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Reasons for Deformable Registration
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Animated images from the webpage of 

The POPI-model, a Point-validated Pixel-based Breathing Thorax Model
http://www.creatis.insa-lyon.fr/rio/popi-model
See also:
Vandemeulebroucke, J., Sarrut, D. and Clarysse, P.. The POPI-model, a point-validated pixel-based breathing thorax model.
In XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), 2007.

• Patients move (alignment of temporal series)
• Patients change (pre- / post-treatment images)
• Patients differ (creation of atlases)



Deformable Registration
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Computing a non-linear spatial transformation between 
corresponding structures in two images

Intensity-based registration:
Minimize a difference term, based on the (pre-processed) image intensities.   

No feature-based registration:
• extraction of distinct, sparsely located features 
• matching of extracted features



Deformable Registration: General Framework
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Optimization

Transformation

Source Image

Target Image

Energy Model (E)
Transformation 

Model

Difference Measure (ED) Regularization Term (ER)

update transformationwarp source image



Formalization of Deformable Registration as a 
Minimization Problem
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Deformation:

or point-wise:

Images (target IT, source IS): Image domain:

Displacements are 
elements of a Hilbert 
space H, e.g.: 

Displacement:

e.g.

difference between original position of 
a point x and its transformation (x)

Warped Source Image

Please note: 
Highly heterogeneous 
notation in the field 



Why do we need Regularization?
Since minimizing the difference measure is not enough...

• Motivation for regularization:
 Necessity:

Minimization of difference measure only can be 
ill-posed ( #measurements < #unknowns )
(Optical Flow community: “Aperture Problem“)

Modeling:
Regularization can be used to include prior knowledge, 
for example about underlying tissue properties

 Practical Reasons:
Without regularization: High number of local minima in 
the energy function ( bad for optimization)
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Restricting the space of deformations to a 
subspace with certain regularity properties:

• Parametrization reducing the number of 
degrees of freedom 
(e.g. FFD B-Splines)

• Assumption of function spaces which are 
more restricted than L2

 Sobolev spaces

Adding a regularization term to the energy 
formulation, e.g.:

• Diffusion Regularization

• Curvature Regularization

• Bending Energy

• Linear Elasticity

• Volume Preservation

Regularization Strategies



Regularization Strategies
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Optimization

Energy Model
Transformation 

Model

Transformation

Source Image

Target Image

Difference Measure Regularization Term

1. ‘Classic’ Variational Approach:
Adding a regularization term to the energy 

2. Parametrization by lower DOF 
transformation models 

3. Treatment in more regular spaces 
(Sobolev spaces)

4. Demons Approaches



Outline of this Talk 
(structured by different regularization strategies of the approaches)

• Part I – “Classic“ Variational Approach
Minimization of energy with a regularization term, in L2 space

• Part II – Parametric Models 
Transformation Model: Restricting the space of deformations
– Lower DOF transformation models  Parametrization

• Part III – Sobolev Spaces
Transformation Model: Restricting the space of deformations
– Different choice of underlying function space  Sobolev spaces

• Part IV – Demons Approaches
Efficient forces and regularization by a smooth strategy

• Part V – Further Points
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THIS PRESENTATION

IS A POSTER
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Please note:



“Classic“ Variational Approach

PART I
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Outline

• Energy: formulation and properties

• Gradient-based optimization schemes 

9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration 12



Classic Variational Approach

• Treatment of transformation in L2

• Explicit definition of regulariztion term in model
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• Non-linear with respect to the displacement beacuse of the dependence on 
the image function

• High-dimensional problem: e.g. 3 x 2563 = 50 331 648 
 Numerous local minima

• This line of work started with [Broit 1981], [Bajcsy and Broit 1982]
• Details e.g. in [Modersitzki 2004]



Examplary Model Problem
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• Difference Measure: Sum of Square Differences (SSD)

• Regularization Term: Diffusion Regularization 
(a.k.a. Tikhonov regularization, 1st order regularization)

 Non-linear Least-squares Energy



General Energy Formulation

• Energy is defined by
– an error term based on the displacement: 

– penalty function applied to the error term:
• assures that the error terms are positive

• weights the error term
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Examples of penalty functions

 results in application of the L2 norm

 results in application of the L1 norm



General Energy Formulation
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Depends on deformation through images 

 Non-linearity

• In many cases, the error term for the 
regularization is linear in the displacement

• Linear operator is mostly a differential operator
(e.g. G=, G=, ... )

Displacement 

Source image
( warped source image)

Non-Linearity: change of intensity 
in one point does not depend 
linearly  on the displacement

Difference measure

Displacement Regularization term
Computation of 

Displacement Derivatives 
(Linear Operation)



The Non-Linear Least Squares Framework (use of L2 norm)
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Introduces non-linearity through dependence 
on images

The energy is a squared 
L2 norm of a non-linear 
error term.

with

• Often, the regularization error term is 
linear in the displacement:
• G is mostly a differential operator, e.g.:

• Diffusion: G=
• Curvature: G=

• Exceptions: e.g. Volume preservation 
(since based on det(J(u)))

Notes:
• Focus on L2 in this talk since: popular choice, simpler derivatives
• Example for L1 regularization, see e.g. [Pock  2007]
• NLLSQ framework required only for NLLSQ methods (GN,LM)
• Non least-squares energies can be re-written to fit into a NLLSQ framework (however, this 

makes the error term non-linear)
cf. e.g. [Appendix 6.8, Hartley and Zisserman]

Nice form for taking the derivative



Optimization
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Iterative Optimization
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• Start with an initial estimate u0

• Estimate a series of updates h1, ... , hn such that

do repeat:

h = compute_update(E,);

 =  + h;



How to determine the updates hi?

 different optimization schmes

– Gradient-based optimization

– Gradient-free optimization

More in Ben‘s talk this afternoon 
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Source image Target image



Different Gradient Descent Schemes
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1. Steepest Gradient Descent

2. PDE inspired (PDE=partial differential equation)

3. Preconditioned Gradient Descent
(also known as Quasi-Newton Methods)
 generalizes 1. and 2.



Optimization by Gradient Descent

// compute update based on gradient of energy

// apply the update

Steepest Gradient Descent:
Starting with initial 0, repeat until convergence:
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Conditions on P:
• P is a linear operator
• P is symmetric positive definite

Generalized Formulation as Preconditioned Gradient Descent / Quasi-Newton:

Different Choice of P
Different Optimization 

Scheme



Overview of Gradient Descent Based 
Optimization Methods
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Steepest Descent

PDE inspired
Semi-implicit Discretization

Gauß-Newton

Preconditioned 
Gradient Descent With P approximating the Hessian of E, e.g.:

• Jacobi preconditioning
• BFGS

Method Update Rule

+ Simple implementation

+ Only gradient required
– Numerical issues: requires small time 

steps many iterations needed

+ Numerically stable also for large time steps

+ Linear operator determined by regularization 
 difference measure easily exchangable

– Poor convergence speed

+ Numarically stable also for large time steps
+ Good convergence speed
– Linear operator depends on both, 

the regularization and the difference term
– Applicable only to least-squares problems
– Je must be sparse for efficient treatment

Most general formulation of the 
above. Properties depend heavily on 
choice of P. 

“Finding a good preconditioner (...) is often 
viewed as a combination of art and science.“
Y. Saad, Iterative Methods for Sparse Linear Systems

Comment



1. Steepest Gradient Descent

• Energy:
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// compute update based on gradient of energy

// apply the update

Starting with initial 0, repeat until convergence:

Only the derivative of the energy w.r.t the displacement is required:

derivative of difference measure
derivative of regularization term
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EXAMPLE: Steepest Gradient Descent
Derivative of the Difference Measure 

Point-wise evaluation at x: point-wise rescacling of the warped gradient of Is

For the Sum of Squared Differences, we get:

General formulation of the derivative of the difference measure:
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• General regularization term:

EXAMPLE: Steepest Gradient Descent
Derivative of the Regularization Term

• Assume:

– Squared L2 norm:

– Error term is linear in u:

• Then, the derivative reads:

For diffusion regularization, we get:

General formulation of the derivative for a regularization term with a quadratic form:



1. Steepest Gradient Descent - Summary

• Energy:
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Starting with initial 0, repeat until convergence:



 Partial differential Equation (PDE)

(non-linear, time independent problem  linear, time dependent problem)
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Re-formulation as 

• time dependent process and computation of the steady state, 

• with the change of the displacement (=updates) opposing the energy gradient

2. PDE Inspired Gradient Flows

Discretiztion of time (timeiterations):
 Explicit time discretization (=steepest gradient descent)

 Semi-implicit time discretization



2. PDE Inspired Gradient Flows

• Energy:

2.1. Explicit time discretization

2.2 Semi-implicit time discretization
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• Gradient Flow:                              Notation:

Regularization 
reacts to 
irregularities of 
displacement 
from last stepequivalent to 

steepest gradient 
descent! Regularization 

assures 
regularity of 
displacement in 
next step



PDE Inspired Gradient Flows

2. 1 Explicit time discretization:

2.2 Semi-implicit time discretization:

9/24/2010 31MICCAI 2010 Tutorial: Intensity-based Deformable Registration

Numerically stable only for small time steps
many iterations required

• Solution of linear system required
• linear operator depends on regularizer
• Underlying assumption: regularizer is a quadratic form

Simple computation, only gradient of energy required

• No numerical restriction on time step
• Note: setting-dependent step size limit exists!



EXAMPLE: 
Semi-implicit time discretization of gradient flow
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• SSD:

• Diffusion Reg.:

Semi-Implicit Flow for SSD and Diffusion Regularization:

General Semi-Implicit Flow:
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Semi-Implicit Flow for SSD and Diffusion Regularization:

One possible way of computing h: solving the corresponding linear system:

EXAMPLE: 
Semi-implicit time discretization of gradient flow

fy

fz

fxId-

Id-

Id-

hy

hz

hx

=

Id- hx fx=

Id- hy fy=

Id- hz fz=

Side note: 
The linear operator A couples 
the dimensions of h
 single dimensions can be 
solved for independently.

This is not the case in general, 
e.g it does not hold for Linear 
Elasticity regularization, or 
Gauß-Newton optimzation for 
Diffusion regularization. 

-1 1+6

Structure of  Id- : 



An alternative way of solving for h:
Convolution with corresponding Green‘s Function
(proposed for registration in [Bro-Nielsen and Gramkow 1996])

• With K being the Green‘s Function to P we get:

• Green‘s Function K to operator P defined by:

• Computation of Green‘s function:
– Analysis of the eigenfunctions of the operator

– Simple approximative approach: solve discretized system
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Green‘s Function Example

• For diffusion regularization:

the update rule resulting from semi-implicit discretization reads

Green‘s function corresponding to
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Gauß-Newton update step for SSD and Diffusion Regularization:

Gauß-Newton Optimization (GN) 
Application to SSD + Diffusion Reg.:Gauß-Newton Optimization:

GN computes the update h in every iteration, by 
computing the critical point of a quadratic 
function, based on the linearization of the error 
term e by

For

we get

resulting in
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EXAMPLE: Gauß-Newton Optimization

fy

fz

fx





hy

hz

hx

=

Side notes: 
• The linear operator A 

couples the 
dimensions of h

• The linear operator A
is sparse

JTJ becomes dense for statistical difference measures (CR,MI)  not (efficiently) applicable!



Intuition about the Difference in the 
Behavior of the Different Methods

• Steepest Descent vs. Preconditioned Descent
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Gauss-Newton

Semi-implicit gradient descent

Difference in convergence speed Structure of update 
for semi-implicit

Structure of update 
for Gauss-Newton



The Pitfall of Premature Convergence
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Blue seems to converge much faster than red.
Note: log of update magnitude exhibits similar behavior.

a) Decrease of Difference Measure b) Decrease of Error



SUMMARY: Overview of Gradient 
Descent Based Optimization Methods
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Steepest Descent

PDE inspired
Semi-implicit Discretization

Gauß-Newton

Preconditioned 
Gradient Descent

With P approximating the Hessian of E, e.g.:
• Jacobi preconditioning
• BFGS, c.f. [Modersitzki 2009]
• For def. Registration: [Zikic 2010 MICCAI]

Method Update Rule

+ Simple implementation

+ Only gradient required
– Numerical instable: requires small time 

steps many iterations needed

+ Numerically stable also for large time steps

+ Linear operator determined by regularization 
 difference measure easily exchangable

– Poor convergence speed

+ Numarically stable also for large time steps
+ Good convergence speed
– Linear operator depends on both, 

the regularization and the difference term
– Applicable only to least-squares problems
– Je must be sparse for efficient treatment

Most general formulation of the 
above. Properties depend heavily on 
choice of P. 

“Finding a good preconditioner (...) is often 
viewed as a combination of art and science.“
Y. Saad, Iterative Methods for Sparse Linear Systems

Comment



Some Further Points
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Equilibrium of Forces at Convergence

Procedure converges when updates vanish, 
that is at equilibrium of gradients of the difference measure 
and the regularization term
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E= 0    h=0

Until convergence, the gradient of the difference measure dominates:



Simulation Point of View
e.g. in [Broit 1981], [Bajcsy and Broit 1982]
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ForceModel
of the underlying 

object/patient

Displacement
= Reaction of the 

Model to the Force

• For PDE-insipred approach (semi-implicit discretization):

• Other implementations of the Model are possible: 
– Spring-Mass model

– Finite Element Model (equivalent to FE discretization of the linear operator)

• Other forces possible:
– Distances between landmarks



Elastic and Fluid 
Registration Types

• Fluid registration [Christensen 1994]

MOTIVATION: 
achieve LARGE deformations

IDEA: 
use no conservation of energy

 Simulation of a fluid acting under forces
 regularization of velocities

• Challenge to maintain the regular deformation 
without foldings

• No transport of deformation in homogeneous regions
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Source

Target

Result Elastic

Result Fluid

Images from [Christensen 1994]

“Time progression of the fluid trans-
formation applied to a rectangular grid“

Modern view: 
fluid-type registration = regularization of updates

( UPDATES = change of displacement = VELOCITIES )



Appliction of updates:

• Additional Mode:

• Compositional Mode:
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*Chefd‘hotel 2002+*Stefanescu 2004+*Vercauteren 2009+

“Warping of image gradient“

“Gradient of warped image“

Update Modes: 
Additional and Compositional

Source Image with gradient
(images from [Stefanescu 2004])



Connection to Optical Flow
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OPTICAL FLOW: Computation of the visible motion* between 
corresponding structures in two input images
*visible motion = projection of the actual 3D motion of visible structures into the image plane

• Basically a motion estimation problem 
(“Optical Flow“ is a problem, not a method!)

For overview of current methods and evaluation, see Middlebury Flow Data Base:
http://vision.middlebury.edu/flow/eval/results/results-e1.php



Connection to Optical Flow
Differences between Optical Flow and Medical Image Registration:
• Input data: 

optical images, no real multi-modality
(only shadows / changes in lighting)

 less work on difference measures

• Discontinuities in displacement fields:

 anisotropic regularization, use of robust norms (e.g. L1)
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Horn and Schunck Optical Flow Method
[B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence, 1981.]

The incremental Horn and Schunck method 

=
optimization of a non-linear energy (SSD+Diffusion)

by the Gauss-Newton (GN) method.
[Zikic 2010 BMVC]



SUMMARY

• Energy: formulation and properties

• Gradient-based optimization schemes
 variations of preconditioned gradient descent

• Solving the Linear system:

– “Standard” solvers

– Green's function

• Registration types: Elastic and Fluid 

• Update modes: Additional and Compositional 
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BREAK
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Outline of this Talk
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• Part I – “Classic“ Variational Approach
Minimization of Energy which includes a regularization term in L2 space

• Part II – Parametric Models 
Transformation Model: Restricting the space of deformations
– Lower DOF transformation models “parametrization“

• Part III – Sobolev Spaces
Transformation Model: Restricting the space of deformations
– Different choice od underlying space Sobolev spaces

• Part IV – Demons Approaches
Regularization by pair and smooth strategy

• Part V – Discussion: Connections Between the Different Approaches and Further Points

– Elastic vs. Fluid-type Regularization 

– Solving the Linear Systems



Changing the space in which the 
optimization is performed

• Same energy is minimized

• Regularity induced by construction
(continuous analogon to parametrization)
 explicit regularization term no longer necessary

• Different local minima

• Different minimization paths (a.k.a. gradient flows)
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Parametrization by Linear Models

PART II
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Regularization Strategies
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Optimization

Energy Model
Transformation 

Model

Transformation

Source Image

Target Image

Difference Measure Regularization Term

1. ‘Classic’ Variational Approach
Adding a regularization term to energy

2. Parametrization by lower DOF 
transformation models 

3. Treatment in more regular spaces 
(Sobolev spaces)

4. Demons Approaches



Outline

• Parametrization by linear models

• Examples of parametric methods

– Free-form Deformation B-Splines (FFD B-Splines)

– Trigonometric Functions
(Discrete Fourier/Cosine Transformation Bases)

– Radial Basis Functions (RBF)

• Gradient descent on linear models

9/24/2010 54MICCAI 2010 Tutorial: Intensity-based Deformable Registration



The Idea
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Parameters: Basis functions:



The Idea
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Bi

pi

ci

Parameters: Basis functions:



Recap: Parametrization by Linear Models

• Parametrization (linear model):
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B2B1 B1 B2



Characterization of Linear Parametrization
Basis Type – Shape of Bk‘s

• Same shape of all Bk‘s
Bk‘s are translated versions of B: 
Bk(x)=B(x-ck)

– Free-form deformation (FFD) B-Splines

• Different shape of Bk‘s
– Fourier/Cosine Bases

– RBFs with different parameters
(e.g. Gaussians with different variance)
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Characterization of Linear Parametrization
Basis Type – Support of Bk‘s

• Global Support

– Fourier/Cosine Bases

– Radial basis functions RBFs
(e.g. Thin-plate Splines (TPS))

– Gaussians (in theory)

• Compact Support
– B-Splines

– Some RBFs

– Gaussians (in practice)
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Localization
of Bk‘s

Characterization of Linear Parametrization
Basis Type – Localization of Bk‘s

localized
global

(no localization)

regular grid
irregular 

sampling points

dense sparse

Adaptive bases, Thin-plate Splines (TPS)

Trigonometric bases (Fourier/Sine/Cosine bases)

Free-form Deformations (FFD)Non-parametric Approaches: control grid = image grid
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Parametrization by Linear Models
Some Examples of Parametrizations
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• Type: 
Cubic B-Splines Bk(x) = B( x-ck )

with B being a tensor product of 
corresponding 1-dimensional B-Splines

• Location: 
Regular grid of control points

• Support:
Compact, depending on degree of 
B-Spline, and image and grid resolution

[Rueckert et al. 1998]

Bi

pi Bj

pj
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B-Spline Free-form Deformations (FFDs)



• Type: 
Bk are a set of orthogonal bases, 
based on trigonometric functions:
– Discrete Fourier Transform (DFT)

– Discrete Cosine Transform (DCT)

• Location: 
global, 
not localized

• Support:
global

[Amit 1994], [ Ashburner and Friston 1999], 
[Christensen and Johnson 2001]

B0                           B1                          B4                         B9

B2                           B3                          B5                         B10

B6                           B7                          B8                         B11

B12                         B13                        B14                       B15
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Trigonometric Bases – Fourier and Cosine Transforms



• Type: 
any RBF (value function of distance from 
control point), e.g.
• “Adaptive Bases” [Rohde et al. 2003]:

• Gaussian
• Thin-plate Splines (TPS)

• Location: 
sparse, irregular:
arbitrary location of control points
 no regular grid

• Support:
• In Rohde et al. 2003: compact
• For TPS: global

<<

Image from [Rohde et al. 2003]

Radial Basis Functions (RBF)
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Parametrization by Linear Models
Optimization by Gradient Descent
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“Projection of dense updates into the parameter space.” 
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Structure of the Difference Measure Gradient

Vectorization of the involved entities:

dxI3 dyI3

dxI2 dyI2

dxI1 dyI1

Projection of dense derivative into parameter space by                                      .

B2B1 B1 B2
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Side Note: A Parallel to the Classic Variational Approach

Vectorization of the involved entities:

1
1

1
1

1
1

 The classic variational approach can be seen as parameterized by  



Visualization of Projection into Parameter Space

c1 c2 c3

B1 B2 B3

Illustration of 
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Side note regarding intuition: If the Bk‘s have the same shape, then pE can be seen as a kind of a 
“generalized discrete convolution“ of E and B.



In the above we concentrated on the 
difference term...

• However, in the same way, we yield for the regularization
(by applying the chain rule)

• While this is formally correct, there are some interesting 
aspects of parametrization w.r.t. regularization, which are 
not revealed by this formulation
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Derivative of Regularization Term
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1. The resulting operator B*G*GB is much smaller than the original system G*G

2. If the bases are eigenvectors to G*G, B*G*GB becomes diagonal: 
for example for Diffusion Regularization and Trigonometric Bases 
(Fourier/Sine/Cosine - corresponding to boundary conditions)
 Efficient inversion becomes possible

=

Side note: 
Equivalence to 
previous derivation
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Regularization Strategies
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Optimization

Energy Model
Transformation 

Model

Transformation

Source Image

Target Image

Difference Measure Regularization Term

1. ‘Classic’ Variational Approach
Adding a regularization term to energy

2. Parametrization by lower DOF 
transformation models 

3. Treatment in more regular spaces 
(Sobolev spaces)

4. Demons Approaches



Registration in Sobolev Spaces (in 90 seconds)

• Minimization of energy E is not performed in L2, but in a Sobolev space Hk

• Sobolev spaces contain only functions with certain regularity properties

• Sobolev space is defined by the scalar product

• Ultimately, employing Sobolev spaces leads to updates based on the 
Sobolev gradient

• Notes:
– that the Sobolev gradient is based on the L2 gradient

– due to inherent displacement regularity, explicit regularization terms in energy model 
are not necessary (and mostly not employed)
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• Differential operator



Some Background
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Some Background: Hilbert Space H

A Hilbert space H is a real (or complex) inner 
product space that is also a complete metric 
space with respect to the distance function 
induced by the inner product.

• A Hilbert space H features a scalar product

 Scalar product induces the norm, e.g.

 Scalar product induces the distance, e.g.

 Scalar product defines the gradient
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Hilbert Space

L2 Sobolev Space



L2 – Space: 
Space of square-integrable functions

• Scalar product

• Norm
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• Definition of L2:



Sobolev Spaces Hs

• Function spaces equipped with a norm that is a 
combination of L2-norms of the function itself as 
well as its derivatives up to a given order.

e.g. for s=1
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Sobolev Spaces Hs

• In contrast to L2, Hs bound not only the 
functions, but also their derivatives

This provides a restriction to more regular functions
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Gradient Descent in Hilbert Spaces

Starting with 0, loop until convergence:
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The difference between 
treatment in the different 
spaces consists in the use 
of a different gradient.



Computation of Gradients 
in Hilbert Spaces based on a Metric Tensor
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For a space H defined by

the gradient is defined by



Sobolev Gradients
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[Neuberger 1997]



Sobolev Gradients Example: H1
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Intuition about Sobolev Spaces

9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration 83

Operating with a transformation model using a 
dense parametrization based on the Green‘s 
function to the Sobolev operator

Please note the relation to parametric approaches, cf. e.g. [Zikic 2010 WBIR].



Deformable Registration in Sobolev Spaces
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Deformable Registration in Sobolev Spaces
(Trouvé 1998, Chefd‘hotel 2002, 2005)

• IDEA: Use of Sobolev spaces to restrict the space of solutions to more 
regular functions
 No explicit regularization needed

• Minimization of difference measure ED only
– allows larger deformations (fluid-type approach)

Loop until convergence:

end
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Deformable Registration in Sobolev Spaces
(Trouvé 1998, Chefd‘hotel 2002, 2005)
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Large Deformations Diffeomorphic Metric Mapping 
(LDDMM)
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ED: Standard SSD term

Regularization:
• Integration over velocities 
 enforces the geodesic shortest path in space of displacements

• Treatment of velocities in Sobolev space H

[Trouvé 1995][Dupuis 1998][Beg 2005]

• Applied often in settings with very different anatomies (e.g. inter-patient brain)
• The integration of velocities 

• requires appropriate numerical schemes
• Increases the computational requirements 

(memory for storage of velocity fields  results in longer computation)
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Regularization Strategies
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Optimization

Energy Model
Transformation 

Model

Transformation

Source Image

Target Image

Difference Measure Regularization Term

1. ‘Classic’ Variational Approach
Adding a regularization term to energy

2. Parametrization by lower DOF 
transformation models 

3. Treatment in more regular spaces 
(Sobolev spaces)

4. Demons Approaches



Demons Registration

• Thirion 1996/1998: Heuristic approach, several alternatives

• Motivation: Speed

• Alternative 1 (the important one):

Loop until convergence:

end
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Demons‘ Efficiency

• The preprocessing of forces:

– Approximation to 2nd order optimization of ED

[Pennec 1999][Vercauteren 2009]

– Approximative normalization of point-wise magnitudes of

• Efficient regularization by filtering:
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Elastic and Fluid Demons
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Loop until convergence:

end

Loop until convergence:

end

[Bro-Nielsen 1996], [Pennec 1999]

Elastic-type Demons:
(original formulation)

Fluid-type Demons:



Relations between 
Different Approaches
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Demons fluid:

Demons elastic:

Sobolev H1:

PDE-Inspired, semi-implicit:

for diffusion:

Gauß-Newton:

for SSD+diffusion:

Preconditioned Descent:

Sobolev H:
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