspond to intensities

Observation

1st-order Random Field

e DataTerm: v;(x;) = {

0 le S Q(:orrupt
(yi — :17,5)2 otherwise

* Smoothness: ¥;;(z;, ;) = A min ((z; — x;)*, 1)

s

O—C

Result
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R. Szeliski, et al. A Comparative Study of Energy Minimization Methods for Markov Random Fields. IEEE PAMI 2008
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Discrete Optimization in Imaging

T — :! "_j =

Stereo

Restoration

Segmentation

R. Szeliski, et al. A Comparative Study of Energy Minimization Methods for Markov Random Fields. IEEE PAMI 2008
Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. ICCV 2001
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. |EEE PAMI 1984
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Discrete Random Fields (in a nutshell)

* Given nrandom variables X={X,,...,.X,,....X .}

 acliqueis a subset of variables ¢ C X

e the set of cliques C defines the neighborhood system

e avariable X; can take a value x; from a discrete set of labels L,
e alabeling x is an assignment of values to all variables

* a potential function y_ evaluates the quality of a labeling of a

clique
* the energy of a labeling is the sum of potential functions
BE(x) =) t(x) % = arg min F(x)
AN / LJ ! AN / | X \ /7
ceC

S.Z. Li. Markov Random Field Modeling in Image Analysis. Springer-Verlag 2009
C.M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag 2006
R. Kindermann and J.L. Snell. Markov Random Fields and their Applications. American Mathematical Society 1980
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Optimization via Iterative Graph-Cuts
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Graph-Cuts

e Graph-cut solves binary labeling problem, i.e. L={0,1}
— applicable when energy is submodular
— globally optimal via min-cut/max-flow algorithm

E(x) = Z () Z i (i, 1)

¥ij(0,0) + i (1, 1) < 1by5(0,1) 4+ 145(1, 0)
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V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph-cuts? |IEEE PAMI 2004
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QPBO Graph-Cuts

e QPBO solves quasi-binary labeling problem, i.e. L={0,1,(}
— quadratic pseudo-boolean optimization
— applicable when energy is non-submodular
— labels either with O or 1, or unlabeled = unknown

1. Persistency: Let y be a binary labeling and let z be the “fusion” of the partial
labeling x and y with z, = x; if x, €{0,1} and z; = y, otherwise. Then, E(z) < E(y).

2. Partial Optimality: There exists a global minimum y such that x; = y, for
all labeled nodes in the partial labeling x

V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph-cuts — a review. IEEE PAMI 2007
C. Rother et al. Optimizing Binary MRFs via Extended Roof Duality. CVPR 2007



Expansion Moves

e |terative graph-cuts solve multi-labeling, i.e. L={1,...,N}

n

e Each binary problem solves L={ “keep”, “change to alpha”}
 Very large neighborhood search techniques

Algorithm 1: Alpha-Expansion

output: Labeling x

X «— initializeLabeling() :
for several sweeps do
foreach a € L do

X —Xx0a;
end

= W N =

[k |

end

=p

Boykov et al. Fast approximate energy minimization via graph cuts . IEEE PAMI 2001
N. Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs. CVPR 2007
Lempitsky et al. Fusion Moves for Markov Random Field Optimization. |EEE PAMI 2010



istration with Random Fields

Non-Rigid Reg

19

MICCAI 2010 Tutorial: Intensity-based Deformable Registration

09/24/2010



How do we do Registration?

Intensity-based Registration

Image Warp
Image () Objective
Transformation Function

Quality Evaluation

Transformation Update .. .
f P Optimization

Strategy

Ilterative Process
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Image |

Non-Linear Case

Image
Transformation

[

Deformable Registration

T(x) =x+ D(x)

lll-posed Problem: Need for Regularization Prior

— S(IoT,J) + R(T)
N——r S——

Similarity Measure = Smoothness Prior

A. Tikhonov. lll-posed Problems in Natural Science. Coronet. 1972
J. Modersitzki. Numerical Methods for Image Registration. Oxford University Press 2003
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Objective
Function
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Optimization

Image | Image J

Image
Transformation

Optimization
Strategy

[

Continuous Optimization

Gradient-descent (& variants)

Variational/Differential Approaches

Discrete Optimization

Iterative Graph-Cuts

Message-Passing

+ High-accuracy

- Need differentiation of E

- Hard to control

- May converge to bad local minima

+ (Often) strong minima

+ Full control on search space

- Accuracy bounded to discretization
- Complexity for large problems

G. Hermosillo, et al. Variational Methods for Multimodal Image Matching. Int’l Journal of Computer Vision 2002

J. Modersitzki. Numerical Methods for Image Registration. Oxford University Press 2003

S. Klein, et al. Evaluation of optimization methods for nonrigid medical image registration using Ml and B-splines. IEEE Imag.Proc. 2007
R. Szeliski, et al. A Comparative Study of Energy Minimization Methods for Markov Random Fields. IEEE PAMI 2008
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Random Fields for Registration

A
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e Random variables correspond to pixels

" i, '
SEFNE

. W e -]
* Labels correspond to displacements ,.i;;iiﬁ:ﬁfgﬁ:gga;ﬁég i

e . o O

Curse of Dimensionality

Example: Non-linear Volume Registration

— e.g. 2563 voxels = 16.7 millions of unknowns
— search space is R3

Naive approach is inefficient and memory demanding!

T.W.H. Tang and A.C.S. Chung. Non-Rigid Image Registration using Graph-Cuts. MICCAl 2007
S. Roy and V. Govindu. MRF Solutions for Probabilistic Optical Flow Formulations. Int’l Conf. Pattern Recognition 2000
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Summary of our Approach

Dimensionality Reduction

e Parameterization of the displacement field through a set of control points

Iterative Refinement Strategy
 Small label sets for efficient optimization
e |terative refinement for high accuracy

Fast Approximation Scheme

e Efficient computation of the registration objective function

B. Glocker et al. Continuous Deformations Meet Efficient Optimal Linear Programming. |PM| 2007
B. Glocker et al. Dense Image Registration through MRFs and Efficient Linear Programming. Medical Image Analysis 2008



Dimensionality Reduction

e The dense displacement field can be represented by a sparse
set of control points

T(x)=x+ D(x) S N N S W

Zm d; with d;eR’ | //\\ |

— e.g. Free-Form Deformations using B-splines +—+—+—+—+—+—1

Smooth Deformations and Coarse-to-Fine Hierarchy

D. Rueckert et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Medical Imaging 1999
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Our Random Field Energy

Based on the dimensionality reduction, we can define the
15t-order energy for the control grid

— Random variables correspond to control points

15.08.2010

— Labels correspond to control point displacements

— Registration prior on neighboring control points

FE(x)

sz(.’ﬂz) -+ Z Y,b@j $Z,$3

@EOI 73)602
%,—/ )

iV a

Data Term: S(IoT,J) Smoothness: R(T)
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Data Term

e Encodes local intensity-based similarity measure

Vi(wi) = Si(L o Ty, J)

— Exemplary: mean squared intensity differences

i) = — (P (0 -+ D, (0 ) - J(p))?

€2

i
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Fast Approximation Scheme

e Assume constant motion in local patch

e Compute the local similarity measures for one
displacement/label simultaneously for all control points

Control Points
= ; E
Eaw

Labels
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Regularization Prior

e Encodes local smoothness
Vij(xi, v5) = Rij(Tee;)

e (Truncated) absolute/quadratic difference: 15t derivatives

— on the displacement field (elastic-like) L A
Vij(ri,r5) = A min (H(pi T xﬁ). — (.Iﬁj +xj)”af)
t— )

— on the update field (fluid-like)

ey )y BT
wZ](x’H:C]) = A Inin \ HZ —jH 7t} 5 g

B. Glocker et al. Approximated Curvature Penalty in Non-rigid Registration using Pairwise MRFs. Int’l Symp. Visual Computing 2009
D. Kwon et al. Nonrigid Image Registration Using Dynamic Higher-Order MRF Model. Europ. Conf. on Computer Vision 2008
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Search Space Discretization

e We need to discretize the continuous search space
— definition of the range [-max;max]
— the number of samplings s: |L|=2s+1
— a scaling factor for the iterative refinement

Small Label Sets and Refinement for High Accuracy
+

Full Control on the Search Space
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Our Basic Registration Algorithm

Input: Image 1,J

Output: Transformation T

> set Inttial T

- set iInitial label space L

- until convergence do repeat

AT:= solve discrete labeling

1ITC E(1o(T+AT) ,J) < E(1-T,J) )
T:= T+AT

else
L:= refine label space

o NO O~ WDNPEF O

end

O

- end

The actual implementation includes a hierarchical approach using image pyramids and control grid refinement!



Live Demo
Breathing Motion Compensation

http://www.mrf-registration.net



Thank you! Questions?



