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Abstract

Angiographic imaging is a widely used monitoring tool for minimally invasive
vascular treatment and pathology access. Especially in deforming abdominal areas,
the registration of pre- and intraoperative image data is still an unsolved problem,
but important in several aspects. In particular, treatment time and radiation expo-
sure to patient and physician can be significantly reduced with the resulting 2D-3D
data fusion.

The focus of this work is to provide methods for the registration of 2D vascular
images acquired by a stationary C-arm to preoperative 3D angiographic Computed
Tomography (CT) volumes, in order to improve the workflow of catheterized liver
tumor treatments.

Fast and robust vessel segmentation techniques are used to prepare the necessary
graph data structures for a successful alignment. Here, we introduce restricted cor-
respondence selection and iterative feature space correction to drive the proposed
rigid-body algorithms to global and accurate solutions. Moreover, it is shown for the
first time that the assignment of natural constraints on vessel structures allows for a
successful recovery of a 3D non-rigid transformation despite a single-view scenario.

Based on these results, novel volumetric visualization and roadmapping tech-
niques are developed in order to resolve interventional problems of reduced depth
perception, blind navigation, and motion blur.

Keywords:
2D-3D Registration of Medical Images, Segmentation of Vascular Structures, Angiog-
raphy



iv

Zusammenfassung

Angiographische Bildgebung ist ein weitverbreitetes Verfahren zur Überwachung
minimal-invasiver Gefäßbehandlungen. Vor allem in deformierbaren Bereichen des
Abdomens stellt die Registrierung von prä- und intraoperativen Bilddaten noch im-
mer ein ungelöstes Problem dar. Sie birgt jedoch einen großen Zugewinn, da durch
die daraus resultierende Bildfusion insbesondere die Behandlungszeit und die Strah-
lungsbelastung sowohl für den Patienten als auch für den behandelnden Arzt redu-
ziert werden können.

Der Fokus dieser Arbeit liegt auf der Entwicklung von Methoden zur Registrie-
rung von 2D Vaskulärbildern, die mittels eines stationären C-Bogens aufgenommen
werden, zu präoperativen 3D CT Angiographievolumen. Dadurch soll der Arbeits-
ablauf von Kathetereingriffen zur Behandlung von Lebertumoren verbessert wer-
den.

Schnelle und robuste Gefäßsegmentierungstechniken werden angewandt, um die
zur Registrierung notwendigen Graphenstrukturen vorzubereiten. Eine restriktive
Korrespondenzauswahl sowie iterative Korrekturen eines Merkmalsraumes werden
vorgestellt. Diese Techniken sind notwendig, um die in dieser Arbeit entwickelten ri-
giden Registrieralgorithmen zu globalen und akkuraten Lösungen konvergieren zu
lassen. Darüber hinaus wird gezeigt, dass eine nichtrigide 3D Transformation unter
der Verwendung nur eines einzelnen Blickwinkels berechnet werden kann, indem
natürliche Beschränkungen auf die Bewegung von Gefäßen mathematisch formu-
liert und eingesetzt werden.

Basierend auf diesen Registrierungsergebnissen werden neue volumetrische Vi-
sualisierungsverfahren sowie “Roadmapping” Techniken entwickelt, um Interventi-
onsprobleme wie verminderte Tiefenwahrnehmung, blinde Katheternavigation, und
Bewegunsverzeichnungen zu lösen.

Schlagwörter:
2D-3D Bildregistrierung, Segmentierung von Vaskulärsystemen, Angiographie
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Brief Summary of the Thesis

In this thesis, we develop novel methods for the registration of angiographic 3D and
2D data sets. We focus on liver catheterizations, in particular Transarterial Chemo-
embolizations (TACE) as a frequently used treatment for liver tumors, where a fusion
of preoperative CTA and intraoperative DSA data can provide valuable information
in terms of depth perception and intraoperative navigation, but also has to meet
certain requirements for automation, speed, and accuracy. The contributions of this
work are the proposal of a new CTA protocol for artery visualization in a TACE
workflow, two novel rigid registration algorithms, and a method for deformable 2D-
3D registration in a single-view scenario.

The introduction of a new CTA protocol to visualize liver arteries allows for a
feature-based alignment, where the difficulties of vessel extraction, the correspon-
dence problem in heterogeneous feature spaces, and non-rigid registration in a one-
view scenario have to be overcome.

We will conceive two novel rigid registration algorithms, which were tailored to be
robust against segmentation errors, different contrast propagation, and deformation
changes.

The bifurcation-driven registration restricts the feature space to ramification points
of the underlying vessel structure and reduces the number of outliers by iterative
graph extraction on projected centerline images. By combining this technique with
topological information of the vessel graphs, a new distance function is developed.

While the bifurcation-driven registration yields good results in many clinical cases,
it also requires a minimal amount of user interaction intraoperatively. Thus, we de-
velop a second technique that performs fully automatic during the intervention. The
segmentation-driven registration combines 2D DSA segmentation with 2D-3D pose es-
timation using a probability map in order to consequently discard false positives in
the two vascular systems. This probability link, embedded in a Maximum Likeli-
hood formulation, proves to be beneficial in terms of accuracy (ca. 1.45 mm mean
Projection Distance (mPD)) and robustness compared to hybrid methods, which
avoid 2D segmentation. Since this enhanced feature space does not require an opti-
mal segmentation, an automatic seed detection can be employed to provide an inte-
gration into intraoperative workflow without additional user interaction.

Both algorithms are evaluated on simulated as well as several clinical data sets,
root mean square errors and target registration errors are measured, and Monte
Carlo simulations are carried out to show the high accuracy and robustness of the
proposed methods despite non-rigid motion.

A further issue that is addressed in this thesis is the refinement of a (sub-optimal)
rigid vascular alignment in a non-rigid environment. A new 2D-3D deformable reg-
istration algorithm is proposed that solves for a 3D deformation field using only the
information of a single view. The minimization of an energy term based on the Eu-
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clidean distance between corresponding points is rendered well-posed by incorpo-
rating natural and mathematically valid constraints of length preservation of vessel
structures and smoothness of local transformations. A 3D deformation field can be
computed thus, where even the displacement in projection direction is captured, im-
proving the results of rigid 2D-3D registration considerably.

The integration of the computed results into interventional workflow will be ad-
dressed in the end of the work. Proper visualization techniques are developed to
project roadmap information onto the current 2D image, or to visualize 2D catheter
locations in 3D via correspondence information. After DSA acquisition, clinicians
usually continue the navigation by means of fluoroscopic imaging. Tracking the ap-
parent motion of the catheter in 2D allows for a propagation of the registration results
to these subsequent images. Thus, registration results can be updated to the current
clinical situation and intraoperative 3D visualization is not hampered by breathing
motion.



Outline of the Thesis

This thesis is subdivided into two parts.
The first part provides an introduction, the methodological background, and a re-
view of existing techniques.
The second part presents details on the clinical applications, new algorithms for 2D-
3D registration, and a conclusion section with extensions and future work.

Part I: Introduction, Methodology, and Review

CHAPTER 1: INTRODUCTION

A general introduction into the problem, a description of angiographic devices used
in medical imaging, and a justification for a 2D-3D registration system for angio-
graphic treatments.

CHAPTER 2: METHODOLOGY

The methodological basis of this thesis, including vessel analysis, issues for medical
image registration, and a focus on 2D-3D registration in a C-arm scenario.

CHAPTER 3: STATE OF THE ART IN 2D-3D ANGIOGRAPHIC REGISTRATION

A review of existing techniques for 2D-3D vascular image registration.

Part II: New Algorithms for 2D-3D Angiographic Registration

CHAPTER 4: CLINICAL APPLICATION

The clinical application that is focused in this work, Transarterial Chemoembolization.
A short introduction in liver vessel systems and tumor treatment followed by a crit-
ical analysis in terms of challenges and applicability of state-of-the-art algorithms.

CHAPTER 5: RIGID 2D-3D REGISTRATION OF ANGIOGRAPHIC IMAGES

Two new algorithms for rigid 2D-3D registration. A one-click technique for regis-
tration based on bifurcation alignment aided by topological information, and a fully
automatic method based on iterative segmentation and alignment using vessel prob-
abilities.

CHAPTER 6: DEFORMABLE 2D-3D REGISTRATION OF ANGIOGRAPHIC IMAGES
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A novel method for 2D-3D deformable registration of a vascular model to a single
projection image.

CHAPTER 7: CONCLUSION

A short summary followed by a discussion of the integration of the registration al-
gorithms into clinical workflow and future work.

Appendix

PRACTICAL CONSIDERATIONS ON IMAGES

Some implementation details for image analysis.

THIN PLATE SPLINES

A deformation model used for the deformable registration algorithm derived in the
thesis.

ROTATION PARAMETERIZATION

A short summary of the chosen parameterization for 3D rotations.

REAL-TIME RESPIRATORY MOTION TRACKING

An algorithm for tracking and compensation of breathing motion apparent in fluo-
roscopic image sequences.

LIST OF SYMBOLS

The mathematical symbols used.

LIST OF ABBREVIATIONS

A list of abbreviations used throughout the work.

LIST OF PUBLICATIONS

All publications contributed to the scientific community during this work.
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Introduction, Methodology,
and State of the Art





1. Introduction

Angiographic interventions or surgeries are performed on an every-day basis in
many hospitals. Blood vessels, distributed throughout the body, have to be accessed
for numerous medical procedures such as stenting of coronary arteries, treatment
of stenoses in brain vessels, reduction of blood pressure, or embolization of tumor
vessels to name a few. Nowadays, such treatments can be guided by angiographic
imaging, supporting physicians in the assessment of instrument and blood vessel
locations. In contrast to open surgery, treatments guided by angiographic images
can be performed minimally-invasive, i.e. only a small incision is needed to inject
instruments, which can be located and navigated by the use of the acquired images.

It is common in hospitals that images of patients are acquired before the treat-
ment (preoperatively) for diagnosis and/or for procedure planning. These preoper-
ative images are usually of high quality and are acquired in 3D (e.g. using Magnetic
Resonance (MR) or Computed Tomography (CT) scanners). Imaging data acquired
during medical procedures are of less quality, which means in this respect that they
usually have a lower signal-to-noise ratio (SNR), and a lower dimensionality (2D
slices or 2D projections instead of full 3D volumes). They usually have, however,
a higher spatial resolution, which is due to the high zooming capabilities of intra-
operative imaging devices. This intraoperative data is used to assess the state of
instruments and patient anatomy over time. Even though recent advances in in-
traoperative imaging have brought 3D acquisitions into operating rooms (e.g. 3D
rotational angiography) yielding nearly the same quality as preoperative scanners,
they are - due to hard time constraints and high X-ray dosage - performed seldomly.
Moreover, they do not capture the temporal aspect of the procedure, i.e. advance-
ments of instruments or changes of anatomy due to deformation cannot be assessed
by a static 3D scan.

The registration of pre- and intraoperative data sets would fuse patient anatomy
information of superior quality with information capturing the current state of the
operation. With this registration, new ways of intraoperative roadmapping and nav-
igation can be introduced, the treatment can be sped up, and harmful radiation that
physicians and patients are exposed to can be reduced. Such registration systems are
already commercially available for surgery procedures, however, no angiographic
registration system has been launched on the market yet. This is due to the difficulty
to directly apply existing techniques (often based on external tracking) to vascula-
ture deformed by internal organ movement. However, especially in deformable re-
gions like thoracic or abdominal areas, the task of vascular image alignment, while
challenging from a technical point of view, yields the maximal benefit for the operat-
ing physician, since navigating a catheter through moving structures requires a high
level of dexterity, training, and anatomical knowledge.

Since angiographic images sometimes exclusively visualize blood vessels (e.g. dig-
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itally subtracted angiography (DSA) images), an intuitive approach for this data fu-
sion would use vessel features for alignment, which, to this end, would require a
segmentation of pre- and intraoperative vasculature. Tools for vascular segmenta-
tion are commercially available, but are, up to this moment, only used for diagnosis
and follow-up studies. Thus, these segmentation algorithms are not subject to hard
time constraints and also require manual interaction, which cannot be afforded in-
traoperatively. However, preoperative data can be preprocessed with these tools
yielding valuable information of vessel location and characteristics, which can be
incorporated into the intraoperative registration.

(a) Segmented 3D Vasculature (b) 2D Angiogram (c) Overlay of Registration Result

Figure 1.1.: Overview from the C-arm perspective of the problem addressed in this
thesis: Given a 3D volume (a) and one 2D image (b) of vasculature, find the align-
ment of volume and image (c)

To summarize, different images are taken during medical procedures. Preopera-
tive images show detailed information of anatomy, intraoperative images show cur-
rent information of instruments and anatomy. The motivation for this work is that a
fusion of these data sets would be very beneficial for treatments in many aspects. The
treatment time can be reduced, as can be radiation exposure to patient and physician.
A direct image fusion in areas that are subject to deformation is currently not possi-
ble with existing techniques, however, preprocessing can provide valuable informa-
tion of anatomy preoperatively, which must not be discarded for the intraoperative
alignment.

1.1. Problem Statement

In this thesis we address the problem of aligning angiographic 2D images of a sin-
gle viewpoint to 3D volumes of the same object. In particular, we want to solve the
single-view 2D-3D registration problem in the context of angiographic images. Since
angiographic images visualize the human vessel system, such registration systems
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make frequently use of vessel locations and characteristics. To this end, these sys-
tems require segmentation and quantification techniques. We concentrate our regis-
tration efforts on abdominal interventions, in particular liver catheterizations. These
medical procedures raise the issue of anatomical deformation, which has not been
addressed by existing solutions for 2D-3D registration yet. For a visual overview of
our problem refer to fig. 1.1 for a visualization in a C-arm perspective and fig. 1.2 for
an external illustration.

(a) Patient-C-arm scenario (b) Scenario overview

Figure 1.2.: External overview of the problem addressed in this thesis: Patient-C-arm
scenario (a) the projective lines (white) must correlate 2D to 3D features of the patient
vessel system. (b) overview figure of the patient-C-arm scenario

1.1.1. Terminology

We now give quasi-formal definitions of the basic terms that will be used within this
work.

Definition 1.1 (Angiography) A method to visualize blood vessels. The visibility of vas-
culature in images can either be achieved by the injection of a radiopaque substance (con-
trast agent) through a catheter into the vessel system1 (Computed Tomography Angiography
[CTA], intraoperative X-ray Angiography), or by a special acquisition sequence (Magnetic
Resonance Angiography [MRA], Ultrasound Angiography).

Within the scope of angiographic imaging it is also important to explain the term
fluoroscopy, which is an X-ray procedure where 12-15 frames per second (FPS) are
acquired. An image sequence can be assembled showing a “movie” of the anatomy
of the patient in real-time. Fluoroscopic imaging is used to monitor instruments like
catheters, organ movement, and vessel structures if combined with contrast injec-
tion.

1since blood has the same radio-density as surrounding tissue
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Definition 1.2 (Registration) Registration is used to bring two or more images into spatial
alignment, which are taken, for example, at different times, from different modalities, or from
different viewpoints [19, 95].

Definition 1.3 (Segmentation) Image segmentation is the partitioning of an image into
nonoverlapping regions that are homogeneous with respect to some characteristic such as
intensity or texture [120, 52].

Ambiguities Even though scientific terminology is tailored to uniqueness, there
are always some ambiguities in the terms that are used by researchers. Moreover,
since the work addresses different, highly interdisciplinary fields, misinterpretations
of notation and terminology can arise easily. Thus, we would like to fix the meaning
of certain terms that are used throughout this thesis. These are not mathematical
definitions yet (for those, refer to chapter 2), but should make the semantics of certain
terms clearer.

• Image. This term denotes not only 2D camera pictures, but all 2D, 3D, or 4D
imaging data that can be acquired by appropriate devices. Hence, sequences
(“movies”), or 3D volumes will be denoted as such, too.

• Interventional and Operative. In German hospitals it is important to distinguish
between interventions and operations. Operations have higher requirements
for sterility, whereas interventions are quasi-ambulant procedures where only
operating physician, region of interest (ROI), and instruments have to be ster-
ile. In this thesis, we do not have to distinguish between these two medical
procedures, and use the term “operative” in the same context as “interven-
tional”, e.g. preoperative meaning “before” the operation or intervention, and
intraoperative meaning “during” the operation or intervention.

• Roadmapping. The term roadmapping is used in angiographic interventions
for visualizing the path in the vasculature, through which a physician has to
guide the catheter. It can be for example provided by an overlay of previously
acquired contrasted images and currently acquired fluoroscopic image.

In the following, we give an insight into angiographic imaging modalities that
are involved during medical treatments. In section 1.3 the work- and dataflow to-
gether with a short justification of a registration system for abdominal interventions
is described, followed by a brief description of requirements. At the end of this
chapter, we sum up all contributions made throughout this work: a new CTA pro-
tocol for liver catheterizations, a semi-automatic 2D-3D registration technique for
angiographic interventions driven by anatomical features, a fully automatic 2D-3D
registration technique driven by vessel probabilities, and an approach to the difficult
problem of single-view 2D-3D deformable registration.
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1.2. Angiography in the Clinic

Angiographic imaging has become essential for diagnosis and treatment. There are
different techniques for pre- and intraoperative angiographic patient scanning, those
of which are important for the task in this thesis will be covered in the following.

1.2.1. Preoperative Imaging: CTA and MRA

For diagnosis and planning of angiographic interventions, two modalities are com-
monly used, Computed Tomography Angiography (CTA) and Magnetic Resonance
Angiography (MRA). Both acquire a sliced volume of the patient visualizing con-
trasted vessel structures as well as bone, organ, and tissue anatomy.

Computed Tomography Angiography CT is based on image reconstruction from
X-ray beams. In a gantry ring, one or two X-ray sources rotate around the object2.
From different angles a fan-shaped beam of X-rays is emitted and captured by a de-
tector ring (or row) consisting of 1-64 slices. For one X-ray, its mean attenuation
according to the radio densities of the traversed object is recorded by a detector el-
ement. A sinogram3 is produced from which the densities at spatial positions can
be reconstructed. Mainly, two methods are used for this reconstruction, filtered back
projection (FBP) and the algebraic reconstruction technique (ART) [71].

With state-of-the-art CT scanners, CTA volumes can be acquired with a spatial
resolution of ≤ 0.4 × 0.4 × 0.4 mm3 voxels showing contrasted vessel of a diameter
down to 0.35mm [43]. CT scanners can visualize the typical range of Hounsfield
units (HU), i.e. from −1000 to 1000 HU, resembling the X-ray attenuation of air
(−1000 HU, black) and bone (1000 HU , white).

CT Angiography is a method to visualize blood vessels by contrast injection dur-
ing CT scanning. The contrast material (iodine, or barium liquid) is injected into a
vein at the periphery (e.g. arm) and circulates with the blood through arterial and
venous system. A region in the aorta is constantly scanned until a certain mean
intensity (e.g. 150 HU) is reached, which triggers the scan to acquire the actual im-
age (bolus tracking). More scans can be done after a certain delay time. Amount
of contrast administered, bolus tracking, and delay time follow certain acquisition
protocols that are fine-tuned to anatomy, patient, and disease [44].

Magnetic Resonance Angiography Magnetic Resonance Imaging (MRI) is not us-
ing the imaging properties of X-ray attenuation as does CT and is thus not hazardous
in terms of ionizing radiation (X-rays). It acquires signals that are emitted from
relaxation processes of proton spins whose phases were changed (excitation) by a
radiofrequency pulse. Each tissue has a different number of protons, causing the
emission of tissue-specific signals. In order to determine the spatial location of the

2in state-of-the-art machines, with a rotation speed of 0.33sec per gantry rotation
3a stack of 2D images, where a column in an image corresponds to the projection of n rays of a fan

beam from one angle
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signals, magnetic field gradients are applied for slice selection, row selection (phase
encoding), and column selection (frequency encoding).

There are several MR Angiography techniques, some of them involving a contrast
injection as CTA. Here, however, the contrast has to be paramagnetic extracellular,
e.g. gaudolinium. There are also fully non-invasive techniques for angiographic MR
imaging by using the flow property of blood (Time-of-Flight MRA, Phase-Contrast
MRA). See Figure 1.3 for an example of contrasted CTA and MRA slices.

(a) (b)

Figure 1.3.: MRA (a) and CTA (b) slice of a liver

1.2.2. Intraoperative Imaging: C-arms

During angiographic procedures, the most commonly used device is a so-called C-
arm, a C-shaped machine with an X-ray source and a detector plane at the respective
ends of the “C” (see Figure 1.4). A table is moved into the iso-center of the C on
which the patient can be screened from different viewpoints by altering two possible
angles, table position, and zoom. Similar to CT imaging, the physical law of radia-
tion attenuation is used to produce images. In contrast to CT, where a fan beam is
travelling through the object (creating only few lines of intensities), C-arms emit a
cone-beam of X-rays that fills a 2D array with intensities. Different C-arms are avail-
able for intraoperative usage - leading from “basic” fluoroscopic devices to high-end
cone-beam reconstruction C-arms yielding 3D volumes with CT-like image quality.

Since technical properties and thus image quality of C-arms differ, we will intro-
duce a short categorization of existing C-arm devices according to their attributes.
Mind that this will not be a thorough technical classification, it should just help to
distinguish between properties that will be of importance for the task in this thesis,
2D-3D angiographic image registration.
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(a) mobile C-arm with image intensifier (b) floor-mounted stationary C-arm with image
intensifier

(c) ceiling-mounted stationary C-arm with flat
panel detector

(d) ceiling-mounted stationary C-arm with bi-
plane imaging system

Figure 1.4.: Different C-arm imaging devices

• 2D and 3D: The minimal functionality of C-arms that are currently used in
hospitals covers fluoroscopic and digital subtraction image acquisition. Fluo-
roscopic imaging creates image sequences of about 12-15 FPS, whereas digitally
subtracted angiograms (DSA) are acquired at a frame rate of ca. 5 FPS, where
a non-contrasted X-ray image is subtracted from a contrasted one to visual-
ize the vessels only. Many state-of-the-art C-arms perform an alignment (2D
registration) of non-contrasted and contrasted view in order to reduce motion
artifacts retrospectively [102]. The spatial resolution of fluoroscopic images or
DSAs currently goes down to 0.13mm per pixel. Newer C-arms have the abil-
ity to perform a rotational run around the patient to acquire 150-500 projection
images from different viewpoints. With cone-beam reconstruction techniques
[144] 3D volumes can be computed in less than 1min with a spatial resolution
of down to 0.4mm3 , either visualizing 3D vasculature or intensity volumes
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measured in Hounsfield units. Up to now, preoperative CT scanners still have
a better Hounsfield resolution (every single unit is distinguishable) than intra-
operative C-arms (every 5th unit is distinguishable) [136].

• stationary and mobile: There are systems that are fixed in the interventional
room, either mounted to ceiling or floor, and mobile C-arms that can be moved
on wheels. The price to pay for the higher spatial flexibility of mobile C-arms
is the lower image quality especially for 3D reconstructions due to mechanical
jittering during acquisition. For mobile devices, a geometric calibration step is
necessary before each intervention in order to provide 3D acquisitions, whereas
stationary systems require a geometric calibration every 6 months only.

• mono- and biplane: Stationary C-arm machines are equipped with one (mono-
plane) or two (biplane) X-ray-source detector systems. The two image planes
are usually related by a 90◦ rotation relative to each other. Especially minimally-
invasive neurological surgeries are typically performed using biplane C-arms,
whereas abdominal or cardiac procedures are usually monitored by mono-
plane imaging systems. When using images from two views, 2D-3D registra-
tion, or reconstruction of instrument locations in 3D can be performed easier
and more accurately.

• flat panel and image intensifier: There are two technologies used for transfer-
ring X-rays into gray values and producing digitized images. Image intensifier
systems convert photons into electrons that are accelerated and produce pho-
tons that can be captured by a CCD camera. Flat panel systems transfer X-rays
into light rays that are detected by elements (based on thin-film-transistor tech-
nology) with the size of a pixel. The flat panel technology has been introduced
to overcome drawbacks in image intensifier systems. For example, image dis-
tortion, caused by a curve-to-plane warping and the earth magnetic field only
emerge in image intensifier systems [133]. For calibration issues, and thus for
the task of this work, 2D-3D registration, it is important to know about the
presence of distortion in order to determine corresponding points of 2D image
plane and 3D image.

After this general introduction to angiography as it is applied and used in the
clinic, we focus on a more specific clinical scenario in the following section. This
shall help to illustratively explain the problem, summarize a typical workflow, and
derive requirements for a system of 2D-3D angiographic registration.

1.3. A Registration System for Abdominal Catheterizations

Due to the increasing capabilities of medical imaging devices, pre- as well as in-
traoperative imaging techniques are used for numerous different applications, e.g.
neurosurgery, abdominal catheterizations, or needle biopsies. In fact, the focus of
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this work lies on abdominal angiographic interventions, in particular liver catheter-
izations. Liver catheterizations capture many difficulties for the operating physician
that are faced during angiographic interventions, as for instance motion blur of im-
ages or reduced intraoperative depth perception due to single-view systems.

In the following, we will give a brief summary of the imaging workflow that is
typical to many abdominal angiographic interventions, especially the numerous dif-
ferent hepatic catheterizations. From this description, we will justify the necessity
of 2D-3D registration and shortly summarize its most important requirements. With
this section we want to motivate the task of 2D-3D registration and outline its major
difficulties. A complete explanation of the focused clinical application, its purpose,
data-, and workflow, as well as an extensive discussion of the challenges that are
posed to a registration system will be postponed to chapter 4.

1.3.1. Imaging for Liver Interventions

The current workflow of catheter-based liver interventions (e.g. Transarterial Chemo-
embolizations (TACE), see chapter 4, or Transjugular Portosystemic Shunt (TIPS)
procedures) usually includes the acquisition of one or more preoperative 3D data
sets using CTA or MRA. There are different scan protocols for visualizing the region
of interest and/or the vascular tree. These data sets are used before the procedure
to assess region of interest (ROI), a path (or roadmap) through the vessel system to
reach this ROI with a catheter, and possible complications due to, e.g., thrombus
from former treatments.

In the current clinical workflow, this preoperative data is not made available dur-
ing the intervention. Intraoperatively, the physician relies on the 2D projections of
patient anatomy coming from fluoroscopic sequences (to visualize the current loca-
tion of injected instruments) and DSAs (to get a better orientation of the vascular sys-
tem). In most hospitals, only mono-plane C-arms are used for abdominal catheter-
izations in contrast to neuro surgery, where biplane systems are frequently utilized.
3D acquisitions are performed with injected contrast to get a 3D visualization of the
current state of vessels and catheter. These acquisitions are hazardous in terms of
radiation exposure for both physician and patient. Thus, they are usually performed
at most twice per treatment. Moreover, the acquisition of a static 3D volume does
not allow for fusion of subsequent angiographic images with the 3D vasculature due
to liver motion induced by patient breathing.

1.3.2. Justification for a 2D-3D Angiographic Registration

Guided by 2D projections of one view only, it is sometimes difficult for the operating
physician to find a path through the patient’s vessel system. This is due to projec-
tion overlay and self-occlusion of vessel structures that run orthogonal to the image
plane (reduced depth perception). Moreover, since contrast agent only stays inside the
vessels for a short period of time, the catheter has to be navigated through the vessel
system with only static or temporal additional information on vessel segments and
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bifurcation points (blind navigation). The patient breathing changes the current po-
sition of the visualized instruments hampering the navigation additionally (patient
motion).

In order to overcome these problems, a method shall be developed to transfer
information from 2D to 3D and vice versa in order to increase depth perception and
thus allow for a reduction of radiation exposure for patient and physician as well as
a decrease in amount of contrast agent administered.

An accurate 2D-3D registration of pre- and intraoperative data allows for an over-
lay of projected vasculature with current 2D fluoroscopic images for roadmapping
without new contrast injection. Moreover, back-projecting instrument locations to
3D in order to regard instruments and ROI from different viewpoints within a model
of the entire vasculature can be achieved. An important application of 2D-3D reg-
istration in abdominal interventions is the initialization of motion compensation
software to track breathing motion over time in fluoroscopic image sequences. If
planned information (e.g. the location of region of interest, a path through the ves-
sel system to reach it, etc.) is available in the 3D data to be registered, transferring
this information to the current intraoperative situation can be offered through 2D-3D
registration combined with motion tracking.

Since 3D data can be acquired on the same device used for 2D imaging, a 3D-
3D registration algorithm together with a previous calibration step should achieve
an accurate registration of preoperative 3D and intraoperative 2D data. However,
due to patient breathing, a 2D-3D registration step is needed to compensate for this
motion induced by respiration even if 3D data is available intraoperatively.

Active research on 2D-3D registration techniques for angiographic images has
started in 1994, we will give an extensive review in chapter 3. Most of the existing
techniques have not focused on regions that are subject to deformation but rather
rigid regions (e.g. brain) to develop techniques for estimating the pose of the 3D
image. Moreover, some of these algorithms require user interaction, e.g. a manual
selection of vessel segments to be registered. Thus, the direct transfer of existing
methods is difficult for the goal of this work, a fast and robust 2D-3D registration
technique that can be used for abdominal interventions.

1.3.3. Medical and Technical Requirements

From the medical point of view, the requirements for a 2D-3D registration method
that can be used in the clinic are as follows. First, during the intervention, the oper-
ating physician has to perform tasks quickly to reduce intervention time. Therefore,
the method is subject to hard time constraints. Second, user interaction must be kept
as low as possible in order to avoid distractions for the interventionalist from per-
forming the actual medical procedure. Third, as there is a considerable amount of
technical devices in a state-of-the-art operating room, the registration should only
make use of available data, i.e. external devices should be avoided.

Technically, a registration software for angiography requires the following: First
the viewpoint with which the 3D volume has to be projected in order to produce
the same image as the current one is to be found (rigid 2D-3D registration). Second,
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since contrast agent is administered globally in the preoperative case and locally
in the intraoperative one, the visualized vasculatures differ in the actual structures
that are displayed. Thus, the registration method must cope with this difference in
the structure of interest (robustness to outliers). To this end, meaningful initialization
techniques are also required to start an optimization of registration parameters near
the global optimum. In abdominal procedures, breathing causes a motion, which has
to be taken into account for any registration algorithm. This motion, as reported in
the literature, contains a rigid and a non-rigid (deformable) part [151, 124]. Thus, as a
third and last point, the rigid registration has to be robust to breathing changes, and
an accurate registration shall be achieved by extending the method to deformable
registration (deformable 2D-3D single-view registration).

1.4. Contribution

In the course of this work, several algorithms for vascular image registration and a
new protocol for CTA acquisition have been contributed to the international scien-
tific community of Medical Image Analysis . Here is a short summary together with
the publications that resulted from the continuous research on 2D-3D angiographic
image registration:

• Until now, 2D-3D registration of data from abdominal catheterizations was
not possible due to the absence of a suitable preoperative scanning protocol.
This issue is addressed by introducing an angiographic CT scanning phase
[58]. The scan visualizes arteries similar to the vasculature captured with an
intraoperative C-arm acquiring DSAs. With this new scan protocol and a suit-
able registration algorithm a strong link is created between radiologists and
interventionalists by bringing preoperative patient and planning information
to interventional workflow [106].

• A rigid registration algorithm is conceived to align 3D and 2D vessel struc-
tures segmented from abdominal CTA and DSA images respectively [59, 58].
With a minimal amount of user interaction, centerlines of vascular systems are
extracted and graph representations are created from 3D and 2D data. By re-
stricting the feature space on bifurcation points only and using topological in-
formation of the underlying graph structure, the method is able to compute the
right pose accurately and robustly. A comparison to a state-of-the-art algorithm
shows the good performance of the novel algorithm. Moreover, the results of
this method enable the projection of a previously planned 3D roadmap onto
the current DSA image for enhanced catheter guidance and data fusion.

• A hybrid registration technique is developed that rigidly aligns a 3D CTA ves-
sel model to a 2D DSA image for liver catheterizations [57]. This method does
not require user interaction intraoperatively and is thus particularly suitable
for clinical use. Feature spaces are iteratively adjusted by the use of a prob-
ability map that links registration to 2D segmentation results. A Maximum
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Likelihood formulation justifies the validity of the method. A novel technique
for the creation of authentic simulated DSA images allows for accuracy and
robustness tests in a controlled environment. Clinical tests as well as a new 3D
roadmap visualization technique based on computed one-to-one correspon-
dences show the high potential of this algorithm.

• For the first time, the difficult task of single-view 2D-3D deformable registra-
tion is addressed [165]. The approach addresses the inherent ill-posedness of
the problem by incorporating a priori knowledge about the vessel structures
into the formulation. The distance between the 2D points and corresponding
projected 3D points is minimized together with regularization terms encoding
the properties of length preservation of vessel structures and smoothness of the
deformation.
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This section gives an overview of the theoretical background and methods for reg-
istering angiographic images. Basically, image registration tries to establish a path
from input images, introduced in section 2.1, to an aligning transformation between
them. Along this path there are several issues to resolve.

First, many methods have to extract features of interest to achieve the registration
goal. In angiography, vessels are the features of major interest, whose extraction and
quantification will be explained in section 2.2.

The second step is to establish a spatial relationship, a transformation, between the
extracted features. This includes the finding of a one-to-one feature mapping, which
is supposed to solve the correspondency problem. From corresponding features, a
transformation can be computed by optimizing an energy term. The correspondency
problem, the nature of energy terms and transformations, and optimization proce-
dures will be the topic of section 2.3.

In section 2.4 we will refine the definition of image registration given in 2.3 to the
particular case of 2D-3D registration and introduce a model with its parameters for
the rigid case. We will also constrain the term rigid 2D-3D registration to the task of
2D-3D pose estimation, and give algorithms for testing, error analysis, and algorithm
evaluation.

These four sections provide the methodological basis for the review of 2D-3D an-
giographic registration (chapter 3), and for the novel methods, which will be devel-
oped in Part II.

2.1. Images

Mathematically, an image I is a function that maps a spatial location to a scalar value
representing brightness or illumination:

I : Ω → R, (2.1)

where Ω ⊆ R
d Instead of brightness or illumination we use the term intensity through-

out the thesis. Computer images are rasterized, i.e. spatial locations are distributed
on a regular grid, the grid points are referred to as pixel/voxel. For simplicity, we
will not use the term voxel, and indicate in the text if we address 2D, 3D, or higher
dimensional images.

Linear Image Filtering The mathematical concept behind image filtering is the con-
volution of two functions f, g:

(f ∗ g)(t) =
� ∞

−∞
f(τ)g(t− τ)dτ, (2.2)
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Images can be enhanced by filter application, e.g. a gradient filter enhances edges,
a Gaussian filter smooths the image to suppress noise. Very often, a filter shall be
applied to a derivative of an image, which can be achieved by building the derivative
of the filter (which is usually smaller than the image) and filtering the image with
the filter’s derivative, reducing the overall computation cost (differentiation commutes
with convolution) [141]. Moreover, accuracy can be increased since the derivative of
the filter can usually be determined analytically.

Image Derivatives Images can be derived to extract gradient and Hessian of the
underlying intensity-mapping function. Given an image I, we will denote the gra-
dient as ∂I

∂x = ∇I, and the Hessian matrix as ∂2I
∂2x

= HI .

Linear Scale-Space For image segmentation it is important to extract objects of
different size from the image. Thus, segmentation algorithms often have to search
for objects in all possible scales.

A concept which is often used for multi-scale representations of images is the lin-
ear scale-space introduced by Witkin [156] and thoroughly explored by Lindeberg
et al. [86, 141]. Witkin proposed to treat scale as a further dimension of an image
I : Ω → R:

T : Ω× R+ → R, (2.3)

where T must fulfill the causality property [78], which basically means that new ex-
trema must not be created in the scale-space representation. He also showed that
moving along this scale dimension to point s ∈ R+ is equivalent to filtering an image
with a Gaussian kernel with standard deviation σ = s in order to suppress structures
with a characteristic signal length of less than σ:

T (., s) = Gσ(.) ∗ T (., 0), (2.4)

where Gσ is a Gaussian smoothing kernel with standard deviation σ = s and zero
mean,

Gσ(x) =
1

(2πσ2)N/2
e−x�x/(2σ2), (2.5)

and T (., 0) is the original image data. The advantage of scale-space is to change
scales on a fine-grained level and avoid localization errors since the resolution of
the image is not altered, in contrast to e.g. image pyramids [22, 36]. It should be
noted that intensity and its derivatives are decreasing functions of scale. For that,
a normalizing factor can be introduced to make them comparable throughout scale-
space, i.e.

T (., s) = sγGσ(.) ∗ T (., 0), (2.6)

where γ depends on the underlying model of shape and the feature (edges, corners,
ridges) to be detected [80, 87].
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In this section images were treated as continuous signals. Digitized images, how-
ever, have a discrete nature, which raises some issues in approximation and imple-
mentation of the aforementioned techniques. These issues can be found, shortly
summarized, in appendix A.

2.2. Vessels in Medical Images

As already mentioned, many registration techniques need to work on features of
interest, which are, in angiographic images, vascular structures. Even if so-called
intensity-based methods (see 2.3.1) are used for angiographic image registration,
vessels are usually extracted. In the following, we will give an introduction to en-
hancing vessels (see 2.2.2), initializing segmentation algorithms (see 2.2.3), which
themselves will be subject to discussion in 2.2.4. For most methods, differential ge-
ometry analysis of the intensity mapping of vascular images is crucial, which is why
an explanatory introduction of the Hessian matrix in angiographic images is given
in 2.2.1. For the registration task, attaching attributes to segmented vasculature like
centerline points, or vessel diameter is very important. Thus, the quantification of
vascular structures will be focused on in 2.2.5.

Literature Lots can be found on vessel analysis from medical images, the body of
research in this field is growing constantly. A good review up to 2002 is provided
by Kirbas and Quek [76], a second one by Suri et al. [139, 140] considers vascu-
lar segmentation on MRA images. Techniques, however, are evolving still, and no
exhaustive review has been published on this issue yet. The interested reader is re-
ferred to state-of-the-art sections of the latest works on vessel analysis, as there are
for instance Gooya et al. [53], Schaap et al. [132], Manniesing et al. [98], or Yan and
Kassim [159].

2.2.1. The Hessian in Vessel Analysis

The Hessian matrix of images plays a major role for model-based analysis of vessels.
For the following explanation also refer to figure 2.1. Given a curvilinear structure in
a 3D image (a tube) with radius r. A common assumption is that the intensity profile
of a scan line orthogonal to the tube’s axis follows a 1D Gaussian distribution with
standard deviation σ = r, i.e. the highest (brightest) intensity is at the centerline of
the vessel model1. If we build the 2nd derivative of the intensity profile, we get a
profile, which is minimal at the centerline point and has two zero-crossings at ±σ,
each at the border of the tubular structure. We can also transfer this intensity analysis
to higher dimensions using the Hessian matrix. If we move the 3D image in scale
space to s = σ equal to the tube’s radius, the eigenvalues (λ1 ≤ λ2 ≤ λ3) and their
associated eigenvectors (v1,v2,v3) of the Hessian at a point x on the centerline of the
tube have the following properties:

1In fact, this is only true in scale-space where the appropriate smoothing step assures this intensity
profile
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Figure 2.1.: A tubular model of a 3D vessel with a Gaussian intensity profile along a
scanplane through the tube. The right image shows the 2nd derivative of the Gaus-
sian profile, where the doubled standard deviation, 2σ, connects the 2 zero-crossings.

• Direction: In a local neighborhood, the eigenvector associated with the largest
eigenvalue (v3) points in the direction of the tube.

• Basis of orthogonal plane: The two other eigenvectors {v1,v2}} form a basis of a
plane that is orthogonal to the structure. The circle with center x and radius σ
that lies in the plane spanned by these eigenvectors should describe the border
of the vessel, i.e. the places with largest intensity change.2

• Eigenvalue character: On a centerline of a tube, λ3 should be a positive value
close to zero, λ1, and λ2 negative, and of equal and high magnitude (minimal
in a local neighborhood). Thus, when evaluated at arbitrary points y in the
image, the eigenvalues give a good hint if y is on a centerline or not.

To summarize, with a proper analysis of Hessian eigenvalues we can detect candi-
date seeds of centerline points or enhance curvilinear structures in the image. With a
proper usage of the eigenvectors, vessel walls can be detected and centerline points
can be followed (on a 1D intensity ridge [40]). The same analysis as in 3D applies
to 2D images, where one eigenvector vanishes and the orthogonal plane (formerly
with basis {v1,v2}) collapses to a line (with direction v1). The intensity profile can

2This is an approximative assumption since vessel sections can also be elliptic
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also be inverted (i.e. dark instead of bright vessels), where a change of sign adjusts
all algorithms based on Hessian analysis.

Hessian-based vessel analysis has its drawbacks as well. First, since scale-space is
needed to operate on the Gaussian intensity profile, these methods are quite slow.
Second, since 2D images only yield 2 eigenvalues for Hessian matrices, many de-
rived filters (e.g. [47, 131, 98]) loose some criteria and can become unstable. Third, if
the vessel radius becomes very small the computed eigenvalues become unstable.

2.2.2. Vessel Enhancement

Enhancing curvilinear structures in images is a crucial step for vessel segmentation
and quantification. Especially if the segmentation algorithm does not take a model
of a vessel into account, it is important to previously change intensities in order to
sharpen vessel borders and reduce noise or artifacts in the background (see Figure
2.2).

For image and/or vessel enhancement, filters can be used to

• reduce noise in the image, typically Gaussian smoothing, or edge-preserving
smoothing (e.g. anisotropic diffusion [119], or median filtering),

• remove background artifacts (e.g. bothat or tophat filtering [35, 34]), and

• enhance tubular structures (Hessian-based filters [47, 131, 91]).

Bothat and tophat filtering are based on grayscale morphology operators. The
bothat filter applies a closing operation, that is a dilation (maximum filter), followed
by an erosion (minimum filter). If an image with dark vessels3 is processed and the
structure element is chosen to be larger than the largest vessel, the dilation should
remove the vessels from the image and retain the background. Afterwards, the orig-
inal image is subtracted from the closed version to get an image were non-vessel
structures have been removed (see Figure 2.2b). The tophat filter [52] is the reversed
version (original - opened image) of the bothat and creates the same output if applied
to the inverted input image.

Hessian-based enhancements of tubular structures use, as explained above, the
eigenvectors of the Hessian matrix to evaluate if a point is inside a curvilinear struc-
ture or not. For instance, Frangi et al. [47] create a vesselness image, where each
pixel value contains the probability of belonging to a vessel or not (see Figure 2.2c).
The filter calculates the exponential version of three (for 3D images) and two (for 2D
images) eigenvalue-based criteria that distinguish curvilinear structures from other
structures and noise. Manniesing et al. [98] encapsulate the vesselness filter of Frangi
- adapted to be smooth also in the vicinity of zero - in a diffusion process to enhance
tubular structures. An enhancement strategy similar to Frangi et al. is proposed
by Sato et al. [131] deriving a response function from the ratios of combinations of
eigenvalues. Lorenz et al. [91] propose to use the eigenvalues orthogonal to the ves-
sel direction4 for enhancement combined with an edge-indicator in order to avoid

3as for example DSA images
4their arithmetic mean in 3D
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detection of step edges. A comparison of Frangi, Sato, and Lorenz filters and the
choice of normalization parameter γ in linear scale-space is described in Olabarriaga
et al. [109].

(a) (b) (c)

Figure 2.2.: Different enhancement filters applied to a DSA image (a). (b) shows a
bothat filtered image, (c) shows a vesselness image as proposed by Frangi et al. [47]

2.2.3. Segmentation Initialization

Initialization of segmentation algorithms is crucial for automatic vessel analysis. A
manual initialization can be acceptable for preoperative image data, however, in-
traoperatively, user interaction should be avoided. While some papers rely on a
manual initialization subject to refinement (manual clicks in the vicinity of the cen-
terline that are automatically shifted to the centerline), there are several methods to
automatically detect candidates for centerline pixels.

Krissian et al. [80] detect pixels that are likely to lie on a 3D tubular centerline by
requiring the two small eigenvalues v1,v2 of the Hessian to be negative.

An interesting approach by Can et al. [25] that is not based on Hessian analysis is
to use an oriented filter, which is a mixture of a derivative (for edge detection) and
a mean filter (for robustness against noise). Since the direction of the tube cannot be
inferred by design as in the Hessian-based analysis, the filter must be evaluated in
any direction (discretized with 16 different ones). Moreover, since scale-space is not
involved, the filter is shifted outwards in a local neighborhood of the inspected point
to account for vessel width. In each step, the filter is evaluated and certain criteria
are checked. The criteria, derived from responses of two opposite edge detectors
yielding a maximal value at the borders of the vessel, assure that the point where the
filter is evaluated is a centerline point.
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2.2.4. Segmentation

If we pick up definition 1.3 from chapter 1, segmentation is the partitioning of the
image domain Ω into sets Sk ⊂ Ω, which satisfy

Ω =
K

k=1

Sk (2.7)

where Sk ∩ Sj = φ for k 
= j and each Sk is connected [120].
In our scenario, we only have two classes, S0, the background, and S1, the vascu-

lar object, i.e. segmentation yields binary images. Segmentation will also be called
labeling, where a label (object or background label in our scenario) is assigned to a pixel
if it is a part of the vascular object, or the background, respectively, see Figure 2.3.

(a) (b)

Figure 2.3.: (a) a volume rendering of a 3D CTA scan, (b) the segmented liver vascu-
lature.

We identify two classes of segmentation algorithms that are interesting in our con-
text, techniques based on Thresholding and Level Set methods.

Thresholding-Based Segmentation Methods Thresholding is a simple segmenta-
tion algorithm that assigns object labels to pixels with an intensity that lies within a
specific range. The borders (thresholds) of this range can be determined manually or
automatically as proposed for vessel segmentation of MRA TOF images by Wilson
and Noble [155]. They model pixel intensities with different probability distributions
and iteratively solve for a classification using a Gaussian mixture model and the EM

algorithm [37].
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Condurache et al. [34] propose a hysteresis thresholding method, which computes
a hard and a weak threshold and shifts pixels from the low confidence level (given
by the weak threshold) to the high confidence level (given by the hard threshold) via
adjacency.

Region Growing or Connected Thresholding only considers pixels in the intensity
range, which lie within the neighborhood of a seed point. It is suitable for segmen-
tation of topologically connected objects, which generally can be assumed for vessel
structures. Selle et al. [134] propose a region growing technique for vascular images,
where the intensity range to be considered is automatically determined by sampling
thresholds and calculating the point in threshold space where the number of pixels
with object label significantly increases. At this point, it is assumed that the region
growing “breaks out” of the vascular structure and accumulates surrounding tissue.

Level Sets Segmentation based on active contours [72, 158] has become famous in
Computer Vision and Medical Image Analysis. The intuition behind active contours
is to define a curve (the contour) and let it evolve in time depending on internal
(smoothness) and external (image) forces. While early models use a parametric rep-
resentation of the curve, Level Set methods [111, 26, 28] implicitly represent a curve
as the zero Level Set of a higher dimensional function.

A Level Set method based on the evolution of a 1D curve in 3D for vessel segmen-
tation has been proposed by Lorigo et al. [92], where the focus particularly lay on
the extraction of small vessels that cannot be found by mere thresholding. A gen-
eral problem of Level Set methods evolving 2D surfaces for elongated structures is
their tendency to leakages where no high gradient is given. Deschamps et al. [38]
introduce a freezing value for pixels indirectly proportional to their distance to the
starting seed point. If a point is very near the starting point but still on the evolving
surface of the curve, it is assumed to be at a vessel border and it is set fixed. Nain et
al. [104] incorporate a soft shape prior into the Level Set formulation that penalizes
leakages. The prior is based on a filter yielding a large response if evaluated in a
segmented region with a radius larger as the largest expected vessel radius.

Current research on vessel segmentation using Level Sets tries to localize small
vessels in MRA data sets continuing the work of Lorigo et al. [92]. Yan and Kassim
[159] propose a Level Set formulation based on capillary forces in order to extract
small vessels in MRA data. Their energy functional consists of several energy terms
derived from the physics of capillarity. Gooya et al. [53] combine the Chan-Vese
active contour model [28] with the maximization of the product of two statistical
distances and a flux maximization flow as proposed by Vasilevskiy and Siddiqi [149].

2.2.5. Quantification

Quantification of vessel structures is a main issue for feature-based registration of
angiographic images and a proper visualization. The main characteristics of vascu-
lature that are subject to extraction are:

• Centerline: Since vessels have the structure of a tube, we are interested in its
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centerline, i.e. the 1D curve that describes the geometric shape of the vessels.

• Branching points: The topology of vessel structures is described by bifurcations.
Vessels often have a tree-like shape, where junctions are distinct and can thus
be used for registration.

• Diameter: The width of the vessel tubes at all locations is an important criterion
for matching and visualization.

For some applications, such as classification of stenosis width, an estimate of the ves-
sel wall is desired [46], which we will not cover since the registration task does not
require models of the vessel wall. Given segmented vessel structures, methods have
been developed to extract all the aforementioned information. However, there are
also direct methods, which quantify vessels based on grayscale information circum-
venting the sometimes tedious and error-prone segmentation steps. The quantifica-
tion of both segmented and grayscale images will be discussed in the following.

Centerlines from Segmented Images Given binary images, centerlines can be com-
puted by producing a skeleton as introduced by Blum [14], who constituted the well-
known medial axis transform (MAT). A skeleton represents the medial axis, which is
the set of centers and radii of the maximal disks that are contained within the object.
There is a considerable body of research on skeletonization algorithms [13, 17]. Fast
approximative algorithms have been proposed for skeletonization, usually referred
to as topological thinning algorithms [82]. Thinning algorithms remove points from
the segmented object if their deletion does not lead to topology change or shrinkage
of the segmented object.

An effective thinning algorithm particularly tailored for tubular structures is pro-
posed by Palagyi [113] (see Figure 2.4c). This sequential algorithm iteratively tests
border5 points whether they are simple6 and non-final7, in which case they get re-
moved. Special care is taken to symmetrically thin the structure by processing only
one direction (north, south, east, west, and, for 3D, also bottom, and top) at a time.

A similar approach was proposed by Selle et al. [134] who guarantee the symmet-
ric thinning by only removing simple points in the current pass if they have the same
value in a Euclidean distance map [16] (see Figure 2.4a) computed on the segmenta-
tion.

In general, skeletonization algorithms do not yield the centerline of tubular struc-
tures, but introduce spurious branches, which have a smaller length than the diame-
ter of the vessel in which they are located (see Figure 2.4c). In order to remove these
spurious branches, the analysis of a distance map can be used. For instance, branches
with a length smaller than 2 times the diameter of the outgoing bifurcation can be
deleted. Or, as proposed in Selle et al. [134], pixels of the thinned structure whose

5A point with object label is called border if it is 6-adjacent (in 3D, 4-adjacent in 2D) to at least one
background point

6A point is called simple if its removal does not change the shape’s topology. For a formal definition
refer to [97]

7A point is called non-final if it has more than one object neighbor
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gradient magnitude in the distance map of the segmentation is not near to zero can
be discarded, assuming that only centerline pixels lie on a prominent intensity ridge
of the map.

Ridge Detection and Traversal Since we are often only interested in centerlines
and vessel diameters, approaches have been proposed to directly extract this infor-
mation from greyscale images without segmenting the image.

Referring to the figure of a tube model (Figure 2.1), the intensity profile on a scan-
plane orthogonal to the tube describes a 1D intensity (height) ridge in 2D [40]. In 3D,
there is also a 1D ridge following the centerline of the tube, but cannot be visualized
as easily as the 2D pendant. Such ridges can be detected and traversed in the direc-
tion of the tube. The detection of intensity ridges on images can also be interpreted
as finding the medial axis on grayscale images, as proposed by Wang et al. [153] for
2D images. Here, the MAT is based on maximal gradient responses from opposing
boundaries (gradient medial axis transform, GRADMAT).

The group around S. Pizer laid the theoretic foundations of the detection of 1D in-
tensity ridges8 by formally defining medialness for grayscale images, thus extending
the definition of Blum [14]. Similar to Wang et al. [153], a measure for medialness
can be derived by accumulating responses from opposing boundaries [121]. The
measure is maximal at ridge points and thus suitable for detection.

Ridge traversal is achieved by moving along the ridge’s tangent direction, which
can be approximated by the largest eigenvalue of the Hessian matrix [6].

The detection and traversal of ridges in vessel shapes yield the centerlines of the
vessels, directly inferring a quantification of vessel structures, see Figure 2.4b. Ridge
detection is run in linear scale-space where the standard deviation of the Gaussian
filter σ is equal to the radius of the vessel whose centerline has been detected. Since
ridge detection and traversal yields two of three quantification results of vessel anal-
ysis without explicitly segmenting the structure, it has received a lot of attention in
the Medical Image Analysis community.

For ridge detection, usually gradient and Hessian information of the image is
mixed (gradient for extremum/boundary detection, Hessian eigenvectors for direc-
tional information). Given a 3D image I, the gradient ∇I, the Hessian HI , their
eigenvalues (v1,v2,v3) together with their corresponding ordered eigenvalues λ1 ≤
λ2 ≤ λ3. As pointed out in the discussion in section 2.2.1, a ridge point has to fulfill
certain conditions in an intensity profile with bright vessel structures [40]

(i) Eigenvalues: The eigenvalues of the eigenvectors orthogonal to the tube must
be negative.

λ1 ≤ 0 and λ2 ≤ 0 (2.8)

(ii) Optimum: The ridge point must be an intensity maximum in the directions
orthogonal to the tube. Thus, the projection of the gradient at a ridge point

8Together with the scales (radii) where they have been detected, 1D intensity ridges were also dubbed
as cores [50]
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(a) (b) (c)

Figure 2.4.: (a) 2D Distance Map of a segmented DSA image (original: Figure 2.2a),
(b) ridges responses as described in Koller et al. [79], (c) thinned image applied to a
segmentation of (a) using the method of Palagyi et al. [113].

onto the directions (v1,v2)) must be zero at scale s for a tube with radius s:

v�1 ∇I = 0 and v�2 ∇I = 0 (2.9)

Using these criteria, ridge points and thus vessel centerlines can be detected [6]. In
2D, only two instead of four criteria are tested.

Approaches by Koller et al. [79] and Krissian et al. [80] derive a filter response from
gradient and Hessian. Both methods use the fact that the gradient should be high at
the boundaries of the tubular structure, if it is measured orthogonal to the axis of
the tube. At scale s, they measure the rate of intensity change along a direction
orthogonal to the tube by

R(x) = min (∇I(x± sv1|2)�v1|2), (2.10)

in [79] and

R(x) =
α=2π

α=0
∇I(x± svα)�vα), (2.11)

where vα = cos αv1 + sin αv2 in [80].9

Again, the same criteria and response functions can be applied to 2D images, col-
lapsing the circle described by vα to a line and probing two points (x ± sv1) on this
line.

The approach by Frangi et al. [46] finds ridges by fitting a 1D B-spline curve (which
is created manually) to the underlying data using an active contour model [72]. In-
ternal forces account for smoothness of the curve while external forces attract the
curve toward a maximal vesselness filter response [47] and thus an intensity ridge.

The drawback of methods based on intensity ridges is that branching points can-
not be detected easily since the filter responses are not high and ridge criteria do not
hold at bifurcation points.

9In both Equations vi must be normalized.



26 2. Methodology

Detection of Branching Points Detecting the bifurcations of vessel structures is of
major interest for registration algorithms, since junctions represent distinct features,
which can be used for matching. Given a segmented or thinned vasculature and a
seed point, a wave can be defined propagating through all object pixels and testing
for connectivity of the front. This wave propagation algorithm has been proposed by
Zahlten et al. [162] for the use in hepatic vessel analysis. Size and direction of the
wave have to be computed in each step if no centerline was extracted before.

Fridman et al. [50] detect branches with a cornerness measure derived from the
image gradient and the main direction of curvature (eigenvector v3 of the Hessian).
The removal of false positives can be achieved by monitoring absence of a rapid
change of medialness responses in a local neighborhood of the current ridge point.

Krissian et al. [80] detect junctions in vessel structures by analyzing the distance
of adjacent vessel segments. If the distance between the endpoint of a vessel and the
axis of a second vessel is smaller than the radius of the second vessel, a junction has
been detected and the vessel segments are connected.

Diameter Computation Approaches that operate in linear scale-space have the
nice side-effect that the standard deviation of the current Gaussian kernel, σ, at
which a maximal response or ridge is detected, is equal to the radius of the vessel at
that ridge point [86].

If the centerline has been extracted from a segmented image, we can also measure
the diameter using a distance map [16] yielding the Euclidean distance to a contour
of the segmentation (Figure 2.4a). If we assume, due to errors in the extraction pro-
cess, that the centerline point is not located exactly in the middle of the segmented
tube, we can optimize the diameter computation by searching for the highest value
on the distance map perpendicular to the centerline direction.

2.2.6. Suggestions for Method Selection

The choice of the right vessel analysis method is very dependent on modality and
purpose. Current research is focused on detection of small vessels in 3D (mostly
MRA and CTA) images, where the purpose is mostly visualization and diagnosis.
When it comes to intraoperative navigation (and feature-based registration), fast
methods have to be used that require little interaction and deliver results of rea-
sonable quality also on 2D images, whose vessel extraction is, due to lower SNR and
dimension and thus less information, not easier.

The purpose also chooses the method since a segmentation is only required in vi-
sualization and measurements on vessel walls, while for registration tasks, a quan-
titative analysis yielding topology (in terms of birfurcations), centerlines, and vessel
diameter, is often sufficient (which can be achieved without segmentation as in ridge
traversal techniques).

Thresholding or region growing methods are usually computationally efficient
and yield decent segmentation results on 2D and 3D vascular images. However,
region growing requires seed point initialization and both techniques suffer from
the absence of a model, which often leads the algorithm to oversegmentation. A
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conservative choice of the threshold can avoid this effect, but the result will not
give the complete vascular tree making these methods not very suitable for a di-
agnostic purpose. Combining thresholding techniques with the appropriate (model-
based) filter enhancement and an automatic seed point detection can circumvent
these drawbacks in order to have a good trade-off between computational efficiency
and accuracy.

A general problem in Level Set and Ridge Traversal methods is to deal with ram-
ification locations. At these points, sharp corners10 are penalized by the Level Set
approach since the low curvature of an evolving curve or surface is not given. More-
over, the inherent possibility of topology changes of Level Set methods, making them
so powerful, is not desired in the context of vessel analysis assuming vessel struc-
tures to be connected. Ramifications cannot be detected by ridge traversal methods
since the intensity ridge is not distinct at these locations. Thus, such methods tend to
require several starting seeds or reinitialization phases, which, to this end, cause fur-
ther user interaction. The computational cost of Level Set methods and multi-scale
approaches must not be underestimated since time is a critical issue especially intra-
operatively. Both methods tend to require the fine-tuning of a number of parameters
that need to be adjusted for each modality. However, the ability to deal with smaller
vessel branches, which cannot be located by thresholding-based techniques, make
Level Set and Ridge Traversal methods interesting due to their accuracy: the local
injection of contrast and magnification yields vessels in 2D whose corresponding
3D vessels are very small. Their detection in 3D would improve 2D-3D registration
algorithms in accuracy and robustness.

2.3. Medical Image Registration

After the introduction of vessel extraction and quantification techniques, which pro-
vide the features for angiographic registration, the process of using these features for
alignment, i.e. registering the underlying images will be focused.

Definition The process of image registration tries to find a transformation between
two or more images. In this thesis, we will constrain the registration task to two im-
ages, the more general registration of multiple images, also referred to as mosaicking,
will not be discussed.

Definition 2.1 (Registration of 2 Images) Given two images A : ΩA → R and B :
ΩB → R and a set of admissible transformations ϕ : ΩA → ΩB, image registration is
the computation of a transformation ϕ′ that aligns A to B such that a certain comparison
criterion, an energy E , is minimized:

ϕ′ = arg min
ϕ
E . (2.12)

10which usually occur at these junctions
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The choice of the energy depends on the set of admissible transformations. The
energy E , also called error, or cost function, always contains a data termD, which mea-
sures the quality of fit of the two data sets given a transformation. Moreover, as will
be discussed in section 2.3.2, E can impose constraints on the set of admissible trans-
formations if it is not restricted by a model. The notion of correspondency is strongly
related to image registration. The input data must have corresponding information
in order to compute the transformation and evaluate a data term. Establishing these
correspondences depends on the technique chosen to register the images and will
be discussed in section 2.3.3. Since we try to find a minimum of a function (E), we
also need to incorporate some kind of optimization into our registration algorithm.
Suitable techniques will be addressed in section 2.3.4. Section 2.4 will provide details
of the necessary modifications and extensions that have to be applied when moving
to multi-dimensional registration, in particular 2D-3D registration.

Literature A good introduction into basic concepts and algorithms of medical im-
age registration is given in the book Medical Image Registration [61]. A thorough cat-
egorization of registration techniques is presented by Maintz and Viergever [95] in
their Survey of Medical Image Registration. An interesting work is also the book Numer-
ical Methods for Image Registration [103], showing registration concepts from a rather
mathematical and general, but comprehensive and thorough point of view.

2.3.1. Data Terms

Image Registration can be approached in at least two different ways. Either image
features are extracted and the registration is performed based on the extracted spa-
tial information. This approach is referred to as feature-based registration. The second
technique directly performs the registration on the image intensities without requir-
ing a previous feature extraction step. We usually speak of intensity-based registration
to address the latter approach. The difference between intensity- and feature-based
registration is the choice of data term D.

Similarity Measures Intensity-based techniques use the intensity mapping of the
images to define a similarity measure (SM) as data term DS . If HA = {hA|hA : ΩA →
R} and HB = {hB|hB : ΩB → R} are spaces of images A and B respectively, a
similarity measure can be described as

DS : HA ×HB → R (2.13)

For these similarity measures to be evaluated, the image must be transformed to-
gether with its intensities, which brings up the issue of interpolation. Correspon-
dency is assumed to exist at every pixel location in an overlapping region, and the
similarity measure calculates the quality of fit given this correspondency induced
by transformation ϕ. Usually three categories are distinguished between similarity
measures: difference-based measures calculating a function of the difference of inten-
sity at each location, correlation-based measures computing the statistical correlation of
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intensities11, and entropy-based measures, determining the amount of signal entropy
between the two images12. For a good overview and mathematical definitions of
similarity measures, refer to [62].

Distance Measures Feature-based methods typically minimize a distance measure
DD accumulated over all extracted features FAi ∈ ΠA, i = 1 . . . n, and FBj ∈ ΠB,
j = 1 . . . m, where ΠA, ΠB are feature spaces of A,B, respectively. DD is usually
defined via a metric d(., .) induced on the feature spaces, and an operator C assigning
correspondences:

DD =
n�

i=1

d(FAi , ϕ(C(FAi , {FBj })))2, (2.14)

where {FBj } ⊂ ΠB is a finite subset of features from image B, and C(FAi , {FBj }) = FBk ,
if feature FAi corresponds to feature FBk . Correspondences can be established in a
previous step, or during the registration procedure (see section 2.3.3). Mind that
features can be anything extractable from images, for which a distance function can
be defined and correspondence can be established. Common features in medical
image registration include points, lines, (parameterized) curves, or (triangulated)
surfaces.

Commonly used distance measures are Euclidean and the more general Mahalanobis
distance, both defined on points in Euclidean space R

n. Since most features can be
sampled by points, these are the most frequently used distance measures for Medical
Image Analysis and will thus be formally introduced.

Definition 2.2 (Euclidean distance) The Euclidean distance of two points X = (x1, . . . , xn)�

and Y = (y1, . . . , yn)� is defined as

d(X,Y)2 =
�

(X−Y)�(X−Y) =
�

(x1 − y1)2 + · · ·+ (xn − yn)2. (2.15)

Note that two points must have the same dimension for the Euclidean distance to be
evaluated.

The Mahalanobis distance takes the statistical distribution of points into account.
Intuitively, this distance emphasizes the statistical contribution of the different en-
tries of two points in R

n to the distance measure. Weighting factors of the entries,
expressed by their (co-) variances, are included in the distance measure.

Definition 2.3 (Mahalanobis distance) Given two points X = (x1, . . . , xn)� and Y =
(y1, . . . , yn)�, interpreted as random vectors with covariance matrix Σ ∈ R

n×n, the Maha-
lanobis distance is given by

d(X,Y)Σ =
�

(X−Y)�Σ−1(X−Y) (2.16)

11making the measure independent of linear intensity changes
12particularly suitable for inter-modality registration
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Of course, the choice of the distance measure should match with the chosen fea-
tures to align. For instance, the distance of curves in R

n can be measured with the
Hausdorff or the Fréchet distance [2]. However, since such distance measures are
sometimes costly to compute (e.g. they require a parameterization) or are sensitive
to outliers, and since all geometric features can be sampled by a set of points, very
often only the sum of the distances of each point in FA to the nearest point in FB is
calculated. If FA can be sampled by set {Xi}, i = 1, . . . , n, and FB can be sampled
by set {Yj}, j = 1, . . . , m, a distance can be defined by

D({Xi}, {Yj}) =
n�

i=1

min
j

d(Xi,Yj), j = 1, . . . , m, (2.17)

where d(., .) is the Euclidean or Mahalanobis distance. Moreover, building a dis-
tance map [16] of special distance metrics is not possible as they are not defined on
all points on a grid resembling an image. Thus, improvements in performance via
distance look-up, which are important for many feature-based registration methods,
are very difficult to achieve when not using point-based distance measures.

To summarize, intensity-based methods are approaches defined by means of sim-
ilarity and interpolation, while feature-based methods are techniques defined by
means of distance and correspondence.

2.3.2. Transformations

In general, we can distinguish between global transformations, where ϕ follows a pre-
defined global model, and local transformations, where ϕ is less restricted by design,
but the energy E constrains its behavior.

Global Transformations There are a number of transformation models used in
Medical Image Analysis , which define a mere global transformation, discarding
any deformation movement in data sets. We will briefly introduce the most impor-
tant mono-dimensional mappings. The projection, a global transformation mapping
from a higher to a lower dimension, will be subject to more attention in section 2.4 as
it is the focus of this work. The other models are introduced since the 2D-3D model
can be derived from them.

If a global transformation model is used, the set of admissible transformations is
constrained by design and the energy term E from Equation (2.12) only contains the
data term D, rendering the registration problem as:

ϕ′ = arg min
ϕ
D. (2.18)

A simple transformation model relies on the assumption of a global rigid move-
ment. That is, all objects that ought to be registered do not change shape, only their
pose changes. Moreover, objects in the observed scene change their pose accordingly.
Thus, the transformation can be casted as a global rotation and translation, which is
applied to all points X ∈ ΩA in the image domain:
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ϕ(X) = RX + t, (2.19)

where R is a rotation matrix and t a translation vector. In 3D, R ∈ SO(3) can
be defined via different parameterizations, e.g. Euler angles, unit quaternions, or
axis-angle representation. These parameterizations express the three degrees of free-
dom (DOF) either by three parameters, or by four parameters and an additional
constraint. Details of parameterizations are not immediate subject to discussion in
this section. However, since the choice of rotation parameterization is important for
implementation issues of the proposed methods, we refer the reader to appendix C,
where our choice of parameterization, Euler Angles, is justified. A 3D rigid transfor-
mation sums up to 6 DOF (3 for rotation, 3 for translation). Sometimes, an isotropic
scaling factor is also added to the rigid model in order to account for different pixel
sizes of A and B. We will discard this scaling since we assume A and B to be resam-
pled adequately, or their extracted features to be given in mm.

There are other global transformation models, which soften the rigidity constraints
of Equation (2.19).

The affine transformation model allows for shearing and anisotropic scaling ad-
ditional to the rigid transformation. It is often used as a local approximation of a
projective warp.

The projective transformation model13 is the most general global linear transforma-
tion and is simply a linear mapping that must be invertible. This definition is also
called a homography as defined e.g. in [66].

As described by Rueckert [63], there are also non-linear global models, but they
are not frequently used in Medical Image Analysis and are thus not discussed.

Except for the rigid model, there is in general no reason why medical data should
transform according to a more general global model. Using these less restrictive
global models in image registration is either an approximation to the more gen-
eral set of local transformations that describe e.g. tissue deformation, or applied to
very special problems like pixel size correction [67] or gantry angle estimation [138].
However, since deformable registration (and thus local transformation models) has
received more attention and is better understood, current works tend to either use
the most restrictive rigid model to register objects that do not change shape (as, e.g.,
bones) or to initialize a deformable refinement, or they use the most general local
transformations (introduced below) to register deformable objects.

Local Transformations In contrast to global transformation models, local transfor-
mations do not restrict the movement of spatial locations in the first place.

By applying local transformations, which are also called displacement fields, spa-
tial locations can be transformed (displaced) arbitrarily, which emphasizes the ill-
posedness14 for the registration process using these types of transformations. In

13not to be mixed up with the projection transformation model
14Informally defined, a registration problem is ill-posed if a) no solution exists, or b) it has no unique

solution, or c) if small changes in input lead to large changes in output. For a formal definition of
well-posedness and its contrary refer to [60]
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order to counteract this inherent ill-posedness, restrictions are imposed on the trans-
formations. These restrictions shall avoid “unnatural” transformations, i.e. a tearing
or folding of spatial locations must not happen.

A mathematical way of defining transformations that fulfill these restrictions is the
notion of diffeomorphism, see for example [84, 18]:

Definition 2.4 (Diffeomorphism) Given two manifolds M and N , a bijective map f is
a Cr diffeomorphism if both f : M → N and its inverse f−1 : M → N are r times
continuously differentiable.

From this definition, we can deduce a local behavior of diffeomorphisms, which is
more intuitive for our means:

Theorem 2.5 (Local behavior of diffeomorphisms) If U and V are two open subsets of
R

n, a differentiable map f from U to V is a diffeomorphism at point x if

(1) f is bijective

(2) the derivative of f at x is invertible (has a non-zero determinant of the Jacobian)

Theorem 2.5 can be shown via the theorem of inverse functions, but is not within the
scope of this thesis.

The bijection assures an invertibility of f , while the invertibility of the derivative
assures a smoothness of the mapping. Of course, a projection can never be a diffeo-
morphism since its derivative cannot be invertible.

In practice, these diffeomorphisms are rather difficult to construct and impose on
different transformations. Thus, the diffeomorphic rule is sometimes loosened and
transformations are only required to be sufficiently smooth, i.e. the derivative of the
transformation is to be “well-behaved”, but ϕ and its derivatives are not necessarily
invertible. This smoothness criterion is incorporated into the energy E additionally
to the data term and Equation (2.12) becomes

ϕ′ = arg min
ϕ
D + αS, (2.20)

where D is the data term depending on the input data, and S is a smoothing term
imposing constraints on the set of admissible transformations ϕ. The scalar α is a
regularization parameter controlling the influence of the smoothing criterion.

Typically, the smoothing term S is a function of the derivatives of ϕ. A popular
choice of S is the diffusion regularization term [154, 103] penalizing for the sum of the
first derivatives of ϕ:

SD =
n�

i=1

�
Ω

���∇ϕ(i)
���2

, (2.21)

where ∇ϕ(i) ∈ R
n is the gradient w.r.t. X of the transformation in dimension i. 15

15Mind that ϕ is a vector-valued function, and its first derivative is a Jacobian matrix J ∈ R
n×n.
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Since the diffusion regularization term is sensitive to affine transformations, which
is not desired in some scenarios (where the unknown transformation also includes a
rigid part, for example a rotation), a regularization term that penalizes the curvature
of the displacement field has been proposed

SC =
n�

k=1

�
Ω

n�
i=1

n�
j=1

�����
∂2ϕ(k)

∂xi∂xj

�����
2

, (2.22)

where ∂2ϕ(i)

∂xi∂xj
is the the second derivative with respect to xi and xj . This regulariza-

tion term is often called bending energy [128] or Thin-Plate energy functional (see Ap-
pendix B, Equations (B.3) and (B.4)) and inherently permits affine transformations,
since SC(Ax + t) = 0. This term must not be mixed up with a so-called curvature reg-

ularization term,
�n

i=1

�
Ω

���Δϕ(i)
���2, as proposed by Fischer an Modersitzki [42], which

leaves out the mixed terms of the second derivatives and is an approximation to
SC

16.
Other regularization terms have been proposed in the literature, partly based on

physical properties, but are not subject to discussion here. For a summary of fre-
quently used regularization terms, refer to [103].

In Medical Image Analysis , diffeomorphisms and their (regularizing) approxima-
tions are called deformations, thus the term deformable registration.

Parametric vs Non-parametric Transformations We can distinguish between trans-
formations expressed with or without parameters, raising the terms parametric and
non-parametric registration.

Parametric transformations use models of a transformation which are expressed
with a set of (few) parameters. If these parameters are known, they can be put into
the transformation model and all spatial locations can be transformed. Global trans-
formations are always based on models and thus belong to this class of transforma-
tions.

Particularly suitable for feature-based deformable registration are Thin Plate Splines
(TPS), and their diffeomorphic extension, Geodesic Interpolating Splines [24], since they
can register features with arbitrary locations, are minimizing the Euclidean (or Ma-
halanobis) distance between features, and keep the transformation smooth by min-
imizing the Thin Plate energy functional. See Appendix B for mathematical deriva-
tion, numerical computation, and application of TPS to Medical Image Analysis .

There are also other models that are often used for deformable registration. Free
Form Deformations (FFD) are used to interpolate transformations defined on a reg-
ular grid. B-spline interpolants [128], also shown to yield diffeomorphisms [30, 127],
are typically used for intensity-based registration, since they offer a smooth interpo-
lation with local support17. Due to their local support, FFDs only yield meaningful
deformations if a set of features is well distributed over the whole image domain.
Thus FFDs are not very suitable for feature-based registration.
16Δ is the Laplace operator, i.e. the sum of second derivatives without the mixed terms
17meaning that a grid node only influences the transformation in a local neighborhood
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Non-parametric transformations do not consider a model of the transformation,
but only address the transformation ϕ as a function. Solving for this function is the
task of image registration. Since the energy of Equation (2.12) depends on ϕ, E be-
comes a functional, which is to be minimized. The minimization of functionals, which
includes the calculus of variations, is not in the scope of this thesis, but the reader
is referred to Modersitzki [103] for introduction and to Zikic [164] for a numerical
solution of this problem.

2.3.3. Correspondences

With transformation ϕ′ from Equation (2.12) we want to reestablish the correspon-
dency between imagesA andB. Correspondency can be specified in terms of anatom-
ical corresponding features, image-based feature correspondences, or pixel corre-
spondences.

As already mentioned, in intensity-based approaches, correspondency is assumed
to be given at every pixel location in a region where the two images overlap, i.e.
ΩA,B = {x ∈ ΩB|ϕ−1(x) ∈ ΩA} [61], and fully depends on the given transforma-
tion. That means a pixel location of the first image corresponds to the nearest pixel
location of the transformed second image.

In feature-based approaches, the correspondence problem is more important and
is thus subject to discussion in the following. Here, correspondency can be18 re-
garded as being dual to transformation: Given two sets of features FA ∈ ΠA ex-
tracted from A and FB ∈ ΠB extracted from B. If correspondency is given for FA,
FB, usually we can determine the transformation ϕ. Vice versa, if ϕ is given, we can
establish correspondences for the whole image domains ΩA, ΩB, and hence for FA,
FB. A good review of existing algorithms for finding feature correspondences can
be found in Chui et al. [31].

Mathematically, the problem to solve is to find a bijective or one-to-one mapping
between the feature sets FA, FB. This problem was casted as a graph matching or
quadratic assignment problem by Shapiro and Haralick [135], see also Gold and Ran-
garajan [51].

Given two graphs G = (VG, EG) and g = (Vg, Eg), where VG = FA and Vg = FB,
and EG, Eg express a relationship of features, which lie in the same feature set19.
We want to find a bijective mapping f : VG → Vg, such that the relationships of
corresponding features are most similar, i.e. we want to find M,M′ that minimize

−
�

a

�

b

�

i

�

j

MaiM
′
bjCaibj , (2.23)

where M and M′ are permutation matrices, i.e. Mai = 1 if feature FAa corresponds
to FBi and M ′

bj = 1 if FAb corresponds to FBj , respectively, otherwise they are 0.
Caibj = 0 if (a, b) /∈ EG or (i, j) /∈ Eg, otherwise they express a cost of how good the
relationships of the two feature tuples fit.
18loosely
19Such a relationship can for instance express the geometric or topological configuration of a feature

set.
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The problem of quadratic assignment is NP-hard, which is basically due to the
comparison of relationships. The Computer Vision community has come up with
different methods to circumvent the graph matching. We can distinguish between
two different classes of approaches.

Feature Descriptors Instead of comparing relationships, one can compare a scalar
cost Cij yielding the quality of correspondence between two features FAi ,FBj . This re-
duces the graph matching problem to a weighted bipartite graph matching or linear
assignment problem (LAP). Now, we want to minimize the cost

−
�

i

�

j

MijCij , (2.24)

which can be solved in polynomial time [115]. The cost matrix C can be established
using feature descriptors, which, in order to be suitable for feature-based registra-
tion, usually have to be translation-, rotation-, scale-, and in the case of 2D-3D regis-
tration projection-invariant. Feature descriptors have become rather popular in the
Computer Vision community [93, 85, 8], however, they are not frequently used in
Medical Image Analysis . This is most probably due to higher variations of input
data, and the rather restricted applicability of feature descriptors fulfilling all the
aforementioned invariants.

Alternating Approaches By using the “duality” between transformation and cor-
respondency, different methods have been proposed to alternate between correspon-
dence detection and transformation estimation. Most of these approaches use a clos-
est point distance measure (Equation (2.17)) to update the correspondency, and then
reestimate the transformation. These closest point distance measures are not optimal
in the sense of linear assignment, but they are generally faster, easier to implement,
and yield a good approximation to the solution of Equation (2.24). Two algorithms
that are frequently used in the Medical Image Analysis community are the Iterative
Closest Point (ICP) algorithm proposed by Besl and McKay [11] and Zhang [163], and
the Robust Point Matching (RPM) algorithm proposed by Chui and Rangarajan [31].
Due to its applicability to 2D-3D registration and its nice theoretical properties, we
will have a closer look at the former method.

The Iterative Closest Point Algorithm The task is to rigidly register two sets of 3D20

features (surfaces, curves, point clouds) sampled by point sets Xi ∈ FA, i = 1, . . . , n
and Yj ∈ FB, j = 1, . . . , m. To this end, we want to find rotation R and translation t
to minimize the energy

E =
1
2

n�

i=1

m�

j=1

Aijd(Xi,RYj + t)2, (2.25)

where A is a permutation matrix.
20Naturally, 2D features can also be aligned with the ICP
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The algorithm first updates A using a closest point operator (for instance Equation
(2.17)) and then estimates the transformation given these correspondences (for ex-
ample with a closed-form solution of the absolute orientation problem [147]). These
two steps are repeated until the update of the transformation is smaller than a pre-
defined threshold.

It can be shown [11] that this algorithm always converges. Moreover, as shown
by Granger and Pennec [55], if the distance measure d(., .) of Equation (2.25) is the
Mahalanobis distance, and if the measurement error is assumed to be Gaussian, the
ICP is a Maximum Likelihood estimator. In its pure form, the ICP requires a rather
good initial estimate to converge to the right solution if outliers21 are present. At-
tempts have been made to increase the robustness of the ICP by discarding points
through statistical analysis [163], perturbing the locations of points in one feature
set by random noise [116], or estimating the probability of the correspondences and
casting the ICP as an EM algorithm [55].

Mind that the ICP must not be mixed up with naive approaches where a cost func-
tion with unknown correspondences is optimized (compare for example [1, 88]). In
the latter case, in one iteration of the optimization, the correspondency is newly de-
termined, and a cost function (energy) is evaluated once with these correspondences.
The ICP, however, determines the correspondency and then optimizes the error (en-
ergy term) based on these correspondences in a single iteration. Only after the algo-
rithm has found a minimum, the correspondency is reestimated. The minimization
of the error in each iteration assures the convergence of the ICP, whereas convergence
of naive approaches is not guaranteed.

2.3.4. Optimization

Since Equation (2.12) requires a minimization of a function E , numerical optimiza-
tion is an important issue for medical image registration. Some registration algo-
rithms offer a closed-form solution by design22, or a simple iterative scheme where
convergence is guaranteed.

Most of the algorithms, however, make use of optimization algorithms. These
algorithms solve the registration problem iteratively by refinement of parameters
such that the energy term E decreases and becomes minimal. Depending on the
energy term, parameter-based optimization is achieved using direct methods and
gradient-based methods. Besides these methods, especially non-parametric registra-
tion problems can also be solved by building up a time-dependent or fixed-point
iterative scheme directly on the energy formulation (2.12), which is repeated to ob-
tain a steady-state solution [103].

Direct Methods Direct optimization methods try to find a global minimum by
sampling the parameter space. Especially for energy terms that change their number

21features that have no corresponding one in the other data set
22for example a TPS registration (see appendix B)



2.3. Medical Image Registration 37

of input measurements, these methods are used instead of gradient-based optimiz-
ers. The sampling can be done in different ways.

The by far easiest method is a Best Neighbor approach, where the energy is evalu-
ated at all neighbors of a point in parameter space. The neighbor yielding the lowest
energy value is the next sampling point. These steps are repeated until no further
improvement of E can be found at the neighbors of the sampling point, which is as-
sumed to be the global minimum in parameter space. Of course, this method needs
a good initialization value since it is prone to fall into local minima.

A better way of sampling the parameter space to find a global optimum is the
Downhill Simplex Method [107]. In an n-dimensional parameter space, a simplex (a
set of n + 1 points in this space) is created and certain operations can be applied to
it in order to find a global optimum. Depending on the values at all n + 1 points,
the simplex can be reflected, expanded, or contracted in order to shrink, enlarge,
or move the search region. If the simplex is shrunk smaller than a threshold, the
algorithm assumes to have found an optimum and returns the point of the simplex
yielding the smallest energy value.

There are other direct methods, like simulated annealing, genetic optimization,
Powell’s Method, etc. For a good reference refer to Numerical Recipes in C [123].
For registration tasks, the Downhill Simplex method performs a rather good job if
gradient usage is not intended.

Gradient-Based Methods Gradient-based optimization algorithms look for the op-
timum by analyzing the gradient, of the energy term E , sometimes in combination
with its second derivative. At the optimum, the gradient should be zero. Starting
from an initial estimate p0, a parameter update is computed in each iteration until
the gradient vanishes (and the algorithm converges)23.

For a function F : R
m → R to be optimized and a starting point p0 ∈ R

m, we can
give a generic gradient-based algorithm:

Algorithm 1 Gradient-Based Optimization
Given a function F and a starting point p0

p← p0

repeat
calculate parameter update Δp from F and its derivatives
update parameters: p← p + αΔp

until ‖Δp‖ < ε

The important step is the calculation of the parameter update Δp. The parameter
α determines how far to move in the direction determined by Δp. If not too time-
consuming, α is determined via a line search along Δp.

A method that assures linear convergence (i.e. in each step the error reduces lin-
early) is the gradient descent method. Here, the update is determined by the negative

23This test is usually performed via the magnitude of the update



38 2. Methodology

gradient direction (direction of steepest descent):

Δp = −F ′. (2.26)

A method that assures quadratic convergence (but is computationally expensive)
is the Newton method. Here, F ′ is approximated with its Taylor expansion

F ′(p + Δp) = F ′(p) + F ′′(p)Δp +O(||Δp||2) (2.27)
≈ F ′(p) + F ′′(p)Δp. (2.28)

From this, and from the assumption that F ′(pmin) = 0 at the minimum pmin of F ,
we get the update Equation by solving for Δp

F ′′(p)Δp = −F ′(p). (2.29)

Note that the second derivative can be near to singular at some points in parameter
space, which makes the Newton algorithm less robust.

Very often, energy terms are defined by a squared norm of a vector-valued func-
tion f , i.e.

F =
1
2
‖f(p)‖2, where f = (f1, . . . , fm)�. (2.30)

Here, we can also apply the gradient-decent and Newton method by computing
gradient and Hessian:

F ′(p) = J(p)�f(p), and F ′′(p) = J(p)�J(p) +
m�

i=1

fi(p)f ′′i (p), (2.31)

where J is the Jacobian of function f .
From Equation (2.31) we can deduce an update step approximating Newton’s step,

which does not require the costly computation of the second derivative. Solve for Δp
in Equation

J�JΔp = −J�f . (2.32)

This method is called the Gauss-Newton method, which sometimes gives quadratic
convergence as the Newton method.

There are also other algorithms for gradient-based optimization, for a nice overview
and description see Methods for Non-Linear Least Squares Problems [94].

2.4. 2D-3D Registration

Now that basic methodology of medical image registration has been introduced, we
can proceed to the description of 2D-3D registration concepts. After introducing
the general pinhole camera derived from Computer Vision, we will focus on the
particular scenario of intraoperative C-arms and explain calibration (section 2.4.2)
and error analysis (section 2.4.3) in this context.

We refine the definition of section 2.3, registration of 2 images, to the particular
case of 2D-3D registration:
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Definition 2.6 (Projective 2D-3D Registration) Given two images A : Ω3 → R and B :
Ω2 → R, where Ω3 ⊂ R

3, Ω2 ⊂ R
2 and a set of admissible transformations ϕ : Ω3 → Ω2,

2D-3D registration is the computation of a transformation ϕ′ that aligns A to B such that a
certain comparison criterion, an energy E , is minimized:

ϕ′ = arg min
ϕ
E . (2.33)

2.4.1. Rigid 2D-3D Registration

Figure 2.5.: 2D-3D setup

The transformation ϕ now includes a perspective projection, which is defined by
a matrix P ∈ R

3×4 that maps a homogeneous 3D point X̂ = [X, 1]� ∈ P
3 to a homo-

geneous 2D point x̂ ∈ P
2

x̂ = PX̂, (2.34)

where X ∈ R
3.24

Usually, the matrix P is modelled by a pinhole camera model and can be decomposed
into intrinsic and extrinsic parameters:

P = K[R|t]. (2.35)

24
P

2|3 are projective spaces as defined e.g. in [66]
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For an illustration of the meaning of the parameters, refer to Figure 2.5. The cali-
bration matrix K encapsulates the intrinsic parameters and is generally defined by

K =

�
��

fx s px

0 fy py

0 0 1

�
�� . (2.36)

Here, fx and fy account for the focal length in metric coordinates, i.e. fx = fmx,
fy = fmy, where f is the focal length in pixel coordinates and mx, my are the dimen-
sions of a pixel in metric coordinates in x- and y-direction, respectively. The entry s
denotes a skew factor accounting for non-rectangular pixels and is set to zero in most
of the cases. The point (px, py)� is the so-called principal point and denotes the inter-
section of the positive z-axis of the camera coordinate system (CCS, whose origin is
located at the center of projection) with the image plane.

The matrix [R|t] encapsulates the extrinsic parameters, which is a rigid trans-
formation (see section 2.3.2) moving all 3D points from the world coordinate system
(WCS)25 to the CCS.

Estimating P is referred to as rigid 2D-3D registration. Note that this estimation is
a non-linear task, since a perspective division must be carried out when going from
homogeneous to inhomogeneous points, which are the actual image coordinates. In
fact, if the rows of P are denoted by

P =

�
��

p�1
p�2
p�3

�
�� (2.37)

the actual projective mapping function fP : R
3 → R

2 is given by

x = fP(X) =
�

p�1 X̂
p�3 X̂

,
p�2 X̂
p�3 X̂

��
. (2.38)

2.4.2. Calibration

In normal camera systems the intrinsic parameters do not change and have to be de-
termined one time only in a calibration step. For C-arms, phantoms with implanted
fiducials are typically imaged to recover the projection matrices and thus the intrin-
sic parameters in an off-line calibration step [89]. C-arms typically provide 2-3 zoom
factors with different focal lengths, all of which must be calibrated seperately. The
calibration reduces the rigid 2D-3D registration to the estimation of the extrinsic pa-
rameters, which is also referred to as 2D-3D Pose Estimation.

However, care has to be taken in 2D-3D registration of X-ray images coming from a
C-arm. Due to the C-arm’s heavy weight, mechanical bendings of the C-structure ac-
count for changes in the intrinsic parameters as the C-arm angulation changes. This
effect is increased if mobile C-arms are used. For a stationary C-arm Gorges et al. [54]

25also called the object coordinate system
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reported an error of the y-entry of the principal point, py, while px and f remained
stable during angulation changes. Thus, the intrinsic parameter py depends on the
chosen angle from which the X-ray is acquired, which has to be taken into account for
rigid 2D-3D registration. As already mentioned in 1.2.2, state-of-the-art C-arms pro-
vide a 3D reconstruction technique to produce 3D DSAs, or CT-like slices. For that, a
calibration is carried out for all angulations of the C-arm from which projections are
taken for reconstruction. These positions are thoroughly calibrated [105].

The physical setup of C-arm devices introduces a distortion of the images due to
detector geometry and earth magnetic field as described in 1.2.2. For 2D-3D regis-
tration, this distortion has to be corrected, which can be achieved by fitting a high-
degree polynomial to phantom data [161]. However, newer C-arms based on flat-
panel technology do not produce distorted images, discarding the necessity of dis-
tortion correction.

In summary, due to flat-panel technology and the information gained by a multiple-
view calibration step for 3D reconstruction, intrinsic parameters can be assumed to
be given for almost every angulation.

In the following, the term “rigid 2D-3D registration” will be interpreted as the
recovery of viewpoint or pose parameters, essentially the rigid transformation [R|t]
aligning WCS to CCS. Thus, the number of parameters to solve for is 6 in the rigid
case, i.e. 3 for rotation and 3 for translation. Mind that the rigid 2D-3D registration
in the case of calibrated images tries to find a 3D transformation ϕ : Ω3

A → Ω3
A′ . The

actual projective mapping is part of the energy E and is usually incorporated into the
data term.

2.4.3. Error Analysis

Several issues have to be addressed for evaluating the quality of a registration algo-
rithm, and for performing thorough tests to analyze the error. Usually, one has to
first cope with the creation of a reference solution to which the solution provided by
the proposed algorithm can be compared. Then, a reasonable error measure has to be
applied to assess the quality of fit (accuracy) of the registration compared to the refer-
ence. This error measure should be as independent as possible from the energy used
for optimization. Last but not least, the robustness of the algorithm has to be shown,
i.e. how it behaves in special situations, how often it converges to the right solution
when applied with different input, and how much disturbance can be introduced
until the registration fails.

Creating Ground Truth and Gold Standard For error assessment, it is important
to have a reference registration, i.e. registration parameters that are assumed to be
“correct”.

For this, one can create a simulation: A previously known transformation is ap-
plied to a 3D image, which is then projected to artificially produce a 2D image. Then,
this transformation has to be recovered from the registration algorithm using 3D im-
age and produced 2D image. In this case, our reference registration is called a ground
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truth registration, since we know the exact transformation. The problem in ground
truth creation is to create an artificial projection which simulates a real 2D projection
as much as possible (modeling noise, projected anatomy, etc.).

Another possibility to create a reference registration is to use a gold standard al-
gorithm for the problem. For 2D-3D registration, usually reference registrations are
created by implanting fiducials into the image and running a gold standard point-
based registration with known correspondences. Another (less invasive) possibility
is to (manually) determine corresponding landmarks (e.g. bifurcations in vessel trees
in the case of angiographic registration) and again performing a point-based regis-
tration.

One of the currently favored approaches for a gold standard is to use a 3D recon-
struction from the C-arm and perform a 3D-3D registration to the input 3D image
to yield transformation T3D−3D. Due to the optimized calibration of C-arms, the
projection matrices are known for all images from which the 3D reconstruction was
created. Given one of these 2D views, its projection matrix P = K[R|t], and the
transformation T3D−3D, a “gold standard transformation” is given by

Tgold =
�

R t
0 1

�
T3D−3D. (2.39)

This evaluation method only works if a 3D-3D registration algorithm is available,
which allows for a calculation of a transformation. Usually, however, alignment of 2
3D images is regarded to be an easier problem than 2D-3D registration and thus, the
creation of such a reference registration is accepted even in deformable regions.

The reference registration can also be produced by an expert by manually altering
the transformation parameters. This is only possible in the case of rigid registra-
tion, since local changes can hardly be assessed even by clinical experts. Moreover,
providing a suitable user interface to model more than 6 DOF is not a trivial task.

Accuracy Measurements Certain issues have to be addressed to define an error for
single-view 2D-3D registration.

First, it is important to know that in all C-arm systems, the imaged object lies
between the X-ray source and the detector system, making an error assessed in 3D
smaller than the error assessed in the image plane26.

Second, the transformation perpendicular to the image plane is more difficult to
solve for and has to be assessed separately.

Van de Kraats et al. [148] have proposed a standardized protocol to assess the
error in 2D-3D registration (for an illustration see Figure 2.6). They propose to use
previously defined 3D image points {Xi}, i = 1, . . . , n (e.g. sampled throughout the
volume of interest) to assess the mean target registration error (mTRE)

mTRE =
1
n

n�
i=1

d(TregX̂i,TgoldX̂i), (2.40)

26Mind that it is only reasonable to give the error in mm, not in pixel, which is generally no problem
for all C-arm systems since they provide the size of a pixel in mm
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Figure 2.6.: Different Accuracy Measures. Reproduced from van de Kraats et al. [148]

where d(., .) is the Euclidean distance of the inhomogeneous representation of points,
and Treg is a registration computed with the algorithm to be tested.

Moreover, to assess an error without the bias in projection direction, v.d. Kraats et
al. propose to use a mean reprojection distance (mRPD),

mRPD =
1
n

n�

i=1

dL(Li, TgoldX̂i), (2.41)

where Li is the ray connecting PregX̂i and the center of projection, and dL(., .) is the
distance of a point to a line in 3D. Evaluating the pixel error of the points Xi is also
suggested, called the mean projection distance

mPD =
1
n

n�

i=1

d(PregX̂i,PgoldX̂i). (2.42)

Additionally to the protocol by van de Kraats et al. , the root mean square error
(RMSE) in all the parameters is often evaluated, i.e. for a parameter Θ, which has
been estimated m times, the mean distance to the parameter value of the gold stan-
dard registration Θgold is evaluated

RMSE =

�
1
m

m�
j=1

(Θj −Θgold)2 (2.43)
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Moreover, mean and standard deviation of all parameter differences are important
values, especially the standard deviation, telling about the quality of the mean and
thus the RMSE. Van de Kraats et al. reason that this error evaluation can be mislead-
ing since the translation values are dependent on the center of rotation. However,
if the center of rotation coincides with the origin of the WCS, these values are not
“rotation-biased” and give a good hint of the accuracy of all parameters, which, in a
global transformation model, are important to interpret. For local transformations,
there are usually too many parameters to reasonably interpret the RMSE and stan-
dard deviation. Thus, RMSE and standard deviation should only be assessed in rigid
2D-3D registration, which sometimes gives a better insight into the algorithm’s be-
havior than analysis of mTRE, mPD, or mRPD.

Robustness Assessment Robustness assessment tries to evaluate an algorithm with
respect to reproducibility in different scenarios with controlled disturbances. Cen-
tral to all robustness measurements is to create a set of different scenarios and test
whether the algorithm can reach the right solution.

Usually, a representable amount of different instances of transformations is cre-
ated and the algorithm is invoked. These are called Monte Carlo simulations. The
transformations can be categorized into different ranges and the registration can be
evaluated by the range until which it is still successful (the so-called capture range).
In this context, a “successful” registration must be defined, which is a fixed thresh-
old of the accuracy error function, usually inspired by clinical partners27. The range
should be defined in terms of the error with which the accuracy is measured. For in-
stance, if the error is assessed using the mTRE, instances of the transformation must
be created such that the mTRE lies within a certain range. An easier method is when
the RMSE in the registration parameters is assessed, where only displacements in a
certain range have to be added to all parameters.

Of course, creating different scenarios also involves testing the algorithm on dif-
ferent data sets. However, the amount of different patient data to be tested to yield
a reliable claim on the inter-patient reproducibility is usually never achieved in the
literature.

27Depending on the clinical application, an algorithm has to be accurate in terms of submillimeters or
several millimeters



3. State of the Art in 2D-3D Angiographic
Registration

In the previous chapter, vessel extraction and registration methodology was intro-
duced. Now, we will have a look at the state of the art of registration of angiographic
3D images to 2D projections.

A review of algorithms for rigid 2D-3D registration of angiographic images will be
given in sections 3.1, 3.2, and 3.3 as they have been proposed in the literature.

The necessary methods like volumetric intensity projection and distance function
interpretation will be provided in the respective sections.

This chapter concludes with a short summary of the few 2D-3D non-rigid regis-
tration algorithms and a discussion, where future directions of research in this field
will be highlighted.

3.1. Intensity-based 2D-3D Registration

As already mentioned in 2.3.1, intensity-based registration evaluates a similarity
measure directly on the intensity mapping of the images. In 2D-3D registration,
however, the dimensions of the two images differ, so either the 2D projection must
be backprojected into space to compare it with the 3D image intensities, or the vol-
ume has to be projected to compare it with the 2D image intensities.

The former approach is usually used if more than one view is provided, and re-
construction of intensities is feasible, compare, e.g. Tomaževič et al. [142]. Since we
are more interested in 2D-3D registration based on a single view and since there is
no work addressing multi-view 2D-3D registration on angiographic images via recon-
struction, we will ban approaches based on backprojection from the discussion.

The latter approach, projecting the volume and evaluating a similarity measure
in 2D, will be discussed in the following. The projection of the volume’s intensities
has to be carried out such that the physical process of X-ray imaging is simulated.
This simulated or reconstructed 2D image from 3D intensities is called a Digitally
Reconstructed Radiograph, DRR. DRR generation can be particularly achieved when
using CT images to align them with 2D X-ray images since their acquisition follows
the same laws of attenuation of radio densities. However, as we will see below, also
MR data can be used to produce DRRs for angiographic registration if adequately
segmented.

The process of 2D-3D intensity-based registration can then be summarized as an
optimization (see 2.3.4) of parameters Θ over an energy term. The energy evaluation
reads as defined in algorithm 2.
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Algorithm 2 Energy Evaluation of Image-Based 2D-3D Registration
Given a 3D image A and a 2D image B, and parameters Θ

create a DRR from A using the projection matrix PΘ to produce ADRR

evaluate a similarity measure SM(ADRR,B)

Below, we will have a closer look at DRR generation for angiographic images, and
in section 3.1.2 we detail algorithms for 2D-3D rigid intensity-based registration as
they have been proposed in the literature.

3.1.1. DRR Generation

X-ray Imaging The ionizing property of X-ray beams is used by CT(A) and intra-
operative devices such as C-arms to acquire images. Images can be produced by
radiation since different materials interact with the emitted energy of an X-ray beam1

in a different way, according to the material’s radio density. If a material interacts
with the energy, part of the energy is lost during traversal. This “loss of energy” is
called attenuation and can be physically described by the Lambert-Beer law for atten-
uation of radiation through a medium: Given an initial energy E0 of an X-ray source,
the remaining energy E of a ray traversing an object is given by

E = E0e
−
�

μ(x)dx, (3.1)

where μ(x) is the attenuation coefficient of the object at point x.

CT Hounsfield units CT intensities are measured in Hounsfield units, i.e. intensity
values normalized by the attenuation of water:

H =
μ− μW

μW
1000, (3.2)

where μ is the attenuation coefficient of a certain material, and μW that of water.
Putting this equation into Equation (3.1), we get [117]

EDRR = E0e
−
� �H(x)μW

1000
+μW

�
dx

. (3.3)

This formulation can be used to create DRRs from CT images.

Image Formation Using Equation (3.3)2 and a projection matrix P, an image can be
created by casting rays from the center of projection through every pixel of the image
plane and following the ray through the volume (see Figure 3.1). If a voxel is hit

1The energy of an X-ray beam must not be mixed up with the energy used for minimization. This will
be indicated by using different notations.

2To reduce the computational cost, usually its logarithm is used
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during traversal, its Hounsfield value is contributing to the integral3. Since usual X-
ray images are of size 512×512 or 1024×1024 pixels, this image formation process is
computationally expensive. However, speed-ups can be achieved by approximating
ray casting through blending of a 3D texture mapped volume, or by shifting ray
casting to the Graphics Processing Unit (GPU) [75]. Other techniques adapted from
the Computer Graphics community have been proposed for fast DRR generation
[129, 12].

(a) (b)

Figure 3.1.: (a) A DRR generated from a CTA volume, (b) a real fluoroscopic image
(inverted).

Radiometric Calibration For DRR generation, the energy EDRR has to be further
processed to simulate the traversal of electrons through the intensifier, or the flat
panel detector imaging process. Only after this processing, the intensity IDRR can
be assigned to pixels. Different models have been suggested for simulation, but none
can be favored since they are not modeling the physical process of image formation.
Moreover, CT machines have a different effective energy with which images are ac-
quired compared to intraoperative devices. Thus, different transfer functions4 are ap-
plied to the volume intensities in order to simulate different effective energy levels
of CT image acquisition and intensifier/flat panel physics. An estimation procedure
of the transfer function’s parameters, a radiometric calibration, can be carried out to
make the DRR most similar to a real radiograph as proposed by Khamene et al. [75].

DRR Generation for Angiographic Data For contrasted vessels, a logarithmic re-
lationship can also be established between the remaining energy EDRR and the re-
sulting intensity, i.e. IDRR = log[EDRR] [117, 81]. Thus, the intensity IDRR can be

3which is approximated by a sum in the discrete setting
4A transfer function is a mapping of intensity values to a color map
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assumed to be proportional to the length L of the path traversed through the 3D
vessel and the contrast material’s density ξ [68]

IDRR ∝ μ
�

L
ξ(x)dx, (3.4)

where μ is the attenuation coefficient of the contrast material.
Mind that this equation only holds inside a contrasted vessel, surrounding tissue

cannot be modeled thus. That is, in order to produce DRRs for angiographic data, a
vascular segmentation is usually necessary as a pre-processing step. However, since
the density of contrast material can also be measured in MRA voxel intensities, and
since μ can be estimated by radiometric calibration, MRA images can be used for
DRR generation as well as CTA images.5 Most methods for intensity-based 2D-3D
registration of MRA data approximate this DRR generation with a Maximum Inten-
sity Projection (MIP), where only the voxel on the ray with the highest intensity con-
tributes to the pixel intensity. On the one hand, this method is prone to error caused
by noise compared to a full integration over all vessel voxels on the ray. On the other
hand, however, no segmentation of the 3D vasculature is needed to produce DRRs.

3.1.2. Registration Algorithms

In the following, intensity-based 2D-3D rigid registration algorithms will be reviewed.
All methods will be described by the input data their algorithms work on, the DRR
generator which is used, the similarity measure defining the energy term, and the
optimization technique to reach a global optimum. Execution times and accuracy
are hard to compare due to different hardware, non-standardized evaluation pro-
tocols, and different input data. However, they are reported to give an impression
on runtime and performance, the reader is referred to the original publications for a
thorough explanation on experiments.

An extensive study of different similarity measures for 2D-3D registration of CT
to (non-contrasted) X-ray images can be found in Penney et al. [118]. The definition
of all measures described below can be found in this publication and mathematical
details will be left out thus.

Hipwell, McLaughlin, and Byrne Hipwell et al. [68] builds on the study of Pen-
ney et al. [118] to register cerebral angiograms (DSAs) to brain Phase Contrast MRA
data. Input data are DSAs and different segmentations of the cerebral vasculature
visible in the MRA image. DRRs were generated by raycasting using Equation (3.4).
Hipwell et al. found out that gradient-based (gradient difference (GD), gradient cor-
relation (GC)) and pattern intensity (PI) similarity measures perform best for the
registration of angiographic data.

5In fact, this is just an approximative assumption since MRA vessel intensities can change due to e.g.
flow property and are not as uniform as in CTA data. Establishing a real physical relationship of
MRA vessel intensities and contrasted X-ray intensities is not a trivial task.
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Gradient-based similarity measures compare the gradient images of the input data
∇ADRR and∇B and the registration is thus driven by aligning vessel contours. Pat-
tern Intensity compares patches in the intensity difference images in an asymptotic
function. Hipwell et al. used a Best Neighbor algorithm for optimization, execution
time of the algorithm was ca. 5min on a 1.2-GHz AMD CPU.

McLaughlin et al. [100, 101] compared the algorithm proposed by Hipwell et al.
with the ICP algorithm adapted to 2D-3D registration of angiograms as proposed by
Kita et al. [77] (see 3.2.3). Only the gradient difference similarity measure was used in
this study. While the intensity-based approach proved to be more accurate, the ICP
approach was more robust in the cases where only few dominant vessel structures
were visible. A drawback of Hipwell’s method is execution time. While the ICP
approach by Kita et al. took 20 sec, the gradient-difference approach took more than
14 min in average.

Byrne et al. [23] used Hipwell’s registration technique to align 3D rotational an-
giography images (3D DSAs, acquired by subtracting a native 3D reconstruction
from a contrasted 3D reconstruction) images to 2D DSAs for neuro interventions.
The registration is performed on images with downsampled resolution, gaining a
speed-up to ca. 33 sec (measured on a 1.7 GHz Intel CPU) with similar accuracy
compared to a registration on original images. Since the data sets came from the
same imaging device, accuracy (measured with the reprojection distance (RPD), see
2.4.3) could be improved from 1.6 mm reported by Hipwell et al. to 1.3 mm.

Kerrien Kerrien et al. [73] register 3D DSAs to 2D DSAs for neuroradiological in-
terventions.

They propose a method where a first estimate of the rigid transformation parame-
ters is computed by a calibration of the C-arm, providing a good estimate of calibra-
tion matrix K, distortion coefficients, and the rotation angles, but a bad estimate of
translation parameters t [74].

Then, they refine the in-plane translation (tx and ty) by using a normalized cross
correlation (NCC) similarity measure, which measures the correlation of each pixel
pair and thus the degree of linear relationship of the intensities. As DRR, they use a
Maximum Intensity Projection (MIP) created from the 3D DSA.

After the registration based on NCC, the assumption to be in the vicinity of the
true pose allows for a modified optical flow technique to optimize for rotation and
translation parameters. By using the depth information of the MIP points (only the
voxel with highest intensity is used for projection and is thus unique) and the image
constancy assumption [69], the 6 rigid transformation parameters can be estimated
and optimized.

The optimization technique chosen for NCC optimization is an exhaustive search
of translation parameters perpendicular to the image plane (i.e. x- and y-translation).
The optical flow optimization is done by matrix inversion to solve for a least-squares
solution.

A manual assessment of the error showed an accuracy of 1.5mm of the registration
algorithm, execution time was within 90 sec on a Sun UltraSparc workstation.
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A drawback of this method is its restriction to the registration of 3D images that
have been acquired by the same machine as the 2D X-ray images.

Dey and Napel Dey and Napel [39] present a method based on DRR generation of
subvolumes and Monte Carlo optimization. They test their algorithm on 3D DSAs
of a pig brain to be registered to the fluorscopy images the 3D image was recon-
structed from. The focus of the work is the test of two different similarity measures,
Pattern Intensity (PI) and Mutual Information (MI) as well as two different optimiza-
tion techniques, Powell’s method and a strategy based on Monte Carlo sampling.
Moreover, a truncation of the volume to a subvolume was justified to produce, with
proper normalization, a similar DRR as if the entire volume is used.

The Monte Carlo optimization randomly follows a direction in parameter space,
if the energy decreases, this direction is taken, if it increases, an acceptance proba-
bility is evaluated by an annealing scheme and the direction is again taken, if this
probability is above a randomly chosen threshold. This optimization is carried out
on a downsampled level, whereas its result is used for an initial estimate of a Powell
optimization on the fine level.

Since Monte Carlo optimization is rather slow, this method takes ca. 4-7 min on
a Pentium M 1.7 GHz. Accuracy was evaluated on the reference registration given
by the machine calibration through a subvolume target registration error (see 2.4.3),
and was at 2.37 mm. Accuracy and registration success using PI was slightly better
compared to MI experiments.

Input DRR SM Opt. Time Accuracy

PC MRA & GD,GC BestHipwell ’03 [68]
2D DSA

raycast
PI Neighbor

5 min 1.6mm

3D DSA & BestByrne ’04 [23]
2D DSA

raycast GD
Neighbor

33 sec 1.3mm

3D DSA & NCC & exhaustive &Kerrien ’99 [73]
2D DSA

MIP
opt. flow mat. inversion

90 sec 1.5mm

3D DSA & Monte Carlo &Dey ’06 [39]
2D Angio

norm. raycast PI, MI
Powell

4-7 min 2.4mm

Table 3.1.: Summary of intensity-based 2D-3D rigid registration algorithms

Table 3.1 summarizes the gist of all presented intensity-based algorithms.

3.2. Feature-based 2D-3D Registration

For this class of rigid registration algorithms, features are extracted in order to align
the images. In angiographic registration, vessels and their attributes are exclusively
used as features for 2D-3D registration since they are the dominant structure in the
images and usually represent the region of interest (e.g. for catheter navigation).

Feature-based methods are said to be more robust since data terms evaluating a
geometric distance do not get trapped as easily in local minima as similarity-based
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data terms. However, they usually are less accurate, which is due to a propagation
of the error introduced during preprocessing (segmentation) compared to intensity-
based algorithms (see Figure 3.2).

(a) (b)

Figure 3.2.: A plot of a data term of (a) an intensity-based registration (SM: Gra-
dient Correlation), and (b) a feature-based registration (on vessel centerlines). Two
parameters (x and y translation) are plotted against the data term values. (a) has a
sharp global optimium, but some local optima, (b) has less local optima, but not a
very sharp global optimum. Thus, intensity-based algorithms are more accurate, but
have a smaller capture range, while feature-based approaches have a higher capture
range, but are usually less accurate.

Vessel extraction and quantification techniques have already been detailed in 2.2.
Once vessel features have been found, the issues that have to be addressed for a
successful 2D-3D registration are the search for correspondences, a formulation of
a distance-based energy function, and the optimization strategy used to reach an
optimum.

Basically, there are two approaches that have been followed by researchers. Either
an energy formulation based on distances of (sampled) and corresponding curves
(vessel centerlines) is established and optimized (see section 3.2.2), or the ICP algo-
rithm is adapted to 2D-3D curve registration (section 3.2.3).

3.2.1. Distance Functions

Establishing a distance function between features is necessary for feature-based 2D-
3D registration algorithms. In general, the error can be evaluated in 2D by projecting
3D features and computing a pixel error, or it can be evaluated in 3D by backpro-
jecting 2D features and computing a closest point on the backprojection rays and
the corresponding 3D features (object error). In C-arm systems, the imaged object is
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located between X-ray source and detector plane, i.e. the object error will usually
be smaller than the pixel error. Other than the magnitude, there is no difference
between the two errors.

Pixel Error Given a calibration matrix K, and corresponding points {Xi ↔ xi}, we
want to find a transformation T = [R|t], such that an energy in 2D (pixel error)

E =
n�

i=1

d(fKT(Xi)− xi)2 (3.5)

is minimized. fKT is the projection function as defined in Equation (2.38), d(., .) is
the Euclidean or Mahalanobis distance (Equations (2.15) and (2.16)).

In fact, the underlying model for minimizing this energy is based on the assump-
tion that measurement noise occurs in the 2D points only, and that 3D points are
exact. Pixel error minimization using the Mahalanobis distance is a Maximum Like-
lihood estimator of 2D-3D registration if measurement error occurs in 2D features
only.

Reprojection Error A more general model, which also accounts for measurement
errors in 3D points minimizes the energy (reprojection error)

E =
n�

i=1

d(fKT(X̃i)− xi)2 + d(X̃i −Xi)2, (3.6)

where not only the parameters of T, but also the entries of the estimated points X̃ are
included in the set of parameters and subject to optimization [108]. Mind that X̃ only
has to be computed once via backprojection, then its entries are used as parameters
in the optimization process.

Once correspondency has been found between vessel features, the reprojection er-
ror can also be minimized instead of the pixel error. Reprojection error minimization
using the Mahalanobis distance is a Maximum Likelihood estimator of 2D-3D regis-
tration if measurement error occurs in 2D and 3D features.

3.2.2. Optimizer-based Algorithms

We will now discuss particular feature-based algorithms as they have been proposed
in the literature. Regarding these algorithms, we will highlight the input data, the
distance function, how to establish correspondency, the chosen optimization method
and, as in the intensity-based case, time and accuracy of the methods.

Alperin Alperin et al. [1] were the first to address the problem of 2D-3D angio-
graphic registration. They propose a retrospective technique, where previously ex-
tracted vessel segments of brain MRA and contrasted X-ray data are aligned by cen-
terline point distance minimization. The vessel centerline extraction is performed
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by manual determination of segment endings and a vessel tracking algorithm con-
necting the two. Correspondences are found by intersection of lines perpendicu-
lar to the X-ray vessel segment direction at each centerline point with the projected
MRA segment. The averaged distance of all centerline point pairs is taken as energy
term to be minimized. Outliers are taken care of by evaluating the fraction of non-
intersecting lines to intersecting lines and adding a weighting factor if this fraction
becomes larger. For this correspondence search, the vessel segment must be pre-
aligned, which is achieved manually. Brent’s optimizer for multiple dimensions is
used to reach a minimum of the energy.

Accuracy was 0.6mm using 4 vessel segments for registration evaluated with the
cost function of the algorithm6, where the runtime (on a IBM RISC 6000/730) was
1min per segment.

Liu and Bullitt Liu et al. [88] and Bullitt et al. [21] register centerline curves of 2D
DSA of the brain to 3D vasculature extracted from MRA images. The 2D segmenta-
tion is driven by cores as proposed by Pizer et al. [121], the 3D vessels are extracted
using Aylward’s algorithm [6] (for both methods see 2.2.5).

Liu et al. first describe the “near-projective invariance” of centerline curves and
thus justify why these curves may be used to achieve a registration of the under-
lying vasculature. Projective invariance means in this context that the centerline of
a 2D vessel projection equals a projected centerline extracted from a corresponding
vessel of a 3D volume. Near-projective invariance means that this invariance is not
guaranteed everywhere on the vessel tree: At overlays the curve extracted in 2D
differs from the projected 3D curve.

A distance function, which is similar to that proposed by Alperin et al. (apart from
the weighting factor) is optimized once corresponding centerline curve segments
have been manually assigned. In Liu’s algorithm, the correspondence search is car-
ried out only once. Afterwards, correspondency is assumed to be given for point
pairs, and a gradient-based optimization method (Newton) is utilized to minimize
the error in 2D.

Execution time of the algorithm was ca. 2-5min on a HP 712/80 workstation. The
accuracy of this method depends on the number of corresponding vessel segments
chosen to be aligned. For clinical data it was assessed visually.

3.2.3. ICP-based Algorithms

Introducing a perspective projection fP into Equation (2.25), we can adapt the ICP
algorithm to 2D-3D registration:

E =
1
2

n�

i=1

m�

j=1

Aijd(xi, fP(Xj))2, (3.7)

6which is generally a bad idea, since it makes evaluation results biased to the cost function. For a
discussion on error analysis see 2.4.3
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where A is a permutation matrix. The reprojection error can be incorporated likewise
but has not been addressed in 2D-3D feature-based registration.

The task now is to establish correspondences, i.e. update the permutation matrix
A in the first step of the algorithm. Then, a distance can be minimized via a 2D-3D
pose estimator.

Feldmar Feldmar et al. [41] register 3D DSA data to 2D DSAs of brain vasculature.
They first define corresponding point triplets by attributing centerline points (ex-

tracted using Malandain’s algorithm [96]) with properties that are invariant under
perspective projection. They state two bitangent line properties, which must be sat-
isfied if triplets of points {X1,X2,X3} and {x1,x2,x3} correspond.

Then, they iteratively choose potentially corresponding triplets and run a 2D-3D
pose estimation using a P3P7 estimation technique [65].

Once a satisfactory transformation has been found, the algorithm repeats these
two steps until a convergence criteria is reached. This technique is guaranteed to
yield the least-squares solution to Equation 3.7 with given A.

For further improvement, Feldmar et al. use an Extended Kalman filter to calcu-
late the covariance matrix of the estimated parameters in [R|t] and propagate it to
get the covariance matrix for every point correspondence RX + t ↔ x. Using the
Mahalanobis distance, the impact of point correspondences that are very unlikely is
reduced in the estimation process.

A further improvement of the algorithm is the use of tangent information in the
distance metric d(., .). By defining a distance on 4D points (x, y, tanx, tany)�, clos-
est points can be assigned easier. However, tangent information is not rotationally
invariant, i.e. a good initial estimate of R must be provided for the 4D points to be
accurately matched. Mind that the estimation of the motion (the P3P) must also use
the 4D distance, which can be computed with the Extended Kalman Filter.

Their clinical experiments showed an improvement of the mean pixel error to 0.83
pix of the matched points8, which was achieved in 20 sec on a DEC workstation.

Kita Kita et al. [77] register a 3D vessel model extracted from MRA using the al-
gorithm of Wilson and Noble (see 2.2.4) to 2D DSA data of cerebral vessels. An ini-
tialization step finds rotation using C-arm device information and translation using
template matching of a projected vessel curve and the intensities of the DSA (the ves-
sel curves are translated such that the summed intensity of the DSA at the projected
sampling point locations is as small as possible).

Then, an automatic thresholding is carried out to retrieve parts of the centerline of
the DSA. The thresholding is driven by the location of the projected 3D centerline.

The core of the algorithm provides a territory-based correspondence search. At
each point of the projected centerline a region growing is started simultaneously

7P3P means Perspective 3-Point Problem and stands for the computation of the pose R|t from a triplet
of corresponding 2D and 3D points {X1,X2,X3} ↔ {x1,x2,x3}

8Evaluating an error on the points with which the algorithm estimated the transformation is biased
in terms of spatial locations. Preferably, the error assessment is done on points not used for the
registration, see 2.4.3
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and stopped if another region has advanced there already. In these regions only,
the correspondence search with a closest point operator is carried out. This reduces
the probability that points projected on overlap or very near to each other establish
wrong correspondences and drive the registration to a wrong solution.

The pose estimation is carried out by separating rotation and translation estima-
tion and linearizing the rotation matrix using approximative unit quaternion rep-
resentation. The correspondence search and pose estimation steps are iterated until
convergence (the chosen threshold is not explicitly stated in the original publication).
Thus, the pixel error based on the Euclidean distance is minimized in an ICP manner.

On a SUN IPX/ULTRA1 workstation, the algorithm took 5-6 sec, accuracy was
assessed manually.

Table 3.2 summarizes all issues of feature-based approaches for 2D-3D rigid regis-
tration.

Input Distance Function Corr. Opt. Time Accuracy

MRA & perpendicular 1 minAlperin ’94 [1]
2D DSA

2D Euclidean
intersections

Brent
per segment

0.6 mm

MRA & perpendicularLiu ’98 [88]
2D DSA

2D Euclidean
intersections

Newton 2-5 min —–

3D DSA & bitangentFeldmar ’95 [41]
2D DSA

2D/4D Mahalanobis
properties

ICP 20 sec 0.83 pix

MRA & regionKita ’98 [77]
2D DSA

2D Euclidean
based

ICP 5-6 sec —–

Table 3.2.: Summary of feature-based 2D-3D rigid registration algorithms

3.3. Hybrid 2D-3D Registration

There are a number of methods that make use of both approaches, i.e. mix feature-
based and intensity-based techniques. Whenever there is a mixture of intensities
and spatial locations, or distance and similarity, we call a method hybrid. In the
following, they will be shortly presented.

Chan Chan et al. [27] register vessel models of Phase Contrast MRA data to DSA
images of the brain. The 3D model is generated by thresholding and skeletonization.
Radii are associated to all centerline points by a distance map of the segmentation. In
each step of the iterative algorithm, they project all centerline points of the MRA vas-
culature together with a sphere with the same radius as the vessel at this centerline
point and assign the highest intensity value to all points inside the projected sphere.
All other pixels get the lowest intensity value to create a binary image. They opti-
mize the sum-of-squared-difference (SSD) similarity measure between the projected
centerline image and an inverted DSA. For optimization they use Powell’s direction
set method.
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The achieved root mean square error of the method lies within 1.7mm measured
by manually selected landmarks. Execution time is 20-40 sec.

The creation of a binary image from centerline pixels and spheres approximates
a DRR. However, the technique is using quantitative information (centerline points,
vessel diameter) for creating a 2D projection. Thus, the accuracy of the method is
more dependent on the segmentation and centerline extraction similar to feature-
based approaches.

Vermandel Vermandel et al. [150] register brain MRA volumes to 2D DSA images.
In a first step, a 3D and 2D segment of the vasculature is extracted via region growing
(see section 2.2.4). The segments must contain the same vessel structures. To evaluate
the energy, a binary image is generated by projecting the 3D segmentation onto the
image plane, and the sum of squared differences (SSD) is evaluated between two
binary images. The 6 parameters are optimized using a hybrid simulated annealing
(HSA) scheme [130]. An accuracy between 1-2mm, which is comparable to intensity-
based approaches could be achieved, unfortunately, the runtime is not reported. The
accuracy was evaluated with the RPD error, see 2.4.3.

Turgeon Turgeon et al. [145] register ECG-gated 2D heart angiograms to 3D preop-
erative angiographic data and is thus one of the few works addressing 2D-3D rigid
registration in a deformable region. The 3D data set is first thresholded to yield
a segmentation from which a triangulated mesh is produced using the Marching
Cubes algorithm [90]. The 2D segmentation is computed using Koller’s algorithm
(see 2.2.5). In a simulated clinical environment, the 3D mesh is projected to form
a binary image, which is compared to the 2D segmented vasculature using a mix-
ture of correlation and entropy similarity measure (Entropy Correlation Coefficient,
ECC). A Downhill-Simplex strategy is used to optimize for the rigid registration pa-
rameters.

An extensive study is provided including single- and dual-view registration in the
same and different heart phases on simulated and clinical images. A 3D error was as-
sessed by measuring the average distance of corresponding vessel centerline points
of reference registration and computed registration. For single-view registration, av-
erage execution time was 32 sec and an error of 1.6mm could be achieved in the same
heart phase. In a different phase with present deformation, however, the algorithm
exceeded the threshold for a successful registration, which was set to 5mm.

Jomier One last but interesting approach is the model-to-image registration pro-
posed by Jomier et al. [70] for navigation in TIPS surgery. As Turgeon’s work, this
method is employed in a deformable region, but without gating information. For
registering a 3D MRA image to two 2D DSAs a 3D model of the vasculature is first
extracted using Aylward’s technique [6]. The projection of the model is directly com-
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pared to the 2D DSA image intensities via the energy term

E =
1

�N
i=1 ri

N�

i=1

riIσ=ri(ϕ(Xi)), (3.8)

where N is the number of extracted 3D centerline points Xi, and ri are their as-
sociated projected radii. Iσ=ri is the 2D DSA smoothed by a Gaussian kernel with
standard deviation σ.

Since vessels are dark objects in DSA images, this metric is subject to minimiza-
tion. The Gaussian blurring with radius ri assures that vessels with a smaller radius
than ri get a higher response. Moreover, by multiplying the response with ri, the
alignment is driven by vessels with larger diameter.

For optimization Jomier et al. chose a sequential technique optimizing for one pa-
rameter at a time comparable to Powell’s direction set method. Accuracy and robust-
ness was assessed via Monte Carlo studies yielding mean and standard deviation of
the distances of all 6 parameters to reference parameters. The reported accuracy
(compared against a reference registration computed by Liu’s algorithm [88]) lay be-
tween 0.9 ± 1.2mm for translations and 0.9 ± 1.9◦ for rotations; the runtime of the
algorithm is less than 20 sec on a 2.2GHz Pentium 4 CPU.

Table 3.3 addresses the main issues of all hybrid approaches. Additional to opt-
mization technique, accuracy, runtime, and input data, distance function or simi-
larity measure used, and the integration of original intensities into the registration
process are listed.

Input (Dis-)Similarity Orig. Int. Opt. Time Accuracy

PC MRA & Powell-Chan ’04 [27]
2D DSA

SSD No
Brent

20-40 sec 1.7 mm

MRA &Vermandel ’03 [150]
2D DSA

SSD No HSA —– 1-2 mm

3D DSA & DownhillTurgeon ’05 [145]
2D DSA

ECC Yes
Simplex

32 sec 1.6 mm

MRA & intensity at 1D param t :< 2.1mmJomier ’06 [70]
2 2D DSA centerline point

Yes
search

<20 sec
R :< 2.8◦

Table 3.3.: Summary of hybrid 2D-3D rigid registration algorithms

3.4. Deformable 2D-3D Registration

There is not much work on deformable 2D-3D registration, especially using only one
view. This is due to the inherent two-folded ill-posedness of the problem:

• First, the set of admissible transformations must be constrained to yield “rea-
sonable” deformations, which can be achieved by constructing a diffeomor-
phism or by imposing smoothness constraints (see section 2.3.2).
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• Second, the displacement in ray direction, i.e. in z-direction of the CCS can-
not be assessed from one view. Thus, the problem of single-view 2D-3D de-
formable registration has an infinite number of solutions.

Some work can be found on non-rigid registration of a statistical model created
from CT images to two or more views of non-contrasted X-ray images [45, 9, 160].
Having two views and the relative transformation between them, the displacement
in ray direction can be resolved and the ill-posedness of the problem is reduced to
one issue only. The work by Yao and Taylor [160] also assess the registration accuracy
when only one view is available, but the result is not convincing (A volume overlap
of ground truth and deformed structure of only 64 % could be achieved).

Penney [117] extended his algorithm for 2D-3D rigid registration by deformations,
where rigid structures are incorporated. His intraoperative X-ray image showed sev-
eral vertebrae of the spine, each of them undergoing a different rigid transformation.
His goal was to transform the volume to incorporate all rigid transformations and
interpolate in between them. First, the single vertebrae were registered separately to
their projections to yield rigid transformations Ti. Then, control points were set in
the centroids of the vertebrae. These control points were used for computing a Thin
Plate Spline (see Appendix B), where the affine part was replaced by a combination
of the matrices Ti. This algorithm worked well for registration of more than one
rigid structure, but is likely to fail when the structure itself is deforming.

Up to this moment, no work could be found on angiographic 2D-3D deformable
registration in the literature. We will see in chapter 6, however, that a deformable
registration is possible on these data sets even if only one view is available.

3.5. Discussion

In the last sections we have reviewed all relevant contributions to the field of 2D-3D
registration with respect to angiographic images. We have listed intensity-based,
feature-based and hybrid approaches for rigid 2D-3D registration. Moreover, we
have shortly summarized all methods found on 2D-3D non-rigid registration, all
of them operating in a multiple-view scenario, or vastly lacking accuracy.

In this section, the issue of initialization will be discussed, since it is crucial for the
applicability of the previously presented methods in clinical treatments. To finish
this review, possible directions of future research in angiographic 2D-3D registration
will be given.

3.5.1. Initialization

Initialization is an important issue for the applicability of registration algorithms in
clinical treatment. During C-arm procedures, time is a crucial factor, and a manual
pre-alignment of the 3D image to the currently acquired 2D projection is not desir-
able.
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All algorithms that align 3D DSA to a 2D DSA acquired on the same machine have
an inherent initial registration estimate due to calibration. As the C-arm has to be
calibrated for 3D DSA reconstruction, the projection matrices of all views involved in
the reconstruction are known. If the 2D DSA is acquired from a view not contributing
to the reconstruction, an interpolation can yield a good inital alignment. However,
if the DSA is not acquired in the vicinity of a calibrated viewpoint, these algorithms
need to be initialized manually. Since typical reconstruction views are only those
with a secondary (lateral) angle close to zero, changing this angle leads to a loss of
initial alignment in these methods.

The approach by Feldmar et al. [41] has the advantage that the pose estimation
can be carried out from any viewpoint. However, finding reliable correspondences
especially when using the 4D points involving tangency need a good initial estimate
since tangency is not projectively invariant. Without the extension to 4D points,
however, the bitangent properties and the pose estimator can yield a good pose from
any initial one.

Kita et al. [77] explicitly summarizes an initialization step. While a rough first
estimate of the rotation parameters for R and tz come from a calibration step, the
in-plane translation (tx, ty) is found via template matching. The initialization step is
thus fully automatic.

All the other methods need a manual pre-alignment before the registration algo-
rithm can be invoked.

3.5.2. Directions of Future Research

The problem of 2D-3D registration of angiographic images in rigid areas, such as
brain vasculature, can be said to be solved. As described above, algorithms have
been proposed that perform reasonably fast, and have been tested for accuracy and
robustness thoroughly. A rigid registration in abdominal or thoracal areas, where de-
formation occurs, has not been studied extensively and will be most probably subject
to research in the upcoming years. The behavior of algorithms to non-rigid move-
ment has to be analyzed in terms of accuracy and robustness.

In the last view years, advancements in 3D cone beam reconstruction made it pos-
sible to acquire not only 3D DSA but 3D images with CT-like quality intraoperatively.
Since these images are acquired on the same machine, they are registered to the views
they are reconstructed from by calibration. Due to the time pressure during a treat-
ment physicians will still plan procedures before the operation on preoperatively
acquired scans. Region of interest, catheter paths, and complication assessment can
be planned then. In this scenario, a 3D-3D registration of preoperative data to an
intraoperative reconstruction can make a 2D-3D registration easier.

2D overview DSAs as well as 2D contrasted fluoroscopy sequences will still be
acquired during catheter injection and advancement. Usually, the 2D DSA is not ac-
quired from the exact same location as a view used for reconstruction. Moreover, and
more importantly, abdominal imaging always involves deformation due to breath-
ing or patient movement. Both externally induced motions can cause misalignments
of 3D image and 2D DSA/Fluoro, too.
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Efforts will be made to provide a fully automatic fusion of preoperatively planned
information and intraoperative monitoring information into the high resolution 3D
intraoperative scan. This will include the development of fast and automatic 3D-3D
angiographic registration algorithms (as proposed e.g. by [5, 4, 29, 83]) aligning pre-
and intraoperative reconstructions as well as the incorporation of 2D-3D algorithms
to update this registration. Moreover, in order to backproject monitored instruments
to 3D, 2D-3D deformable registration, motion compensation, and 2D catheter track-
ing will become of importance. The integration of prior information (e.g. type of
treatment, instruments used) into registration and tracking algorithms will be a ma-
jor issue in the near future.
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4. Clinical Application

In part I angiography as it is used in the clinic has been introduced, concepts for
2D-3D registration have been explained, and 2D-3D registration algorithms for an-
giographic images have been reviewed. Chapter 1 has given a general motivation
and justification for a registration system that can be used for abdominal catheteri-
zations.

Now, we want to have a closer look at a particular abdominal procedure, Chemo-
embolizations of liver tumors. After shortly introducing medical indication and pro-
cedure (4.1, 4.2, and 4.3), we will illustratively use this intervention to show feasi-
bility, difficulties, and issues of 2D-3D registration in section 4.4. Moreover, we will
critically examine all previously reviewed alignment methods for applicability in
abdominal chemoembolization and thus liver catheterizations.

In the remainder of part II, two rigid and one deformable registration algorithms
will be presented particularly tailored to meet the requirements of catheterized inter-
ventions in abdominal areas. Chemoembolization data will always be used to show
their applicability on real data sets.

4.1. Medical Excursion: Liver Vessel Systems

The liver, as the second largest organ of the human body, plays a major role in
metabolism and also serves a number of functions for storage and detoxification.
Thus, there is a considerable amount of blood traveling through the liver in order to
deliver nutrients or for being “washed” from toxics. There are four vessel trees in
the liver. One is the liver arterial tree or hepatic artery delivering oxygen-rich blood
from the aorta to the liver. The arterial vessels have a diameter between 1mm−5mm.
Two venous systems are located in the liver, the hepatic veins that drain blood from
the liver, and the portal venous system starting with the portal vein that carries
nutrition-enriched blood from the small intestine to the liver. Hepatic veins have
a diameter between 6mm− 12mm, whereas the portal venous system usually covers
a range from 6mm − 17mm. All vessels end up in capillaries with a diameter down
to 5μm. As can be deduced from the respective sizes, the portal vein plays the major
role in blood supply for the liver. Approximately 75% of the blood flow to the liver
comes from the portal venous system, about 25% comes from the hepatic artery. A
fourth vessel system is the hepatic duct as part of the biliary system, which trans-
ports bile from the liver to the gallbladder. An illustration of the liver vessel systems
is shown in Figure 4.11.

1From The Merck Manual of Medical Information - Second Home Edition, p. 787, edited by Mark H.
Beers. Copyright 2003 by Merck & Co., Inc., Whitehouse Station, NJ. Available at: http://www.
merck.com/mmhe/sec10/ch133/ch133a.html. Accessed July 12th 2007.
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Figure 4.1.: The vessel system of the liver

4.2. Treatment of Liver Tumors

A liver tumor (hepatocellular carcinoma, HCC) is an abnormal growth of cells in a
mass or a lump, distinguished by its malignancy and whether it has evolved in the
liver (primary liver tumor) or has been delivered from another part of the anatomy
(secondary liver tumors, metastases). The main causes for liver tumors are alcoholic
cirrhosis, hepatitis B, or C, and intoxication. Tumors can be detected via anamneses2,
a blood test (in case of hepatitis), or adequate imaging modalities. Even though the
main blood supply of the liver comes from the portal vein, HCCs are exclusively
supported by hepatic arteries.

There are three possible treatments for liver cancer, surgery, radiation therapy, and
drug treatment. A surgery is the most severe intervention which cuts either parts of
the liver (liver resection) or replaces the liver entirely (liver transplantation). Anas-
tasis for liver resection is rather long compared to minimally invasive treatments
and does not guarantee a total recovery. Liver transplantations naturally cure a
liver cancer entirely, however, organ supply is short and expensive. Treatment by
medicine applies cytostatica to the patient in order to destroy malignant (tumor)
cells. This procedure is also called chemotherapy and is mainly used when a tu-
mor has spread in the body and cannot be treated locally any more. Sometimes, it
is also applied additionally to surgery in order to improve operability / recovery or
to kill not ascertainable tumor cells after treatment. Minimally-invasive procedures

2The elicitation of a patient case history, particularly using the patient’s recollections
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for liver treatments are used more frequently in hospitals nowadays since they can
be performed almost ambulantly. Typically, only small incisions are made, instru-
ments are injected therein, and guided to the region of interest where the therapy is
carried out. The guidance is monitored by appropriate imaging devices (for example
C-arms). Minimally-invasive treatments are not as demanding to the patient’s health
compared to conventional methods. However, they are seldomly used to fully cure
patients from liver carcinomas but instead to relieve patients from pain and improve
their quality of life (palliative therapy).

One such minimally-invasive treatment, which is carried out on a regular basis (5-
10 times per week) in hospitals is a Transarterial Chemoembolization (TACE). Here,
in order to apply local chemotherapy and embolizing the blood vessels supporting
the tumor, a catheter is inserted into the arterial vasculature in the hip region and
guided to the tumor’s location using X-ray imaging (see fig. 4.2). Since the emboliz-
ing liquid dissolves after a few days, this treatment is repeated on a regular basis for
one patient.

Figure 4.2.: A transarterial chemoembolization. With courtesy of Dr. Jeff Geschwind,
Johns Hopkins University

In the following, we will have a look at work- and dataflow of the TACE proce-
dure, and deduce the necessity for 2D-3D registration from it.
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4.3. Workflow of Transarterial Chemoembolizations

Once a tumor has been detected and the patient is scheduled for TACE, a preoper-
ative 3D scan is performed one day before the treatment. This scan is usually ac-
quired via CTA or MRA and gives information about the location of the tumor, the
configuration of blood vessels that a catheter must be guided through, and possible
complications due to medications the patient has received so far.

Once the procedure has been planned and the patient is accepted for treatment,
TACE is started by injecting a catheter into the femoral artery of a patient who is not
or only partially anesthetized. From then on, a C-arm is used to monitor the catheter
as it is guided through the arterial system. Usually, a DSA is acquired providing a
vascular overview once the catheter has reached the aorta (see Figure 4.3a). Then, it is
guided via constant fluoroscopy imaging into the hepatic artery. DSAs are frequently
acquired to find the location of the tumor (Figure 4.3b). The catheter is led to the
artery supporting the tumor (Figure 4.3c), cytostatica are applied, and the vessel is
embolized.

(a) (b) (c)

Figure 4.3.: A chemoembolization workflow shown by different X-ray projections.
(a) shows an overview of the vessel anatomy. The red arrow indicates the hepatic
artery. (b) shows a state where the catheter is inside the hepatic arterial system. The
red arrow indicates the tumor region. (c) shows a fluoroscopy image of the state
where the catheter has reached the tumor region.

Only a DSA where the catheter is near enough to the tumor region can visualize
the HCC. As can be seen in Figure 4.3, the overview DSA does not show the tumor.
Moreover, the fluoroscopic image does not show vessels at all or only temporarily if
contrast agent is administered. Note also that the fluoroscopic images are acquired
from one view only.

Currently, the 3D preoperative information is not brought to the interventional
room. It would, however, be beneficial for the operating physician to know the posi-
tion of the catheter in 3D with respect to vessels and tumor. Interventionalists often
have to change the angulation of the C-arm to have a better depth perception, which
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could be avoided if preoperative data is fused with the 2D projection. As already
mentioned in the introduction the issues of blind navigation, reduced depth percep-
tion, and patient motion could be addressed if a 2D-3D registration is available and
catheter information is transferred to the 3D preoperative data set.

Even though the goal of this thesis is to provide accurate and robust methods for
2D-3D registration in this context, the task of information fusion of intraoperative
instruments and preoperative data needs to address more issues. First, in order to
keep the registration updated while fluoroscopic images are acquired and the pa-
tient keeps on breathing, a tracking algorithm has to be developed compensating for
breathing movement. Moreover, the instrument, i.e. the catheter has to be located
(or at least its tip) to have the 2D coordinates for backprojection into space. Last but
not least, a suitable visualization technique for data fusion must be provided, giving
the interventionalist an intuitive interface for catheter navigation.

After the presentation of 2D-3D angiographic registration techniques aligning pre-
and intraoperative data sets, we will address the three aforementioned issues in the
Conclusion of this thesis, in chapter 7.

4.4. Feasibility of 2D-3D Registration

In the following, the problem will be analyzed with respect to the available data.
Only if similar structures can be found in 2D and 3D data set a registration can be ac-
complished. Moreover, we discuss the particular difficulties when registering TACE
data. Finally, we will reiterate over all the reviewed registration methods and evalu-
ate their applicability to 2D-3D registration on TACE images.

4.4.1. Data Availability

Preoperative Data The current workflow for chemoembolizations in our partner
clinic involves a three-phase CTA scan of the liver region consisting of native, ar-
terial dominant, and portal-venous phase visualizing especially the portal venous
system, faintly the arteries, and the hepatic veins. The native scan is done to detect
already existing embolization liquid in the liver. The arterial dominant phase allows
for detection of new malignancies, and, together with the venous phase, shows the
radiologist whether a treatment is possible with the current vessel configuration.

During the intervention, however, only arteries are visible in the 2D data sets, no
portal or hepatic vessel systems, such that until now 2D-3D registration was not
possible. We create a strong link between diagnostic radiology and intervention by
defining a new protocol for the preoperative scans, introducing one additional run of
an angiographic phase that visualizes liver arteries (delay times with bolus tracking:
6 (angiographic), 10 ± 2 (arterial dominant), 21 ± 4 (portal-venous) seconds), see
Figure 4.4. The aim is to let the interventionalist benefit from 3D high resolution
CTA scans during the intervention. We have acquired several data sets using a state-
of-the-art 64-slice CT imaging device (Siemens Sensation 64). The spatial precision
of the acquired scans could be reconstructed to 0.58 × 0.58 × 0.6 mm3/voxel in a
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512 × 512 × (280 − 500) voxel volume making it possible to extract vessels with a
diameter down to 1− 2mm.

As confirmed by physicians, the additional radiation exposure (approximately 6
mGy) is acceptable for patients undergoing a chemoembolization treatment. This
new scan protocol is used to perform the registration. As a result, path planning can
be performed and intraoperative 3D visualization can be offered.

(a) native (b) angiographic (c) arterial dominant (d) portal-venous

Figure 4.4.: The new 4-phase CT protocol

Intraoperative Data We choose to register the preoperative data set to a DSA. Flu-
oroscopic images show bone structure, which could be used for rigid registration.
However, the structure to be aligned is the vessel system that is subject to motion
(rigid and non-rigid), which cannot be inferred from the skeletal structure3. Thus,
a registration algorithm should focus on the structure of interest, the vasculature,
supporting the use of DSAs. Moreover, for feature-based registration algorithms,
an extraction of vessel features is necessary, which can be accomplished easier us-
ing DSAs compared to contrasted fluoroscopic images due to a better signal-to-noise
ratio and less artifacts.

4.4.2. Challenges

Even though the preoperative acquisition is altered to provide necessary information
common to both pre- and intraoperative data set, there are still some challenges that
have to be coped with.

Contrast Difference First, contrast injection is performed globally for the preoper-
ative, locally for the intraoperative data set. Thus, contrast propagation stops earlier
in the vessel structure in preoperative data, while thinner vessels are visible in intra-
operative data. A registration based on vessel structures has to discard those outliers
in the 2D data set. Moreover, possible segmentation errors as well as the global con-
trast propagation can introduce vascular outliers in 3D, too.

3Breathing motion, for instance, induces different transformations on organs (and thus vessels), ribs,
or spine



4.4. Feasibility of 2D-3D Registration 69

Small Vessels As already mentioned in 4.1, hepatic arteries have a diameter of
1− 5mm making it difficult to provide a proper segmentation. Particularly in a pre-
operative CTA small arteries shrink to the size of one voxel only, making segmen-
tations prone to errors caused by noise. These segmentation errors either have to
be compensated by a suitable vessel extraction algorithm, or have to be considered
during 2D-3D registration.

Breathing Movement Due to patient breathing the vessel structures are deformed
[151, 125]. Either the deformation is taken into account by the transformation model,
or deformed vessels have to be detected and discarded for a rigid registration method.
Moreover, a DSA usually shows artifacts (a displaced catheter or rib contours, see
Figure 4.3), which have to be taken into account during registration. A 2D segmen-
tation algorithm has to be robust against such artifacts, and a 2D-3D registration
based on intensities must not be disturbed by them.

Single View Our clinical partners only use a single view C-arm for TACE treatment
as do most other hospitals for abdominal catheterizations. Thus, no 3D reconstruc-
tion and 3D-3D registration approach is possible in this specific scenario. The depth
information has to be inferred from one view only, making a deformable alignment
particularly difficult, see 3.4.

Fast and Automatic A registration algorithm must be fast and automatic since it
will be used during the intervention. While preoperative data can be (semi-)manually
segmented, the 2D vessel extraction should be as automatic as possible, or the reg-
istration has to be computed without 2D segmentation. Moreover, a registration
should not require a manual pre-alignment, proper initialization routines have to be
provided for applicability.

4.4.3. State-of-the-Art Applicability to TACE

We will now highlight advantages and flaws of approaches already proposed in the
literature, and discuss their applicability to TACE data.

Feature- vs. Intensity-Based Registration Pure intensity-based registration for an-
giographic alignment of TACE data is rather difficult to achieve. First, most of the
intensity-based approaches that have been reviewed above need a segmentation of
the 3D vasculature, which makes it unreasonable to not at least use attributes like
diameter and centerline of the preoperative data set. The methods based on MIP
approximations of DRRs are not likely to work due to the small nature of hepatic ar-
teries. A MIP of the arterial vascular system of the liver will be prone to error due to
noise and alignment might fail especially if the depth information gathered during
MIP is used in the registration process as proposed by Kerrien et al. [73].
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Deformation and Size Bias of Intensity-Based Methods Liver arteries deform
during patient breathing. Unfortunately, it can occur that also thick vessels deform
vastly (see chapter 6), which makes it difficult to align the images according to them.
Methods based on intensity similarity measures tend to align vasculature biased by
the diameter of the vessels. The larger the vessel, the more influence it gains in the
similarity measure. However, due to non-rigid motion, vessels with different sizes
should rather be treated equally in order to attain more robustness against deforma-
tion. This makes a registration using the methods of Hipwell [68, 101, 23], Day and
Napel [39], Turgeon [145], or Chan [27] difficult in abdominal regions.

Furthermore, we find it also crucial for a registration algorithm to have informa-
tion about 2D vessel geometry, topology, and diameter properties. In this respect,
2D vascular segmentation is an important step in our opinion, and we will show in
chapter 5 that a mere normalization of vessel radius and an avoidance of 2D segmen-
tation as proposed by Jomier et al. [70] is not sufficient for a successful registration in
some clinical cases.

Automation A high level of automation must be achieved intraoperatively in order
to make the algorithm applicable for TACE procedures. A tedious manual segmen-
tation of 2D data is to be avoided, which excludes some approaches (e.g. that by
Alperin et al. [1], Liu et al. [88], or Vermandel et al. [150]) for 2D-3D registration used
on chemoembolization image data. Moreover, automatic initialization is an impor-
tant issue and the capture range of algorithms should be high. We will propose and
discuss suitable automatic initialization techniques to find an initial estimate in the
vicinity of the true registration parameters.

Deformable Registration Non of the reviewed methods is solving for a local trans-
formation acknowledging the deformation introduced by patient breathing and pres-
ence and advancement of the injected catheter. It is doubtful whether the bitangent
properties derived by Feldmar et al. [41], or the region-based correspondence search
as described by Kita et al. [77] still work in this deformable environment. In the fol-
lowing chapter, we will propose two rigid registration algorithms, which are both
robust against deformation changes and solve for transformation parameters as well
as one-to-one correspondences. We link these results to a deformable 2D-3D registra-
tion algorithm in chapter 6, which for the first time addresses the difficult problem
of non-rigid vascular alginment of a 3D image to a single 2D projection.
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This chapter introduces two methods for rigid registration of 3D CTA to 2D DSA
images of abdominal catheterizations.

In the first two sections, 5.1 and 5.2, we will provide details on the model of the
C-arm we use for deducing the registration parameters and explain the preprocess-
ing of the data we have to apply to retrieve the data structures that are used for
alignment.

Next, the bifurcation-driven registration will be discussed in section 5.3, a method
to register two vascular graphs using bifurcation points and topological graph infor-
mation to adapt 3D to 2D feature space. In section 5.4 we will introduce the second
rigid registration algorithm, in which the alignment is driven by an iterative 2D seg-
mentation refining feature spaces for correspondences. Both methods will be subject
to extensive testing, and a method for creating a simulated DSA image with a ground
truth registration is developed to evaluate accuracy and robustness of the second al-
gorithm since it is using 2D image intensities in the registration process.

Integrating the registration results into clinical workflow will be postponed to
chapter 7. Registration-induced visualization and a subsequent catheter tracking
method will be discussed there.

5.1. C-arm Model

The presented model interprets the calibration matrix K and extrinsic parameters
[R|t] of a pinhole projection in the context of a C-arm setup. For an illustration refer
to Figure 5.1. All images were acquired with C-arms of the Axiom series of Siemens
Medical Solutions.

Intrinsic Parameters We assume an absence of distortion due to flat panel detec-
tor technology or correction by calibration. The intrinsic parameters can be received
from the calibration given by stationary C-arms for reconstruction purposes (or in-
terpolated from them as explained in 2.4.2).

The focal length fx, fy is given in mm by a calibrated field of view (FOV ), image
width hx and height hy, aspect ratio a, and the pixel pitch mx, my:

fx = mx
hx/2

a tanFOV/2
, fy = my

hy/2
tanFOV/2

(5.1)

The principal point (px, py) is either given by calibration, or, if not available, an
approximative value is given by the center of the image (hx/2, hy/2).
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Figure 5.1.: 6 rigid body parameters in a C-arm setup

Extrinsic Parameters The origin of the WCS (center of rotation) is placed in the
middle of the moving 3D image, where a right-handed coordinate system spans a
plane by x− and y−axis parallel to the image plane. Moreover, the WCS origin
is located on the ray connecting CCS origin and principal point, making the z-axis
lie on the principal ray. Since C-arm geometry places the 3D object between X-ray
source and image plane, the following interpretation of the 6 rigid-body parameters
can be deduced:

• α: rotation around horizontal axis of image, secondary angle of C-arm

• β: rotation around vertical axis of image, primary angle of C-arm

• γ: rotation around principal ray

• tx: in-plane translation along horizontal axis of image, perpendicular table trans-
lation

• ty: in-plane translation along vertical axis of image, parallel table translation

• tz : out-of-plane translation along the principal ray, table translation towards X-
ray source or detector

The rotation matrix R is then given by the matrix representation of the Euler angles
(α, β, γ), and the translation t = (tx, ty, tz)�.
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5.2. Preprocessing

For all proposed methods, we developed a graph representation of centerlines and
bifurcations of vessel structures attributed with the diameter at each location. The
process is divided up into three stages: the vascular segmentation (section 5.2.1), the
extraction of centerlines, bifurcations, and diameters (section 5.2.2), and the creation
of the graph structure (section 5.2.3). A visual overview of all steps is given in Figure
5.2.

5.2.1. Segmentation

CTA Segmentation Since contrast agent is applied globally in a CTA scan, its prop-
agation is uniform and rather straightforward to segment. Thus, we choose a region
growing algorithm to extract the vascular structure, as described in 2.2.4. In order to
avoid the region growing to stop due to noise, a smoothing is applied. The smooth-
ing has to be edge-preserving since small vessels are important to be covered by the
algorithm and leakages due to low contrast difference should be avoided. Therefore,
the 3D volume of the angiographic scan is filtered with anisotropic diffusion [119]
before the user has to place a seed point at the beginning of the arterial tree to be
segmented.

The angiographic phase of CTA shows contrasted aorta and the arterial system of
other organs than the liver, too. The user manually selects a point in the vicinity of
the hepatic artery where it leaves the aorta. By automatically drawing a cube with
the size of the hepatic artery, the region growing is stopped and redundant vascular
information that is not visible in the intraoperative image can be discarded.

As can be seen in Figure 5.2b this segmentation technique yields good results for
the extraction of hepatic arteries from the angiographic CTA scan. However, as was
assessed manually, very small vessel structures cannot be segmented using a region
growing due to noise. Level Set methods (see 2.2.4) could provide a better segmen-
tation in terms of vessels with a diameter of less than two pixels. However, we pre-
ferred the region growing technique since it provides reasonable results for 2D-3D
registration, is computationally fast, easy to implement, and the segmentation can
conveniently be refined manually.

DSA Segmentation In 2D DSAs, the SNR is higher compared to 3D CTAs, making
it necessary to use a more sophisticated vessel enhancement filter. A background
removal is performed by applying a bothat filter (closed image minus original im-
age) followed by a multiscale vesselness filter assigning the probability of lying in
a tubular structure to each pixel as described by Frangi et al. [47]. Again, a region
growing algorithm extracts the vessel structure from one or several seed points.

5.2.2. Extraction of Graphs

From the segmented data sets one can easily extract a centerline image by applying
topology-preserving thinning algorithms in 3D and 2D [113]. A wave propagation
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algorithm [162] extended to cope with loops is used to create a graph from this cen-
terline [112]. By advancing a set of waves and testing their fronts for connectivity,
a graph can be created with bifurcation nodes at branching points of the vessel tree
and segments consisting of sampling nodes in between (see Figure 5.2). Mind that
the position of ramification points is directly depending on the thinning algorithm.
Since thinning is an approximation to MAT [14], the (unique) bifurcation lies on the
center of the largest sphere that can be fitted into the segmented vasculature.

(a) original CTA (b) segmented CTA (c) extracted 3D graph

(d) original DSA (e) segmented DSA (f) extracted 2D graph

Figure 5.2.: Preprocessing in 3D/2D. Figure (a) shows the volume rendered CTA,
(b) shows the segmented vasculature, (c) the extracted graph, where the green
point is the root node, orange points inner, red points outer bifurcation points, and
blue points represent sampling points of the vessel segments. Figure (d) and (e)
show original DSA and its segmented vasculature. Figure (f) shows the 2D graph
(turquoise are sampling, red are bifurcation points)

Points between each bifurcation are sampled and stored as edge labels to keep
edge position information. The size of a wave should be set to the desired sampling
rate of segmented vessels, which can be down to 1 pixel or voxel. Note that a ves-
sel graph in 3D is not necessarily a tree since there can be anatomical loops in the
vasculature as has been confirmed by physicians. Since the thinning algorithm still
introduces some wrong branches due to noise, edges smaller than the vessel diame-
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(a)

Figure 5.3.: Illustration of the used graph structure.

ter are removed with a Euclidean distance map of the segmented data sets. For the
same reason and in the same way very adjacent bifurcations are fused together.

The diameter of the vessels is computed using a distance map of the segmented
image. The distance map is created such that the largest Euclidean distance to the
contour is given inside the segmentation. On each centerline point, the radius, and
hence the diameter can be determined thus, as described in section 2.2.5.

5.2.3. Graph Representation of Vessel Centerlines

We model vessel structures as directed graphs Gd = (V d, Ed), with a set of n nodes
V d ⊂ R

d and the connecting edges Ed ⊂ V d × V d. Here d ∈ {2, 3} denotes the
dimension of the graph. For the following, please refer also to Figure 5.3.

The nodes are classified either as bifurcation nodes V d
b or sampling nodes V d

s , such
that V d = V d

b ∪ V d
s and ∅ = V d

b ∩ V d
s . While the bifurcation nodes express the topol-

ogy and the rough geometry of the vessel tree, the sampling nodes are used to de-
scribe the geometry of the vessel segments in more detail.

A general graph node is abbreviated by V ∈ V 3, and v ∈ V 2, in order to distin-
guish between the two dimensions we are working on.

The bifurcation nodes are abbreviated by B in 3D and b in 2D and are identified
with their spatial coordinates, such that B ∈ V 3

b ,b ∈ V 2
b .

We denote the sampling nodes by X in 3D and x in 2D and again identify them
with their spatial coordinates.

We define a vessel segment Πi,j as a path between two neighboring bifurcation
nodes Bi and Bj , containing all sampling nodes and edges between Bi and Bj . The
number of nodes in Πi,j is ni,j and the number of edges respectively ni,j + 1. The
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sampling nodes are indexed relative to the vessel segment Πi,j starting from 1 to ni,j ,
compare Figure 5.3. The correspondences are also ordered relative to the respective
vessel segment.

We will also use a topological version of a graph Gt = (V t, Et), where V t = V d
b are

only bifurcation nodes, and Et ⊂ V d
b × V d

b represents the ramification topology of
the vessel structure.

5.3. Bifurcation-Driven 2D-3D Registration

Given 2D and 3D graphs from the newly introduced angiographic CTA scan and the
DSA image, the aim is now to recover the 6 extrinsic parameters to form [R|t]. This
is an easy task if correspondences are given, in our scenario, however, corresponding
information is not available and has to be determined as well.

In the following method we use the fact that bifurcation locations are distinct, and
well-defined. Moreover, bifurcations form a space of correspondences between 2D
and 3D graph structure. In a first step, the algorithm is initialized by finding one
bifurcation correspondence via a-priori information of the patient location and iter-
ative (x, y)-translation. Fixing this correspondence, a nonlinear optimization is per-
formed on a reduced parameter space iterating over 3 rotational and 1 translational
parameter. Good feature correspondences are iteratively created for the matching by
recurrent graph creation of the projected 3D centerline image.

5.3.1. Initialization

State-of-the-art angiographic C-arm devices store lots of information concerning imag-
ing geometry. Each 2D angiogram is provided with the calibration matrix K, and a
source-to-table distance (STD, see Figure 5.1). Moreover, a primary and secondary
angle provide a good initial estimate of the rotation matrix R̃.
We use all this information to produce initial image as well as object coordinates of
the extracted vessel trees. For all node coordinates of the 2D centerline graph ṽi we
undo the transformation specific to the imaging device:

v̂i = K−1 ˜̂vi (5.2)

For all node coordinates of the 3D centerline graph Ṽi, we apply an initial transfor-
mation including primary and secondary angle R̃ (assuming γ = 0) and an approxi-
mate z-translation t̃z = (0, 0, STD)�:

Vi = ṼiR̃ + t̃z (5.3)

Naturally, the values of rotation parameters and z-translation are just a rough esti-
mate and subject to further optimization as described in the following section.

Registration of x-y-Translation This step tries to find a 2D correspondence to the
bifurcation in 3D with the largest vessel attached, which is called the root. After



5.3. Bifurcation-Driven 2D-3D Registration 77

setting the a-priori information, we iteratively translate the 3D graph in x- and y-
direction parallel to the image plane such that the root’s projection is laid over 2D
bifurcations with high diameter. The energy Etopo, described in Equation (5.7), is
evaluated and the (x, y)-translation yielding the lowest value is chosen. Thus, we
find one corresponding vertex and reduce our optimization problem to recovering
three rotational parameters (R) and one translational parameter tz along the ray con-
necting the X-ray source position to the projected root on the image plane.

5.3.2. 4 DOF Optimization

Geometric Optimization of Rotation and z-Translation 2D-3D registration prob-
lems are twofold: recovery of corresponding information and estimation of rigid
transformation. Since vessel structures can be interpreted as a set of curves, the Iter-
ative Closest Point (ICP) algorithm [163, 11] could be incorporated for finding both,
matches and transformation parameters. Let C(G,y) be a function determining the
point of graph G closest to a given point y, an energy Eicp can be defined by

Eicp =
n2�

i

||C(G2D, f[R|tz ](Vi))− f[R|tz ](Vi)||2, (5.4)

where G2D is the 2D vessel graph, Vj , j = 1 . . . n2 are all points representing the 3D
vasculature (bifurcations and segment sampling points). With tz = [tx, ty, tz]� we
indicate that only tz is subject to optimization, tx,ty are fixed.
Eicp has many local minima since projected points of one 3D vessel segment could

easily be driven to different, not corresponding 2D vessel segments in the optimiza-
tion process. Moreover, even with outlier detection via an adaptive distance thresh-
old based on statistical analysis [163], the energy would yield wrong alignment due
to deformation.

If we do not focus the correspondence search on all curve points but only on dedi-
cated ones that are likely to be detected in both data sets, we can improve the estima-
tion process. Bifurcation points can be detected in 2D and 3D data sets very easily
and represent good descriptors for a projection of vasculature since they are dis-
tributed over the whole vessel tree and are distinct to each other. Hence, we restrict
our energy only to these good features, the ramifications of the vessel graphs:

Ebif =
n3�

i

||C({bj}, f[R|tz ](Bi))− f[R|tz ](Bi)||2, (5.5)

where b1, . . . ,bn2D and B1, . . . ,Bn3 are bifurcation points of the 2D and 3D graphs,
respectively. Only inner bifurcations can be used since leaves in the graph account
for the end of contrast propagation, which is different in 3D and 2D data set.

Unfortunately, segmentations and hence extracted graphs of the data sets are of-
ten very different due to local and global application of contrast agent. Moreover,
the projection also produces crossings of vessels that cannot easily be detected and
resolved since vessels can also be tangent to each other. This can be dealt with by
performing a new graph extraction on the projected graph’s centerline image in each
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iteration (see fig. 5.4). The centerline image is created by drawing the 3D graph as
a one-voxel-wide centerline in a volume and projecting the volume with the current
imaging parameters. The new energy can be stated now as

Eextract =
n4�

i

||C({bj},bf
i ))− bf

i ||2, (5.6)

where {bf
1 , . . . ,bf

n4
} is the inner bifurcation list (without leaves) of a graph, which is

created as follows:

• From 3D graph G3D a centerline volume A is created.

• A is projected with projection function f[R|tz ] to yield a centerline image Af .

• A new graph Gf is extracted from the projected graph’s centerline image Af

starting at the location of the projected root vertex.

• Only the inner bifurcations of Gf are put into the resulting set {bf
1 , . . . ,bf

n4
}

(a) (b) (c)

Figure 5.4.: Fig. (a) shows the real 2D graph, (b) the projected 3D graph, and (c)
the new created graph from the centerline image of the projected 3D graph. The
white arrows show the bifurcations in 2D that are not present in fig. (b), but could
be detected by the wave propagation, see fig. (c).

Topological Optimization of Rotation and z-Translation Since we deal with graph
structures, we can also incorporate topological information in the registration. Due
to different segmentation results in 2D and 3D, the two graphs to be registered do
not fulfill the subgraph property and it is not straightforward to do a topology-based
graph matching to register the data. However, topological tendencies can be used for
registration. The degree of each vertex can be used as well as a time stamp coming
from a breadth first search to penalize wrong bifurcation matches:

Etopo =
n�

i

rb
i r

d
i ||C(bj ,b

f
i )− bf

i ||2, (5.7)
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where rb
i is the ratio of the normalized breadth first search values of the current

bifurcation bf
i and the closest bifurcation in the 2D graph or its reciprocal if rb

i < 1.
rd
i is the ratio of the degrees of bf

i and the closest 2D bifurcation or its reciprocal if
rd
i < 1. Graph searches and degrees are computed on the topological representation

of the respective graphs (see 5.2.3).

Optimization Scheme Due to the high non-linearity of the cost function Etopo a
gradient-based optimizer is not used. In each iteration the graph creation changes
the number of possible correspondences and the scope of the squared sum differs,
hampering the derivation of a valid Jacobian. Therefore, instead of using gradient-
based methods, the downhill simplex [123] algorithm was favored.

5.3.3. Algorithm Evaluation

Creation of Reference Registration Experiments have been carried out on syn-
thetic data from 3D head vasculature, a phantom head showing a rigid vessel struc-
ture, and on four patient data sets of TACE procedures. For creating (rigid) synthetic
ground truth data, we extracted the 3D centerline from the head phantom and pro-
jected the resulting graph with rotation and translation typical to a patient-C-arm
setup. The transformation was chosen to produce a projection with a similar number
of overlays that could be found in real data sets. For the phantom head, a reference
registration has been created by intensity-based registration using Gradient Correla-
tion [118] as similarity measure (see Figure 5.5). For the patient data sets a manual
registration was provided by experienced radiologists.

(a) (b) (c)

Figure 5.5.: Fig. (a) shows a volume rendering of a 3D head phantom, fig. (b) an
X-ray projection of this head. Fig. (c) shows a checkerboard image of inverted 2D
and DRR of the reference registration.

Accuracy Measure For accuracy assessment, we used the RSME measure of Equa-
tion (2.43), defined between the reference registration parameters and the computed
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parameters. In the robustness tests, the standard deviation was also computed in
order to account for the stability of the error.

Robustness Test In order to evaluate the convergence and robustness of the op-
timization, Monte Carlo simulations have been carried out on all data sets. Ran-
dom displacements in a range of ±10mm in translation along the axis connecting
X-ray source position to root node (tz) and ±10◦ in rotation angles (α, β, γ) have
been added to the reference pose and the registration procedure was invoked. These
displacements are equivalent to a range of 10-50 mm average projection distance of
bifurcation points. Note that in order to have the same 3D displacements on all data
sets a transformation has to be applied to all coordinates of G3D before the tests, such
that the WCS origin is located in the center of the volume (which equals the center
of rotation).

The algorithm has been invoked from a total of 200 randomly generated simula-
tion poses.

Method Comparison Moreover, we implemented the method of Jomier et al. [70]
and added errors of up to ±10mm and ±10◦. For the realization of Jomier’s method,
instead of the 1D parameter search as proposed in the original paper, we used a
Downhill Simplex optimizer to solve for 6 DOF minimizing the cost function as de-
fined in Equation 3.8. We performed a second test with smaller errors (up to ±5 mm
and±5◦, equal to 5-25 mm average projection distance of bifurcation points) because
Jomier’s method solves for all 6 DOF, not only 4.

Results Tables 5.1 and 5.2 show standard deviations and root mean square errors
of 200 trials for the 6 degrees of freedom (3 translation and 3 rotation parameters).
Rows denoted with M1 refer to results from our method, those with M2 10 show
results from Jomier’s algorithm with the large error range, those with M2 5 with the
small error range.

We did not perform tests for Jomier’s method on synthetic and rigid phantom
data since no image intensities were created in the former, and no DSA image (only
a fluoroscopic image) was available in the latter case, respectively. Our method is
sometimes outperformed in z-translation (tz), which is the translation perpendicular
to the image plane. These deviations, however, do not create a large pixel error when
projected (about 3 mm average projection distance of bifurcation points). The more
important rotation angles and in-plane translation values prove to be more accurate
when using our method. Figure 5.6 shows three patient data sets after initializa-
tion (a),(b),(c) and after optimization (d),(e),(f). The blue line shows the extracted 2D
graph, and the green line the projected 3D graph. As can be observed, the optimiza-
tion procedure improves the initial alignment up to a deformation of the vessels.

Runtime Finding one correspondence and thus two parameters, tx and ty, was
successfully performed for each of the data sets. It took between 0.5 and 1.8 seconds
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(a) init Patient 1 (b) init Patient 2 (c) init Patient 3

(d) optimized Patient 1 (e) optimized Patient 2 (f) optimized Patient 3

Figure 5.6.: Initialized and registered pose of three patient data sets.

on a 1.6 GHz Pentium machine. The optimization procedure took 2.5 - 6 seconds for
phantom and patient data.

5.3.4. Discussion

By developing a 2D-3D registration algorithm based on the newly acquired data, we
enable physicians to transfer planning information to the interventional room, and
visualize patient anatomy in 3D from the same view point (see 7.1.1). We overcome
the difficulty of alignment by conceiving an algorithm, which iteratively generates
good features that can be detected easily in 2D and 3D and describe the perspec-
tive projection adequately. The algorithm requires user interaction for 3D and 2D
segmentation. Since the preoperative 3D segmentation is not subject to hard time
constraints, the vasculature extracted by region growing can be refined several times
and tailored to thoroughly represent the hepatic arterial system. The intraoperative
situation does not allow an extensive user interaction, so we provide a single click
technique to start a region growing on a restrospectively enhanced DSA image. Due
to the small amount of user influence, the segmentation in 2D is suboptimal, which
we account for with a restriction of the registration to bifurcation points only, re-
ducing the number of outliers extensively. With this technique, we also address the
inherent difference of vascular images due to global and local contrast injection.
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Data Method σtx σty σtz σα σβ σγ

head simulation M1 0.0004 0.0005 0.0050 0.0028 0.0010 0.0026
M2 - - - - - -

head phantom M1 0.0005 0.0005 0.0069 0.0019 0.0009 0.0022
M2 - - - - - -

patient 1 M1 1.3487 1.3982 48.5488 6.2751 2.4778 0.9400
M2 10 17.9463 43.9687 18.8130 19.8789 19.0780 17.4332
M2 5 11.9465 35.8826 11.7423 7.9779 11.3076 9.9759

patient 2 M1 0.1463 1.2696 5.0197 4.5966 2.5925 1.2467
M2 10 2.6396 2.9281 8.0932 7.9089 6.5415 2.0341
M2 5 1.0204 1.2284 5.5270 5.3732 4.6572 0.6931

patient 3 M1 2.7590 7.5364 45.0523 7.7809 3.9825 7.3726
M2 10 20.7737 45.7128 16.5745 11.7821 17.2824 21.9335
M2 5 19.1786 11.3295 8.7508 6.0658 9.9346 4.1008

patient 4 M1 6.9731 1.3264 64.3743 6.3780 8.0713 4.3081
M2 10 43.3558 13.6386 16.8588 20.1722 24.1609 21.4028
M2 5 18.4730 5.5094 11.0570 6.7126 20.7805 6.2196

Table 5.1.: Standard Deviations (σ) of Rigid Registration of 200 Monte Carlo simula-
tions in mm for tx, ty, tz and degree for α, β, γ, respectively

Data Method RMStx RMSty RMStz RMSα RMSβ RMSγ

head simulation M1 0.0389 0.2689 2.2302 0.3966 0.0014 0.5100
M2 - - - - - -

head phantom M1 0.1104 0.1787 1.2799 0.5842 0.0291 0.6455
M2 - - - - - -

patient 1 M1 1.3815 1.4114 56.2447 6.8791 3.6151 0.9527
M2 10 22.3263 58.1284 19.6391 19.8301 21.5437 21.6254
M2 5 13.2387 40.4219 12.8111 7.9678 12.7487 11.5099

patient 2 M1 1.2302 1.4209 28.4073 5.0616 3.8540 2.3298
M2 10 2.6345 4.1985 8.0793 8.9258 6.6079 2.1112
M2 5 1.0380 2.8683 5.5190 6.1704 4.6732 0.7196

patient 3 M1 6.5579 7.8977 66.3731 7.9441 11.8805 7.4747
M2 10 20.7272 61.2542 17.9872 14.4016 19.0442 29.2579
M2 5 19.3971 11.3037 9.2925 6.2510 15.4947 4.3602

patient 4 M1 10.6187 2.1967 88.9475 8.4271 16.2405 5.5228
M2 10 49.3440 14.5086 17.0029 21.6873 25.1797 22.1071
M2 5 19.1812 5.7051 11.2161 7.3732 21.6268 6.3191

Table 5.2.: Root Mean Square Errors (RMS) of Rigid Registration of 200 Monte Carlo
simulations in mm for tx, ty, tz and degree for α, β, γ, respectively

5.4. Segmentation-Driven 2D-3D Registration

The bifurcation-driven registration process has performed satisfactory in many clin-
ical cases. However, we have found out that some data sets of liver arteries do not
show enough bifurcations (even with the detection of projected bifurcations) to drive
the registration to the desired solution, especially when the patient has undergone
several treatments already. Thus, we would like to incorporate the full information
of vessel segments for registration, not only junction points. Moreover, the user in-
teraction required during intervention is not desirable since time is a critical factor.

We developed an alternative method, which is fully automatic during the inter-
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vention and yields good results even if only a small part of the vessel tree is visible
or many outliers are present. By coupling a technique for automatic seed point de-
tection developed by Can et al. (see 2.2.3) for 2D vascular structures with a region
growing step, we avoid user interaction intraoperatively. A combination of registra-
tion and 2D segmentation via a probability map allows us to adjust the feature spaces
such that non-corresponding features in 2D as well as 3D vasculature are removed
consequently while the full vessel curve information can still be used for alignment.

With this approach we combine robustness and high capture range with a fully
automatic registration technique. Moreover, one-to-one correspondence of vascular
features is assured, which makes it possible to visualize roadmaps in 3D as discussed
in chapter 7.

We motivate our method through a maximum likelihood (ML) formulation solving
for both registration and segmentation. Unlike other algorithms for combined seg-
mentation/registration, we only care about the resulting registration and also leave
the algorithm as generic as possible in order to use alternative registration and seg-
mentation steps. In section 5.4.2 we apply our algorithm to 2D-3D DSA-to-CTA reg-
istration for abdominal interventions.

Related Work to Combined Segmentation / 2D-3D Registration A combination
of segmentation and 2D-3D registration was proposed by Hamadeh et al. [64] and
Bansal et al. [7] for the rigid alignment of medical images. The former only seg-
mented once for aiding the registration, the latter used a minimax-approach in order
to optimize one energy functional that encapsulates the joint conditional entropy of
DRR and X-ray given a segmentation. A recent method proposed by Brox et al. [20]
combines pose estimation with a level set formulation to let a registration aid the seg-
mentation. In all these methods, the segmentation is integrated into the algorithm
and cannot be replaced. Since vessel segmentation is a specific problem where gen-
eral approaches cannot be applied without modification we tried to leave the combi-
nation as generic as possible and discarded these methods. Combined segmentation
and registration has also been successfully applied to brain MR images (see Pohl et
al. [122] and references therein) where an Expectation Maximization (EM) formula-
tion was favored. In contrast to our proposed algorithm, this work also solves for
MR specific nuisance parameters and serves a diagnostic application not subject to
hard time constraints.

5.4.1. MLE with Labelmaps

In the following, we will denote the model of a vessel graph G by M. M is an
instantiation of a random variable M , where all node coordinates of G are stacked
up. M does not own diameter or topological information. We will treat an image I as
an instantiation of a random variable I with intensity values as entries. A labelmap
(segmentation) is expressed as L. A labelmap of size n× n is built from n2 indicator
labels �x. Probabilities of a random vector X will be denoted by P (X ).

We want to maximize the probability that certain registration parameters Θ fit best



84 5. Rigid 2D-3D Registration of Angiographic Images

the 3D modelM to the 2D image data I, i.e. we want to find a maximal probability

P (Θ|I,M) =

likelihood� �� �
P (I,M|Θ)

a priori� �� �
P (Θ)

P (I,M)� �� �
normalizing constant

.
(5.8)

Thus, the Maximum Likelihood estimation (MLE) of the registration is

Θ̂ = arg max
Θ

P (I,M|Θ). (5.9)

Maximizing the likelihood of Equation (5.9) is very difficult if there is no corre-
spondence information between image pixels and model points. Thus, we let a 2D
segmentation aid the estimation. We introduce a random variable L representing a
labelmap over the image I. Marginalizing over Lwe get

Θ̂ = arg max
Θ

�
L

P (Θ,L|I,M) (5.10)

= arg max
Θ

�
L

P (L|I,M)P (Θ|L, I,M) (5.11)

using the product rule. From this formulation we can deduce an iterative scheme. If
we had values for variable L given, we could solve the ML of Equation (5.11). Since
L has to be estimated also, we iterate between expectation estimation (E-step) of the
unknown random variable L and optimization of a cost function (M-step) given this
expectation:

L(t) ← E(L|Θ(t−1), I,M) =
�
L
LP (L|Θ(t−1), I,M) (5.12)

Θ(t) ← arg max
Θ

P (Θ|L(t), I,M)
ML∝ arg max

Θ
P (L(t), I,M|Θ) (5.13)

The M-step (Equation (5.13)) is rather easy to accomplish since we already have a
model in 3D (M) and can determine the MLE using L(t) in a model-to-model regis-
tration, using for example an ICP algorithm.

For the E-step (Equation (5.12)), however, we must determine the expectation
value of the labelmap given the last registration and the data. Since this is not
straight-forward, we will discuss it in more detail.

Assuming spatial independence of pixels in image I (which is common in this
context, see [122, 7]), we can determine the expectation for each pixel x separately. If
we restrict our segmentation on one object only, we can deduce an indicator variable
�x for each pixel x, where

�x =
�

1, if x is inside the object
0, otherwise

(5.14)

Thus, the expectation for the label �x of a pixel x becomes

E(�x|Θ(t−1), I,M) = P (�x = 1|Θ(t−1), I,M) (5.15)
= αP (Θ(t−1)|�x = 1, I,M)P (�x = 1|I) (5.16)
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using Bayes’ rule, where α = 1/P (Θ(t−1)|I,M), and M is dropped in the last term
of (5.16) since the segmentation of I is independent of the 3D model. With Equation
(5.16) we can assign the expectation of the segmentation to each pixel and thus get
a probability map IL(t) for L(t). We can interpret this map as the probability for each
pixel to be registered (has a correspondence) to the model, given that it is part of the
segmented object combined with the a-priori probability to be part of the segmented
object.

Note that we see the expectation as a probability where we joined the registration
parameters from the last iteration and the a-priori knowledge of a pixel belonging
to an object. We still keep the freedom to choose any kind of binarization technique,
which we apply to the probability map.

We can give a generic algorithm for the segmentation-driven 2D-3D registration,
which we will henceforth refer to as EBM algorithm as summarized in Algorithm 3.

Algorithm 3 EBM: Segmentation-driven 2D-3D registration

Given image I, a model M, initial estimates of parameters Θ(0), and labelmap
L(0)

Θ(t−1) ← Θ(0)

L(t−1) ← L(0)

while ¬converged do
E-step: Create probability map IL(t) : For each pixel x with �x = 1 determine the
probability for the new label using Equation (5.16). For each pixel x with �x = 0 set the
probability to zero.
B-step: Binarize IL(t) to get L(t).
M-step: RegisterM to L(t) starting from Θ(t−1) to get Θ(t)

end while

Note that our method does not follow the strict formulation of the EM algorithm
[37],

Θ(t) = arg max
Θ

�

L
P (L|Θ(t−1), I,M)P (L, I,M|Θ). (5.17)

In our algorithm, we directly calculate the expectation of the hidden variable L,
whereas EM calculates the expectation of the probability of the complete data (L, I,M)
given the incomplete data (I,M) and an estimate of Θ. Unlike EM, convergence is
not proven for our approach. In our experiments, however, the algorithm always
converged given suitable termination criteria.

5.4.2. The EBM Algorithm for Angiographic Registration

We can now apply the EBM algorithm to rigid CTA-to-DSA registration. Several
steps of the algorithm are illustrated in Figure 5.7. Given a DSA image I (Figure
5.7a) and the vasculature model M (laid over the DSA in Figure 5.7f) of a CTA vol-
ume. The 3D point cloud that spatially describes M, i.e. sampling points on vessel
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(a) (b) (c)

(d) (e) (f)

Figure 5.7.: Illustration of the segmentation-driven registration: (a) original DSA, (b)
bothat filtered DSA, (c) initial segmentation (automatic seed point detection, region
growing), (d) probability map penalizing non-corresponding but extracted features
in 2D and 3D, (e) final segmentation after registration - increased feature similarity,
(f) overlay of 3D vasculature and DSA

centerlines and bifurcation locations, is denoted by {Vj}. We want to estimate the
rigid-body transformation, i.e. our parameter set is Θ = {α, β, γ, tx, ty, tz}. We con-
sider all image intensities normalized to belong to the domain [0; 1].

Image Preprocessing As initialization for the a-priori probability P (�x = 1|Ix) we
choose a bothat filtered image whose contours are sharpened by histogram equaliza-
tion (Figure 5.7b). We refer to this filtered image as IBH .

Mind that other probability images can be deduced, for instance by applying filters
of Frangi et al. [47], Sato et al. [131], or Manniesing et al. [98]. However, we use the
bothat filter due to its computational efficiency.

The initial (L(0), see Figure 5.7c) as well as all subsequent segmentations of the
DSA are computed using a region growing technique based on intensity thresholds
as explained in 5.2.1. The seed points, however, are automatically detected using a
derivative-mean filter defined by Can et al. [25] for vessel tracing. It detects pixels
that are likely to lie on a vessel centerline by filter inspection in 12 directions and cri-
teria evaluation. This method is very fast and yields decent candidate seeds. In order
to start with a segmentation, we choose the intensity values for the region growing
to be inside the interval μseeds ± 2σseeds, which are mean and standard deviation of
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the intensity values of all detected seed points. We start the region growing from all
detected seed points. Outliers are removed by choosing the largest connected region
as the actual segmentation. From the segmentation we create a model of a 2D ves-
sel centerline to be able to register it with the 3D model M and deduce a diameter,
which is used as σ in the E-step. The remaining steps of quantification and graph
creation are performed as described in 5.2.2.

Initial Registration Θ(0) is determined by combining information from the C-arm
with an exhaustive feature search. This search is performed similar to the one ex-
plained in 5.3.1, but is not restricted to bifurcations, but is carried out on all nodes of
the respective graphs.

Iteration We define the pixel error ε of a pixel x similar to Equation 3.5 as

ε(x) = d(x, C(x, {fPΘ
(Vj)}))2 (5.18)

where d(., .) determines the Euclidean distance of two vectors, C(y, {zj}) determines
the closest point of a point set {zj} to a point y, {Vj} are all points on the 3D center-
line, and fPΘ

is the projection matrix (Equation (2.38)) with the current pose param-
eters Θ.

E-step: This step computes the probability map using the expectation value as
defined in Equation (5.16). The probability that a vessel pixel is registered to the 3D
model, P (Θ(t−1)|�x = 1, I,M), is defined via the pixel error (Equation (5.18)). If we
allow a deviation proportional to the maximal width of a vessel in the 2D image, σ,
and assume the error distribution to be Gaussian, we get

P (Θ(t−1)|�x = 1, I,M) =
1

σ
√

2π
e−ε(x)/σ2

(5.19)

The a-priori probability for a pixel x to lie inside a vessel is defined by the image
IBH as described above, i.e. P (�x = 1|I) = IBH(x). Putting both terms together, we
define the expectation value of a pixel label �x as

E(�x|Θ(t−1), I,M) ∝ e−ε(x)/σ2 · IBH(x), (5.20)

where we dropped α from eq. (5.16) since it just represents an isotropic scaling on
pixel intensities of IL(t) . With Equation (5.20) we can compute a value for all pixels
of the probability map IL(t) .

B-step: After building up the map (Figure 5.7d), we perform a new region growing
(Figure 5.7e) and centerline extraction as described above to get a new 2D centerline.

M-step: The 2D-3D registration is computed by minimizing the pixel error ε, which
is evaluated only on the 2D centerline points. If a projected centerline point PΘVj

already has a closest point, the one with the smaller error is chosen. Thus, we assure
one-to-one correspondence of centerline features. The iteration of the registration
is governed by a Downhill Simplex optimizer [123] minimizing the non-linear cost
function

�
x ε(x), where x has a corresponding (closest) point in the 3D modelM.
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We stop the algorithm if the absolute difference of the two labelmaps of current
and last E-step,

�
x |L(t−1)(x) − L(t)(x)|, is very small. We choose a threshold of

5% of the pixels in an image (size 10242), at which the difference of the labelmaps
becomes visually insignificant.

5.4.3. Algorithm Evaluation

Creation of Reference Registration For testing the algorithm in a controlled en-
vironment we artificially created a DSA from intraoperative 3D data, which was
acquired additional to the preoperative CTA. We assembled a simulated DSA from
a background image and a 3D vasculature both acquired during the same interven-
tion. The background image was created by subtraction of two fluoroscopic images
in a different breathing state without contrast, see Figure 5.8a1. On the same device
(Siemens Axiom Artis fDA) that was used for DSA acquisition, we computed a 3D
reconstruction of the patient anatomy in the intraoperative situation. This 3D image
was segmented and processed to yield a 3D graph representation of the vessel sys-
tem. Then, we aligned the 3D graph with the simulated DSA using the projection
information of the device. We manually refined the computed pose such that the
catheter lay inside the right vessel, accounting for breathing deformation.

Given this alignment, we projected the 3D vessel graph onto the background im-
age. At each centerline location v we drew a disk with the same size as the projected
diameter. The intensity information for the pixels xi inside the disk was calculated
proportional to the projected diameter d:

I(xi) = c− 1
d
, (5.21)

where c is an intensity constant. Thus, the smaller the vessel diameter, the higher
the intensity value. This simulates the effect of contrast loss during propagation to
distant (smaller) vessels. We applied an averaging smoothing filter to all disk pixels
in order to get rid of intensity edges between adjacent disks. In order to account for
vessel overlay (where the accumulating contrast makes vessels appear darker), we
always used the minimal intensity of all calculated ones at an overlay point. Finally,
we added Gaussian noise (standard deviation 0.05 on [0; 1] intensities) to the vessel
pixel intensities.

We assembled three test situations using the artificially generated DSA (see also
Figure 5.8):

• Rigid Test: As 3D input graph we used the vascular graph with which the DSA
was generated. Thus, a perfect overlay of all vessel structures can be achieved.

• Outlier Test: We manually removed some vessel segments of the 3D input graph
of the rigid test such that the number of visible vessel segments roughly match

1We are aware that new C-arm systems improve DSAs by non-rigid 2D-2D registration, which was
left out in this simulation.
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(a) (b) (c)

Figure 5.8.: Simulated DSA images. (a) shows the background image created from
two fluoroscopic acquisitions in different breathing states. (b) shows an overlay of
the 3D intraoperative vasculature after vessel segment removal (used for test “Out-
lier”). (c) shows the overlay of the preoperatively acquired CTA vasculature, which
was used in test “Deformation”.

that of the graph extracted from the preoperative CTA. In this way, rigid align-
ment can still lead to a perfect overlay of the 3D vessels, but there are unmatch-
able 2D vessel segments disturbing the registration (outliers). See Figure 5.8b
for an overlay of the registered input 3D graph.

• Deformation Test: Here we did not use the intraoperative 3D graph for regis-
tration, but the preoperative graph extracted from CTA. In order to compute
a reference registration, we manually determined corresponding bifurcation
points in pre- and intraoperative 3D graph. Then, we used the method of
Umeyama [147] to rigidly register two 3D point clouds and transformed the 3D
CTA graph to the coordinate system of the intraoperative 3D graph where we
generated the DSA from, see Figure 5.8c. While a ground truth registration was
present in the former two test situations, this test compares against reference
registration parameters determined by another algorithm. Since Umeyama
[147] showed that his method minimizes the 3D Euclidean distance in a least-
squares sense, this algorithm can be regarded as “gold standard” for our sce-
nario.

For clinical testing, we acquired five patient data sets with different level of con-
trast propagation and deformation. Three of them are visualized in Figure 5.9 to-
gether with an overlay of the 3D CTA vasculature after registration. The reference
registration was provided by experts together with a reference 2D segmentation. As
can be assessed from Figures 5.9d, 5.9f, and 5.8c, large deformations can occur in the
liver arterial system.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9.: Registration results on 3 data sets. 2D vessel trees (upper row) are dif-
ferent as are 3D vasculatures (laid over DSA, lower row). Figure 5.9e shows 3D
vasculature with vessels that are not visible in 2D. Large deformations between 2D
and 3D can be seen in the lower part of Figure 5.9d or 5.9e.

Accuracy and Robustness Accuracy and robustness was assessed in the same way
as for the bifurcation-driven registration through RSME, standard deviation, and
Monte Carlo studies (see 5.3.3). Random displacements were added to all 6 param-
eters, however, not only to 4. The range of error added to the single registration
parameters was ±5mm, and ±5◦, respectively. For the simulation studies, we addi-
tionally tested a range of ±10mm and ±10◦. As in 5.3.3 we invoked the registration
procedures 200 times.

Additional to RMSE and standard deviation, we assessed mTRE and mPD as de-
fined in Equations (2.40) and (2.42) in section 2.4.3, and computed their average
value over the 200 Monte Carlo simulations. For the mTRE we defined points on
a grid with an equal spacing of 16 mm over the whole input 3D image. We trans-
formed them with the reference transformation Tgold as well as with the transfor-
mation before Tbef (for range assessment) and after Treg (for accuracy assessment)
the registration. For assessing mPD, we projected the grid points with Pgold,Pbef ,
and Preg, respectively, and determined the pixel error multiplied with the pixel size
in mm. Furthermore, since the structure of interest in angiographic registration are
vessels, we evaluated mTRE and mPD on bifurcation points only. We did not eval-
uate the mRPD (Equation (2.42)) since it gives similar information as the mPD but
with a smaller magnitude since the object is located between X-ray source and de-
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Test σtx σty σtz σα σβ σγ εtx εty εtz εα εβ εγ

Rigid5 0.08 0.14 1.43 0.12 0.09 0.12 0.38 0.27 4.23 0.13 0.31 0.28
Rigid10 5.56 1.23 15.97 4.00 1.68 2.29 5.59 1.30 15.93 3.99 1.69 2.28
Outlier5 0.98 1.41 2.87 0.85 1.29 1.00 1.02 1.48 5.17 1.27 1.30 1.08
Outlier10 3.93 3.29 22.09 2.14 1.21 1.77 3.95 3.29 22.11 2.53 1.22 1.90
Deformation5 0.73 1.10 13.14 1.89 1.42 1.61 2.98 1.80 13.23 5.70 6.44 1.64
Deformation10 6.48 4.86 35.94 5.16 4.96 3.45 6.73 4.85 35.85 6.88 7.74 3.71

Table 5.3.: Results of standard deviations σ and RMS errors ε of translations (in
mm) and rotations (in deg) of the simulated DSA images. Deviation and error in
z-translation are not as significant as those in-plane, or in rotations

Test mTRE mTRE bif mPD mPD bif range PD
Rigid5 4.03 3.80 1.13 0.50 5.02 - 17.32
Rigid10 6.97 6.51 3.70 2.74 10.06 - 34.31
Outlier5 5.22 5.37 2.88 2.47
Outlier10 8.29 8.26 4.76 3.93
Deformation5 16.45 13.13 14.09 7.24
Deformation10 25.96 21.51 18.95 10.72

Table 5.4.: mTRE and mPD for the EBM algorithm of simulated DSA images. Tests in
the range of ±5 are in the upper rows, tests in the range of ±10 in the lower rows.
Number of grid points for mTRE and mPD was 2352. Number of bifurcation points
for mTRE bif and mPD bif was 125/40/39. mTRE ranges were 4 − 22 mm (for the
±5 displacements) and 8− 28 mm (for the ±10 displacements). All values are given
in mm.

tector. Since we are interested in a visually observable error, the mPD which yields
the displacement in the image plane, was favored.

Algorithm Comparison On the clinical data sets, we tested the performance of
the algorithm against our implementation of Jomier’s method and the bifurcation-
driven registration. An expert performed manual 2D segmentations of the DSAs for
the bifurcation-driven method.

For both methods we assessed RSME, standard deviation, as well as mTRE and
mPD for equally spaced grid and bifurcation points. The mTRE and mPD values
are averaged over all 200 registrations. We did not compare the performance of the
algorithms on the simulated data.

Results Tables 5.3 and 5.4 show the errors computed from the Monte Carlo studies
of the simulation tests.

Two tendencies can be observed. First, the error increases when using less vessels
for alignment. Moreover, the error is observed to be rather high when deformation
is hampering the registration2.

2Mind that the deformation in this example is unusually high.
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# σtx σty σtz σα σβ σγ εtx εty εtz εα εβ εγ

1 Jomier 0.76 1.80 4.66 3.48 3.17 1.60 0.78 2.21 5.30 4.75 3.60 1.66
Bif 0.20 0.06 3.43 0.08 1.89 0.11 0.34 0.23 6.58 0.22 4.41 0.38

EBM 0.54 2.68 34.63 3.79 1.88 1.25 0.54 2.70 36.12 3.79 1.97 1.25
2 Jomier 0.74 0.93 5.06 4.84 3.18 0.58 0.78 3.46 5.38 8.33 3.18 0.78

Bif 0.16 1.33 4.52 4.80 2.59 1.27 1.24 1.49 28.48 5.28 3.85 2.33
EBM 0.04 0.16 1.99 0.45 0.18 0.04 0.07 0.25 3.73 0.72 0.35 0.04

3 Jomier 3.34 2.03 7.39 4.43 4.37 2.04 4.68 2.96 7.43 5.62 4.39 2.07
Bif 2.32 4.56 43.72 3.84 3.98 4.78 6.72 6.21 62.07 5.19 11.58 4.87

EBM 3.55 1.53 24.11 7.47 3.33 4.62 3.54 1.54 24.36 7.49 3.33 4.62
4 Jomier 22.45 6.65 13.73 7.74 24.64 9.15 23.18 6.84 13.81 8.40 25.41 9.16

Bif 6.30 0.89 55.10 4.55 6.82 4.09 9.05 2.02 70.69 7.54 14.73 4.99
EBM 0.95 0.18 9.41 0.29 1.96 0.10 1.09 0.19 13.04 0.36 2.62 0.10

5 Jomier 26.35 16.37 10.34 7.15 13.60 5.81 26.66 16.37 10.87 7.25 18.63 6.07
Bif 20.65 1.82 148.41 14.88 12.29 15.10 52.74 3.39 422.62 28.76 16.95 24.40

EBM 1.22 0.74 16.83 3.05 2.07 0.67 1.41 0.74 20.19 3.05 2.44 0.76

Avrg. Jomier 10.73 5.60 8.23 5.53 9.79 3.83 11.21 6.37 8.56 6.87 11.04 3.95
Bif 5.93 1.70 51.04 5.63 5.5 5.07 14.02 2.67 118.09 9.39 10.30 7.39

EBM 1.26 1.06 17.39 3.01 1.88 1.34 1.33 1.08 19.49 3.08 2.14 1.35

Table 5.5.: Results of standard deviations σ and RMS errors ε of translations (in mm)
and rotations (in deg). Deviation and error in z-translation are not as significant as
those in-plane, or in rotations

Second, the error in projection direction (εtz ) is three to six times higher than the in-
plane error. This is quite common for 2D-3D registration based on one view since a
change of out-of-plane parameters does not alter the projection as much as a change
of in-plane parameters. This phenomenon can also be observed in the mTRE and
mPD values.

Table 5.5 shows RMSE and standard deviation values for the five patient data sets.

It can be seen that error and deviation in z-translation is sometimes outperformed
by the other two methods, however, the more important in-plane translation and ro-
tations have less error in our method. The large errors of Jomier’s and the bifurcation-
driven method in the last two data sets can be explained with a “subset” property.
In the first three data sets the 3D vasculature is a “subset” of the 2D vasculature,
whereas in the last two data sets this property is not fulfilled, i.e. the 3D vasculature
shows branches that are not visible in 2D. The results show that our method is more
robust with respect to variability in both dimensions.

Table 5.6 shows mTRE and mPD for grid points and bifurcation points of the pa-
tient data, again averaged over 200 registration procedures. The different ranges of
the error in the five data sets are due to the different 3D image sizes. The range of
the random displacements in all parameters, ±5mm,±5◦, is equal throughout the
studies. Especially the mPD error shows the accurate alignment by EBM of vessel
structures when projected to the image plane.

Runtime The number of iterations of our algorithm usually lies between 2 and 5.
The runtime (analyzed on a Intel Core2Duo 2.6 GHz machine) splits into (bothat-)
filtering (28.5 sec), seed point extraction (1.0 sec), region growing (0.3 sec), centerline
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Data Method mTRE mTRE bif mPD mPD bif range TRE range PD
1 Jomier 14.49 6.57 15.39 4.52

Bif 10.56 9.05 6.91 2.10 4.99 - 19.21 6.32 - 25.29
EBM 10.13 9.67 5.23 1.82

2 Jomier 15.44 7.29 14.77 3.59
Bif 30.31 27.27 11.44 2.87 4.57 - 17.16 5.04 - 19.13

EBM 3.65 3.15 1.44 0.21
3 Jomier 49.43 40.81 58.33 50.65

Bif 62.28 60.35 30.65 10.15 5.57 - 21.03 5.64 - 22.02
EBM 11.26 9.49 5.63 2.13

4 Jomier 21.63 11.98 26.76 14.67
Bif 59.83 52.23 29.76 8.37 5.01 - 18.78 5.39 - 20.16

EBM 9.93 9.49 3.71 1.08
5 Jomier 23.32 14.88 32.66 32.66

Bif 404.35 421.99 83.77 51.38 4.72 - 21.80 5.57 - 27.86
EBM 14.89 12.15 7.60 1.99

Table 5.6.: mTRE and mPD for algorithm comparison of Jomier’s method, the
bifurcation-driven algorithm described in 5.3, and the EBM algorithm. Number of
grid points for mTRE and mPD was between 3000 and 9000. Number of bifurcation
points for mTRE bif and mPD bif was between 12 and 98. All values are given in
mm.

extraction (2.7 sec), exhaustive initialization (34.9 sec), iteration (including region
growing, centerline extraction, and pose optimization) (12.9 sec), where all runtimes
have been averaged over the 5 patient data sets and the iteration runtime over the
number of iterations. Altogether, applying the registration takes 1.5 - 2 min. The
two critical stages are filtering and exhaustive initialization - both can be further
optimized numerically.

5.4.4. Discussion

We have developed a method for 2D-3D registration of angiographic data. Our em-
phasis lies on a fully automatic registration once the interventionalist starts the treat-
ment. We believe that a 2D segmentation can yield a more robust (feature-based)
registration with high capture range. Motivated by an ML formulation of a com-
bined segmentation/registration, we derived a generic method for estimating the
2D labelmap and the registration parameters iteratively linked by a common proba-
bility map.

In this probabilistic framework, we keep the freedom to choose any segmentation
or registration technique. Mind that the estimation process of the M-step (section
5.4.2) is only an approximation to an ML estimate, as required by Equation (5.13),
but yields satisfactory results. Experiments with a real ML estimator for 2D-3D curve
registration, a 2D-3D ICP algorithm as well as the Iterative Inverse Perspective (IIP)
algorithm as proposed by Wunsch and Hirzinger [157], did not provide the desired
convergence to the right solution. We believe that the number of outliers was still too
large for an ICP algorithm to succeed making a preliminary computation of putative
matches for correspondence necessary. This step, however, is not required for our
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proposed method.
Unlike other approaches, we keep user interaction low while high capture range

and robustness against vessel variability and deformation are maintained. With the
segmentation-driven registration, we create a common feature space and thus one-
to-one correspondence of vessel features.

Compared to the bifurcation-driven registration and Jomier’s method, the
segmentation-driven registration is able to recover the correct pose more often even
if high deformation and outliers are present. On the patient data sets, a registration
accuracy of mPD = 1.45 mm can be observed in average, comparable to the error
achieved by other algorithms in this field applied to rigid vasculature. However, in
extreme cases where non-rigid patient movement deforms vessels vastly, the algo-
rithm is not converging to the right solution when started far from the optimum, as
has been shown in the simulation data set created from 3D pre- and intraoperative
images.

We also want to emphasize on the evaluation of the different error measures that
are common for accuracy assessment in 2D-3D registration. We believe that an anal-
ysis of RMS errors together with standard deviations of all 6 parameters is crucial
in this context. If the center of rotation is chosen carefully, they yield comparable
results to mTRE and mPD as proposed by van de Kraats et al. [148]. These values,
however, do not offer the same amount of information on the error as the RMSE.
Thus, if the transformation model contains a finite and small number of parameters
as in the rigid case, parameter error analysis should be provided for 2D-3D registra-
tion evaluation protocols, too.



6. Deformable 2D-3D Registration of Angiographic
Images

In the previous parts of the thesis, methods for 2D-3D alignment of vascular images
have been discussed that use a rigid transformation model discarding local motion.
The algorithms are robust against deformation changes of vessel structures but do
not solve for these changes, leaving a considerable amount of misalignment, which
can be, as reported for liver, up to 3 cm [125].

These misalignments cause errors in image fusion, i.e. 3D roadmap vessels cannot
be thoroughly laid over the current 2D vasculature, or catheter backprojection might
miss the right vessel hampering a 3D visualization of the intraoperative situation.

In order to overcome the shortcomings of the rigid approach, we propose a method
for computing a meaningful deformation of a 3D structure from a single 2D projec-
tion. The method solves the registration problem with the minimization of an energy
consisting of a difference measure and regularization terms, which incorporate the a
priori knowledge about the problem, see Figure 6.1.

The difference term used in this approach penalizes the distance between the pro-
jection of 3D points from the input vasculature, represented as nodes of a centerline
graph, and the corresponding points from the 2D projection image (Figure 6.3).

Minimizing only the difference term results in what we refer to as the Naive ap-
proach, which is not able of recovering the deformation in the projection direction
and thus leads to unnatural results. In order to be able to compute the 3D displace-
ment, additionally to the difference, we employ a combination of two regularization
terms, which model assumptions about vessel structures and thus yield realistic de-
formations.

The first term describes the assumption that the length of vessels does not change
heavily inside the human body and penalizes large changes of the vessel length.
This term is important since it presents constraints in 3D space and thus reduces
the number of solutions for one node from infinite to two along the projection ray,
if one of the neighbors is assumed fixed (Figure 6.2). Also, in our experiments the
minimization of this term results in the nearest solution to the initial position of the
respective point. Figure 6.3 illustrates the idea of using the difference term together
with length preservation.

However, for real graphs with many nodes and large deformations the length
preservation term has the drawback that the behavior is too local. Although the
length preservation itself is successful, in these cases the property that the nearest
solution to the initial position is computed introduces unnatural bends in the ves-
sels, thus leading to unwanted results, compare Figure 6.4. In order to counteract
this effect, we impose a smoothness condition on the resulting displacement field.
This is done by employing one of two standard regularization terms, diffusion [154],
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(a) Input 3D image (b) Ground truth (c) Naive approach (d) Proposed method

Figure 6.1.: Visualization of the method results on a simple synthetic example, with
the window-in-window presenting the 2D projection of the respective 3D structure.
(a) is the input 3D graph to be deformed while (b) shows a graph, which was used
to generate the input 2D projection image. Hence, (b) presents the ground truth for
the deformation of (a). The camera is positioned on the right side of the images,
such that the shape change in ray direction is not observable from the 2D projection
image. (c) With the naive approach using only the distance measure from a single
projection, it is not possible to recover the full 3D deformation since there are no
constraints along the projection rays. (d) Employing the length preservation and dif-
fusion regularization terms present additional constraints and thus allows for correct
deformation also in the direction along the projection rays.

or bending energy [128].
Usually, these regularization terms are equipped with a boundary condition (e.g.

Dirichlet, where the boundary values are fixed) which restricts the null-space of the
terms. Fixing certain displacement values would require to have at least one vessel
point for which the position is known. However, selecting such a 3D point in a
deforming volume would present a very difficult - if not impossible - task. Thus, we
replace the boundary condition by the soft constraint of position retention, which
can easily be integrated into the optimization procedure.

So in summary, our method enables meaningful 3D deformations of 3D vessel
structures based on a single 2D projection of the same structure. To the best of our
knowledge this is the first time that this problem is addressed in the field of medical
image processing.

Related Work In the robotics and graphic community, computing the 3D pose of
a model from a 2D image is regarded as an inverse kinematics problem (see e.g.
Grochow et al. [56] and references therein), which is somewhat related to our topic.
However, the model which is used in these approaches often just has a very limited
number of degrees of freedom (DOF) unlike our model, where each feature point
introduces 3 DOF.
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Figure 6.2.: Illustrates the reduction of admissible solutions for one node along the
projection ray, by using length preservation. For the fixed node Xi−1, the position
of the node Xi is constrained to two possible solutions, X1

i and X2
i , if the distance

between Xi−1 and Xi is assumed constant. Without the length constraint, every
position along the ray presents a solution, some of which are visualized above.

6.1. Method

The basic idea of the proposed method is to use a difference term and supplement
it by regularization terms which incorporate a priori knowledge about the problem
and thus impose constraints along the projection rays, which are needed in order to
render the problem well-posed. Having modeled the problem this way, the solution
is computed by using an optimization method of choice. Since the focus of this work
is on the modeling part, we use the standard gradient descent optimization scheme.1

In the following, we first briefly describe the setting for the algorithm and the
performed pre-processing steps. We go on by presenting notation and introducing
structures we use. Then we define the model and in the following subsections we
present the single components of the energy function to be optimized.

6.1.1. Setting and Preprocessing

As input for our method we use an extracted model of 2D and 3D vasculature, as
well as a feature-based rigid pre-alignment in a calibrated setting2 yielding a pro-
jection matrix and correspondence information between 2D and 3D feature points.
All of these steps have been presented in chapter 5. A graph model is created 3D
from a region growing step yielding vessel segmentations, followed by topological
thinning and bifurcation detection as described in 5.2. A rigid 2D-3D registration is

1However, any other standard gradient-based approach, such as e.g. Levenberg-Marquardt [99], can
be employed.

2Meaning that intrinsic parameters of the intraoperative imaging device are given. Also, image dis-
tortion can be assumed to be absent due to flat-panel detector technology.
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Figure 6.3.: 2D illustration of the effect of the difference measure and the length
preservation term on the motion of the vessel structure. The difference term D mea-
sures the distance in the 2D projection image Ip. The length preservation penalizes
the change of length of the 3D graph G.

computed by using the segmentation-driven 2D-3D registration from 5.4 solving for
both a projection matrix and correspondences of centerline points. If corresponding
information is not available at each centerline point, a closest point operator can be
incorporated after the rigid registration to assign one-to-one correspondences to all
curve points. If ambiguities arise in this assignment due to projection overlay of ves-
sel structures, these features can be left out of the correspondence set, which does
not influence the proposed method.

6.1.2. Preliminaries and Notation

As described in 5.2.3 we model vessel structures as graphs Gd = (V d, Ed). This
method uses the sampling nodes X,x of 3D and 2D graphs for alignment. The cor-
respondences between the 3D and 2D points are represented by C ⊂ V 3×V 2. More-
over, the inherent property of each sampling node having a left and right neighbor
is incorporated to reduce the set of admissible transformations.

The deformation function is encoded by a set of 3D displacement vectors ϕ ∈ R
3×n

centered in the n graph nodes. The displacement at the i-th node Xi is denoted by
ϕi, such that the final position of the node is Yi = Xi + ϕi.

We also employ a dense version of the displacement function, which we denote by
ϕ̃. We obtain ϕ̃ from ϕ by interpolation using Thin-Plate Splines (TPS) [152], see Ap-
pendix B. We choose a TPS since it has global support yielding a dense displacement
field from a set of arbitrarily distributed control points. We use the dense displace-
ment field for assigning displacement values to nodes for which no displacement
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(a) (b) (c) (d)

Figure 6.4.: Demonstrates the effect of joint usage of the length preservation and the
diffusion regularization term. (a) Input 3D image. (b) Result with Length Preserva-
tion. (c) Result with Length Preservation and Diffusion Regularization clearly pro-
duces a more natural result. (d) Ground truth.

vectors are defined.3

For projections we use a standard pinhole camera model with the principal ray in
the direction of the positive Z-axis as presented in 2.4.

6.1.3. The Model

The deformable registration process is now described as a minimization of the en-
ergy function E with respect to the displacements ϕ of the vessel nodes in order to
get the estimate ϕ′ of ϕ, that is

ϕ′ = arg min
ϕ
E , (6.1)

with the energy function

E = D + αSL + βSS + γSP , (6.2)

where the energy E : (G3, G2, C, ϕ) �→ y ∈ R consists of a difference term
D : (G3, G2, C, ϕ) �→ y ∈ R and regularization terms SL : (G3, ϕ) �→ y ∈ R for length

3In order to simplify the implementation, correspondences are computed only for sampling nodes,
and thus also the energies are only evaluated there. This technical detail is due to the need to con-
sider predecessor and successor nodes in some parts of the algorithm. In addition, omitting the
bifurcation nodes, which often have more than only two neighboring nodes, facilitates the imple-
mentation.
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preservation of the vessel segments, SS : ϕ �→ y ∈ R for smoothness of the displace-
ment field, and the term SP : ϕ �→ y ∈ R for retention of initial positions of graph
points, which replaces the standard boundary condition. For brevity, we will drop
the function arguments in the remainder of the paper. The positive scalars α, β and
γ control the influence of the respective terms.

In the following, we present the energy terms from Equation (6.2). We also give the
respective derivatives which are used in the gradient descent optimization scheme.

6.1.4. Difference Measure

The difference measure D which drives the registration process penalizes the dis-
tance between the projection of 3D points from the input graph and the correspond-
ing 2D points from the input projection image.

Given point correspondences C with a single correspondence Ci = (Xi,xi) and a
projection function f : R

3 → R
2, we can define the distance measure

D =
1
n

n�

i=1

‖xi − fP(Xi + ϕi)‖2 . (6.3)

Here, fP : R
3 → R

2 is a projection function as already defined in Equation (2.38):

fP(X) = (p�1 X̂/p�3 X̂,p�2 X̂/p�3 X̂)� , (6.4)

where p�1 , p�2 and p�3 constitute the row vectors of the projection matrix P ∈ R
3×4,

and X̂ = [X�, 1]� is the homogeneous 4-vector of the 3D point X.
For the minimization according to the model (6.2), the derivative ofDwith respect

to ϕi is needed. By using Yi = Xi + ϕi the gradient is given by

∂D
∂ϕi

= − 2
n

(xi − fP(Yi))
� Ji , (6.5)

where Ji ∈ R
2×3 is the Jacobian of fP with respect to ϕi, given by

1
(p�3 Ŷi)2

�
���

p11p�3 Ŷi−p31p�1 Ŷi p21p�3 Ŷi−p31p�2 Ŷi

p12p�3 Ŷi−p32p�1 Ŷi p22p�3 Ŷi−p32p�2 Ŷi

p13p�3 Ŷi−p33p�1 Ŷi p23p�3 Ŷi−p33p�1 Ŷi

�
���

�

(6.6)

where pij denote the entries of the projection matrix.

6.1.5. Length Preservation Constraint

Since vessel structures are in general enclosed by soft tissue, for example inside liver,
and breathing motion is limited to a certain magnitude, the length change of the ves-
sels is limited. We model this observation by imposing a soft length preservation
constraint on the single vessel segments. Thus, we do not impose constant lengths,
which would be a too restrictive and unnatural assumption in the given setting.
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Since the vessel length is defined in 3D space, this constraint is able to induce a
deformation orthogonal to projection rays, compare Figure 6.3.

We define the terms d−i (ϕ) and d+
i (ϕ), which measure the length of the edges con-

nected to the sampling node Xi for a given set of displacements ϕ by

d−i (ϕ) = ‖Yi −Yi−1‖2 , and (6.7)
d+

i (ϕ) = ‖Yi −Yi+1‖2 , (6.8)

where we once again set Yi = Xi + ϕi, compare also Figure 5.3. Please note that the
initial length of the edges connected to Xi is given by d−i (0) and d+

i (0) where 0 is the
zero displacement field.

Now we can define a length preserving cost function as

SL =
1
n

n�

i=1

���d−i (0)− d−i (ϕ)
���2 +

���d+
i (0)− d+

i (ϕ)
���2 , (6.9)

which penalizes the deviation from the initial length of the two edges which are
directly influenced by the i-th node.

The derivative of SL with respect to ϕi reads

∂SL

∂ϕi
=
−8
n

�
w−i (Yi −Yi−1) + w+

i (Yi −Yi+1)
��

, (6.10)

with w−i = d−i (0)− d−i (ϕ) and w+
i = d+

i (0)− d+
i (ϕ).

The evaluation of the derivative of the length preservation term is performed in-
dependently on single vessel segments Π, since for the computation, ordered corre-
spondences and nodes with a left and right neighbor each are needed.

6.1.6. Diffusion Regularization and Bending Energy

The so-called diffusion regularization term is often used in intensity-based regis-
tration (compare e.g. [154]) in order to impose a smoothness constraint onto the
displacement field. The energy function is defined as

SD =
1
n

n�
i=1

���∇ϕ
(x1)
i

���2
+
���∇ϕ

(x2)
i

���2
+
���∇ϕ

(x3)
i

���2
, (6.11)

where∇ϕ(d) is defined by using the dense version of the displacement field ϕ̃, which
is computed using the 3D Thin-Plate Spline. Here the standard central difference
approximation scheme with an appropriate grid spacing h is used.

The derivative of SD is

∂SD

∂ϕi
=

2
n

Δϕi =
2
n

�
Δϕ

(x1)
i , Δϕ

(x2)
i , Δϕ

(x3)
i

�
, (6.12)

where Δ is the Laplace operator with Δϕ
(d)
i = ∂xxϕ

(d)
i +∂yyϕ

(d)
i +∂zzϕ

(d)
i . The Laplace

operator is also evaluated by using the dense version of the displacement field.



102 6. Deformable 2D-3D Registration of Angiographic Images

A regularization via bending energy minimization has been proposed in registra-
tion algorithms to allow for affine transformations (bending energy, unlike diffusion,
is insensitive against affine transformations, see 2.3.2). We want to explore the impact
of this affine insensitivity even after rigid 2D-3D registration. The bending energy
term is defined as

SC =
1
n

n�

i=1

d�

j=1

d�

k=1

�����
∂2ϕ

(x1)
i

∂xj∂xk

�����
2

+

�����
∂2ϕ

(x2)
i

∂xj∂xk

�����
2

+

�����
∂2ϕ

(x3)
i

∂xj∂xk

�����
2

, (6.13)

and its derivative is given by

∂SC

∂ϕi
=

2
n
G�Gϕi =

2
n

�
G�Gϕ

(x1)
i ,G�Gϕ

(x2)
i ,G�Gϕ

(x3)
i

�
, (6.14)

where G is the operator for the computation of the second derivatives, i.e.

Gϕi =
�

∂2

∂xj∂xk
ϕi

�
j=1,...,3, k=1,...,3

. (6.15)

Either SD or SC is used as smoothing term SS in the energy formulation 6.2.
The evaluation of the TPS for computing the gradient and the Laplacian does not

present a large overhead, since the TPS coefficients are already computed in every
iteration in order to transform nodes for which no correspondences are defined.

6.1.7. Position Retention Constraint

Instead of using a boundary condition for our problem, such as fixed values for the
displacement at certain nodes, we use a soft-constraint which implies that all points
should retain their initial position. The advantage of this approach is that it involves
no hard constraints, which would possibly require user interaction. The weighting
γ for the position retention constraint is chosen very low relative to the coefficients
for the other terms, such that only the motion along the projection rays is effectively
constrained, which is not or hardly constrained by the other terms.

The energy term is defined to minimize the distance between initial and final po-
sition as

SP =
1
n

n�
i=1

‖Yi −Xi‖2 =
1
n

n�
i=1

‖ϕi‖2 , (6.16)

and the trivial derivative is
∂SP

∂ϕi
=

2
n

ϕi . (6.17)

6.1.8. Optimization Scheme

By using all components of the cost function E together with their gradients, and
the step size μ, we can give an algorithm based on gradient descent optimization,
compare Algorithm 4.
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Algorithm 4 Deformable 2D-3D Registration with Additional Constraints
Given the input graphs G3 and G2, ordered point correspondences Ci = (Xi,xi),
and a projection matrix P,

repeat
calculate∇E = ∇D + α∇SL + β∇SS + γ∇SP

update displacements ϕ = ϕ− μ∇E/‖∇E‖
update the 3D TPS and deform whole graph

until ‖∇E‖ < ε

Figure 6.5 shows an iteration of the 2D-3D registration algorithm on a synthetic
example. Note that the upper and lower part of the “C” shape are bent in the wrong
direction after 85 iterations (Figure 6.5c), but the algorithm recovers from this situa-
tion as can be observed in Figures 6.5d and 6.5e.

6.2. Results and Evaluation

In order to validate our results, besides visual inspection, we compute two different
quantitative error measures.

The first is the 3D Euclidean distance between the nodes of the ground truth (GT)
structure and a given graph.

Since this first measure does not take topology into account we also introduce a
second measure, which does not penalize the position, but only evaluates the shape.
At every node, the angle between the two adjacent edges is computed.

We perform the tests on synthetic graphs with artificial deformations in order to
test various aspects of the method. To demonstrate the applicability for real ap-
plications, we apply the tests to real vessels segmented from angiographic images,
deformed by both, artificial and natural deformation fields. Moreover, we conduct a
clinical test on real data sets.

The error evaluation is summed up in Table 6.1. The respective visualization of
the results for synthetic data sets is presented in Figure 6.8.

6.2.1. Parameter Values and Smoothness Term

Empirically we have found out that a value of α = 40 yields good results for all input
data sets. For the smoothness term, β = 20 is a good trade-off between smoothness of
deformation field and length preservation if the diffusion regularization is used. The
regularization by bending energy usually works well if we choose β = 10. For these
values, diffusion and bending energy regularization yield visually similar results
and a similar quantitative error for all studies.

γ is usually chosen to be 100 times smaller than α, β. γ = 0.1 was a good choice
for all experiments.
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(a)

(b)

(d)

(c)

(e)

Figure 6.5.: An iteration of the 2D-3D deformable registration. In each figure the
yellow transparent surface represents the ground truth, the green line represents the
centerline of the deformed 3D graph. The 2D graph to which the 3D graph is to be
registered is not shown. (a) input situation. The situation is shown after 85 (b), 1012
(c), 3674 (d), and 7670 (e) iterations. The typical values of α = 40, β = 20, and γ = 0.1
have been chosen, μ was set to 0.001.

6.2.2. Tests on Synthetic Data

For these tests, we generate two 3D graphs by deforming the respective graph struc-
tures such that the length is preserved. One of the graphs serves as input for the
method, while the other one presents the ground truth solution. The 3D ground
truth is not directly used, but we generate a 2D projection of this structure, which is
used as input for the method, together with the projection matrix and a correspon-
dence set. For three exemplary data sets (Synth1, Synth2 and Synth3) quantitative
and visual results are presented in Table 6.1 and Figure 6.8.

6.2.3. Real Data with Artificial Deformation

In order to assess the behavior of the method on natural vessel structures in a quan-
titative way, we deform the graphs extracted by segmentation from patient data sets
with a length-preserving deformation function.4This way, we are able to perform our
method and measure the distance of the result to a known ground truth in the same
way as for synthetic data sets. A projection matrix computed from a rigid CTA-

4To this end, we employ a dedicated function, which is not used in our method itself, in order to
assure the validness of comparison.
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Figure 6.6.: Visualization of segmented real vessel structures. Left: Liver 1 data set
(CTA) taken from a patient suffering from hepatocellular carcinoma. Right: Liver 2
data set (MRA) taken from Siebenthal et al. [151].

to-DSA registration of the respective patient is used to create the input 2D vessel
graph. For the presented tests, we use a liver data set (Liver 1) from a patient who
suffers from hepatocellular carcinoma and was treated with Transarterial Chemo-
embolization, compare Table 6.1 and Figure 6.6.

6.2.4. Real Data with Natural Deformation

Natural deformation fields for human organs are hard to obtain. In order to verify
our method on possibly natural deformations we employ the results presented by
Siebenthal et al. [151]. The displacement fields provided by this work are computed
from a series of contrasted 4D MR images of the liver. A deformable registration
is performed in [151] between the single 3D images, while the high time resolution
together with the strong texture of the contrasted images assures the quality and
reliability of the resulting deformation field. We segment the vessel structures from
the contrasted MR images used in [151], and generate the input 3D graph for our
method. Then, we apply the displacement field from [151] to the 3D graph and thus
compute the ground truth for the result. A projection matrix yielding an anterior-
posterior image was used for 2D input creation. In the same way as for the synthetic
data sets, the 3D ground truth together with initial and deformed 3D input graph
are used to quantitatively assess the performance of our method. Despite the small
deformation observable in the data set (Liver 2), a clear improvement is achieved.
Compare Table 6.1 and Figure 6.6.

6.2.5. Clinical Test

We performed a clinical test with known projection matrix and a “gold standard”
deformation field for comparison. An important issue for the creation of this refer-
ence deformation field is the correspondence problem on vascular 3D graphs, which
we address in an intuitive manner by resampling and length accumulation.
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(a) (b)

Figure 6.7.: Clinical Evaluation: (a) CTA and intraoperative reconstruction of vas-
culature rigidly registered. The purple vessel segment was used for the clinical test.
A large deformation is observable in this vessel compared to the corresponding, in-
tersecting green vessel. (b) Projection of vessel segment onto an intraoperative 2D
image. The 2D image was used for the intraoperative 3D reconstruction and a pro-
jection matrix is known due to calibration.

We use two 3D graphs extracted from a preoperative CTA and an intraoperative
cone-beam reconstruction of the same patient undergoing a liver catheterization.
The intraoperative reconstruction is created from 395 views with projection matri-
ces known from calibration. We first manually determine point correspondences of
all bifurcation points visible in both data sets. Unlike sampling nodes on vessel seg-
ments, the location of bifurcations is well-defined at the junction of a vessel graph
and hence correspondency can be established. We rigidly register the two resulting
3D point sets using the least-squares method of [147].

For computing a reference deformation field, we extract two vessel segments, Πi,j

from the CTA graph and Π′k,l from the reconstruction graph that are manually deter-
mined to correspond. The chosen segment showed a large deformation, which was
assessed after rigid 3D-3D registration (see Figure 6.7a). We now want to establish
correspondency to all sampling nodes of Πi,j , Π′k,l given an initial correspondence
Bi ↔ B′k.

The nodes on Πi,j , Π′k,l cannot be assumed to have the same sampling since they
have been extracted from two different data sets. Thus, we first apply a resampling
to the segments to have an inter-node distance smaller than 0.8mm. Then, we assign
correspondences to the sampling nodes in the following way (without loss of gener-
ality we assume segment Πi,j to be shorter as Π′k,l): For a node X ∈ Πi,j determine its
curve length to Bi, d(X,Bi). Walk through Π′k,l starting from B′k until the first node
X′ has been found with d(B′k,X

′) ≥ d(Bi,X), which is assigned as corresponding



6.3. Discussion 107

node to X. This procedure is repeated for all nodes in Πi,j .
With the set of correspondences {Xh ↔ X′

h}, h = 1, . . . , nΠ we can compute a 3D
Thin Plate Spline to align the two vessel segments Πi,j , Π′k,l. The resulting spline is
used to deform Πi,j to Π̃i,j . With this method we observed the difference in length of
Πi,j and Π̃i,j to be smaller than 6%, additionally validating the assumption of length
preservation.

As input for our registration method, we used Πi,j , the segment π′k,l projected
with matrix Prec, and the correspondence information of the 3D segments. Prec

is taken from one of the views used for reconstruction and thus resembles the 2D
intraoperative situation, compare Figure 6.7b.

A considerable improvement in Euclidean and shape error can be observed when
applying our algorithm, despite the large deformation of the vessel segment, com-
pare entries for Liver 3 in Table 6.1.

Test Type Position Error [mm] Shape Error [rad]
Test Data μ σ μ σ

Synth 1
Input 4.46 3.58 0.5847 0.7769
Result 0.19 (95.8%) 0.05 0.0723 (87.6%) 0.0583

Synth 2
Input 1.36 1.09 0.3224 0.3628
Result 0.22 (83.5%) 0.11 0.0254 (92.1%) 0.0192

Synth 3
Input 1.42 0.80 0.3463 0.1990
Result 0.56 (60.3%) 0.37 0.1503 (56.6%) 0.1317

Liver 1
Input 7.38 2.23 0.1675 0.1676
Result 3.25 (56.0%) 2.89 0.1106 (33.9%) 0.1277

Liver 2
Input 1.20 0.65 0.0082 0.0093
Result 0.96 (19.7%) 0.74 0.0057 (30.3%) 0.0075

Liver 3
Input 14.88 15.01 0.2188 0.1672
Result 7.57 (49.1%) 3.95 0.1824(16.6%) 0.1562

Table 6.1.: Results of error evaluation on several synthetic and real data sets. The
position error by Euclidean distance, as well as the shape error by angle measure-
ment is assessed. We give the mean error μ and in order to show the significance of
the improvement also the standard deviation σ. For the mean, the relative improve-
ment to the input data is given in percent. For visualization of the settings, compare
Figures 6.7, 6.6, and 6.8.

6.3. Discussion

We presented a method for deformable registration of 3D vessel structures to a single
2D projection image. By combining a difference measure with constraints resulting
from valid assumptions, we improve the rigid spatial alignment of the 3D vessel,
which up to now presents the state of the art for this problem. The improvement in
the spatial alignment is important for 3D depth perception and navigation during
interventions. Quantitative and qualitative tests on medical and synthetic data sets
clearly demonstrate the improvement achieved by our method.

In this chapter we consider the correspondency problem of vessel sampling points
as well as the 2D-3D pose estimation problem to be solved before the application of
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our method.
By using the regularizing SL and SS terms, we successfully account for the inher-

ent ill-posedness of the problem, the unknown (and generally unsolvable) deforma-
tion in projection direction. However, an ambiguity remains since the length preser-
vation constraint allows for two equally qualified solutions. Using a gradient-based
optimization bends vessels towards the nearest solution. If we make the (valid) as-
sumption that vessels surrounded by soft tissue undergo a deformation that is not
inverting curvature, the optimization scheme drives the algorithm to the right solu-
tion. We can even reduce this assumption to allow for local curvature inversions. As
can be seen in Figure 6.5c to 6.5e, the smoothing term handles such situations.

Further work will include improving the optimization methods for the presented
model, automatic assessment of the model coefficients, and further testing of robust-
ness with respect to missing and wrong correspondences.
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(a) 3D input (b) GT (c) Our method (d) Naive

Figure 6.8.: Visualization of a selection of tests on synthetic data. Every row presents
a single example setting, with the quantitative assessment of the results in Table 6.1
(from top to bottom: Synth 1, Synth 2, Synth 3).
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7. Conclusion

Summary In this thesis, novel methods for the registration of angiographic 3D and
2D data sets have been successfully developed. We focused on liver catheterizations,
in particular Transarterial Chemoembolizations as a frequently used treatment for
liver tumors, where a fusion of CTA and DSA data can provide valuable information
in terms of depth perception and intraoperative navigation. We introduced a new
CTA protocol for liver artery visualization, developed two novel rigid registration
algorithms, and proposed a method for deformable 2D-3D registration in a single-
view scenario.

The introduction of a CTA protocol to visualize liver arteries allowed for a feature-
based alignment, where the difficulties of vessel extraction, the correspondence prob-
lem in heterogeneous feature spaces, and non-rigid registration in a one-view sce-
nario were overcome.

We conceived two rigid registration algorithms, which were tailored to be ro-
bust against segmentation errors, different contrast propagation, and deformation
changes.

The bifurcation-driven registration restricted the feature space to ramification points
of the underlying vessel structure and reduced the number of outliers by iterative
graph extraction on projected centerline images. By combining this technique with
topological information of the vessel graphs, a new distance function was developed
that shows a good convergence rate on different patient data.

While the bifurcation-driven registration yields good results in many clinical cases,
it also required a minimal amount of user interaction intraoperatively. Thus, we de-
veloped a second technique that performs fully automatic during the intervention.
The segmentation-driven registration combines 2D DSA segmentation with 2D-3D pose
estimation using a probability map in order to consequently discard false positives
in the two vascular systems. This probability link, embedded in a Maximum Likeli-
hood formulation, proved to be beneficial in terms of accuracy and robustness com-
pared to hybrid methods, which avoid 2D segmentation. Since this enhanced feature
space did not require an optimal segmentation, an automatic seed detection could be
employed to provide an integration into intraoperative workflow without additional
user interaction.

Last but not least, the refinement of a (sub-optimal) rigid vascular alignment in
a non-rigid environment was addressed by the implementation of a single-view 2D-
3D deformable registration algorithm. The minimization of an energy term based on
the Euclidean distance between corresponding points was rendered well-posed by
incorporating natural and mathematically valid constraints of length preservation
and smoothness of local transformations. A 3D deformation field could be computed
thus, where even the displacement in projection direction is captured, improving the
results of rigid 2D-3D registration considerably.
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7.1. Workflow Integration

For a clinical deployment of these registration algorithms, the fusion of pre- and
intraoperative images has to be addressed. This includes not only an intuitive visu-
alization of 3D vasculature or planning information, but also a propagation of the
registration results to subsequent images that are acquired during the medical pro-
cedure. In the course of this work, we developed two visualization techniques that
transfer information from CTA to DSA and vice versa. They will be discussed in
section 7.1.1. For information propagation, we compensated for respiratory induced
patient motion apparent in fluoroscopic image sequences. This issue is subject of
section 7.1.2. We conclude with future work, which also addresses the difficult task
of catheter tracking in fluoroscopic images.

7.1.1. Intraoperative Visualization

The result of 2D-3D registration can be used to improve visualization in the oper-
ating room. The fusion of preoperative information with intraoperative images or
instrument locations can solve the problems of reduced depth perception and blind
navigation. Basically, there are two possibilities to apply the information fusion: Ei-
ther preoperative information is projected to enhance fluoroscopic images with ves-
sel or roadmap information. A second way for visualization is to extract the current
information from the 2D image (like catheter tip location) and backproject it to 3D us-
ing all information gained through the registration process. For both approaches we
have developed visualization tools and acquired feedback from our clinical partners.

Catheter Guidance with Roadmap Projections For qualitative feedback on the
registration accuracy and an improvement of treatment workflow through the 2D-3D
alignment, we have shown two different techniques for 2D-3D projective visualiza-
tion to our clinical partners: Direct volume rendering is used to project the registered
3D image and lay it over the current DSA image (see Figure 7.1a); a Multi-Planar Re-
construction (MPR) is used to display a 2D slice or a subvolume from the viewpoint
of the C-arm on a second monitor (see Figures 7.1b and 7.1c).

According to physicians the 2D-3D overlay on one view does not improve 3D per-
ception in the interventional room. The 3D volume is projected and, since the regis-
tration information is to be kept, should not be transformed and seen from any other
viewpoint. Thus, the overlay is only giving additional 2D, but no 3D perception.
The MPR visualization was favored because it resembles the rendering of orthogo-
nal slices radiologists are used to from diagnostic procedures. Moreover, if shown
on a second monitor, it does not influence the 2D DSA and can be used as general
orientation whereas fine-grained navigation is done on fluoroscopic/DSA images.
By showing different slices and/or MIPs of a subvolume a 3D perception can be cre-
ated. Although “In-place” visualization of registered data is preferred when fusing
different 3D data sets [143], our clinical partners believe that in the case of 2D-3D
data fusion “Out-of-place” visualization proves to be the better choice.
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In order to transfer previously planned information to the intraoperative setting,
a simple planning tool was implemented that allowed physicians to create a 3D
roadmap on the preoperative data before the intervention. After the registration
process this roadmap can be projected onto the current DSA highlighting the vessel
path the catheter should take to reach the tumor. We will refer to this method for
planning and navigation as roadmapping tool.

With the roadmapping tool, an interventionalist can plan a procedure preopera-
tively on the CTA data by simply clicking on the vessel branch to be embolized (see
Figure 7.1d). A shortest path is automatically calculated using the segmented vas-
culature’s centerline. The path is followed to the main vessel by increasing vessel
diameter. This roadmap can be visualized on the extracted 3D vasculature for orien-
tation (Figure 7.1e) and projected with the registration parameters onto the current
2D image for improved catheter navigation (Figure 7.1f). This planning feature re-
ceived very positive feedback from our clinical partners since navigation through the
vessel system can be significantly improved by roadmap projection.

(a) 2D-3D Overlay (b) MPR (c) MIP

(d) planned destination (e) roadmap on vessel tree (f) projected roadmap

Figure 7.1.: Intraoperative Visualization and Navigation
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Correspondence-Based 2D-3D Visualization For each vessel centerline point, the
segmentation-driven 2D-3D registration can establish one-to-one correspondences,
which can be used for catheter visualization on the 3D vessel model. If the catheter
(tip) location is known in 2D, its location on the extracted 2D vasculature can be com-
puted. For this, a simple closest point operator can be used assuming the catheter
to lie in the vicinity of the 2D centerline graph. Thus, a tracking of the catheter in
fluoroscopic image sequences (Figure 7.2a) allows physicians to have information
about catheter location in the 2D vessel graph without additional contrast injection.
Moreover, once correspondences have been determined by 2D-3D registration, this
information can be provided in 3D (Figure 7.2b) and the viewpoint can be changed
to improve depth perception (Figure 7.2c). Our clinical partners were particularly
interested in this visualization technique if it was combined with a slice rendering of
the CTA to allocate patient anatomy to the 3D vessel model, which is hard to inter-
pret as stand-alone.

(a) (b) (c)

Figure 7.2.: Correspondence-based Visualization: (a) shows a catheter tip (red cross)
in a fluoroscopic image. The vessel structure cannot be inferred here. (b) shows the
catheter tip backprojected to the 3D vessel model (green arrow). Thus, vasculature,
current catheter location, and patient anatomy can be assessed in 3D, (c) shows an-
other viewpoint of the 3D vessel model. Since the correspondences have been pre-
viously established by 2D-3D registration, the transformation can be changed and
depth perception is increased.

The correspondences determined by 2D-3D registration are not optimal in terms of
outliers induced by ambiguities such as vessel overlay. An interpolation scheme can
be introduced to reduce the sensitivity to outliers. If the previous 3D location of the
catheter is known by tracking, the new location must not be located in another vessel
of the vascular graph unless the last node of the vessel segment has been reached. If
such a correspondence outlier has been detected, either the visualization can indicate
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Figure 7.3.: (a) shows a 2D fluoroscopy image. (b) displays a projected roadmap
of the hepatic arteries. (c) illustrates the projection of the contours of the projected
roadmap onto the 23. frame in the 2D fluoroscopy image sequence. (d) indicates the
projection of the roadmap onto 23. frame with motion correction.

it and stop, or an interpolation can be performed to move along the current vessel
until a reliable correspondence is reached again.

We are also working on a method for uncertainty propagation to find the right 3D
catheter tip location. It will be shortly summarized in 7.2.

For the realization of this visualization technique, a 2D catheter tracking is essen-
tial, which will also be addressed in 7.2.

7.1.2. Real-Time Breathing Correction

After the acquisition of a DSA image, with which a 2D-3D registration is performed,
the interventionalist proceeds by navigating the catheter through the vascular sys-
tem using fluoroscopic image sequences. These typically have a rate of 12-15 FPS,
and catheter movement can be observed mainly induced by patient breathing and
catheter advancement. Due to this motion, visualization driven by the previously
computed registration is corrupted, i.e. projected roadmaps may be displaced from
the current vessel, or backprojection of catheters might fail. For the visualization
based on correspondences, the graph node in 2D nearest to the catheter tip has to be
determined, which is hampered by this motion, too.

We account for this problem by compensating for the 2D motion induced by res-
piratory movement.

We propose a method for real-time estimation of the apparent 2D displacement of
the hepatic arteries, which is illustrated in Figure 7.3 for roadmap projection. By ap-
parent displacement we refer to the translational motion of the blood vessels projected
onto the fluoroscopy image plane. However, in flouroscopy images, the vessels and
thus their motion is only visible, if the vessels are contrasted. Therefore, our ap-
proach approximates the displacement of the vessels by tracking the catheter motion
in 2D fluoroscopy. A description of the entire tracking system including preliminary
results is detailed in Appendix D. By updating the 2D-3D registration result this way,
a realistic image fusion is achieved with respect to the current catheter position.
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7.2. Future Work

Catheter Detection and Tracking The correspondence-based visualization provides
a tool to visualize any location in a 2D vessel simultaneously in 3D. It would be de-
sirable by clinicians to have information about the catheter, in particular its tip, in
the 3D vascular tree. Thus, automatic catheter detection in 2D fluoroscopic images is
important to fully integrate the benefits of 2D-3D registration into clinical workflow.

This detection is problematic due to the bad SNR of fluoroscopic images. More-
over, bone edges that are visible in these images sometimes have the same curvilinear
shape as the catheter due to its small size (about 10 pixels in a 1024 × 1024 image).
These false positives make extraction algorithms prone to error. Preliminary tests
with a detector of curvilinear structures proposed by Steger [137] have not brought
satisfactory results. An interesting work that will be followed in the future is the
steerable tensor voting algorithm proposed by Franken et al. [49, 48]. A tensor fil-
ter is applied to images derived from Hessian analysis to detect a catheter in noisy
fluoroscopic images.

If the catheter tip has been detected in a first image, its location has to be tracked in
the following fluoroscopic frames and the tracking information has to be propagated
to 3D. We are working on an integration of results coming from registration and
motion compensation algorithms in order to predict the catheter tip location in 3D
from subsequent fluoroscopic frames.

Given the catheter tip location x in the last frame and a displacement d in 2D
computed with the apparent breathing correction method. On a sample set {yi},
i = 1, . . . , n in the neighborhood of x + d we can determine the CC value CC(yi)
in 2D. We get the corresponding points Yi in 3D through backprojection and closest
point computation to the centerline points.

By randomly altering the rigid transformation parameters R, t for m times, we get
new points Zij together with energies Ej for all the new poses. For all points Yi we
can determine their covariance matrices weighted with the respective energies

Λi =
1

�m
j=1 E2

j

m�

j=1

Ej(Zij − Z̄i)�(Zij − Z̄i), (7.1)

where Z̄i is the weighted mean of Zij , j = 1, . . . , m.
With these covariances, we can determine the location of the most significant sample

mode of the data as described in [33]. By incorporating the CC values CC(yi) from
motion compensation, interpreted as probabilities, into the algorithm’s weights wi,
we combine uncertainties of registration and motion compensation to yield the most
probable 3D location of the catheter. For a thorough explanation of the algorithm
and preliminary results on simulated data, refer to [10].

Application and Modalities Up to now, we have applied the registration algo-
rithm to data coming from the TACE procedure. On the one hand, this data shows
a great variability in terms of vessel shape and deformation making it suitable for
algorithm evaluation. On the other hand, the applicability of the algorithms to other
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vascular images, e.g. coming from a TIPS surgery, shall be evaluated in the future.
The performance of the algorithms when applied to different vessel systems will
be addressed. Moreover, the incorporation of different angiographic images will be
tested. Instead of preoperative CTA images, MRA data can be used, and it has to be
evaluated to which extent the extractable information suffices to compute the right
registration. Intraoperatively, it has to be evaluated if contrasted 2D fluoroscopic im-
ages can also be used for the proposed methods (especially the segmentation-driven
registration). If a detection of vessels in these images is successful despite the bad
SNR and the small amount of contrast agent injected, the registration can be up-
dated on the fly during the procedure. This could make breathing correction as well
as catheter backprojection easier and more robust.

Tumor Visualization Integrating the tumor into the proposed visualization tech-
niques is an issue that should be addressed for TACE procedures. This way, blood
vessels are shown for navigation together with the target region to be reached. Sev-
eral steps have to be realized for tumor visualization and fusion with catheter and
vessel locations in 3D. Since the tumor is only visible in the arterial dominant phase
of the CTA scan (see 4.4.1), it has to be registered to the angiographic phase of the
CTA. This 3D-3D registration can be solved using intensity-based methods. More-
over, an adequate tumor visualization has to be developed. Direct volume rendering
techniques will be rather difficult to maintain since tumor structures have a similar
Hounsfield unit compared to surrounding tissue, even in the arterial dominant CTA
scan. Thus, a tumor segmentation from CTA would be vital to successfully illustrate
the tumor region.

Intraoperative 3D Imaging Since 3D imaging is provided by C-arms nowadays,
fast 3D-3D registration of vascular structures will become more important. In this
thesis, the 3D reconstruction data was used in the evaluation protocol of 2D-3D reg-
istration algorithms. However, since many hospitals use intraoperative reconstruc-
tions on a regular basis in vascular treatments, it should be promising to develop
methods combining a 3D-3D registration with a 2D-3D refinement. The difficulty
of deformation has been addressed by researches to align hepatic vessel systems for
follow-up studies [4, 29]. However, the high difference of vessel structures due to
local and global contrast injection poses an additional difficulty that is worth being
addressed in the future.
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Appendix





A. Practical Considerations on Images

Computer images are rasterized, i.e. spatial locations are sampled and intensity
information is only available at discrete points called picture or volume elements
(pixel/voxel):

I : N
d
0 → R (A.1)

For simplicity, we will not use the term voxel, and indicate in the text if we address
2D, 3D, or ND images. We can arrange all the intensity values into a matrix (in 2D)
An

m or a tensor (in 3D) Tn,m
k . Often, it is necessary to retrieve the intensity value

between pixels, which can be achieved by interpolation from neighboring pixels.
The neighborhood of a pixel is defined over adjacent pixels. There exist sev-

eral neighborhoods depending on dimension and integration of diagonally adja-
cent pixels. For example, a 4-neighborhood in a 2D image is defined as N4(x) =
{Ix−1,y+, Ix+1,y, Ix,y−1, Ix,y+1}, where we placed the locations into the subscript for
better readability. An 8-neighborhood is defined as

N8(x) = {Ix−1,y, Ix+1,y, Ix,y−1, Ix,y+1,

Ix−1,y−1, Ix−1,y+1, Ix+1,y−1, Ix+1,y+1}.

A.1. Image Filtering

In a discrete setting convolution of two functions f, g is defined as:

(f ∗ g)(m) =
�

n

f(n)g(m− n), (A.2)

Due to its frequent application (e.g. in linear scale-space), it is important to state
how the Gaussian filter is created. Usually, we create a Gaussian kernel Gσ with
standard deviation σ without evaluating the constant before ((2πσ2)N/2), but with a
normalization factor

Ĝσ(x) = e−||x||
2/2σ2

(A.3)

Gσ(x) =
Ĝσ(x)

�
x1
· · ·�xn

Ĝ
(A.4)

Usually we create Gσ symmetric with mean zero, so if a filter size is given by h, we
evaluate the kernel at positions −(h − 1)/2 to (h − 1)/2 in each direction. The filter
size should also be adjusted to the chosen σ, a good trade-off between numerical
relevance and accuracy is h = 6 ∗ σ.
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A.2. Image Derivatives

On discrete images, building the derivative is a filtering process. We can derive
the image derivative from the difference quotient and image neighborhood. The
quotient should include the surroundings in a symmetrical manner and should be
as local as possible. For example, for a 2D image I : N

2
0 → R we get:

(1) First derivative: The simplest derivative filter is the central difference operator,
i.e. the mask [−1, 0, 1] filters the image in each dimension.

∂Ix,y

∂x
=
Ix+1,y − Ix−1,y

2h
, (A.5)

where h is the element spacing between adjacent pixel. The filtering in y is
analogous.

(2) Second derivative: Here, we derive two difference quotients and build their
difference quotient. Since we want to be symmetric and local, we take the
mask [−1, 1] for first derivative and [−1, 0, 1] for the second:

∂2Ix,y

∂x2
= ((−1) ∗ Ix,y − Ix−1,y

h
+ (
Ix+1,y − Ix,y

h
))/h

=
Ix−1,y − 2Ix,y + Ix+1,y

h2
. (A.6)

∂2Ix,y

∂y2 is analogous. Mind that due to the minimality criterion, the difference
quotient is taken at x+ 1

2h and x− 1
2h, thus we only have to divide by h instead

of 2h for both derivation steps. The filtering in different direction is achieved
by multiplying the central difference term to get a matrix filter:

[−1, 0, 1]�

�
−1
0
1

��

=

�
1 0 −1
0 0 0
−1 0 1

�
(A.7)

This assures symmetry again:

∂2Ix,y

∂x∂y
=

Ix−1,y+1 − Ix+1,y+1 − Ix−1,y−1 + Ix+1,y−1

4h2
(A.8)

Since discrete differential operators are sensitive to noise, a Gaussian smoothing is
usually applied together with derivation, whose implementation is described below
together with linear scale-space.

A.3. Linear Scale-Space

Moving in linear scale-space is equivalent with applying a Gaussian filter with stan-
dard deviation σ to an image. If we want to build first and second derivatives in
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scale-space, we can, due to the commutativity of filtering and derivation, build the
filter derivative and convolve the image with the new filter:

∇Iσ = Gσ ∗ ∇I = ∇Gσ ∗ I, (A.9)

and
HIσ = Gσ ∗ HI = HGσ ∗ I. (A.10)
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B. Thin Plate Splines

B.1. Special Spline Smoothing Problem

Given x(i) = (x1(i), . . . , xn(i))� ∈ R
n and yi ∈ R, i = 1, . . . , n, and a data model

yi = f(x1(i), · · · , xd(i)) + εi, (B.1)

where εi ∼ N(0, σ2
i ) represents measurement noise.

We want to solve the special spline smoothing problem in n-dimensional Euclidean space,
i.e. we want to find the minimizing function fλ to the variational problem

1
n

n�

i=1

(yi − f(x1(i), · · · , xn(i)))2 + λJd
m(f), (B.2)

where Jd
m(f) is defined as the thin-plate penalty functional on dimension d and

derivation order m, e.g. for d = 2, m = 2

J2(f) =
� ∞

−∞

� ∞

−∞
(f2

x1x1
+ 2f2

x1x2
+ f2

x2x2
)dx1dx2, (B.3)

or, for d = 3, m = 2

J2(f) =
� ∞

−∞

� ∞

−∞
(f2

x1x1
+ f2

x2x2
+ f2

x3x3
+ 2[f2

x1x2
+ f2

x1x3
+ f2

x2x3
])dx1dx2dx3. (B.4)

The solution fλ to (B.2) is given by a combination of M monomial1 coefficients and
N radial function (RF) coefficients

fλ(x) =
M�

ν=1

dνφν(x) +
N�

i=1

ciEm(x,x(i)), (B.5)

where x = (x1, · · · , xn)�, x(i) = (x1(i), · · · , xn(i))�, and Em is Green’s function
for the m-iterated Laplacian, (see Wahba 90 ([152]), p.30). fλ is called the Thin Plate
Spline.

Informally, Em can be thought of as a radial function, i.e. a function whose re-
sponse decreases (or increases) monotonically with distance from a central point (Orr
96 [110]).

The resulting spline fλ has the following properties:

1A monomial is a product of positive integer powers of a fixed set of variables, for example, x, xy2, or
x2y3z. In this case they are of the order < m
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(1) Natural Spline: fλ must be a natural spline, i.e. a spline f of odd degree k =
2l − 1(l ≥ 2), which satisfies

f (l+j)(a) = f (l+j)(b) = 0, j = 0, 1, · · · , l − 2 (B.6)

(2) Interpolating and Approximating Behavior: If λ = 0 we have an interpolating
behavior, i.e. for all measured points x(i), yi : yi = fλ(x(i)), i = 0, · · · , n. If
λ 
= 0 we have an approximating behavior, i.e. for all measured points x(i), yi :
yi ≈ fλ(x(i)), i = 0, · · · , n, such that the SSD is minimized:

min
f

(yi − f(x(i)))2 (B.7)

(3) Existence of Squared Integral: In order to fulfill the smoothness condition, the
squared integral must exist, i.e.

� ∞

−∞
(f (m)(t))2dt < ∞ (B.8)

(4) Smoothness Condition: The thin-plate penalty functional Jd
m(f), the integral of

squared derivatives of order m, must be minimized. Thus, the resulting spline
is smooth (has low curvature).

B.2. Numerical Solution

We want to find the coefficients dν , ci of fλ. For that, we rewrite the equation as a
system of linear equations in matrix-vector form. For each measurement yi ↔ x(i)
we write the constraints

yi =
M�

ν=1

dνφν(x(i)) +
N�

j=1

cjEm(x(i),x(j)), (B.9)

in matrix-vector form

Kc + Pd = y (B.10)
P�c = 0, (B.11)

where K ∈ R
N×N , Kij = Em(x(i),x(j)) only consists of the radial functions evalu-

ated at all measured x-vectors x(i) (independent of yi).
P ∈ R

N×M , Pij = φj(x(i)) accounts for the coefficients of the monomial part
with all measured points x(i), and y = (y1, · · · , yn) are all measurements in the co-
domain.

Equation (B.10) accounts for the constraints given by the function fλ. Equation
(B.11) accounts for the square integrability of fλ, and simply forces the derivative of
the elastic part of fλ, ciEm(x,x(i))(m), to be 0 at infinity.
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In the upper equations we require an interpolation behavior, i.e. f(x(i)) = yi.
However, we have noisy measurement data and want to have an approximation
behavior, i.e. f(x(i)) ≈ yi, such that the sum of squared differences in equation (B.2)
is minimized. This can be achieved by introduction of the regularization parameter
λ into the numerical solution:

�
K + nλW−1

�
c + Pd = y (B.12)

P�c = 0, (B.13)

where W−1 = diag(σ2
1, . . . , σ

2
n) is the matrix of variances of the noise distribution of

the measurements, or W−1 = I if unknown.
Altogether, we have to solve for the vector [c d]� in the system of linear equations

�
������������

y1

y2
...

yn

0
...
0

�
������������

=
	

K + nλW−1 P
P� 0



·
	

c
d



, (B.14)

which can be accomplished using standard numerical solvers, e.g. the Singular Value
Decomposition (SVD).

B.3. TPS for Feature-Based Deformable Registration

The TPS is particularly suitable for the task of feature-based deformable registra-
tion as introduced by Bookstein [15] for medical image registration and extensively
studied by Rohr [126].

Given m points Xi = (xi1, . . . , xin)� ∈ FA and Ỹi = (yi1, . . . , yin)� ∈ FB repre-
senting corresponding point features extracted from images A,B.

We want to find a transformation ϕ that minimizes the squared distance of all cor-
responding points. Moreover, we want the transformation to be sufficiently smooth,
i.e. no folding or tearing should be introduced. Mathematically, we want to find ϕ,
such that

E =
n�

i=1

||Xi − ϕ(Yi)||2 + λJ2(ϕ) (B.15)

is minimal. J2 is called the thin-plate penalty functional (see Equations (B.3) and
(B.4)) and penalizes the curvature of the transformation ϕ in order to keep it smooth.

The TPS is given by ϕ′ = (ϕ′1, . . . , ϕ′n)�, where ϕ′l models an affine transformation
part (n + 1 monomials), and a local deformation part (m radial functions):

ϕ′l(X) = a0 +
n�

j=1

ajxj +
m�

k=1

wkU(|Xk −X|), (B.16)
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where a0, . . . , an are the parameters controlling the affine part and w1, . . . , wm are
the parameters controlling the local non-rigid part. These n(n + 1) affine and nm
non-rigid parameters are determined from the point correspondences {Xi ↔ Yi}.
U(.) is a radial function and defined as U(r) = r2ln(r) in 2D and as U(r) = |r| in 3D
[146].

TPS registration has advantages and drawbacks. First, it can be computed on ar-
bitrary points in space and retrieve a function with global support, i.e. the control
points do not have to be uniformly distributed as for functions with local support,
e.g., cubic B-splines [63]. Moreover, it is no mere interpolation scheme, but can be
used as an approximation scheme, minimizing Equation (B.15) for all points in the
image domains. Doing that, it also penalizes for high variations in curvature of the
displacement field making sure that it transforms “sufficiently smooth”. And last,
but not least, TPS are very easy to implement and, for a smaller number of control
points, computationally efficient.

However, TPS-based registration is rather restricted. It cannot minimize other
distance measures than mono-dimensional Euclidean, or Mahalanobis distance and
thus always has to operate on point sets. Due to this rigidity of the formulation,
it cannot be extended to 2D-3D deformable registration. Furthermore, it minimizes
one particular smoothing term and cannot be extended to other, maybe more con-
venient smoothing terms without loosing the theoretical minimizing property. The
feature point correspondences (control points) have infinite support, i.e. all control
points contribute to the deformation of other points. Thus, it is rather difficult to
predict or change local behavior using TPS.

As mentioned in section 2.3.2, a local transformation should fulfill the properties
of a diffeomorphism. Unfortunately, a TPS is no diffeomorphic mapping, but it can
be extended to one as shown by Camion and Younes [24] in the form of geodesic
interpolating splines. They have been successfully applied to Medical Image Analysis
by Twining and Marsland [146].



C. Rotation Parameterization

C.1. Euler Angles

A minimal (and maybe the most intuitive) parameterization of a rotation matrix is
given by three Euler angles, α, β, γ, representing the 3 DOF. These angles represent
the rotations around the cartesian coordinate axes in 3D, i.e. x-, y-, and z-axis. The
order of rotation is important to keep consistent, we choose the ZY X1 order, i.e.
first rotate around x-axis (Rx(α)), then around y-axis (Ry(β)), finally around z-axis
(Rz(γ)):

X′ = Rz(γ)Ry(β)Rx(α)X, (C.1)

where the respective rotation matrices are given by

Rx(α) =

�
��

1 0 0
0 cos α − sin α
0 sin α cos α

�
�� , Ry(β) =

�
��

cos β 0 sinβ
0 1 0

− sin β 0 cos β

�
�� ,

Rz(γ) =

�
��

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

�
�� ,

the mutliplication of them gives the rotation matrix

R =

�
��

cβ cα −cγ sα + sγ sβ cα sγ sα + cγ sβ cα
cβ sα cγ cα + sγ sβ sα −sγ cα + cγ sβ sα
−sβ sγ cβ cγ cβ

�
�� , (C.2)

where cα = cos α, sα = sinα, etc.
With this equation we can calculate a rotation matrix given three angles and vice

versa.

C.2. Gimbal Lock

A singularity exists, known as Gimbal Lock, which is the ambiguity to determine
angles α, γ if β = ±Π/2. In this case, the rotation matrix looks like

R(β = π/2) =

�
��

0 −cγ sα + sγ cα sγ sα + cγ cα
0 cγ cα + sγ sα −sγ cα + cγ sα
−1 0 0

�
�� . (C.3)

1read from right to left, since we do left-sided matrix multiplications
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Using simple trigonometry, we get

R(β = π/2) =

�
��

0 sin (γ − α) cos (γ − α)
0 cos (γ − α) − sin (γ − α)
−1 0 0

�
�� , (C.4)

which is a rotation with angle δ = γ − α. Since there are many combinations to get
the same δ from γ and α, there is an ambiguity, which has to be considered when
converting rotation matrices to α, β, γ. For β = −Π/2 there is an analogous calcula-
tion. As convention, in both cases (β = ±Π/2) we choose α = 0, thus resolving for
this ambiguity.

C.3. Euler Angles in Rigid Registration

For the task of rigid registration, we usually alter the Euler angles and form a rota-
tion matrix to transform an image or point. That is, the Euler representation of the
rotation is changed during the (non gradient-based) optimization process, the rota-
tion matrix just has to be built from the new parameters for energy term evaluation.
In this direction, no ambiguity arises. Since we are never converting a rotation ma-
trix to Euler angles in the registration process, only for visualization purposes, our
results are not flawed by the Gimbal Lock.

If we use a gradient-based optimizer, the parameterization has to be used for
building the first (and maybe second) derivative of the energy term. In this case,
the ambiguity of Euler Angles is important and another parameterization of a rota-
tion matrix should be used. Since all our rigid registration algorithms use a direct
optimizer, which is not using the gradient of the energy term, we preferred the intu-
itive representation of rotations to a rotation reparameterization.

There are other representations of rotations, e.g. unit quaternions, or axis-angle
representation (via the Rodriguez formula). However, these representations have
four parameters and are constrained by vector unit length, while the minimal num-
ber of parameters for a rotation is three. Thus, if we run a parameter optimization,
the parameter space increases by one, which might influence convergence rate and
numerical stability of the registration.

Since we do not have to suffer from the Gimbal Lock (as the Computer Graphics
community does) and since Euler Angles are minimal in terms of rotation param-
eterization, we use them throughout the thesis and discard other possible rotation
parameterizations.



D. Real-Time Respiratory Motion Tracking

We propose a method for real-time estimation of the apparent 2D displacement of the
hepatic arteries, which is illustrated in Figure 7.3 for roadmap projection. By apparent
displacement we refer to the translational motion of the blood vessels projected onto
the fluoroscopy image plane. However, in flouroscopy images, the vessels and thus
their motion is only visible, if the vessels are contrasted. Therefore, our approach
approximates the apparent displacement of the vessels by tracking the catheter mo-
tion in 2D fluoroscopy. By updating the 2D-3D registration result this way, a realistic
image fusion is achieved with respect to the current catheter position.

In the following, we will summarize the proposed method and show some prelim-
inary results. A extensive study and more details on the numerical implementation
to fulfill the real-time constraint are given in [3].

D.1. Method

D.1.1. Motion Model

Clifford et al. [32] present an extensive assessment of respiratory hepatic motion
based on nine previously published studies. All studies agree that the most signif-
icant component of liver motion is cranio-caudal translation. There exists disagree-
ment in the literature about the significance of liver motion in anterior-posterior and
lateral directions. Recent studies, which follow the motion of single or multiple
points within the liver volume, indicate that respiration causes significant transla-
tional motion along both of these axes, whereas earlier studies, which evaluate the
motion of liver margins, suggest that clinically significant liver motion can be ap-
proximated effectively by cranio-caudal translation alone [32]. The tissue deforma-
tion caused by respiration is reported to be 3 mm on average. Rohlfing et al. [124, 125]
estimate an average tissue deformation of 6-10 mm by comparison of rigid and non-
rigid registration of the liver. However, they report that the rigid motion model i.e.
translation and rotation accurately aligned the central area, while residual deforma-
tion occurs mostly in the periphery [32]. The same group reports that the rotations
did not exceed 1.5 degrees. Considering these studies we approximate the apparent
displacement of vessels due to respiration in 2D fluoroscopy images using a global
translational model that covers translations in both x- and y-directions in the image
plane. Our method does not account for local vessel deformations currently.

D.1.2. Approximation of Vessel Motion by Catheter Motion

As non-contrasted hepatic arteries are not visible in 2D fluoroscopy images, our ap-
proach approximates their apparent 2D respiratory displacement from catheter mo-
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tion. Since the catheter is located within the vessels, its motion inevitably comprises
the vessel motion. However, the catheter motion is further complicated by defor-
mations. Because of the branched and elastic nature of the vessels a considerable
deformation of the catheter occurs while being advanced by the interventional radi-
ologist. For the robustness of the algorithm against these catheter deformations we
propose an appropriate dynamic template update strategy.

D.1.3. Motion Tracking on Enhanced Images

Fluoroscopic images have a high SNR due to the low radiation dose used for acquisi-
tion. In order to enhance the catheter and suppress noise, a filtering is applied to the
original fluoroscopy images. Regarding the width of a catheter, we apply a modified
Marr-Hildreth filter, as proposed by Palti-Wasserman et al. [114].

After the filtering step the apparent 2D displacement of the catheter is estimated
by template matching. Thereby, the displacement d = (dx, dy) of a structure between
two frames is computed by defining a template T in one frame containing this struc-
ture and by finding the region which matches it in the other frame I with respect to
a chosen similarity measure. Because of its robustness against noise and linear illu-
mination changes we use the Correlation Coefficient (CC) as a similarity measure.
For estimating the global translational motion we only consider a small part of the
catheter, which has to contain both a vertical and a horizontal component in order
to avoid the well-known aperture problem. In the initialization step of the tracking
algorithm we ask the interventional radiologist to draw a small rectangle in the first
frame covering such a part of the catheter. Then, a template matching is performed
in a search region bigger than the largest expected translation induced by respira-
tory motion (up to 9mm in x- and 45 mm in y-direction, refer to Clifford et al. [32]).
For tracking the motion between consecutive frames the search region is translated
with the last computed displacement for each frame and the template matching is in-
voked in a smaller search region (up to 17 mm in x- and 25 mm in y-direction proved
to be sufficient in our experiments). With this technique, the search region is kept
small, which provides an acceleration in runtime of the algorithm and also decreases
the probability of matching the catheter with other line-like structures such as bones.
Moreover, the large influence of the catheter within the small template assures a re-
liable response of the CC for estimating the motion induced by breathing.

D.1.4. Dynamic Template Update

Using the same template for the entire intervention involves the assumption that the
appearance of the catheter part contained in the template does not change over time.
As the appearance of the catheter changes due to its deformation induced by the
radiologist’s movement, the algorithm will fail in general using only the template
created from the first frame. In order to deal with possible catheter deformations we
update the template if there is a considerable change in the structure contained in the
template. We perform the template update if the difference between best CC values
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of the initial and current frame becomes too large. As the new template we use the
region that yields the maximum score of CC in the previous frame.

D.2. Results

The accuracy of the algorithm and its robustness against noise and catheter defor-
mation is tested using both simulated and clinical image sequences.

D.2.1. Simulation Studies

In order to perform a quantitative analysis with a known ground truth, we generate
image sequences by artificially superimposing a catheter onto real 2D fluoroscopy
sequences of 15 frames. In these images, the catheter is manually removed and the
corresponding region is inpainted by bilinear interpolation. By using clinical images
and real catheter intensities, we assure that the simulated images are realistic (Fig.
D.2.1). The position of the catheter is changed over the frames by a translation in y
direction, which is to be corrected with our method. Starting with zero displacement,
over the first 7 frames, the total displacement is increased by 4.8 mm between single
frames, and in the second 7 frames, it is decreased by the same amount, resulting in
a rough approximation of the respiratory motion visible in the images. This results
in a maximal displacement of 33.6 mm. Using this setting, we perform two tests: one
in which the added catheter is deformed, and a second, in which the robustness to
noise is tested.

The accuracy of the algorithm in presence of catheter deformation is tested on the
described sequence in 12 tests with different magnitudes of deformation (1.2-14.6
mm), resulting in a total of 180 simulated frames. To this end, the artificial catheter
is deformed, before adding it to the background sequence. The deformation is per-
formed by randomly moving 100 points of a free-form deformation (FFD) model
based on cubic B-splines.

For all magnitudes of catheter deformation, the mean error of the computed dis-
placements remains small (0.26-1.21mm).

The influence of noise is tested by adding different amounts of Gaussian noise to
the sequence presented above in 10 tests, resulting in 150 simulated image frames.
In this test, no deformation is added to the catheter. Note that the simulated images
also contain the regular amount of signal dependent Poisson noise present in the X-
ray beams, since they are created by manipulating clinical image sequences. By an
additional Gaussian noise with variance of between 0.1% and 5% of the maximum
image intensity (Fig. D.2.1) the mean error of the algorithm is between 0.00 mm and
0.89 mm.

D.2.2. Patient Studies

In order to evaluate the accuracy of the algorithm on real data we segment the
catheter in 164 frames of a clinical image sequence and measure the fraction of catheter
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Figure D.1.: (a) shows a frame from a simulated image sequence with known catheter
displacements. (b) displays the effect of additional Gaussian noise in the simulated
image sequence, whereas the rectangular region is used as template by motion track-
ing. (c) and (d) illustrate the average and standard deviation of the error in patient
data study with respect to template size.

contained in the vessel by computing |NC ∩ NR|/|NC |, with NC and NR being the
segmented pixels of the catheter and the roadmap respectively. Our motion correc-
tion improves the catheter overlap from 36% to 70%. The influence of template size
and location on the success of the algorithm is studied on 4 clinical fluoroscopy im-
age sequences (with a total of 571 frames). For that, three inexperienced users select
three points on the catheter for each sequence. Centered at each point 38 templates
with different sizes between 3×3 pixels and 150×150 pixels are created. During the
tests the size of the search region is set to the size of the template plus an extension in
x and y direction of 20 and 40 pixels, respectively. The algorithm is then performed
using each template. In the absence of an absolute ground truth, we compare the
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results to the displacements determined by manually defined motion correction. For
each user the average and standard deviation of the mean error over all frames is
displayed in Fig. D.2.1 and D.2.1 respectively. The error in one frame is computed as
‖de − (dp1 + dp2 + dp3)/3‖, where de denotes the expected displacement and dp1 ,
dp2 , dp3 denote the computed displacements using template centered at points p1,
p2 and p3, respectively. For all templates of size between 20 × 20 and 80 × 80 the
error of the algorithm is in average 1.25 mm with a standard deviation less than 0.44
mm. Such an error is visually barely noticeable. and admissible for hepatic artery
catheterizations. This study shows that the method still leads to near-optimal results
for a large range of template sizes and for different template locations. Thus, we can
conclude that the method does not require a precise template creation but involves
just a simple user interaction, which is admissible for hepatic artery catheterizations
as confirmed by our clinical partners.
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E. List of Symbols

Energies

E the energy term

D the data term

S the regularization term

Graphs

Gd a graph with node set V d and edge set Ed, where d represents the spatial
dimension of nodes in V d. The graph consists of bifurcation points B ∈
V d

b and sampling points X ∈ V d
s . V d = V d

b ∪ V d
s , V d

b ∩ V d
s = ∅. Sampling

nodes always have two neighbors, i.e. their degree is 2.

Πi,j a segment between two bifurcation nodes Bi,Bj , only consisting of
sampling nodes and edges between them.

Gt a topological graph, only consisting of bifurcation nodes and edges be-
tween them, i.e. Gt = (V d

b , Et), where Et ⊂ V d
b × V d

b .

Images

I an image, i.e. an intensity mapping from a spatial domain to a real num-
ber Ω → R

∇I the gradient of image I
HI the Hessian matrix (second derivative) of image I
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Projections

P a projection matrix, i.e. a mapping from P
3 to P

2

K the calibration matrix of a pinhole camera

R a rotation matrix

t a translation vector

fP a projection function, i.e. a mapping from R
3 to R

2 defined by the pro-
jection matrix P

Statistics

X a (multivariate) random variable

X a value of a (multivariate) random variable X

P (X ) the probability of random variable X having the value X (abbreviation
to P (X = X )

P (X|Y) the probability of random variable X having the value X given that
variable Y has the value Y (abbreviation to P (X = X|Y = Y)

G(μ, σ) Gaussian distribution with mean μ and standard deviation σ

Gσ(X ) Gaussian distribution with zero mean and standard deviation σ evalu-
ated at X .

Transformations

ϕ a transformation, which is usually a vector-valued function

∇ϕ the first derivative of ϕ

Jϕ the Jacobian matrix of ϕ. This is equal to the first derivative of ϕ, i.e.
Jϕ = ∇ϕ.

ϕi the transformation at a particular point xi

Θ a transformation parameter
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Vectors and Matrices

x some 2D vector, i.e. x = (x, y)�

X some 3D vector, i.e. X = (x, y, z)�

x̂ a homogeneous 2D vector, i.e. x̂ = (x, y, w)� ∈ P
2

X̂ a homogeneous 3D vector, i.e. X̂ = (x, y, z, w)� ∈ P
3

M a matrix
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F. List of Abbreviations

Medical Terms

HCC Hepatocellular Carcinoma

ROI Region of Interest

TACE Transarterial Chemoembolization

TIPS Transjugular Intrahepatic Portosystemic Shunt

Medical Imaging Modalities

CT Computed Tomography

CTA Computed Tomography Angiography

DSA Digitally Subtracted Angiography

HU Hounsfield Unit

MR Magnetic Resonance (Imaging/Tomography)

MRA Magnetic Resonance (Imaging/Tomography) Angiography

MRA TOF MRA Time of Flight

MRA PC MRA Phase Contrast

US Ultrasound

Similarity Measures
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CC Correlation Coefficient

ECC Entropy Correlation Coefficient

GD Gradient Difference

GC Gradient Correlation

MI Mutual Information

NCC Normalized Cross Correlation

PI Pattern Intensity

SM Similarity Measure

SSD Sum of Square Differences

(Numerical) Algorithms

ART Algebraic Reconstruction Technique

FBP Filtered Back Projection

HSA Hybrid Simulated Annealing

ICP Iterative Closest Point

IIP Iterative Inverse Perspective

LAP Linear Assignment Problem

SVD Singular Value Decomposition

Deformations

FFD Free Form Deformation

TPS Thin Plate Spline

Projections

CCS Camera Coordinate System

DRR Digitally Reconstructed Radiograph

MIP Maximum Intensity Projection

WCS World Coordinate System



143

Errors

PD projection distance

RMSE Root Mean Square Error

RPD reprojection distance

TRE target registration error

Miscellaneous

FPS frames per second

GPU Graphics Processing Unit

SNR signal-to-noise ratio
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G. List of Publications

International Journals

GROHER, M., JAKOBS, T.F., PADOY, N., AND NAVAB, N. Planning and Intraopera-
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International Conferences
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