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build a machine that can recognize patterns:

- speech recognition

- fingerprint identification

- DNA sequence identification

- OCR (optical character recognition)

accurate pattern recognition immensely useful

deeper understanding by solving problems

algorithm and hardware design is influenced by knowledge how
these are solved in nature

Machine Learning for Context Aware Computing

machine perception
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an example – fish packing plant (1/8)

- “Sorting incoming fish on a conveyor according to species using 
  optical sensing”

- pilot project: separate sea bass from salmon
ai

m
s

problem analysis

- wants automate process of incoming fish 

- pilot project: separate sea bass from salmon

- using optical sensing

- take sample pictures

- extract features

> length, width

> lightness

> number and shape of fins

- notice noise or variations in the images

variation in lighting

position of the fish on the conveyor

aims
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preprocessing

- use a segmentation operation to isolate fishes from...

feature extraction

an example – fish packing plant (2/8)

> one another

> background

- information from a single fish is sent to a feature extractor whose 
  purpose is to reduce the data by measuring certain features

- the features are passed to a classifier

model

- differences between the population, different models

- hypothesize the class of models

- choose best corresponding model
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overview

Preprocessing

Feature extraction

Classification “salmon”
“sea bass”

an example – fish packing plant (3/8)

training samples

- length obvious feature, try to classify by the length L

- obtain training samples by making length measurements

- suppose sea bass is generally longer than a salmon

classification

- evaluates evidence

- makes final decision
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feature: length

- length alone is a poor feature

an example – fish packing plant (4/8)
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salmon sea bass

- select the lightness as a possible feature
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feature: lightness

an example – fish packing plant (5/8)

- careful elimination of variations in illumination

- classes much better separated
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decision boundary and cost relationship

- Move our decision boundary toward smaller values of lightness in
  order to minimize the cost (reduce the number of sea bass that are
  classified salmon!)

- task of decisions theory
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decision theory

- make decision rules, such as to minimize cost

- width as new feature to classify

- problem to partition feature space into two regions

‡ xT = [ x1,x2 ]

x1 = lightness
x2  = width 

- add other features that are not correlated with the ones we 
  already have

- a precaution should be taken not to reduce the performance by 
  adding such “noisy features”

an example – fish packing plant (6/8)
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best decision boundary

- best decision boundary should be the one which provides an 
  optimal performance such as in the following figure:

- satisfaction is premature because the central aim of designing a 
  classifier is to correctly classify novel input 

‡ issue of generalization

an example – fish packing plant (7/8)
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generalized decision boundary

an example – fish packing plant (8/8)
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pattern recognition systems (1/3)

overview

decision

post-processing

classification

feature extraction

segmentation

sensing

input

costs

adjustments 
for context

adjustment fo
missing features
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pattern recognition systems (2/3)

sensing

- use of a transducer (i.e. camera)

- pattern recognition systems depends off:

segmentation and grouping

> the bandwidth

> the resolution sensitivity distortion of the transducer

- patterns should:

> be well separated

> not overlap
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pattern recognition systems (3/3)

feature extraction

- arbitrary boundary between feature extraction and classification

- invariant features with respect to translation, rotation and scale

classification

- use a feature vector provided by a feature extractor to assign the 

  object to a category

post processing

- exploit context input dependent information other than from the 

  target pattern itself to improve performance
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the design cycle (1/3)

overview
start

collect data

choose features

choose model

train classifier

evaluate classifier

end

prior knowledge
(e.g. invariances)
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the design cycle (2/3)

data collection

- how do we know when we have collected an adequately large and
  representative set of examples for training and testing the system?

feature choice

- depends on the characteristics of the problem domain. Simple to

  extract, invariant to irrelevant transformation insensitive to noise

model choice

- unsatisfied with the performance of our fish classifier and want to

  jump to another class of model

- how to combine prior knowledge and empirical data?
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the design cycle (3/3)

training

- use data to determine the classifier

- different procedures for training classifiers and choosing models

evaluation

- measure the error rate (or performance and switch from one set of

  features to another one)

solving problems

- no universal methods have been found for solving problems 
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learning and adaptation

supervised learning

- teacher provides a category label or cost for each pattern in the 

  training set

unsupervised learning

- the system forms clusters or “natural groupings” of the input 

  patterns

learning

- pattern recognition problems to hard to guess best classification 

  decision
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conclusion

overwhelmed

- seems to be overwhelmed by the number, complexity and

  magnitude of the sub-problems of pattern recognition

problems

- many of these sub-problems can indeed be solved

unresolved problems

- many fascinating unsolved problems still remain

- mathematical theories solving some problems have been 

  discovered
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assumptions

- sequence of types of fish appears to be random

introduction (1/4)

- decision-theoretic terminology: each fish emerges nature is in one

  or the other of two possible states

state of nature

- w denote state of nature

- w1 = sea bass and w2 = salmon

- the catch of salmon and sea bass is equiprobable:
P(w1) = P(w2)   (uniform priors)
P(w1) + P( w2) = 1 (exclusivity and exhaustivity)

a priori probability

- P(w1) = priority next fish is a sea bass
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introduction (2/4)

example

- classification problem of sea bass and salmon by lightness

- assume apriori probabilities are not equal

> i.e. assume P(sea bass) > P(salmon)

> if you don’t have a chance to see the fish, every time decide 
   as a sea bass

- if you see the lightness of fish

Question: P(sea bass | lightness) = ? and
  P(salmon | lightness) = ?

p(lightness | sea bass)

p(lightness | salmon)

P(sea bass | lightness)

P(salmon | lightness)
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introduction (3/4)

where in case of two categories 
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Bayes’ rule

P(wj | x) = 
p(x | wj) x P (wj)

p(x)

decision given the posterior probabilities

- x is an observation for which:

> P(w1 | x) > P(w2 | x)     ‡      True state of nature = w1

> P(w1 | x) < P(w2 | x)     ‡      True state of nature = w2

- whenever we observe a particular x, the probability of error is :

> P(error | x) = P(w1 | x) if we decide w2

> P(error | x) = P(w2 | x) if we decide w1

- maximum a posterior classifier or Bayes classifier
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introduction (4/4)

minimizing the probability of error

maximum-likelihood classifier

- P(w1) = P(w2) 

P(error | x) = min [P(w1 | x), P(w2 | x)]
                                  (Bayes decision)

- decide w1 if P(w1 | x) > P(w2 | x); otherwise decide w2

- simpler decision rule

- decide w1 if p(x | w1) > p(x | w2); otherwise decide w2
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Bayesian decision theory / continuous features (1/4)

generalization of the preceding ideas

- use of more than one feature

- use more than two states of nature

- allow actions and not only decide the state of nature

- introduce a loss of function which is more general than the 

  probability of error

feature space

- replace scalar x by the feature vector x

loss function

- states how costly each action is

- let us treat situations in which some kinds of classification mistakes

  are more costly than others
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Bayesian decision theory / continuous features (2/4)

definitions

- let {w1, w2,…, wc} be the set of c states of nature (or “categories”)

- let {a1, a2,…, aa} be the set of possible actions

- let l(ai | wj) be the loss incurred for taking action ai when the
state
  of nature is wj

risk := expected values (cost)

- expected loss by taking action ai:
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select the action ai for which R(ai | x) is minimum

- R is minimum and R in this case is called the Bayes risk = best
  performance that can be achieved!

P(wj | x) = 
p(x | wj) x P (wj)

p(x)
- a posterior probability
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Bayesian decision theory / continuous features (3/4)

two-category classification

- a1 : deciding w1

- a2 : deciding w2

- lij  = l(ai | wj)

conditional risk

- R(a1 | x) =  l11P(w1 | x) + l12P(w2 | x)

- R(a2 | x) =  l21P(w1 | x) + l22P(w2 | x)

rule

- if R(a1 | x) < R(a2 | x) action a1: “decide w1” is taken

- loss incurred for deciding ai when the true state of nature is wj

- this results in the equivalent rule:
  decide w1 if:
  (l21- l11) P(x | w1)  > (l12- l22) P(x | w2)  and decide w2 otherwise
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Bayesian decision theory / continuous features (4/4)

likelihood

- the preceding rule is equivalent to the following rule:
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- then take action a1 (decide w1), otherwise action a2 (decide w2)

likelihood ratio

- likelihood ratio for class-
  conditional probability 
  density function

1aq
- decision boundary de-
  termined by threshold
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minimum-error-rate classification (1/2)

actions are decisions on classes

- if action ai is taken and the true state of nature is wj then:
  the decision is correct if i = j and in error if i ≠ j

decision rule

- seek a decision rule that minimizes the probability of error
  which is the error rate

introduction of the zero-one loss function
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minimum-error-rate classification (2/2)

minimizing the risk requires maximization of P(wi | x)

for minimum error rate

- Decide wi if P (wi | x) > P(wj | x) "j ≠ i
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classifiers, discriminant functions and decision surfaces (1/4)

the multi-category case

- set of discriminant functions  gi(x), i = 1, ..., c

functional structure of general statistical pattern classifier

- the classifier assigns a feature vector x to class wi if: 
  gi(x) > gj(x) " j ≠ i
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classifiers, discriminant functions and decision surfaces (2/4)

Bayes classifier can be represented in this way

the selection of a discriminant function is not unique

- gi(x) = P(wi | x)       minimum error-rate

for minimum error classifier, one may choose:

  gi(x) = p(x | wi) P(wi)

  gi(x) = ln P(x | wi) + ln P(wi)

discriminant functions

- discriminant functions can be in different forms, but the effect of
  decision rules is the same: decision boundaries

- gi(x) = - R(ai | x)     minimum conditional risk

- decide x is in Ri if:  gi(x) > gj(x) " j ≠ i
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two-dimensional two-category classifier

classifiers, discriminant functions and decision surfaces (4/4)
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the normal density (1/2)

univariate normal density

˙
˙
˚

˘

Í
Í
Î

È
˜
¯

ˆ
Á
Ë

Ê -
-=

2

2

1
exp

 2

1
)(

s
m

sp

x
xP

- s2 = expected squared deviation or variance

- x = (x1, x2, …, xd)t      (t stands for the transpose vector form)

- m = (m1, m2, …, md)t

- S = d-by-d covariance matrix

- |S| and S-1 are determinant and inverse respectively

multivariate normal density in d dimensions
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the normal density (2/2)

univariate normal distribution

multivariate normal distribution

covariance matrix
determines the 
shape of 
Gaussian curve
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discriminant functions for the normal density (1/4)

minimum error-rate classification can be achieved by the
discriminant function

case of multivariate normal density, discriminant function is

gi(x) = ln P(x | wi) + ln P(wi)
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discriminant functions for the normal density (2/4)

case 1: Si = s_I    (independence, equal s)
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discriminant functions for the normal density (3/4)

case 2: Si = S (covariance of all classes are identical but arbitrary!)
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discriminant functions for the normal density (4/4)

case 3: Si = arbitrary
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Bayesian decision theory / discrete features (1/2)

components of x are binary or integer valued, x can take only one of
m discrete values

case of independent binary features in 2 category problem

- v1, v2, …, vm

- x = [x1, x2, …, xd ]t where each xi is either 0 or 1, with probabilities

> pi = P(xi = 1 | w1)

> qi = P(xi = 1 | w2)

( )dxxp iÚ w| ( )Âx ixP w|replaced by

- fundamental Bayes decision rule remains the same
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Bayesian decision theory / discrete features (2/2)

the discriminant function in this case is

0g(x) if  and 0g(x) if  
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