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Reconstruction of 3D Vascular Data
from Multiple Angiographic Views



e Vascular diseases, such as
stroke, are among the
leading causes of death

* Calculation and presentation
of 3D vessel information
may reduce complications



* \/isualization of blood
vessels

* Done by injecting a
contrast agent into the
blood vessel and imaging |
using x-ray systems.




* |f you know the biplane imaging geometry and
corresponding points in the two images, you
can triangulate to get the 3D positions
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e Using gantry information:

—The 2D correspondences along the vessel
centerline can be incorrect

—the 3D vessel centerlines vary in shape and
absolute location

* With refinement using self-calibrating two-
view techniques

—Shape and location improve, but vessel
orientation can be a problem, e.g., end-on



Introduction
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Multiple angiograms are usually acquired during
neurovascular interventions.

Therefore, we use all angiographic views to
generate reliable 3D during the procedure.



e Angiographic images from each view are
selected.
* The centerlines are indicated and fit. .
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Common Coordinate System

Coordinate system
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/-coordinates before and after optimization
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Comparison between a rotational angiographic system (red), which
used 220 projection images and our multiple-view techniques
(yellow), which used 4 projection images. The two vessels are
almost identical, and have an overlap of 99.73%.
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Limited — View Cone Beam
Computed Tomography



* Doseis a Problemin CT
— abdominal CT scan ~ 12.5mGy
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Full reconstruction Limited-View reconstruction
(106 projection images) (21 projection images)




 Comparing standard techniques

— The jaw phantom.

— Reconstruction from 45 equally spaced
projections by using standard techniques.
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Original




Original FBP HYPR

TV with priors

<= No blurring

= Nyquist criteria

- Streaking artifacts




Original FBP HYPR

ART

<= No blurring

“ Improved SNR

- Nyquist criteria

- Streaking artifacts




Original FBP HYPR

+ Less streaking artifacts

+ Improved low contrast
= Nyquist criteria

- Blurring




Original

- Less streaking artifacts

<+ - Nyquist criteria

- Extreme blurring

ART TV with priors




Original FBP HYPR

<= No artifacts

<= = Nyquist criteria

- Same patient prior

- 3D-3D alignment



Original




Geometric Object Aware Tomography

e We want to reconstruction reliable 3D data
without prior patient information by:

— Segmenting anatomic structures from a limited
number of projection images

— Determining from (i) the 3D — 2D relation between
segmentation and projection images

— Reconstruction the different Objects-of-Interest
from the outside to the inside

— Reducing the computation time



Supervised learning algorithm
using statistical shape models




Unsupervised learning algorithm
using clustering techniques

106 projection images 35 projection images 35 projection images
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projection image
with classified region

Pre-segmented volume

Classified rays

39




Reconstruction techniques

* |n alinear system, the projections

are acquired as:
P=MF

Most reconstruction

algorithms try to

solve: .
F=M1!P
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 We handle each voxel
depending on its region, which

differs from earlier approaches . .
where all voxels are handled Foor, = Moor, Foor,
similarly .

o Poor, = Moor, Foor,
* From a COmpressed sensing s

point of view, our approach

decomposes the complicated 3D

volume (matrix) into sparse sub- p " — yp, . F, .
matrices (or signal) and recovers '“ -
the whole matrix (signal)

iteratively.



Eroded by 1 pixel Eroded by 2 pixel

Dilated by 1 pixel Dilated by 2 pixel




TV with priors
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FBP — 106 projection images GOAT - 35 projectionimages  FBP — 35 projection images
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Hyperfast Computations in Computed
Tomography



NVIDIA TESLA

2008

960 cores

4391 teraflops/$1 million *

* Based on the cost of building your

PLAYSTATION 3 own Tesla supercomputer out of
CLUSTER 2007 four Tesla C1060 units. Complete

8 PlayStation 3s instructions are available at nvidia.com.

375 Tflops/$1 million t t Seven processors per node at 150

gigaflaps per unit for a single processar
(11 processors per node far a dual
pracessor); $400-plus per node,

$ 6480 Opteron CPUs and
12 960 Cell processors.
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Reference: IEEE Spectrum 03/09



* The performance profile
of a single GPU is:
— 240 Stream Processors

— 1296 MHz Shader Clock
— 1024Mb Memory
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 We use the
Nvidia/CUDA platform

 The main steps of this
platform are:

1.

Data copied from CPU
to GPU

Instructions are
copied to GPU

Instructions are
executed on GPU

Data copied back to
CPU

Main

Memory

1l T4

Memory

CPU

for GPU




* For our implementation, we used CUDA2.x
which is provided by NVIDIA.

— Advantages
* uses C-like language

* user-managed shared memory can be shared among
threads

* faster downloads and readbacks to and from the GPU

— Disadvantages

 CUDA does not allow the full use of the shader, so it is
slightly slower



e Essential for parallel computations:

independent calculations.

 FBP: Each voxel is independent

of any neighbor voxel

F(r) = / w? (O, r) Prlu(z, z),v(y, z), ©dO
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el approach:

oad all projections into texture memory
oad sub volume into shared memory
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* GPU vs. CPU

— Floating point calculations / math.h function /
NAN are NOT different between GPUs and CPUs
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e Results:

Volume Size Total [s] Convolution [s] Backprojection [s]
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2563 3.3 2.5 42.4 0.8
5123 8.7 2.5 42.4 6.2
10243 41.2 2.5 42.4 39.7
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iﬁls lonizing Radiation Imaging Systems
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