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Reasons for Deformable Registration

SN NE

* Patients move (alignment of temporal series)
 Patients change (pre- / post-treatment images)
» Patients differ (creation of atlases)

Animated images from the webpage of
The POPI-model, a Point-validated Pixel-based Breathing Thorax Model

http://www.creatis.insa-lyon.fr/rio/popi-model
See also:

Vandemeulebroucke, J., Sarrut, D. and Clarysse, P.. The POPI-model, a point-validated pixel-based breathing thorax model.
In XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), 2007.
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Deformable Registration

Computing a non-linear spatial transformation between
corresponding structures in two images

Intensity-based registration:
Minimize a difference term, based on the (pre-processed) image intensities.

No feature-based registration:
e extraction of distinct, sparsely located features
* matching of extracted features
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Deformable Registration: General Framework

warp source image /T \ update transformation

ransformation

Source Image

Target Image

Optimization

Model

Energy Model (E) ‘ ‘ Transformation ‘

‘ Difference Measure (Ey) Regularization Term (Eg) ‘
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Formalization of Deformable Registration as a
Minimization Problem

Images (target I, source [):

I: Q=R Image domain: Q C R? , d=2.3

Warped Source Image

Vo |

v
- argrnEiII{l Ep(Ir.Is(¢)) + AEr(u)

)

Displacements are
elements of a Hilbert
space H, e.g.: u € L?

- == == == == g

Please note:
I Highly heterogeneous I
notation in the field l

h____

Deformation: ¢ =Id+u , ¢:Q — R4

or point-wise: ¢(x) = x + u(x)

Displacement: S
. d S S R
uw: Q=R B R

e.g. U= Uy, Uy, U,]

difference between original positionof | = .
a point x and its transformation ¢(x) S |
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Why do we need Regularization?
Since minimizing the difference measure is not enough...

* Motivation for regularization:

- Necessity:
Minimization of difference measure only can be
ill-posed ( #measurements < #unknowns )
(Optical Flow community: “Aperture Problem®)

- Modeling:

Regularization can be used to include prior knowledge,
for example about underlying tissue properties

—> Practical Reasons:
Without regularization: High number of local minima in
the energy function (= bad for optimization)



Regularization Strategies

/ .
o = argmin FEp(Ir, Is(Id+u)) 4+ A Er(u)
ueH f

Restricting the space of deformations to a Adding a regularization term to the energy
subspace with certain regularity properties: formulation, e.g.:
* Parametrization reducing the number of * Diffusion Regularization

degrees of freedom * Curvature Regularization

(e.g. FFD B-Splines) * Bending Energy
* Assumption of function spaces which are * Linear Elasticity

more restricted than L2 * Volume Preservation

- Sobolev spaces
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Regularization Strategies

Target Image

Optimization

Energy

Model

Transformation
Model

Difference Measure

1
\
Regularization Term \
\
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1. ‘Classic’ Variational Approach:
Adding a regularization term to the energy

2. Parametrization by lower DOF
transformation models

3. Treatment in more regular spaces
(Sobolev spaces)

4. Demons Approaches
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Outline of this Talk

(structured by different regularization strategies of the approaches)

Part | — “Classic” Variational Approach
Minimization of energy with a regularization term, in L? space

Part Il — Parametric Models
Transformation Model: Restricting the space of deformations

— Lower DOF transformation models = Parametrization

Part Il — Sobolev Spaces
Transformation Model: Restricting the space of deformations

— Different choice of underlying function space = Sobolev spaces

Part IV — Demons Approaches
Efficient forces and regularization by a smooth strategy

Part V — Further Points
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PART |

“Classic” Variational Approach
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Outline

* Energy: formulation and properties

* Gradient-based optimization schemes



/
U

Classic Variational Approach

Treatment of transformation in L?
Explicit definition of regulariztion term in model

= argmin Ep(Ir, Is(Id4+u)) + A Egr(u)

wel.?

Non-linear with respect to the displacement beacuse of the dependence on
the image function

High-dimensional problem: e.g. 3 x 2563 = 50 331 648

— Numerous local minima

9/24/2010

This line of work started with [Broit 1981], [Bajcsy and Broit 1982]
Details e.g. in [Modersitzki 2004]
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Examplary Model Problem

E(u) = Ep(I1. I5(¢)) + AEr(u)

e Difference Measure: Sum of Square Differences (SSD)

A%zllyﬂw—kwum%m

2

* Regularization Term: Diffusion Regularization
(a.k.a. Tikhonov regularization, 1st order regularization)

1
g Bnlw) = 3 [ [Vu.(a)|F+ | Vay (o)do

= Non-linear Least-squares Energy

9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration 14



General Energy Formulation
E(u) = Ep(Ir, Is(p)) + AER(u)

E(u) = / pp(|ep(u)|) daz—|—)\/ pr(ler(u)|) duo

§ ! . i

* Energy is defined by |
— an error term based on the displacement:|e(u)

— penalty function applied to the error term: p

 assures that the error terms are positive
* weights the error term

Examples of penalty functions

2 > resultsin application of the L> norm

plr) =

p(z) = || > resultsin application of the L' norm
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General Energy Formulation

E(u)= [ pp(lep(u)|) dz+ X[ pr(ler(u))) du

Q T Q
Depends on deformation through images * In many cases, the error term for the
_ regularization is linear in the displacement
p— O
€D (u) €D ([T’ IS (Id + u)) * Linear operator is mostly a differential operator
- Non-linearity (e.g. G=V, G=A, ...)

Source image

(= warped source image)
Non-Linearity: change of intensity _
in one point does not depend

Difference measure

Displacement

linearly on the displacement

Computation of
Displacement Displacement Derivatives Regularization term
(Linear Operation)
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The Non-Linear Least Squares Framework (use of L? norm)

The energy is a squared

v L2 norm of a non-linear
1 1 error term.
B(uw) = 5 [ e(w)? = S{e(w).ew) with = [ep, VEea]
¢ » Often, the regularization error term is
1 1 linear in the displacement:
= —(eplu).ep(u)) + A={(en(u), ep(u * G is mostly a differential operator, e.g.:
2< D( )’ D( )> 2< R( )’ R( )> * Diffusion: G=V
* Curvature: G=A
1 1  Exceptions: e.g. Volume preservation
— 5 <€D (U), €D (’U»)> + )\5 <Ciu, GU) (since based on det(J(u)))
_ %(6]3(“&), e (u» n )\% u, ele, u) :Jnr;clri?:augc:ss non-linearity through dependence
N /)

Notes:

9/24/2010

Nice form for taking the derivative

Focus on L2 in this talk since: popular choice, simpler derivatives
Example for L! regularization, see e.g. [Pock 2007]
NLLSQ framework required only for NLLSQ methods (GN,LM)

Non least-squares energies can be re-written to fit into a NLLSQ framework (however, this
makes the error term non-linear)
cf. e.g. [Appendix 6.8, Hartley and Zisserman]
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Optimization
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Iterative Optimization

u' = argmin F(u)

u

L1

 Start with an initial estimate u,
* Estimate a series of updates h,, ..., h_ such that

Ul%UO—Fhl—F—th

do repeat:

h = compute update(E,);
¢ =0 + h;
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How to determine the updates h,?
- different optimization schmes

— Gradient-based optimization

h = —7 some_function (VE(U))

— Gradient-free optimization

h = Some_other_function(ED, ER, u)

—> More in Ben‘s talk this afternoon
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Different Gradient Descent Schemes

1. Steepest Gradient Descent
2. PDE inspired (PDE=partial differential equation)

3. Preconditioned Gradient Descent
(also known as Quasi-Newton Methods)
— generalizes 1. and 2.



9/24/2010

Optimization by Gradient Descent

Steepest Gradient Descent:
Starting with initial ¢@,, repeat until convergence:

h — —T V E (90) // compute update based on gradient of energy
Qp p— gp —|— h // apply the update

Conditions on P:
* Pisalinear operator
* P is symmetric positive definite

Generalized Formulation as Preconditioned Gradient Descent / Quasi-Newton:

Different Choice of P Different Optimization
Scheme

MICCAI 2010 Tutorial: Intensity-based Deformable Registration
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Overview of Gradient Descent Based

Method

Update Rule

Optimization Methods

Comment

Steepest Descent

h=—71d7" VE(u)

+ Simple implementation

+ Only gradient required

— Numerical issues: requires small time
steps = many iterations needed

PDE inspired

Semi-implicit Discretization

h=—7 (Id+7TAVER) " VE(u)

+ Numerically stable also for large time steps

+ Linear operator determined by regularization
- difference measure easily exchangable

— Poor convergence speed

GaulR-Newton

h=—7 (JIJ.)"" VE(u)

+ Numarically stable also for large time steps
+ Good convergence speed
— Linear operator depends on both,

the regularization and the difference term
— Applicable only to least-squares problems
— J, must be sparse for efficient treatment

Preconditioned
Gradient Descent

h=—1 P! VE(u)

With P approximating the Hessian of E, e.g.:

Jacobi preconditioning
BFGS

Most general formulation of the
above. Properties depend heavily on
choice of P.

“Finding a good preconditioner (...) is often

viewed as a combination of art and science.

Y. Saad, Iterative Methods for Sparse Linear Systems

“

9/24/2010
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1. Steepest Gradient Descent

* Energy: E(u) = Ep(Ir,Is(v)) + AER(u)

Starting with initial ¢,, repeat until convergence:

= —T V E (gp) // compute update based on gradient of energy

(p p— gp —|— h // apply the update

Only the derivative of the energy w.r.t the displacement is required:
VE(p) = VEp(¢) + A\VER(p)

- derivative of difference measure
—> derivative of regularization term
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EXAMPLE: Steepest Gradient Descent p=ld+u
Derivative of the Difference Measure

General formulation of the derivative of the difference measure:

OEp(Ir, Is(p)) _ 9Ep(r Is(p))  Ils(y)
ou \ dls(p) } dp

W(lr Is(¢))  (VIs)(@) 1d

Point-wise evaluation at xeQ: point-wise rescacling of the warped gradient of /,

OEp(Ir, Is(p)) (z) = W([T’ [3(9@))(;17) (V[s)(ﬁp(ilﬁ)l

au _J A -
cRd

"

cR ceRd

A

For the Sum of Squared Differences, we get:

En = 5 [(r(e)~Is(p(w)Pde W 222 = (17— I(4)) Vis()
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EXAMPLE: Steepest Gradient Descent
Derivative of the Regularization Term

General formulation of the derivative for a regularization term with a quadratic form:

* General regularization term: Fr(u) = / IOR( er(u) ) dx
« Assume: N 2
— Squared L2 norm:

L ] f 1
Bnlu) = 5 [ e = 5e(w.c(u) > Br(u) = 5{u,G*Gu)

— Error term is linear in u:
(er(u),er(u)) = (Gu, Gu) = {u,G"G @

dER(”LL)
du

= G*Gu

* Then, the derivative reads:

For diffusion regularization, we get:

d
— 1 2 dER(U’) . % .
Er(u) = 5/0 ;: | Vug(x)||"dz ‘ P V*Vu=—-Au
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1. Steepest Gradient Descent - Summary

* Energy: E(u) = Ep(Ir, Is(v)) + AER(u)
Starting with initial g, repeat until convergence:
h=—17 VE(y;)
—7 (VEb(¢i) + AVE(¢))
= =T (—(IT — Is(pi)) Vis(pi) — /\Aui)
piv1 = @it h



2. PDE Inspired Gradient Flows

Re-formulation as

* time dependent process and computation of the steady state,
|

arg min £ (u) = arg min tlimf E(u(t))
u u —1n

» with the change of the displacement (=updates) opposing the energy gradient
ou oF

ot Ou

—> Partial differential Equation (PDE)
(non-linear, time independent problem - linear, time dependent problem)

Discretiztion of time (time—>iterations):
- Explicit time discretization (=steepest gradient descent)
- Semi-implicit time discretization



2. PDE Inspired Gradient Flows

* Energy:

e Gradient Flow: ——

E(u) = Ep(Ir, Is(¢)) + AER(u)
ou OF . OF
5 T 90 Notation: A :=u; . —u; , VE := B0

2.1. Explicit time discretization

A4

I T Y R () + AVER

-

equivalent to
steepest gradient
descent!

h=—1 VE(u,)

2.2 Semi-implicit time discretization

9/24/2010

)

h = —T(VED(ut) + )\VER(ut))

Regularization
reacts to
irregularities of
displacement
from last step

A4

—UH_T — — VED(’LLt) + )\VER(

Uy

-

)

Regularization
assures
regularity of
displacement in
next step

h=—7(Id + 7TAVER) " (VEp(us) + AVER(ur))

— —7 (Id+ 7AVER) " VE(u)

MICCAI 2010 Tutorial: Intensity-based Deformable Registration
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PDE Inspired Gradient Flows

2. 1 Explicit time discretization:

h=—|1

(VED(ut) -+ )\VER(ut))

-> many iterations required

Numerically stable only for small time steps

Simple computation, only gradient of energy required

2.2 Semi-implicit time discretization:

h=—7 (Id+ T)\VER)_l VE (uy)

=

h=—

* No numerical restriction on time step

\

* Note: setting-dependent step size limit exists!

T

VE (uy)

* Solution of linear system required
* linear operator depends on regularizer
* Underlying assumption: regularizer is a quadratic form
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EXAMPLE:
Semi-implicit time discretization of gradient flow

General Semi-Implicit Flow: h = —7 (Id + ’T)\VER)_l (VEp(us) — AVER(uy))

. ssD: B — % /Q (Ir(z) — Is(p(a)2 de =  VEp(u) = —(Ir — Is(#)) Vis(p)

d
) ) 1
* Diffusion Reg.: Ep — 5/ Z||Vud($)||2d$ =  VEg(u)=-Au = VEzp=-A
Q-

. _

Semi-Implicit Flow for SSD and Diffusion Regularization:

h=—r(Id—7AA)! (—(]T — Is(9))VIs(p) — M )

9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration
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EXAMPLE:
Semi-implicit time discretization of gradient flow

Semi-Implicit Flow for SSD and Diffusion Regularization:

h=—7(Id—TAA)™ (—([T ~ Is(0)VIs(0) — AAw )

One possible way of computing h: solving the corresponding linear system:

(Id — T)\A) h = —7 (=(Ir — Is(¢))ViIs(p) — ANAu )

[ ‘ ]
v )

Ah = f Side note: o

Structure of ld- TAA: The linear operator A couples
the dimensions of h Id-TAA | |h
Id-TLA h, f, - single dimensions can be
solved for independently. _

| 1d-T) A h| = |f This‘ is not the case in ge'neral, Id-TAA | |hy
e.g it does not hold for Linear ||
1 1 Elasticity regularization, or —

Id-TAA h, f, GauR-Newton optimzation for oA | h

Diffusion regularization.
"""" -1 ] 1+67A - - ||
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An alternative way of so
Convolution with corres

ving for h:

oonding Green’s Function

(proposed for registration in [Bro-Nielsen and Gramkow 1996])

* With K being the Green’s Function to P we get:

h=—7 P 'VE
— —7 K *xVE

e Green‘s Function K to operator P defined by:

PK(xz,s) =d0(x — s)

mm) Pu=f=u=Kxf

 Computation of Green’s function:
— Analysis of the eigenfunctions of the operator

— Simple approximative approach: solve discretized system PK = §



Green’s Function Example

* For diffusion regularization: ER:/ZHVud(a:)szx
Q

the update rule resulting from semi-implicit discretization reads

h=—71(ld=7AA)'VE

Green’s function corresponding to (Id — T)\A)



GauBB-Newton Optimization (GN)

Gaul3-Newton Optimization:

GN computes the update h in every iteration, by
computing the critical point of a quadratic
function, based on the linearization of the error

termeby I(h) = e(u) + J.(u)h

1
For F = —

2 <€7 6)
we get 1

h = argmin (). 10V)) s .
resulting in )
h=—(J 1) VE(u)

~ <

Application to SSD + Diffusion Reg.:

1
E — 5(67 €> Wlth € = [eDj BR]T

ep = [I1 — Is(p)]

=) Ip=Ir—Is(p) — Vis(p)'h

eR = \/X[Vuw, Vu, == [gr=-cr

4 L

J'J. = Vis(o)VIs(@)' — AA

GaulR-Newton update step for SSD and Diffusion Regularization:

b= —r(VIs()VIs(e)T = AA) " (~(Ir — Is(9))Vs(g) — Au )

9/24/2010
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EXAMPLE: Gauls-Newton Optimization

h = —T(VIS(QO)VIS(QO)T _ )\A)_l (—([T — Is(9))VIs(gr) — Mu )

R
(Ws(w)st(w)T — )\A) h = —7 (—(IT — Is(¢))Vis(p) — AMu )

J \ J
L 1

Al =7
|

( \ |
6 N\ — Side notes:

VIL VIE | NIE VI | VI VI A h, f, * The linear operator A

[ | [ | couples the
. " dimensions of h
VI NIE |\ NILIY | VI VI —A\ A h f

‘ * The linear operator A
\\ is sparse
Vi VIZ | NILVIY | VI VIE A h, f,
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Intuition about the Difference in the
Behavior of the Different Methods

e Steepest Descent vs. Preconditioned Descent

Gauss-Newton

Semi-implicit gradient descent

[mm]

40
time [sec]

Difference in convergence speed Structure of update Structure of update

% for semi-implicit for Gauss-Newton



The Pitfall of Premature Convergence

0018 e

0.016

generalized Sobolev flow

semi-implicit L2 flow
0.014 . .
0012 . . b

0.01}

0.008

similarity measure

0.006
0.004 g g B 5

0.002f

0

1 1 1 1 1
0 10 20 30 40 50 60 70
time [sec]

a) Decrease of Difference Measure

131

1.2

-
-
T

generalized Sobolev flow| "

semi-implicit L2 flow

i i i i 1 i i i
10 20 30 40 50 60 70 80
time [sec]

b) Decrease of Error

Blue seems to converge much faster than red.
Note: log of update magnitude exhibits similar behavior.
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SUMMARY: Overview of Gradient
Descent Based Optimization Methods

Method

Update Rule

Comment

Steepest Descent

h=—71d7" VE(u)

Simple implementation

Only gradient required

Numerical instable: requires small time
steps = many iterations needed

PDE inspired

Semi-implicit Discretization

h=—7 (Id+7TAVER) " VE(u)

Numerically stable also for large time steps
Linear operator determined by regularization
- difference measure easily exchangable
Poor convergence speed

GaulR-Newton

h=—7 (JIJ.)"" VE(u)

Numarically stable also for large time steps
Good convergence speed

Linear operator depends on both,

the regularization and the difference term
Applicable only to least-squares problems
J, must be sparse for efficient treatment

Preconditioned
Gradient Descent

h=—1 P! VE(u)

With P approximating the Hessian of E, e.g.:
* Jacobi preconditioning
* BFGS, c.f. [Modersitzki 2009]
*_For def. Registration: [Zikic 2010 MICCAI]

Most general formulation of the
above. Properties depend heavily on
choice of P.

“Finding a good preconditioner (...) is often

viewed as a combination of art and science.”

Y. Saad, Iterative Methods for Sparse Linear Systems

9/24/2010
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Some Further Points



Equilibrium of Forces at Convergence

h=—7 P~ VE(p)
— —7 P! (VEp(9) + A\VEr(p))

\ )
Y

o =@+h VE=0 — h=0

Procedure converges when updates vanish,
that is at equilibrium of gradients of the difference measure
and the regularization term

VEp(p) =—=AVEg(p)

Until convergence, the gradient of the difference measure dominates:

VED(#)]| > AV ER(#)]]




Simulation Point of View

e.g. in [Broit 1981], [Bajcsy and Broit 1982]

* For PDE-insipred approach (semi-implicit discretization):

Displacement Model Force
= Reaction of the ¢ of the underlying ¢
Model to the Force object/patient
—1
Upyr = (Id + T)\VER) (—TVED (Ut))

f
 Other implementations of the Model are possible:
— Spring-Mass model
— Finite Element Model (equivalent to FE discretization of the linear operator)

e Other forces possible:
— Distances between landmarks
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Elastic and Fluid
Registration Types

* Fluid registration [Christensen 1994]

MOTIVATION:

achieve LARGE deformations
IDEA:

use no conservation of energy

— Simulation of a fluid acting under forces
- regularization of velocities

Modern view:
fluid-type registration = regularization of updates

( UPDATES = change of displacement = VELOCITIES )

e Challenge to maintain the regular deformation
without foldings

Target

o

Result Elastic

Result Fluid
Images from [Christensen 1994]

A

' ' ' “Time progression of the fluid trans-
* No transport Of deformat|0n N homogeneous regions formation applied to a rectangular grid“



Update Modes: S

Additional and Compositional
[Chefd‘hotel 2002][Stefanescu 2004][Vercauteren 2009] :

.

Source Image with gradient

AppIICtlon Of u pdateS: (images from [Stefanescu 2004])

* Additional Mode: ;11 = @, + h

# VEp(p) =wVisop=w-(Vig)op

“Warping of image gradient”

» Compositional Mode: ;11 = @; o (Id + h)
- VED(C,O) — WV(]SOQO)

“Gradient of warped image”
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Connection to Optical Flow

OPTICAL FLOW: Computation of the visible motion* between
corresponding structures in two input images

*visible motion = projection of the actual 3D motion of visible structures into the image plane

e Basically a motion estimation problem
(“Optical Flow“ is a problem, not a method!)

- w,.- v v

For overview of current methods and evaluation, see Middlebury Flow Data Base:
http://vision.middlebury.edu/flow/eval/results/results-el.php
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Connection to Optical Flow

Differences between Optical Flow and Medical Image Registration:

* |nput data:
optical images, no real multi-modality
(only shadows / changes in lighting)

- less work on difference measures

* Discontinuities in displacement fields:
—> anisotropic regularization, use of robust norms (e.g. L1)

Horn and Schunck Optical Flow Method

[B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence, 1981.]

The incremental Horn and Schunck method
optimization of a non-linear energy (SSD+Diffusion)
by the Gauss-Newton (GN) method.

9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration

47



SUMMARY

Energy: formulation and properties

Gradient-based optimization schemes
—> variations of preconditioned gradient descent

Solving the Linear system:
— “Standard” solvers
— Green's function

Registration types: Elastic and Fluid
Update modes: Additional and Compositional






Outline of this Talk

Part | — “Classic” Variational Approach
Minimization of Energy which includes a regularization term in L2 space

Part Il - Parametric Models
Transformation Model: Restricting the space of deformations
— Lower DOF transformation models = “parametrization”

Part lll — Sobolev Spaces
Transformation Model: Restricting the space of deformations
— Different choice od underlying space =>Sobolev spaces

9/24/2010

Part IV — Demons Approaches
Regularization by pair and smooth strategy

Part V — Discussion: Connections Between the Different Approaches and Further Points

— Elastic vs. Fluid-type Regularization

— Solving the Linear Systems

MICCAI 2010 Tutorial: Intensity-based Deformable Registration

50



Changing the space in which the
optimization is performed

Same energy is minimized

Regularity induced by construction
(continuous analogon to parametrization)
— explicit regularization term no longer necessary

Different local minima

Different minimization paths (a.k.a. gradient flows)
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PART Ii

Parametrization by Linear Models
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Regularization Strategies

1. ‘Classic’ Variational Approach

Target Image

Optimization

Adding a regularization term to energy

Transformation

9/24/2010

Energy Model Model
\
\
Difference Measure Regularization Term ‘\ 3. Treatment in more regular spaces
\ (Sobolev spaces)
\
N\
\\
\\
~

4. Demons Approaches
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Outline

 Parametrization by linear models

* Examples of parametric methods
—  Free-form Deformation B-Splines (FFD B-Splines)

— Trigonometric Functions
(Discrete Fourier/Cosine Transformation Bases)

— Radial Basis Functions (RBF)
e Gradient descent on linear models



The Idea

d
Parameters:  py € R Basis functions: D% : {2 — R

P1 P2 P3 P4 Ps
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The Idea
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Recap: Parametrization by Linear Models

d
. €RY B .o SR

Parametrization (linear model): l /

up(w) = > ppBi(x)

u=D57p
] HPa

B — By|B,|B,|B, J’py
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Characterization of Linear Parametrization
Basis Type — Shape of B, 's

* Same shape of all B, 's
B,’s are translated versions of B:
By (x)=B(x-cy)

— Free-form deformation (FFD) B-Splines

* Different shape of B, ‘s
— Fourier/Cosine Bases

— RBFs with different parameters
(e.g. Gaussians with different variance)

—k=0
k=1
—k=2
k=3
—k=4
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Characterization of Linear Parametrization
Basis Type — Support of B, ‘s

* Global Support

— Fourier/Cosine Bases \/\/

— Radial basis functions RBFs
(e.g. Thin-plate Splines (TPS)) /\

— Gaussians (in theory)

* Compact Support

— B-Splines
— Some RBFs /\

— Gaussians (in practice)
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Characterization of Linear Parametrization
Basis Type — Localization of B 's

global

localized

(no localization)

Trigonometric bases (Fourier/Sine/Cosine bases)

irregular
sampling points

regular grid

Adaptive bases, Thin-plate Splines (TPS)

T
BT L
Non-parametric Approaches: control grid = image grid Free-form Deformations (FFD)
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Parametrization by Linear Models
Some Examples of Parametrizations



= ZpkBk(ﬂf)

Up ()

B-Spline Free-form Deformations (FFDs)

7
x
c

Type:

0.3

B( x-c,)

Cubic B-Splines B, (X)

0.2

with B being a tensor product of

0.1
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corresponding 1-dimensional B-Splines
Regular grid of control points

Compact, depending on degree of

Location:
Support:

B-Spline, and image and grid resolution

[Rueckert et al. 1998]
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[Amit 1994], [ Ashburner and Friston 1999],

Type:

B, are a set of orthogonal bases,
based on trigonometric functions:

— Discrete Fourier Transform (DFT)

— Discrete Cosine Transform (DCT)

Location:
global,
not localized

Support:
global

VP SRRy
el o S e o e e e .,L}.
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[Christensen and Johnson 2001]
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Trigonometric Bases — Fourier and Cosine Transforms
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Radial Basis Functions (RBF) '

* Type:

any RBF (value function of distance from
control point), e.g.

0
“Adaptive Bases” [Rohde et al. 2003]: ‘
4
Bi(z) = [max(1 — 7,0)]" (3r® +% r* + 67 + 4)
with r = ||z — ¢ J—
7 Se
,// /7~ S — ) | f//
. R AT SO BN 2 B/
e @Gaussian ,4;\«'\\\\\\\\r\\/v BN ’.7??)&7}2,/—:'\“\{7‘
. _ 7 ONNNANNS LD M e A
* Thin-plate Splines (TPS) AN RN Jos Ve N
\\. P SRR Y AR
N RPN l{ RY AN
| IR I A LA \\\E IK l\\\ ! S
- ‘ NNV 'stl:)|| l,\ \\\\\\v(‘ \
* Location: JUSSES AT (W ST
. e = 4o s TS mm o o Tl
sparse, irregular: Rl :‘,s;::::iz:::\: b \
; ; ; TS NSNSt
arbitrary location of control points A m“\ﬁ’{g'\\_;% SR “.
. NN PR
- no regular grid ! §i§§§§'§§§§§g‘,§::::—«//;; AR !
i N\ NN R R ERRY sy VAR R RRE I
1 ,.\\\\\\t‘\}\‘§§\’\\\._(:‘;';§é tli‘\ ,«; 1
R SR
. Cortd S—— N
* Support: N NN AN A
* In Rohde et al. 2003: compact NN N ‘
p N \\\ ,/,
* For TPS: global ST
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Parametrization by Linear Models
Optimization by Gradient Descent

“Projection of dense updates into the parameter space.”



Structure of the Difference Measure Gradient
o=1d+Bp -}s—; = By

Vectorization of the involved entities: ]
B (IOLU p:E
ED — IS — ('0 p— = p —
-0y Py
dEp(Is(e(p))) dEp dfs dy
dp d/g de dp
I = I
vi -4 B,|B,B,|B,
Volip = 1, IL ;
Dense Derivativg VEp = “W-VIg”

.
Projection of dense derivative into parameter space by Vp,ED?; =(VEp, B;) .
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Side Note: A Parallel to the Classic Variational Approach

Vectorization of the involved entities: 7 .
- P - U o
- Py ~Uy

dEp(Is(e(p)) _ dEp dl dp

I = ] -
1
1
\ . ) 1
I

- The classic variational approach can be seen as parameterized by B = Id
9/24/2010 MICCAI 2010 Tutorial: Intensity-based Deformable Registration
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Visualization of Projection into Parameter Space

dip

lllustration of V, £ = VL —
p

VE kN\T?/‘T\\\\\\\TT
> VE(z)

VE=| (VE Bl> | <VE, By) , (VE By) |

Side note regarding intuition: If the B,’s have the same shape, then V E can be seen as a kind of a
“generalized discrete convolution” of VE and B.
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In the above we concentrated on the
difference term...

 However, in the same way, we yield for the regularization
(by applying the chain rule)

V,Ep = (VEg. B))

 While this is formally correct, there are some interesting
aspects of parametrization w.r.t. regularization, which are
not revealed by this formulation



Derivative of Regularization Term

1

Bn(r) = 5 (en(u(p).en(u(p)) Faualence to
_ 1<Gu(p) Gu(p)) previous derivation
= §(GBp; G Bp) % — B G GB p — B G G U
- L. @By(cnm) dp
- %(p, B*G*GBp)
* —_— | Yk 1
B are pam M ACACL

1. The resulting operator B*G*GB is much smaller than the original system G*G

2. If the bases are eigenvectors to G*G, B*G*GB becomes diagonal:
for example for Diffusion Regularization and Trigonometric Bases

(Fourier/Sine/Cosine - corresponding to boundary conditions)
—> Efficient inversion becomes possible
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9/24/2010

PART U

Minimization in Sobolev Spaces
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Regularization Strategies

Target Image

Optimization

Energy

Model

Transformation
Model

Difference Measure

Regularization Term N

9/24/2010

1. ‘Classic’ Variational Approach
Adding a regularization term to energy

2. Parametrization by lower DOF
transformation models

4. Demons Approaches
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Registration in Sobolev Spaces (in 90 seconds)

Minimization of energy E is not performed in L2, but in a Sobolev space HX

Sobolev spaces contain only functions with certain regularity properties

Sobolev space is defined by the scalar product

* Differential operator

“£ =[1d, V, V2, ..

.]Tn

k
(u, u)e =Y Ap(ul®, u)
1=0

= (Lu,[Cu) = (L*Lu, u)

Ultimately, employing Sobolev spaces leads to updates based on the

Sobolev gradient

Vi E = (L°L)" ' VE

Notes:
— that the Sobolev gradient is based on the L? gradient

— due to inherent displacement regularity, explicit regularization terms in energy model

are not necessary (and mostly not employed)




Some Background



Some Background: Hilbert Space H

A Hilbert space H is a real (or complex) inner Hilbert Space
product space that is also a complete metric A

space with respect to the distance function

induced by the inner product. L2 Sobolev Space

* AHilbert space H features a scalar product <U, U>H

ulln = v/(u, u)n

= Scalar product induces the distance, e.g. C(Ug h) — Hu _ hHH

— Scalar product induces the norm, e.g.

— Scalar product defines the gradient ahE = ( VHE , h >H

O, f @ derivative in direction h



L2 - Space:
Space of square-integrable functions

 Scalar product (u ., h )2 = f w(x)h(x) do
Q

* Norm lullz = v/ u, )y

_ ( /Q u(z)? da:)%

LP={u : [Jullj < o0}

* Definition of L?:



Sobolev Spaces H®

* Function spaces equipped with a norm that is a
combination of L2-norms of the function itself as
well as its derivatives up to a given order.

S

(w,hyge =) (D"'u, D)
k=0

e.g. for s=1

(u, h)Hl — <u7 h)LQ T <VL2U7 VL2h>L2



Sobolev Spaces H®

* |n contrast to L2, H® bound not only the
functions, but also their derivatives

= u o Jullgs < oo}

with [l = /(. w Jorr =

1
s 2
Z( D*u , D*u )L2]

k=0

e

This provides a restriction to more regular functions
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Gradient Descent in Hilbert Spaces

Starting with ¢,, loop until convergence:

9/24/2010

h:—TVH

F(u;)

"

Yi = P TN

The difference between
treatment in the different
spaces consists in the use
of a different gradient.
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Computation of Gradients
in Hilbert Spaces based on a Metric Tensor

For a space H defined by
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Sobolev Gradients ineuwerer 007,

with £ = (DO, . ,DS), we get

(w.h)gs=>» (D' D)
k=0
:<£u,£h>2

and for the gradient
Vi B =[(LL " Vi E
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Sobolev Gradients Example: H*

with £ = (DO, el DS), we have
LL=> (1) A
=0
So that for H', we get
LL=1d—A

and
Vi E = (L)™' V2 B
= (Id — A)"' V2 F



Intuition about Sobolev Spaces

Operating with a transformation model using a
dense parametrization based on the Green’s
function to the Sobolev operator

LL=1d—A

MMM

Please note the relation to parametric approaches, cf. e.qg. [Zikic 2010 WBIR].
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Deformable Registration in Sobolev Spaces



Deformable Registration in Sobolev Spaces
(Trouvé 1998, Chefd‘hotel 2002, 2005)

u' = argmin Fp (IT, [0 (Id + u)) with v € H°

Loop until convergence:
h=—1 (L) VEp(u)
Y = o (Id + h)

end

* IDEA: Use of Sobolev spaces to restrict the space of solutions to more
regular functions

- No explicit regularization needed

* Minimization of difference measure E, only
— allows larger deformations (fluid-type approach)



Deformable Registration in Sobolev Spaces
(Trouvé 1998, Chefd‘hotel 2002, 2005)

1=0

— Gg E S VLQE

Choice #1: a; =1, o; = A LL =1d — \A
Vi B = (Id — AA) ™! Vo B
Choice #2: a;=02"/(1!2"), s=o0
LL = Z Y120 A
Vi< B = (C*ﬁ) Vi
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Large Deformations Diffeomorphic Metric Mapping
(LDDMM)

1
min | ||[ls o @™ — I7||72| + |ve||7 dt

v _T 0
E: Standard SSD term T

Regularization:
* Integration over velocities

- enforces the geodesic shortest path in space of displacements
* Treatment of velocities in Sobolev space H

* Applied often in settings with very different anatomies (e.g. inter-patient brain)
* The integration of velocities
* requires appropriate numerical schemes
* Increases the computational requirements
(memory for storage of velocity fields = results in longer computation)
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PART IV

Demons Approaches
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Regularization Strategies

Target Image

Optimization

Energy

Model

Transformation
Model

Difference Measure

Regularization Term

9/24/2010

1. ‘Classic’ Variational Approach
Adding a regularization term to energy

2. Parametrization by lower DOF
transformation models

3. Treatment in more regular spaces
(Sobolev spaces)
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Demons Registration

* Thirion 1996/1998: Heuristic approach, several alternatives
* Motivation: Speed
e Alternative 1 (the important one):

Loop until convergence:

(I1—1Is(pu))VIs(ou)

h —
IVIs(pu)ll? + (Ir—Is(pu))?

u=u+Th

u=G xu

end



Demons’ Efficiency

* The preprocessing of forces:

(Ir—1Is(w))Vis(@u)

= Vs P + (I —Ts(p0))?

= F(VEp)

— Approximation to 2nd order optimization of £
[Pennec 1999][Vercauteren 2009]

— Approximative normalization of point-wise magnitudes of VEp

e Efficient regularization by filtering:

u==GG" xu



Elastic and Fluid Demons

Elastic-type Demons:
(original formulation)

Loop until convergence:

h=F(VEp)

u=u-+T1h

u=G xu
end

Fluid-type Demons:

Loop until convergence:

h = F(VEp)
h=—G xTh
uw=1u-+h

end

[Bro-Nielsen 1996], [Pennec 1999]
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Relations between
Different Approaches



Demons fluid:

h=—G° x7F(VEp)
Demons elastic:
h=—G° «7(P"'VEp + VER)

Sobolev H*:
L =1d— AA
Vit B = (Id — AMA) ™' VE

Sobolev H*:

LL = i(—l)i o /(i12Y) A

VaxE = (L£)"" VE
—G,*x VE

Gaul-Newton:
h=—7 (JJ.) " VE
for SSD+diffusion:

h = —7(VIsVI§ —A\A) " VE

PDE-Inspired, semi-implicit:
h=—7 (Id+ 7AVER) " VE
for diffusion:

h=—7 (Id—7AA)" VE

9/24/2010

Preconditioned Descent:

h=—7 P ' VE
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