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Abstract

For assessment of cerebrovascular diseases, it is beneficial to obtain three–
dimensional (3D) information on vessel morphology and hemodynamics. Rotational
angiography is routinely used to determine the 3D geometry interoperatively. In
this thesis, a method to exploit the same acquisition to determine the blood
flow waveform and the mean volumetric flow rate in the large cerebral arteries is
proposed.

The method uses a model of contrast agent dispersion to determine the flow param-
eters from the spatial and temporal progression of the contrast agent concentration,
represented by a flow map. Furthermore a method for visualization of the model is
presented. The method was validated with several geometries.
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Zusammenfassung

Um zerebrovaskulär Krankheiten zu beurteilen, ist es von Vorteil dreidimensionale
(3D) Information über Gefäßmorphologien und Hämodynamik zu bekommen. Bei
interoperativen Eingriffen wird Rotationsangiografie standardmäßig eingesetzt,
um die 3D Information zu bestimmen. In dieser Diplomarbeit wird eine Methode
vorgestellt um mit Hilfe von – aus Rotationsangiographie gewonnenen – Daten,
die Wellenform des Blutes und den durchschnittlichen Blutfluß in den großen
zerebralen Arterien zu bestimmen.

Die Methode verwendet ein Kontrastmittel–dispersions–Ausbreitungsmodel um die
Fluß–Parameter aus dem räumlich–/ zeitlichen Fortschreiten des Kontrastmittels zu
bestimmen, welches mit Hilfe einer “Flow Map” dargestellt wird. Zusätzlich wird
eine Methode zur Visualisierung des Models vorgestellt. Die Methode wurde mit
verschiedenen Gefäßgeometrien validiert.
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1 Introduction

For assesment of cerebrovascular diseases, it is beneficial to obtain 3D information
on vessel morphology and hemodynamics. Rotational angiography is routenely used
to determine the 3D geometry during an intervention. Additionally to 3D geomerty,
rotational angiography provides 2D projections, which contain further information.
In this diploma–thesis, a model–based method to quantify flow from rotational an-
giography is proposed. The volumetric mean flow rate and the blood flow waveform
are estimated. For the case of a bifurcating vessel, the flow division at the bifur-
cation can also be estimated. The model is based on a advective dispersion model,
which can explain the changing appearance of the contrast agent bolus and there-
fore can use the information from the inflow and outflow phase and observations
at different injection sites without introducing a bias. The model uses a centerline
and radius representation of the vessel tree which allows vessel tapering, stenoses
and bifurcations. As it uses all observations at the same time, it is very robust to
noise.
Furthermore a method for visualizing the estimated data is provided in this diploma
thesis. Here is a brief outline of the structure of the thesis:
In chapter 2 the necessary basics for the method are provided. In particular we dis-
cuss view– and camera geometry, solving the diffusion–advection equatation as well
as (un–)constrained optimization. Finally the medical background of the problemis
proposed.
After presenting basics, we formulate the problem in chapter 3. We will have a close
look on how to extract hemodynamic information out of data, given by rotational
angiography. Afterwards we propose models for the injection of contrast agent and
contrast agent propagation. We discuss a parameter estimation with these models.
Last but not least a method for visualization of the estimated data is presented.
Chapter 4 discusses the validation of the problem of the previous chapter. Two
different validation steps show the convergence and the robustness to noise of the
method.
Chapter 5 discusses the achieved results and gives short outlook.
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2 Basics

In this chapter we discuss the theoretical content of this diploma–thesis. We will
have a short look on view geometry and camera transformations. This is important,
because we deal with data obtained by rotational angiography.
Following, we discuss a numerical treatise of solving the diffusion–advection equa-
tion in 2D. This is a central point, needed to model the contrast agent propagation
in a vessel. Afterwards we mention concepts for a parameter estimation.
The last section gives a background in interventional angiographic imaging. We
talk about blood flow and the state of the art in its estimation.

2.1 Geometry Transformations

This section follows [Har03].
Due to the fact that we want to extract information of data given by rotational
angiography, it is important to have a short look on view geometry and camera
transformations first. For implementation, we need to know how to deal with dif-
ferent coordinate systems and how to project 3D points, also called voxel, on a 2D
plane.

2.1.1 View Geometry

This subsection introduces the concept of Euclidean transformations. We need
this concept everytime we have two or more different Euclidean coordinate frames.
In this thesis we have two major coordinate frames, the camera– and the world
coordinate frame. To point out the concept of Euclidean transformations, we give
a definition:

Definition 1 An Euclidean transformation is a function

f : Rn → Rn : f (x) 7→ R · x+ t, (2.1)
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with R ∈ Rn×n, R−1 = RT , detR = 1 and t ∈ Rn.

The central property of Euclidean transformations is that they are length preserving.
The matrix R is called rotation matrix. We can determine this rotation matrix
analytically, if the rotation axis ~r ∈ Rn (‖~r‖2 = 1) and the angle δ is known:

Rx = cos δ · x+ sin δ · ~r × x+ (1− cos δ)
(
~rTx

)
· ~r. (2.2)

x r

δ

Rx

e1

e2

e3

Figure 2.1: A point x and its image Rx

For example in R3 this rotation matrix is given by (see figure 2.1):

R = cos δ · I + sin δ ·

 0 −r3 r2

r3 0 −r1

−r2 r1 0

+ (1− cos δ) · (~r~rT ) (2.3)

In computer vision, a point x ∈ Rn is usually represented in homogeneous coordi-
nates. homogeneous coordinates are defined as follows:

Definition 2 A point x ∈ Rn+1 is called homogeneous point of x ∈ Rn, if it satisfies
the following relation:

x = λ ·
[
x
1

]
λ ∈ R\ {0} (2.4)

In this diploma–thesis we use bold letters to indicate homogeneous coordinates.
The big advantage of representing points using homogeneous coordinates is that all
Euclidean transformations can be described by a matrix vector product:

y = R · x+ t ⇐⇒ y =

[
R t
0 1

]
· x. (2.5)

4
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Of course, we can calculate an inhomogeneous point x, if the corresponding homo-
geneous point x is known:

xi =
xi

xn+1

, i ∈ {1, . . . , n} . (2.6)

2.1.2 Camera Transformations

Camera

Object

Image plane

Figure 2.2: Pinhole camera model

In this section we have a look at the finite camera model, which is also called the
pinhole camera model. The basic principle of this model can be seen in figure
2.2. We have a projection center (camera), a three dimensional volume with data
(object) and a plane (image plane) on which the object is projected.
This model is principally designed for CCD1 like sensors, but also applicable for
X–ray images, scanned photographic negatives, etc.
In the pinhole camera model, a point with coordinates x = [x1, x2, x3]T is mapped
to the point [fx1/x3, fx2/x3, f ]T , where f is called the focal length or focal plane.
The concept of the model is visualized in figure 2.3. c represents the camera center,
x2D is the mapped point of x. The mapped point is at the intersection of the image
plane and the lengthened connecting line cx. In particular, the mapping using a
homogeneous representation is defined by

1Charged coupled device

5
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
x1

x2

x3

1

 7→
 fx1

fx2

x3

 =

 f 0
f 0

1 0




x1

x2

x3

1

 (2.7)

This expression assumes that the origin of coordinates in the image plane is in the
principal point (see image 2.3). The origin of an image is usually in the lower left
corner. So in general the mapping is defined by:

(x1, x2, x3)T 7→
(
f · x1

x3

+ px1 , f ·
x2

x3

+ px2

)T
or (2.8)

x1

x2

x3

1

 7→

 fx1 + x3px1

fx2 + x3px2

x3

 =

 f px1

f px2

1︸ ︷︷ ︸
K

0
0
0




x1

x2

x3

1

 (2.9)

If we insert x2D as the mapped point of x, then the equation above has the concise
form

x2D = K ·
[
I 0

]
· x (2.10)

c

f

x

x2D

c
x3

x1 x

x2D

f

Image plane

Image plane

px1 px2

Principal point

Figure 2.3: Camera model

In general, points in space will be expressed in terms of a different Euclidean coordi-
nate frame. We have two Euclidean frames, the camera– and the world coordinate
frame, which are related via rotation and translation. From now on we indicate

6
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points in the camera coordinate frame with an index c. That is to say, a point x in
the world coordinate frame corresponds to the point xc in the camera coordinate
frame. The mapping of the points is given by equation (2.5). We can write out the
mapping as follows:

xc = R · (x− c) , (2.11)

where c is the origin of the camera coordinate frame in world coordinates. R is
the rotation matrix, which converts points in world coordinates to the correspond-
ing points in the camera coordinate frame. Rewriting the equation above using a
homogeneous representation leads to the formula:

xc =

[
R t
0 1

]
· x, t = −R · c. (2.12)

We can combine this equation with (2.9). This leads to the general formulation:

x2D = K ·
[
R t

]
· x =

[
M p4

]
· x, (2.13)

where M ∈ R3×3 and p4 ∈ R3.
Using this formula in algorithms generates effects that can be compared to forward
warping. The effect of forward warping appears for example by rotating an image
straight forward calculating y = R · x. In this expression R ∈ R2×2 is a rotation
matrix and x ∈ R2 is a point in the image. The resulting points y are in general
not on the grid of the new image. This is why the concept of backward warping is
used in algorithms. On the mathematical point of view this is the inverse mapping
x = R−1y. That is to say, we have a certain point y in the new image and search
its origin. The difference between forward– and backward warping can be seen in
figure 2.4, where a image is rotated by the angle of 45 degrees using forward– and
backward warping.
To avoid this effect in equation (2.13) we use a method called pixel based volume

(a) Original Image (b) Rotated Image using forward warping (c) Rotated Image using backward warping

Figure 2.4: The difference between forward– and backward warping

rendering. For a better understanding of pixel based volume rendering we first
discuss the physical background [PEN99] on X–ray images:
The ionizing property of X–ray beams is used by intraoperative devices such as

7
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C–arms to acquire images. Images can be produced by radiation, because material
interacts with the energy of X–rays, part of the energy is lost during traversal.
This “loss of energy” is called attenuation and can be physically described by the
Lambert–Beer law for attenuation of radiation through a medium:
Given an initial energy E0 of an X–ray source, the remaining energy E of a ray L
traversing an object is given by

E = E0e
−
R
L µ(x)dx, (2.14)

where µ(x) is the attenuation coefficient of the object at point x. X–ray intensities
are measured in Hounsfield units, i.e. intensity values normalized by the attenuation
of water:

H(µ) = 1000
µ− µW
µW

, (2.15)

where µ is the attenuation coefficient of a certain material, and µW that of water.
Combining this equation with equation (2.14) leads to:

EI = E0e
−
R
L

“
H(x)µW

1000
+µW

”
dx
, (2.16)

where EI is the energy in the image. For contrasted vessels, a logarithmic rela-
tionship can also be established between the remaining energy EI and the resulting
intensity, i.e. I = − log(EI/E0). Thus, the intensity I can be assumed to be pro-
portional to the length of the path traversed through the 3D vessel and the contrast
material’s density ξ:

I ∝ µ

∫
L

ξ(x)dx, (2.17)

where µ is the attenuation coefficient of the contrast material.
For an implementation of (2.17), we have to determine the camera position c in
world coordinates for the direction of the ray:

c = −M−1 · p4. (2.18)

Then the ray is given by

x(λ) = λ ·
(
M−1x2D

0

)
+

(
c
1

)
. (2.19)

For generating the 2D image I out of a 3D volume we use the formula above for each
pixel x2D. In particular we get a ray for each pixel. For a numerical approximation
of (2.17) we sample the ray in steps λi by the size of the edge of a voxel:

x2D = µ ·
∑
i

ξ(x(λi)). (2.20)

For improving the results it is recommended to use trilinear interpolation for the
discrete intensities of ξ(x(λi)) of the 3D volume. Generating a 2D image out of a

8
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3D volume is also called digital reconstructed radiograph (DRR).

So far, we considered the projection of points. Now we have a short look on
projecting lengths, especially projecting the radius of a circle. If we have a length
lx corresponding to a point x, we can project it on the image plane by moving this
point into the camera coordinate frame (equation (2.11)). Then we calculate a new
point xclx in the camera coordinate frame which has distance lx to xc by2:

xclx = xc +

 0
lx
0

 (2.21)

Therefore it is important not to use the x3–axis, because this is, per definition of the
pinhole camera model, the normal to the image plane. Finally we get the projected
length by:

l2Dx = ‖K · xc −K · xclx‖ (2.22)

2.2 Numerical Basics

The numerical aspects in this thesis are divided into two completely different sub-
sections. On the one hand we will have a look on solving the diffusion–advection
equation, because we use a advective dispersion model later on. On the other hand
we address the problem of parameter identification. We would like to assume the
mean volumetric flow rate and the shape of the waveform of blood flow in vessels.
Therefore we develop a parameter dependend model of the blood flow later on.

2.2.1 Solving the diffusion–advection equation

In this section we talk about solving the diffusion–advection equation numerically.
The diffusion–advection equation is defined as follows:

∂C

∂t
= D ·∆xC︸ ︷︷ ︸

diffusion

− vT · ∇xC︸ ︷︷ ︸
advection

, (2.23)

where C is the concentration, D is a diffusion constant and v is the velocity.
This diffusion–advection equation is an extension of the non stationary heat con-
duction equation

∂u

∂t
= λ∆xu, (2.24)

2We can do this, because Euclidean transformations are length preserving

9
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with an advective term. This extension applies for all balances in non stationary
fluids, where the advection can not be disregarded in comparison to the diffusion.

First we introduce the concept of finite differences and afterwards we will
apply this concept to the diffusion advection–equation in two dimensional space.

Finite Differences With the help of the Taylor series we can calculate a function
value f (x) at a point x+h (h > 0), if we know the function value and its derivatives.
Inversely we can calculate the derivatives, if we know the function values at points
x and x+ h. Here is the general formulation of the Taylor series:

f (x+ h) = f (x) +
h

1!
f ′ (x) +

h2

2!
f ′′ (x) + · · · (2.25)

f (x− h) = f (x)− h

1!
f ′ (x) +

h2

2!
f ′′ (x)− · · · (2.26)

An approximation of f ′ (x) can be done by:

f ′ (x) =
f (x+ h)− f (x)

h
+

(
− h

2!
f ′′ (x)− h2

3!
f ′′′ (x)− · · ·

)
︸ ︷︷ ︸

=O(h)

. (2.27)

This approximation for f ′ (x) is called forward difference. Analogously, we can
approximate using backward differences:

f ′ (x) =
f (x)− f (x− h)

h
+O (h) . (2.28)

We can reach a higher approximative order for the derivative f ′(x), if we subtract
equations (2.25) and (2.26):

f ′ (x) =
f (x+ h)− f (x− h)

2h
+O

(
h2
)

(2.29)

This approximation is called central difference. Inversely if we add equations (2.25)
and (2.26) we get an approximation for f ′′:

f ′′ (x) =
f (x+ h)− 2f (x) + f (x− h)

h2
+O

(
h2
)
. (2.30)

For x ∈ R2, we can approximate analogously:

∇f(x) =
1

2h

(
f (x+ he1)− f (x− he1)
f (x+ he2)− f (x− he2)

)
+O(h2) (2.31)

∆f(x) =
1

h2
(f (x+ he1)− 2f (x) + f (x− he1) + (2.32)

+ f (x+ he2)− 2f (x) + f (x− he2)) +O(h2) =

≈ f (x+ he1) + f (x− he1)− 4f (x) + f (x+ he2) + f (x− he2)

h2
,

10
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where e1 and e2 are the normalized basis vectors in R2. In the formula above ∇f(x)
was approximated using central differences. Of course, we can also estimate ∇f(x)
using forward or backward differences instead of central differences.

Solving the diffusion–advection equation In chapter 3.2 we approximate the
diffusion–advection equation in a tube with a radial–symmetric assumption. That
is to say, we use a simplified approach for the concentration of iodine in a tube.
In particular, we assume that the concentration of iodine, given by the diffusion–
advection equation changes in length l and radius r in a tubular structure over time
t.
To realize such a radial–symmetric approach we define (r, l)T := x ∈ R2 in equa-
tion (2.23). From this it follows that ∇xC (x, t) is given by (∂C/∂r, ∂C/∂l)T and
∆xC (x, t) is given by (∂2C/∂r2 + ∂2C/∂l2).
For simplification reasons we first have a look at the two dimensional stationary
diffusion–advection equation, which is given by

0 = D

(
∂2C

∂r2
+
∂2C

∂l2

)
− vr

∂C

∂r
− vl

∂C

∂l
, (2.33)

where vr is the velocity in radial– and vl is the velocity in longitudinal direction.
We define cij as the approximate concentration at (ri, lj)

T , where (ri, lj)
T =

(r0 + ih, l0 + jh)T . For simplification we assume the same grid size h in dimen-
sion r and l, which is not necessary. The stationary diffusion–advection equation
(2.33) discretisized with finite differences (equations (2.31) and (2.32)) is given by:

0 = D · ci−1,j + ci,j−1 − 4cij + ci+1,j + ci,j+1

h2
− (2.34)

− vr (ci+1,j − ci−1,j) + vl (ci,j+1 − ci,j−1)

2h
∀i, j.

We can rewrite this equation and sort it by points:

0 =
1

h2

[
ci−1,j

(
D +

vrh

2

)
+ ci,j−1

(
D +

vlh

2

)
+ cij (−4D) + (2.35)

+ ci+1,j

(
D − vrh

2

)
+ ci,j+1

(
D − vlh

2

)]
For an easier spelling we introduce the star–operator (see figure 2.5). In this
operator we combine all coefficients:

S(cij) :=
1

h2

[
ci−1,j

(
D +

vrh

2

)
+ ci,j−1

(
D +

vlh

2

)
+ cij (−4D) + (2.36)

+ ci+1,j

(
D − vrh

2

)
+ ci,j+1

(
D − vlh

2

)]

11
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We can rewrite equation (2.34) using the star–operator:

0 = S (cij) ∀i, j ∈ I, (2.37)

where I is the set of all points which are not next to the boundary.
We use this star operator and apply it to every point cij in the grid. As a result we
get a equation for every point cij. We build up a system of equations by assembling
the equations for all points cij.

cij

ci,j+1

ci,j−1

ci+1,jci−1,j

Figure 2.5: Star operator

Boundary conditions To obtain unique solutions, the system of equations has
to be solved with boundary conditions. We add these conditions to the system
of equations. Due to the fact that no more unknowns get into this system, it
gets solvable. We introduce three different boundary conditions. For a simplified
approach we just treat the left boundary of the first dimension of our problem. All
other boundaries are treated analogously.

1. If we have a Dirichlet boundary condition

C (0, ·) = γD, (2.38)

the value for c0,· is directly given. We can use this equation and directly add
it into the system of equations.

12
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2. In case of a Neumann boundary condition

∂C

∂r

∣∣∣∣
r=0

= γN , (2.39)

the derivative in direction to the normal of the boundary is given. If γN = 0
the molecular flow disappears through the boundary. γN = 0 is also used for
symmetrical boundaries. We have to discretisize (2.39) with the right hand
side differential quotient of first order. Using central differences or the left
hand side differential quotient would arise problems, because points outside
the model, which do not exist are required.

c1,· − c0,·

h
= γN (2.40)

For γN = 0 the method (2.40) at the boundary has order O(h2). For γN 6= 0
we have order O(h). Finally we add this new equation to the system of
equations.

3. If we have a Cauchy boundary condition, the molecular flow in the direction of
the normal nT to the boundary is given proportional to the potential difference
C(0, ·)− C(a, ·). This leads, related to (2.39), to the following formulation:

∂C

∂r

∣∣∣∣
r=0

+ C(0, ·) = γC . (2.41)

Analogously to (2.39) we replace this equation with:

c1,· − c0,·

h
+ c0,· = γC (2.42)

This has to be added to the system of equations, too.

Discretisizing in time We discretisize the diffusion advection equation in time
using forward differences (2.27). Therefore we get for the left–hand side of (2.23):

∂C (r, l, t)

∂t
≈ C (r, l, t+ τ)− C (r, l, t)

τ
. (2.43)

For an easier notation we introduce C(r, l, t) = c
(m)
ij respectively C(r, l, t + τ) =

c
(m+1)
ij for constant time steps τ . With this notation the discretisized diffusion
advection equation is given by:

c
(m+1)
ij − c(m)

ij

τ
= S

(
c

(m)
ij

)
resp. (2.44)

c
(m+1)
ij = c

(m)
ij + τ · S

(
c

(m)
ij

)
. (2.45)

13
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Note that every point c(m+1)
ij is calculated by only using points of the former time

step (see figure 2.6). We can imagine that this fact causes problems, because points
of the same time step are not related.
For a numerical analysis we rewrite equation (2.45):

m + 1

m

Figure 2.6: Explicit discretization of time

c
(m+1)
ij = rc

(m)
i−1,j

(
D +

vrh

2

)
+ rc

(m)
i,j−1

(
D +

vlh

2

)
+ c

(m)
ij (1− 4rD) +

+ rc
(m)
i+1,j

(
D − vrh

2

)
+ rc

(m)
i,j+1

(
D − vlh

2

)
resp. (2.46)

c
(m+1)
ij = rWc

(m)
i−1,j + rSc

(m)
i,j−1 + c

(m)
ij (1− 4rD) + rEc

(m)
i+1,j + rNc

(m)
i,j+1,

r =
τ

h2
.

We have already discussed that this represents a system of equations. For the
numerical analysis we rewrite the equation above as a system of equations3:

c(m+1) = Ac(m), (2.47)

with

A :=



1− 4rD rE · · · rS
rW 1− 4rD rE rS

rW 1− 4rD rE rS
... . . . . . . . . . . . .
rN rW 1− 4rD rE rS

. . . . . . . . . . . . . . .


,

c(m) :=
(
c

(m)
1,1 , c

(m)
2,1 , . . . , c

(m)
1,2 , c

(m)
2,2 , . . .

)T
.

Matrix A is a bandmatrix and dependend of parameters r, τ, h,D and v. For sta-
bility of the recursion (2.47), all eigenvalues have to satisfy ‖λv‖ ≤ 1. According to
[Sch09], this is equal to

C∆ =
τ

h
v ≤ 1 and M =

τ

h2
D ≤ 1, (2.48)

3with zero Dirichlet boundary
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where C∆ is called the Courant number andM is called the module.
As a result we get restrictions concerning the time steps τ . We use an implicit
formulation (see figure 2.7) to avoid this problem:

c
(m+1)
ij − c(m)

ij

τ
= S

(
c

(m+1)
ij

)
. (2.49)

We have to solve a linear system of equations in every time step if we use this
formula. This implies more computing time than solving (2.45), but as a result we
have no restrictions concerning stability. We can see in figure 2.7 that all points of
one time step are linked in this model. Of course, this represents the physics of the
problem more accurate.
Both, explicit and implicit formulation have order O(τ, h2). If we want to reach

m + 1

m

Figure 2.7: Implicit discretization of time

higher order in time, we have to apply central differences instead of forward/back-
ward differences. Doing this without introducing new time steps can be done by
evaluating ∂C/∂t at t+ τ/2:

∂C

∂t

∣∣∣∣
t+τ/2

=
c

(m+1)
ij − c(m)

ij

2 · τ
2

+O
(
τ 2
)
. (2.50)

If we discretisize the diffusion–advection equation with the formula above, the left

m + 1

m

Figure 2.8: Method of Crank–Nicolson

hand side of the equation is the same as in equations (2.45) and (2.49). But the
right hand side is the mean value of (2.45) and (2.49) (see figure 2.8):

c
(m+1)
ij − c(m)

ij

τ
=

1

2

(
S
(
c

(m+1)
ij

)
+ S

(
c

(m)
ij

))
. (2.51)
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This equation is also known as the method of Crank–Nicolson [Per93].
Looking at the three methods (2.45), (2.49) and (2.51) leads to a general formula-
tion:

c
(m+1)
ij − c(m)

ij

τ
= ξ · S

(
c

(m+1)
ij

)
+ (1− ξ) · S

(
c

(m)
ij

)
, ξ ∈ [0, 1] . (2.52)

For ξ = 0 we get the explicit, for ξ = 1 the implicit and for ξ = 1/2 the Crank–
Nicolson method. If we implement the general formulation, we can switch between
the methods by varying ξ. For ξ ≥ 1/2 the method is stable.

Upwind schema We shortly discuss a dominant advection in comparison to the
diffusion. Therefore we have a look at a one dimensional pipe flow (see figure
2.9). It is obvious, that the function value at a certain point depends significantly

Figure 2.9: Advection–diffusion problem with big advectional ratio

on downstream values. Central differences consider upstream values as well as
downstram values. Due to this fact, central differences generate an error respectively
produce absurd physical results. We can avoid this fact using the so called Upwind
schema. In this method only downstream values are considered for calculation of
the derivative. The Upwind schema is defined as follows:

vl
∂C

∂l
≈

 vl
cij − ci,j−1

h
, vl > 0

vl
ci,j+1 − cij

h
, vl < 0.

(2.53)

In contrast to central differences, the Upwind schema only has order O(h), but it
represents the physics of the problem more precisely.

Different grid sizes For an easier introduction of the S–operator we assumed
same grid size h in dimensions r and l. For different grid sizes we introduce a factor
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β, which describes the ratio ∆r/∆l. We can continue using the S–operator in which
β appears:

S(cij) =
1

h2

[
ci−1,j

(
D +

vrh

2

)
+ ci,j−1β

(
D +

vlh

2

)
+ (2.54)

+ cij (−2D(1 + β)) + ci+1,j

(
D − vrh

2

)
+ ci,j+1β

(
D − vlh

2

)
,

]
β =

∆r

∆l
,

h = ∆r.

2.2.2 Parameter Identification

In this subsection we discuss the problem:

x∗ = arg min
x∈Ω

f(x). (2.55)

A solution of (2.55) is defined as follows:

Definition 3 The solution x∗ of (2.55) is called global minimum of f . A point x∗
is called a local minimum, if ∃δ > 0 such that

f(x∗) ≤ f(x), ∀x ∈ Bδ (x∗) , (2.56)

where Bδ (x) := {y ∈ Rn : ‖x− y‖ ≤ δ}.

We address this problem in two ways. On the one hand we will have a look at the
downhill simplex algorithm [Nel65] which is suitable for continuous functions, on the
other hand we discuss a standard algorithm for constrained nonlinear optimization
– the sequential quadratic programming algorithm.

The Nelder–Mead Algorithm At first we discuss an unconstrained optimiza-
tion algorithm, for which f has only to be continuously, This algorithm is known
as the downhill simplex algorithm [Nel65]. Therefore we define Ω = Rn in equation
(2.55).
For dimension n we need n + 1 points x0, . . . , xn in space, which define the ini-
tial simplex. In practice only one initial value x(0) is given. We can choose xi as
follows:

x0 = x(0),
xi = x0 + τiei i = 1, . . . , n,

(2.57)
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with an initial length τi ∈ R+. These points define the initial simplex. Furthermore
we define:

xh = max
i∈{0,...,n}

f (xi) [h for high],

xl = min
i∈{0,...,n}

f (xi) [l for low],

xµ = max
i∈{0,...,n}\{h}

f (xi) ,

xc = 1
n

∑
i 6=h

xi, centroid of the points with i 6= h.

(2.58)

Assuming that we have n+ 1 initial points, the algorithm is given as follows:

1. Determine points xh, xl, xµ.

2. Check whether all points satisfy the termination equation

1

n+ 1

n∑
i=0

(
f (xi)− f̄

)2
< TOL (2.59)

with f̄ =
1

n+ 1

n∑
i=0

f (xi) . (2.60)

If not, we do a reflection of the point xh relative to the point xc, which is
given by

xr = (1 + α)xc − αxh, (2.61)

with a suitable factor α ≥ 0.
In case n = 2 this can be easily interpreted, because the 3 points, defining
the simplex, correspond to xh, xl and xµ. Those are defining a plane with a
gradient in direction xl − xh. In figure 2.10 we see that the step we do is a
step in this direction.

3. If f (xl) ≤ f (xr) ≤ f (xµ), then xh is replaced by xr and we start again from
(2.) with the new simplex.

4. If f (xr) ≤ f (xl), the reflexion step generated a new minimum, which indi-
cates that the local minimum of f might be outside the convex closure of the
simplex. To verify this we calculate a new vertex

xe = βxr + (1− β)xc, (2.62)

with a stretching factor β > 1, to expand the simplex (see figure 2.10). There
are two possibilities before going back to step (2.):

a) If f (xe) < f (xl), we replace xh with xe
b) Otherwise if f (xe) ≥ f (xl), we replace xh with xr, because f (xr) <

f (xh)
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5. If f (xr) > f (xµ), we predict the local minimum within the convex closure
of the simplex. We can pursue three strategies to locate the minimum. If
f (xr) < f (xh) we use the contraction equation:

xco = γxr + (1− γ)xc, γ ∈ (0, 1) (ouside contraction), (2.63)

otherwise

xco = γxh + (1− γ)xc, γ ∈ (0, 1) (inside contraction). (2.64)

The effect of these two equations is visualized in figure 2.11. Finally we replace
xh with xco if f (xco) < f (xh), or we do a shrink if f (xco) ≥ f (xh)∨ f (xco) >
f (xr) for n new points by dividing the distances of xi to x0 by 2 (see also
figure 2.11). Then we go back to point (2.).

The nearly universal choices used in the standard Nelder–Mead algorithm are

α = 1, β = 2, γ =
1

2
. (2.65)

xc

xr

xh xh

xc

xr

xe

Figure 2.10: Nelder–Mead simplices after a reflection and an expansion step. The
original simplex is shown with a dashed line.

Regarding convergence we have the following results according to [Lag98]:
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xh xh

xc xc

xr

xco

xco

x0

Figure 2.11: Nelder–Mead simplices after an outside contraction, an inside contrac-
tion, and a shrink. The original simplex is shown with a dashed line.

1. In dimension 1, the Nelder–Mead method converges to a minimizer, and con-
vergence is eventually M–step linear4.

2. When the reflection parameter α = 1. In dimension 2, the function values at
all simplex vertices in the standard Nelder–Mead algorithm converge to the
same value.

3. In dimension 2, the simplices in the standard Nelder–Mead algorithm have
diameters converging to zero.

Least Squares Optimization The sequential quadratic programming (SQP)
algorithm is designed for constrained optimization. The SQP algorithm is one
of the most efficient mathematical optimizing algorithms. It is the solid basis
of several optimizing software packages (i.e. DONLP2, FilterSQP, KNITRO,
SNOPT) [Rus06].

We will have a look at the general nonlinear optimizing–problem:

Definition 4 The equation

min f (x) subject to g (x) ≤ 0, h (x) = 0 (2.66)
4By M -step linear convergence is meant that there is an integer M , independent of the function

being minimized, such that the simplex diameter is reduced by a factor no less than 1/2 after
M iterations.
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is called the general nonlinear optimizing–problem.
The set

Ω = {x ∈ Rn : g (x) ≤ 0, h (x) = 0} (2.67)
is called the feasible field of (2.66).
A point x ∈ Rn is called feasible, if x ∈ Ω.

In the following we assume f : Rn → R, g : Rn → Rm, h : Rn → Rp ∈ C2.
Furthermore we assume Ω as a compact, convex set.
With these assumptions the uniques solutions is guaranteed by the theorem of
Weierstraß:

Theorem 1 Let (X , d) be a metric space and Ω be a compact set of X . Let f :
Ω → R be a continuous function, then the image of f(Ω) is bounded and x± ∈ Ω
exists such that

f (x−) = min
x∈Ω

f (x) , f (x+) = max
x∈Ω

f (x) . (2.68)

Furthermore a first necessary condition for a local minimum is given by:

Theorem 2 Let Ω ⊂ Rn be a convex set, x∗ ∈ Ω and f ∈ C1 (Bδ (x∗)) for an
applicable δ > 0. If

∇f (x∗)T (x− x∗) ≥ 0 ∀x ∈ Ω, (2.69)
then x∗ is a local minimum of f ,

For the SQP algorithm we introduce the so called Lagrangian function:

Definition 5 The function L : Rn × Rm × Rp → R,

L (x, λ, µ) = f (x) + λTg (x) + µTh (x) (2.70)

is called lagrangian function of (2.66).

With this definition we can apply the results of [Kuh51]:

Theorem 3 If f has a restricted local minimum in x = x∗, then λ∗ ∈ Rm and
µ∗ ∈ Rp exists such that

∇xL (x∗, λ∗, µ∗) = 0, (2.71)
h (x∗) = 0, (2.72)
λ∗ ≥ 0, g (x∗) ≤ 0, λ∗Tg (x∗) = 0, (2.73)
(x∗ − x)T ∇2

xxL (x∗, λ∗, µ∗) (x∗ − x) ≥ 0, ∀x ∈ Ω. (2.74)
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These conditions are called the Kuhn–Tucker conditions.

Remind that this theorem requires existing vectors λ∗, µ∗. A further geometrical
restriction is needed to ensure this (see [Rus06] pp. 113–114). To complete this
short theoretical section we notice that (2.71)–(2.74) are sufficient for existence of
a local minimum, if the following precondition is satisfied:

Theorem 4 Let (x∗, λ∗, µ∗) satisfy the necessary conditions (2.71)–(2.74) and let
g be concave, then f (x∗) is a local minimum of (2.66).

For simplification reasons, we first discuss the problem:

min f (x) subject to h (x) = 0. (2.75)

Let x∗ be a local solution of (2.75), then the Kuhn–Tucker conditions (2.71) and
(2.72) have to be satisfied. We can define a system of equations by

F (x, µ) :=

(
∇xL (x, µ)
h (x)

)
= 0. (2.76)

The nearly choice is to use the Newton–method to solve this system of equations,
because we have n + p unknowns and n + p equations. We can use the Newton–
method, because we assumed f and h in C2. As a result F is in C1 with

F ′ (x, µ) =

(
∇2
xxL (x, µ) ∇2

xµL (x, µ)

∇h (x)T 0

)
=

(
∇2
xxL (x, µ) ∇h (x)

∇h (x)T 0

)
. (2.77)

Let
(
x(k), µ(k)

)
be the current iteration value in the Newton–method, then the

Newton–step s(k) is given by:

F ′
(
x(k), µ(k)

)
s(k) = −F

(
x(k), µ(k)

)
. (2.78)

The algorithm for solving (2.75) with a given initial value x(0) is described in
algorithm 1.

For convergence analysis it is important that the matrix

F ′ (x∗, µ∗) =

(
∇2
xxL (x∗, µ∗) ∇h (x∗)

∇h (x∗)T 0

)
(2.79)

is invertable in (x∗, µ∗). Therefore we have this theorem:
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Theorem 5 Let f, h ∈ C2. If

1. rank ∇h (x) = p,

2. sT∇2
xxL (x, µ) s > 0 ∀s ∈ Rn\ {0} with ∇h (x)T s = 0,

∀x ∈ Rn, µ ∈ Rp then the matrix (2.79) is invertable.

Afterwards we use these results for convergence analysis of the Newton–method:

Theorem 6 Let F : Rn → Rn be a continuously differentiable function and x∗ ∈ Rn

a point with F (x∗) = 0 in which the Jacobian F ′ (x∗) is invertable, then δ > 0 and
C > 0 exist such that

1. x∗ is the only root of F in Bδ (x∗),

2. ‖F ′−1 (x) ‖2 ≤ C ∀x ∈ Bδ (x∗),

3. The Newton–method terminates for all x0 ∈ Bδ (x∗) either with xk = x∗ or a
sequence

(
xk
)
⊂ Bδ (x∗) which converges superlinear to x∗.

4. If F ′ is Lipschitz–continuous function in Bδ (x∗) with a Lipschitz–constant L

‖F ′ (x)− F ′ (y) ‖ ≤ L‖x− y‖ ∀x, y ∈ Bδ (x∗) , (2.80)

then the Newton–method converges quadraticly:

‖xk+1 − x∗‖ ≤ CL

2
‖xk − x∗‖2 ∀k > 0. (2.81)

Algorithm 1: Algorithm for solving (2.75)
input : initial value x(0)

output: local minimum x∗

for k = 0, 1, 2, . . . do1

if h
(
x(k)
)

= 0 and ∇xL
(
x(k), µ(k)

)
= 0 then2

STOP and return
(
x(k), µ(k)

)
;3

end4

Calculate s(k) = (s
(k)
x , s

(k)
µ )T by solving (2.78);5

Set x(k+1) = x(k) + s
(k)
x , µ(k+1) = µ(k) + s

(k)
µ ;6

end7

We can reinterpret (2.78) as a quadratic optimizing problem:

min
d∈Rn
∇f

(
x(k)
)T
d+

1

2
dTH(k)d s.t. h

(
x(k)
)

+∇h
(
x(k)
)T
d = 0 (2.82)
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with H(k) = ∇2
xxL

(
x(k), µ(k)

)
.

This problem satisfies (2.71)–(2.74). As a result µ(k)
qp exists with

∇f
(
x(k)
)

+H(k)d(k) +∇h
(
x(k)
)
µ(k)
qp = 0, h

(
x(k)
)

+∇h
(
x(k)
)T
d(k) = 0. (2.83)

If we set s(k)
x = d(k) and s(k)

µ = µ
(k)
qp − µ(k), we get:

H(k)s(k)
x +∇h

(
x(k)
)
s(k)
µ = −∇f

(
x(k)
)
−∇h

(
x(k)
)
µ(k), (2.84)

∇h
(
x(k)
)T
s(k)
x = −h

(
x(k)
)
. (2.85)

This is a solution of (2.78) if and only if s(k) is a solution of (2.82). We can write
down an alternative algorithm for solving (2.75):

Algorithm 2: Alternative algorithm for solving (2.75)
input : initial value x(0)

output: local minimum x∗

for k = 0, 1, 2, . . . do1

if (2.71) is satisfied then2

STOP and return x∗ = x(k);3

end4

Calculate a solution of (2.82) and µ(k)
qp ;5

Set x(k+1) = x(k) + d(k), µ(k+1) = µ
(k)
qp ;6

end7

Motivated by (2.82) we can reformulate the problem (2.66):

min
d∈Rn

∇f
(
x(k)
)T
d+

1

2
dTH(k)d

subject to g
(
x(k)
)

+∇g
(
x(k)
)T
d ≤ 0, (2.86)

h
(
x(k)
)

+∇h
(
x(k)
)T
d = 0,

with H(k) = ∇2
xxL

(
x(k), λ(k), µ(k)

)
. For solving (2.66) we modify algorithm 2 lines

5 and 6. As a result we get algorithm 3. This resulting algorithm is one of the
most popular algorithms for nonlinear continuous optimization called sequential
quadratic programming.
For convergence analysis of the SQP algorithm we have the following theorem:

Theorem 7 Assuming the following preconditions:
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1. Functions f , g and h are in C2

2. H(k) = ∇2
xxL

(
x(k), λ(k), µ(k)

)
3. (x∗, λ∗, µ∗) satisfy (2.71)–(2.74)

4. Complementary condition:

∀i ∈ {1, . . . ,m} , gi (x
∗) = 0 =⇒ λ∗i > 0. (2.87)

5. ∀i ∈ {i : gi (x
∗) = 0} the matrix:

(∇gi (x∗) ,∇h (x∗)) has full rank in coloumns (2.88)

6. Sufficient equation of second order:

dT∇2
xxL (x∗, λ∗, µ∗) d > 0 ∀d 6= 0 with

∇gi (x∗)T d = 0 ∀i ∈ {i : gi (x
∗) = 0} ,

∇h (x∗)T d = 0.

(2.89)

7. In step (2) of the sequential quadratic programming algorithm we choose the
triple

(
d(k), λ

(k)
qp , µ

(k)
qp

)
of 2.86 with minimal distance:

‖
(
x(k) + d(k), λ(k)

qp , µ
(k)
qp

)
−
(
x(k), λ(k), µ(k)

)
‖. (2.90)

Then δ > 0 exists such that the SQP algorithm either terminates with(
x(k), λ(k), µ(k)

)
= (x∗, λ∗, µ∗) or it generates a sequence

(
x(k), λ(k), µ(k)

)
which con-

verges superlinear to (x∗, λ∗, µ∗) for all
(
x(0), λ(0), µ(0)

)
∈ Bδ (x∗, λ∗, µ∗). Further-

more, if ∇2f , ∇2gi and ∇2hi are Lipschitz continuous in Bδ (x∗, λ∗, µ∗), then the
convergence rate is quadratic.

Algorithm 3: Algorithm for solving (2.66)
input : initial value x(0)

output: local minimum x∗

for k = 0, 1, 2, . . . do1

if (2.71) is satisfied then2

STOP and return x∗ = x(k);3

end4

Calculate a solution of (2.86) and multiplicators λ(k)
qp , µ

(k)
qp ;5

Set x(k+1) = x(k) + d(k), λ(k+1) = λ
(k)
q p and µ(k+1) = µ

(k)
qp = µ(k);6

end7
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2.3 Medical Basics

This section gives a short overview of medical imaging devices, respectively inter-
ventional angiographic imaging. Furthermore we introduce a model for the blood
flow and current methods for estimating hemodynamics.

2.3.1 Interventional Angiographic Imaging

This section follows [Kau96].
When we talk about angiography, also called arteriography, we mean the visualiza-
tion of vessels, mainly arteries. If we want to display veins or lymphs we talk about
venography or lymphography.
In conventional radiographs we can hardly differentiate between soft tissues. For
a better view of anatomical structures contrast agent is injected into the region of
interest. Most applied contrast agents for angiography consist of iodine or barium.
Angiographic imaging is a medical imaging technique used to visualize the inside,
or lumen, of blood vessels and organs of the body, with particular interest in the
arteries, veins and the heart chambers. This is traditionally done by injecting a
radio–opaque contrast agent into the blood vessel and imaging using X–ray based
techniques. We can subdivide the imaging modalities according to [Gro08] into

Preoperative Imaging: CTA and MRA Computed Tomography Angiogra-
phy (CTA) and Magnetic Resonance Angiography (MRA) are primaly used for
diagnosis and planning angiographic interventions.

Intraoperative Imaging: C–Arms During an intervention it is not recom-
mendable to move the patient on a new desk. That is the reason why mobile
C–Arms are commonly used during an intervention. Compared to CTA and MRA,
C–Arms do not take slices. A C–Arm consists primarily of an X–ray source and
a flat panel X–ray detector which are on a “C”–shaped device. A C–Arm can take
single images that look like normal X–ray images, or it can take an image series
while rotating around the region of interest. With this method the 3D volume can
be reconstructed (see [Hen08]).
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Figure 2.12: Philips MultiDiagnost Eleva. Editing: User Glitzy queen00 in
Wikipedia, GNU Free Documentation License

In this thesis we will use the information of projections as well as the 3D informa-
tion. The major manufacturer of C–Arms are Philips Healthcare5 (see figure 2.12),
Siemens Medical6 and General Electric.

Actual products have a framerate up to 30 fps/s. The 3D volume, which can be
reconstructed is a 12 cm × 12 cm cube in the isocenter.

2.3.2 Blood Flow

One of the central points of this thesis is the model for blood flow. In the following
are a few facts for a better understanding of the model [Win02]:
The blood consists of blood cells suspended in a liquid called blood plasma. Plasma,
which comprises 55% of blood fluid, is mostly water (90% by volume). The blood
cells present in blood are mainly red blood cells (also called erythrocytes) and white
blood cells, including leukocytes and platelets. Red blood cells contain hemoglobin,
an iron-containing protein, which facilitates transportation of oxygen. Blood is cir-
culated around the body through blood vessels by the pumping action of the heart.
In humans, blood is pumped from the strong left ventricle of the heart through
arteries to peripheral tissues and returns to the right atrium of the heart through
veins.
Blood accounts for 7% of the human body weight, with an average density of ap-

5Products can be found here: http://www.healthcare.philips.com/us/products/
interventional_xray/product/interventional_cardiology/index.wpd

6Products can be found here: http://www.medical.siemens.com/webapp/wcs/stores/
servlet/CategoryDisplay~q_catalogId~e_-1~a_categoryId~e_12751~a_catTree~e_
100010,1007660,12751~a_langId~e_-1~a_storeId~e_10001.htm
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proximately 1060 kg/m3, very close to pure water’s density of 1000 kg/m3. The average
adult has a blood volume of roughly 5 liters, composed of plasma and several kinds
of cells. The formed elements of the blood are erythrocytes (red blood cells), leuko-
cytes (white blood cells), and thrombocytes (platelets). By volume, the red blood
cells constitute about 45% of whole blood, the plasma constitutes about 54.3%,
white cells constitute 0.7%.
Whole blood (plasma and cells) exhibits non-Newtonian fluid dynamics. Its flow
properties are adapted to flow effectively through tiny capillary blood vessels.

2.3.3 State-of-the-Art in Estimation of Hemodynamics

fMRI Functional magnetic resonance imaging (fMRI) is one actual method for
estimation of hemodynamics [Sar07]. The basic principle is that changes in blood
flow and blood oxygenation in the brain (collectively known as hemodynamics) are
closely linked to neural activity. When nerve cells are active they consume oxygen
carried by hemoglobin in red blood cells from local capillaries. The local response
to this oxygen utilization is an increase in blood flow to regions of increased neural
activity, occurring after a delay of approximately 1–5 seconds. This process, called
hemodynamic response, leads to magnetic signal variation which can be detected
using an MRI scanner. Given many repetitions of a thought, action or experience,
statistical methods can be used to determine the areas of the brain which reliably
have more of this difference as a result, and therefore which areas of the brain are
active during that thought, action or experience. A sample fMRI scanner and a
functional image of the brain can be seen in figure 2.13.

Figure 2.13: Functional magnetic resonance imaging, Photographed by Kasuga
Huang, Editing: User Braegel in Wikipedia, GNU Free Documenta-
tion License

Advantages:

28



2. Basics

• It can noninvasively record brain signals (of humans and other animals) with-
out risks of radiation inherent in other scanning methods, such as CT or PET
scans.

• It can record on a spatial resolution of less than 1 millimeter, although resolu-
tion in the region of 3–6 millimeters is more typical, but with poor temporal
resolution (on the order of seconds) compared with techniques such as elec-
troencephalography (EEG). However, this is mainly because of the hemody-
namic phenomena being measured, not because of the technique. EEG mea-
sures electrical/neural activity while fMRI measures blood activity, which has
a slower response. The MRI equipment used for fMRI can be used for high
temporal resolution, if one measures different phenomena.

Disadvantages:

• The signal is only an indirect measure of neural activity, and is therefore
susceptible to influence by non-neural changes in the body.

• Signals are most strongly associated with the input to a given area rather than
with the output. It is therefore possible (although unlikely) that a signal could
be present in a given area even if there is no single unit activity.

• Different brain areas may have different hemodynamic responses, which would
not be accurately reflected by the simplest version of the general linear model
often used to filter fMRI time signals.

• The temporal response of the blood supply, which is the basis of fMRI, is
slow relative to the electrical signals that define neuronal communication.
To alleviate this problem, some research groups are attempting to combine
fMRI signals that have relatively high spatial resolution with signals recorded
with other techniques, EEG or magnetoencephalography (MEG), which have
higher temporal resolution but worse spatial resolution.

• fMRI has often been used to show activation localized to specific regions, thus
minimizing the distributed nature of processing in neural networks. Several
recent multivariate statistical techniques work around this issue by charac-
terizing interactions between "active" regions found via traditional univariate
techniques.

• fMRI has poor signal–to–noise ratio, at least in comparison to many elec-
trophysiological techniques. This necessitates extensive post-processing and
published fMRI results are often heavily averaged over time and smoothed
across space using one of several software packages.

For these reasons, Functional imaging provides insights into neural processing.
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Doppler Ultrasound The Doppler effect is a change in the frequency of a wave,
resulting from motion of the wave source or receiver, or in the case of a reflected
wave, motion of the reflector [All06]. In medicine, Doppler ultrasound is used to
detect and measure blood flow, and the major reflector is the red blood cell. The
Doppler shift is dependent on the insonating frequency, the velocity of moving blood,
and the angle between the sound beam and direction of moving blood, as expressed
in the Doppler equation:

fd =
2ftv cos θ

c
, (2.91)

where fd is the Doppler shift frequency (the difference between transmitted and
received frequencies), ft is the transmitted frequency, v is the blood velocity, c is
the speed of sound, and θ is the angle between the sound beam and the direction
of moving blood. The equation can be rearranged to solve for blood velocity, and
this is the value calculated by the Doppler ultrasound machine:

v =
fdc

2ft cos θ
. (2.92)

The functionality of the doppler effect and a resulting image can be seen in figure

θ

Sound beam

Blood flow

Transducer

Vessel

Figure 2.14: Doppler ultrasound

2.14.
Advantages:

• The obvious advantage of Doppler ultrasound is that it is much simpler, more
patient-friendly and cheaper than the “gold standard” MRI.

• Doppler ultrasound has the capability to offer spatial information associated
to velocity values

• Doppler ultrasound has the advantage of being a gentle, non invasive and easy
to perform method with no contamination of radiation, which is an advantage
especially on intensive care units with critical ill patients, who are not able to
give their permission for the examination.
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Disadvantages:

• Unfortunately, as the information is available only periodically, this technique
suffers from the Nyquist theorem. This means that a maximum velocity exists
for each pulse repetition frequency.

• There is a limitation in depth: The ultrasonic burst travels in the liquid at
a velocity which depends on the physical properties of the liquid. The pulse
repetition frequency gives the maximum time allowed to the burst to travel
to the particle and back to the transducer.

• Ultrasound of the head, (i.e.: brain) can not be done, because the skull pre-
vents transmission of the beam.
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Figure 3.1: Workflow of the Method

In this thesis we address the problem of estimating hemodynamics from rotational
angiography. Furthermore we will do a visualization of the estimated data. The
workflow of the whole procedure is visualized in figure 3.1. This figure leads us
through this chapter and will be explained step by step. First, we discuss how to
get information about hemodynamics out of rotational angiography ([A]). After-
wards we have a focus on generating simulation data ([B]). Therefore we develop
a simulation method. We will use this simulation method to do a parameter iden-
tification ([C]). The final step will be a visualization method of data given by the
simulation method.
The first thing that attracts attention in figure 3.1 is the word “flow map”. That is
why we give a short definition:
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Definition 6 A flow map is an 2D image. The x direction codes time and the
y direction codes the length of the vessel. The intensities show the concentration
of contrast agent. High intensities are white, and low intensities are black. In
particular a flow map is a mapping:

F :=

{
F : R2 → R,
(l, t)T 7→ F (l, t).

(3.1)

In figure 3.2 two flow maps are visualized. One with a fast volumetric flow and
one with a slow volumetric flow. That is to say the blood velocity inside vessel,
illustrated by the left flow map, is bigger than in the vessel, illustrated by the right
flow map. Of course the question arises why we need flow maps. Here is some
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Figure 3.2: Sample flow maps

criteria for using flow maps:

• unlike medical data, flow maps illustrate only the region of interest.

• coherences to blood flow can be estimated easily

• a flow map is a representation that allows easy interpretation and optimization

• the dimension of the problem is reduced

3.1 Extracting Flow Maps

This section is visualized in figure 3.1 [A]. It aims to get a extracted flow map FE
[5] and a reliability map DF [6]. Therefore the following information is available:
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• an X–ray image series I(x, y, t)1 (see fig. 3.1 [1]) taken while the C–arm is
rotating around the patient

• a reconstructed 3D volume V (x, y, z) (see fig. 3.1 [2]) respectively the seg-
mented 3D geometry V of the vessel.

• a set of projection matrices M(t) =
[
M p4

]
(t) according to eq. (2.13) for

each image in the image series I(x, y, t)

Most theoretical parts of this section are described in section 2.1.

The first thing we need for the extracted flow map is of course the anatomi-
cal structure of the vessel. In this thesis we will not discuss the algorithms which
are needed for a centerline–radii representation of the vessel. But we describe the
basic concept to get such a representation:
A way to segment blood vessels is described in [Gro08] pp. 73. From the segmented
data sets we can extract a centerline image by applying topology–preserving
thinning algorithms [Pal01]. A wave propagation algorithm [Zah94] can be used to
get a centerline–radii representation of the blood vessel.
A centerline–radii representation of the vessel is a is given by a set of cen-
terline points pC(l) and a set of corresponding radii RC(l) for discrete values
l ∈ {l0, l1, . . . , lM}. Inversely, the geometry of the vessel can be estimated:

Ve =
{
x ∈ V : x ∈ BRC(l)(pC(l)), l ∈ {l0, . . . , lM}

}
. (3.2)

The index e shall indicate, that the 3D geometry is estimated.

Uncorrected flow map The first step towards the extracted flow map FE is to
extract the uncorrected flow map FU (see fig. 3.1 [3]). Therefore we need the X–ray
image series I(x, y, t), the projection matrices M(t) and the centerline points pC(l).
The projection matrices M(t) define the mapping between 3D and 2D data. In
particular we can calculate the projected points pI(l) according to equation (2.13)
by:

pI(l, t) = M(t) · pC(l) ∀l, t. (3.3)

We take the intensity values I(pI(l, t), t) as entries for the flow map2. So the un-
corrected flow map FU(l, t) can be determined as follows

FU(l, t) = I(pI(l, t), t) ∀l, t (3.4)

1x and y are the coordinates of an image, t ∈ {0, τ, 2τ, . . . , T}
2Note that pI(l, t) are 2D points
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In general the projected centerline points pI(l, t) don’t lie on the grid of the images
I(x, y, t). For improvements we use bilinear interpolation of the values I(pI(l, t), t).
We shortly explain the expression “uncorrected” flow map above. The intensity
values in the X–ray images show how much the X–ray energy gets attenuated while
passing through tissue. This is a line integral according to equation (2.17). This
implies for the extracted flow map, that we have to correct the intensities by the
length of intersection through the vessel, to get reliable values.

Length map Due to the reason above we have to calculate a so called length map
L(l, t) (see fig. 3.1 [4]). Therefore we need the segmented vessel V , the projection
matrices M(t) and the centerline points pC(l).
For an simplified approach to explaining the algorithm we consider M ∈M(t) and
pC ∈ pC(l).
With the help of the projection matrix M =

[
M p4

]
we can calculate the camera

origin c in world coordinates according to equation (2.18). Then the normalized
direction of the ray d is given by

d =
pC − c
‖pC − c‖2

. (3.5)

We use this ray for computation of a rotation axis r. The aim is to rotate the
coordinate frame, such that the x1–axis is in ray direction (see figure 3.3). We

Vessel

X–ray

x1

x3

l

Figure 3.3: Calculating the length of ray intersection

calculate the rotation axis r as follows:

r = d× e1, (3.6)

where e1 is the normalized basis vector of the x1–axis. Afterwards we determine
the angle φ between e1 and d:

φ = arccos(dT e1). (3.7)
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With this information we can build up a rotation matrix Q according to equation
(2.3). We apply this rotation matrix to all points of the segmented volume V and
define

VQ :=
{
y ∈ R3 : y = Qx, x ∈ V

}
(3.8)

as the set of rotated vessel points. Finally the length of intersection L is given by

L = max
p∈Vl

px −min
p∈Vl

px, (3.9)

Vl =
{
p ∈ VQ : |py,z| ≤

√
3/2
}
, (3.10)

where p = (px, py, pz)
T . We use

√
3/2 as threshold, because this is the maximum

diameter of a voxel.
We get the whole length map L(l, t), if we calculate the length of intersection L for
every combination M(t), pC(l) (t ∈ {0, τ, 2τ, . . . , T}, l ∈ {l0, . . . , lM}).

Extracted flow map The extracted flow map (see fig. 3.1 [5]) is determined
by information of the uncorrected extracted flow map FU(l, t) and the length map
L(l, t). We already discussed, that the values of the uncorrected extracted flow map
have to be corrected by the length of intersection. Therefore the extracted flow map
FE(l, t) is given by:

FE(l, t) =
FU(l, t)

L(l, t)
∀l, t. (3.11)

Reliability map Problems determing the extracted flow map FE arise, if two or
more centerline points are projected to the same point in the image plane. There are
two effects entailing this: foreshortening and overlap. An example for artefacts in
the extracted flow map due to vessel overlap can be seen in figure 3.4. Furthermore
the corresponding reliability map can be seen in this figure.
To avoid this we introduce a so called reliability map DF (see figure 3.1 [6]), which
gives us the reliability of a point in the flow map. The reliability map is defined as
follows:

DF (l, t) =


0, if foreshortening or overlap is detected
0, if indicated by the user
1, otherwise.

(3.12)

For determing the expression “if foreshortening or overlap is detected” we need the
projection martices M(t), the centerline points pC(l) and the corresponding radii
RC(l). We can calculate the projected points pI(l, t) just as well as in equation (3.3).
Furthermore we calculate the projected radii RI(l, t) by applying equation (2.22)
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Extracted flow map

20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

Reliability map

20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

Figure 3.4: Artefacts in a flow map due to overlap of vessel segments and the cor-
responding reliability map

for every projection matrix M(t) and every radius RC(l). Then the expression is
replaced by:

∃i : ‖pC(l)− pC(li)‖ > a · (RC(l) +RC(li)) ∧ (3.13)
‖pI(l, t)− pI(li, t)‖ < b · (RI(l, t) +RI(li, t)) ∀l, t, .

where a and b are scalar parameters. When a = b = 1, this means that overlap
or foreshortening is detected when there is another point on the centerline which is
further away than the sum of the radii but its projection point is nearer than the sum
of the projected radii. In this case, most entries in the flow map would be unreliable.
The lower the value of b is, the more entries are marked as reliable. Reasonable
choices for a and b were found empirically to be a ∈ [1.1, 2] and b ∈ [0.6, 0.9].

3.2 Simulating Flow Maps

This section discusses the model for blood flow, the model for injection and the
model for contrast agent propagation. It is visualized in figure 3.1 [B]. These models
are needed for generating a simulated flow map FS. Later on this simulated flow
map is going to be compared with the extracted flow map FE.

3.2.1 Simple Model

In this subsection we discuss a basic vessel segment without bifurcations or huge
changes in radius (for example aneurysms).

38



3. Blood Flow Estimation

Model for the blood flow We already discussed some basics about blood flow
in section 2.3.2. We got to know, that the pumping action of the heart is the
reason for a certain volumetric blood flow. The aim of this diploma–thesis is the
estimation of the volumetric blood flow. Therefore we use a parameter dependend
model according to [Wae08] for modeling the volumetric blood flow QB(t) (see fig.
3.1 [7]) at a certain cross sectional area of a vessel:

QB(t) = Q̄B · ω(t), (3.14)

where Q̄B is the mean volumetric flow and ω(t) is the waveform.
The model assumes the heartbeat to be periodic. We can generate a periodic
function using one of the trigonometric functions like cos(x). For a better approx-
imation of the waveform ω(t) we modulate cos(x) with a piecewise linear function
fβ,γ,δ : [0, 1]→ [0, 1] defined as follows:
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Figure 3.5: Influence of parameters β, γ, δ. The black line shows parameters β =
0.75, γ = 0.25, δ = 0.25

fβ,γ,δ(t) =



δ

γ
· t t ∈ [0, γ]

0.5− δ
β − γ

· t+ 0.5− (0.5− δ) · β
β − γ

t ∈ [γ, β]

1

2 · (1− β)
· t+ 1− 1

2 · (1− β)
t ∈ [β, 1] ,

(3.15)

depending on parameters β, γ and δ.
The so defined piecewise linear function fβ,γ,δ : [0, 1] → [0, 1] has the fixed values
f(0) = 0, f(γ) = δ, f(β) = 0.5 and f(1) = 1. The influence of these parameters can
be seen in figure 3.5.
Modulating cos(x) with fβ,γ,δ and a baseline α generates the following function:

ω̃(t) = α + cos(2π · fβ,γ,δ(t)) (3.16)
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For normalization reasons and achieving a specific periodity we define the waveform
ω(t) as follows:

ω(t) =
ω̃(t/TH)∫ TH

0

ω̃(t)dt

(3.17)

where TH is the period of heart cycle. The influences of parameters α, β, γ and δ
on the volumetric blood flow QB(t) (see eq. (3.14)) can be seen in figure 3.6.
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Figure 3.6: Influence of parameters α, β, γ, δ on QB(t). The black line shows pa-
rameters α = 2.5, β = 0.75, γ = 0.25, δ = 0.25. The mean volumetric
blood flow Q̄B in this example is 200ml/min.

Model for injection Contrast agent illustrates the vessel in rotational angiogra-
phy. That is the reason for creating a model (see fig 3.1 [7]) for the contrast agent
injection. We do this again according to [Wae08]:
For the contrast agent injection, it is assumed that the injection flow at the outlet
of the injector can be described by a rectangular function and that the flow circuit
behaves in an analogous way to an electrical network. Then, the catheter is equiv-
alent to a resistor plus a capacitor for the contrast agent. Therefore, the injection
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curve corresponds to the charging curve of a capacitor, and the injection flow rate
QI(t) can be described in terms of its maximum flow rate Q̄I , given by

QI(t) =


0, t < TS
Q̄I ·

(
1− e−(t−TS)/TL

)
, TS ≤ t ≤ TS + TD

Q̄I ·
(
1− e−TS/TL

)
· e−(t−(TS+TD))/TL , t > TS + TD,

(3.18)

where TL is the characteristic time of the lag, TS is the start time of the injection
and TD is the duration of the injection.
As a result of mixing the blood flow rate and the contrast agent flow rate we get
the total flow rate:

QT (t) = QB(t) +QI(t). (3.19)

The total flow rate, the blood flow rate and the injection flow rate are visualized
on the left diagram of figure 3.7. For mixing, we have to assume that the contrast
agent mixes uniformly with the blood. From X–ray images of the catheter tip, this
can be seen to be a reasonable assumption. The contrast agent concentration C0(t)
at the site of injection is then given according to [Haw88]:

C0(t) =
QI(t)

QT (t)
. (3.20)

This is again visualized in figure 3.7. It is important to note that the concentration
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Figure 3.7: Prediction of contrast agent concentration at the injection site

changes during the cardiac cycle. During systole, when the blood flow is highest,
the concentration is low. During diastole, when the blood flow is lowest, the concen-
tration is high. This is particularly important because it explains the characteristic
pattern that appears in the flow map.
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Determing the velocity After discussing models for the volumetric blood flow,
the volumetric injection flow and the mixing we have to find a model for contrast
agent propagation (see fig. 3.1 [8]). By reason the movement of soluble substance
in a moving medium is predetermined by diffusion and advection, we represent the
contrast agent propagation with the diffusion–advection equation (2.23).
We reduce the model to be a radial–symmetric lamina flow through a tube. Such a
model has already been discussed in [Tay53], where the diffusion–advection equation
has been adapted as follows:

∂C(r, l, t)

∂t
= D ·

(
∂2C(r, l, t)

∂r2
+
∂2C(r, l, t)

∂l2

)
+

+
D

r
· ∂C(r, l, t)

∂r
− v(r, l, t) · ∂C(r, l, t)

∂l
, (3.21)

with boundary conditions

∂C(0, l, t)

∂r
=

∂C(R, l, t)

∂r
=
∂C(r, L, t)

∂l
= 0, (3.22)

C(r, 0, t) = C0(t). (3.23)

C0(t) is the concentration, discussed above, at the inlet of the vessel. The boundary
conditions in (3.22) are Neumann boundary conditions γN and equation (3.23) is a
Dirichlet boundary condition γD. We apply this model to describe the contrast

rn

l

γD = C0(t)

γN = 0

0

Inlet
Outlet

Vessel

Inlet Outlet

Figure 3.8: Boundary Conditions

agent propagation through the vessel (see figure 3.8).
For solving equation (3.21), using the concept of finite differences in section 2.2.1,
we need the longitudinal velocity v(r, l, t) of the blood inside the vessel. Therefore
we compute the velocity v, with the help of the cross sectional area A and the total
flow rate QT :

QT = v · A. (3.24)
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But the formula above determines the mean velocity v̄ across the cross sectional
area A. Due to friction effects the velocity near the boundary is lower than in the
isocenter of the vessel. For introducing a function for the flow profile we first divide
the vessel into N laminae according to figure 3.9. The middle radius rn of lamina
n ∈ {1, 2, . . . , N} is given by

rn

an

Centerline
Lamina n

Figure 3.9: Dividing vessel into laminae

rn(l) =
n− 1/2

N
·RC(l), (3.25)

where RC(l) is the radius of the vessel at a certain length l. The cross–sectional
area of lamina n is then given by

an(l) = π ·
( n
N
·RC(l)

)2

− π ·
(
n− 1

N
·RC(l)

)2

. (3.26)

With this information we introduce a function for the flow profile:

p(r, l) = 1−
(

r

RC(l)

)k
, 2 ≤ k <∞, r ∈ {r1, r2, . . . , rN} . (3.27)

This function can approximate a profile between parabolic flow (k = 2) and a plug
flow (k →∞). Finally we can determine the velocity by

v(r, l, t) =
QT (t)

N∑
n=1

p(rn(l)) · an(l)

· p(r, l). (3.28)
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Contrast agent propagation Up to now we introduced several models/meth-
ods:

• the volumetric blood flow QB(t),

• the volumetric injection flow QI(t),

• the mixing of blood and contrast agent QT (t) respectively the concentration
of contrast agent at the inlet of a vessel segment C0(t),

• an algorithm to determine the velocity v(r, l, t) inside a vessel

• and a equation for contrast agent propagation (3.21)

We now combine all these elements with the data given by rotational angiography.
In fact, we only need the centerline–radii representation of the vessel, i.e. we need
the radii RC(l), l ∈ {l0, . . . , lM} and the set {0, τ, 2τ, . . . , T} of times where a X–ray
image is taken.
For contrast agent propagation in a vessel we can write down an algorithm as follows:
In step 4 we use the concept of finite differences of section 2.2.1. Important for

Algorithm 4: Contrast agent propagation
input : mean volumetric blood flow Q̄B

input : parameters α, β, γ and δ
input : maximum volumetric injection flow Q̄I

input : chracteristic time of lag TL
input : start time of injection TS
input : duration of injection TD
input : diffusion constant D
input : number of laminae N
input : flow profile k
input : set {0, τ, 2τ, . . . , T} of times where a X–ray image is taken
input : radii of the vessel RC(l) at certain lengths l ∈ {l0, . . . , lM}
output: concentration map C(r, l, t)

determine QB(t) for all t ∈ {0, τ, 2τ, . . . , T};1

calculate QT (t) and C0(t) for all t ∈ {0, τ, 2τ, . . . , T};2

determine v(rn, l, t) for all t ∈ {0, τ, 2τ, . . . , T} , l ∈ {l0, . . . , lM} , n ∈ {1, 2, . . . , N}3

according to (3.28);
calculate the concentration map C(rn, l, t) for all4

t ∈ {0, τ, 2τ, . . . , T} , l ∈ {l0, . . . , lM} , n ∈ {1, 2, . . . , N} by solving (3.21);

implementation is to use the Upwind schema for advection along the vessel. Box
[8] in figure 3.1 hides this algorithm.
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Simulated flow map Finally, the concentration map C is used to determine the
simulated flow map FS (see fig. 3.1 [9]) using the relation:

FS = ρ · 1

N

N∑
n=1

C(rn, l, t), (3.29)

where ρ is the iodine density in the contrast agent. Consequently, the simulated
flow map contains the spatial and temporal progression of the mean iodine density
in the vessel.

3.2.2 Extension: Vessel tree with variable Radius

Due to the fact that we assumed a vessel segment without bifurcations or huge
changes in radius in the last subsection we extend this model, because vessels are
highly branched in reality.

Figure 3.10: Segmented vessel tree in head

Changes in radius In section 3.2.1 we already modeled changes in radius. For
small changes in radius we have no numerical problems using finite differences, but
for huge changes in radius we get huge changes in blood velocity. This fact can
cause unphysical results when using forward/backward differences (see figure 3.11).
That is the reason for dividing the vessel into several segments J . For example in
figure 3.11 the vessel segment would be divided into three segments (two with a
huge radius and one with a tiny radius). As a result J depends on |∂RC/∂l|.
For an easy implementation of this approach we solve the diffusion–advection equa-
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Segment 1
Segment 2

Segment 3

Figure 3.11: Changes in radius

tion for each segment j ∈ {0, . . . , J}. Of course we have to adapt the boundary
conditions Cj

0(r, t) for each segment j by:

Cj+1
0 (r, t) = Cj(r, Lj, t), j ∈ {1, . . . , J} , (3.30)

where Lj is the total length of segment j. After solving 3.21 for each segment, we
can reconstruct the concentration map C by

C(r, l, t) =
[
C0(r, l, t), . . . , CJ(r, l, t)

]
. (3.31)

Finally we generate the simulated flow map for the whole segment according to
(3.29) .

Bifurcations For modeling a vessel tree, we need the anatomical structure and a
applicable way to store it. This can be done by representing the vessel as a directed
graph Gd =

(
V d, Ed

)
where V are the vertices and E the edges. Due to blood ves-

sels have a directed 2–neighborhood, we have to preserve that the extracted graph
has this 2–neighborhood, too. How to extract a vessel in such a way is described in
[Pal01], too.
Due to the fact that we have a directed 2–neighborhood, each division is a bifurca-
tion i.e. each vessel segment has either a mother or it is the root. In the following
we introduce a division factor χ for each vertex V of the graph. An edge refers to
a set of radii RC(l), l ∈ {l0, . . . , lM}. But for an simplified approach we discuss a
single bifurcation. In particular we consider Q1

T (t) as the volumetric flow rate in
the mother segment and Q2

T (t), Q3
T (t) as the volumetric flow rates in the daughter

segments. To generate a relationship between these three flow rates we introduce
the division factor χ ∈ (0, 1) as follows:

Q2
T (t) = χ ·Q1

T (t), (3.32)
Q3
T (t) = (1− χ) ·Q1

T (t). (3.33)
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Of course, as a result we get three different concentration maps Ci (i = 1, 2, 3). For
determination of the concentration maps we need the velocities in each segment.
Therefore we need to apply the velocities in the daughter segments (i = 2, 3). This
can be done by calculating the velocity, according to equation (3.28) with Qi

T (t)
(i = 2, 3). Afterwards we adapt the boundary conditions according to equation
(3.30) for each concentration map:

C2
0(r, t) = C1(r, L1, t) and C3

0(r, t) = C1(r, L1, t), (3.34)

where L1 is the total length of the mother segment.
The extended algorithm for a vessel tree including changes in radius is as follows:

Algorithm 5: Contrast agent propagation for a vessel tree
input : all values of algorithm 4
input : directed graph Gd =

(
V d, Ed

)
input : for each V a division factor χ
input : for each E the radii of the vessel RC(l) at certain lengths l ∈ {l0, . . . , lM}
output: concentration maps Ci(r, l, t), i ∈ {1, . . . , J}
determine QB(t) for all t ∈ {0, τ, 2τ, . . . , T};1

determine QI(t) for all t ∈ {0, τ, 2τ, . . . , T};2

calculate QT (t) and C0(t) for all t ∈ {0, τ, 2τ, . . . , T};3

for each E do4

determine Qi
T (t), vi(rn, l, t) and Ci

0;5

divide the actual segment into several subsegments j, if |∂RC/∂l| > ζ;6

for every subsegment j do7

determine Ci,j
0 ;8

calculate the concentration map Ci,j;9

end10

assemble the concentration map Ci;11

end12

Finally we generate a flow map for every segment according to equation (3.29):

F i
S = ρ · 1

N

N∑
n=1

Ci(rn, l, t) i = 1, 2, 3. (3.35)

3.3 Parameter Identification

In the previous sections we got to know how we can get information out of rotational
angiography and how we can model the blood flow respectively the contrast agent
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propagation. The next step is of course to get these two things together and do a
parameter identification (see figure 3.1, box [C]). Here is a short summary of the
parameters we want to estimate:

tS start time of injection
tD duration of injection
tl characteristic time of lag
Q̄B mean volumetric flow rate
α, β, γ, δ parameters for generating the waveform function ω(t)
k flow profile
χ division factor for branches

The main problem is of course that we want to estimate at least 9 parameters which
take part in a partial differential equation in terms of a new boundary condition
γD (see figure 3.8). We use the model of flow maps and compare them in a specific
way. Therefore we need an error–function. Kinematic information is captured by
the gradients of the pattern of the flow map, whereas densitometric information
is captured by the magnitude of the intensities of the flow map. That is why the
choice for the error–function is:

E (FS) =
J∑
j=1

Lj∑
l=lj

T∑
t=t0

[(
F j
S (l, t)− F j

E (l, t)
)2

+
(
∇F j

S (l, t)−∇F j
E (l, t)

)2
]
·Dj

F (l, t) .

(3.36)
where T is the total time of acquisition, J is the number of segments, FE is the
extracted flow map (see equation (3.11)), FS is the simulated flow map (see equation
(3.29)) and DF is the reliability map (see equation (3.12)). This error–function
depends on all parameters tS, tD, tl, Q̄B, α, β, γ, δ, k, χ, which appear – as already
told – as boundary condition in the diffusion–advection equation. Using this error
function we formulate the optimizing problem:

min
x∈Ω

E(x) (3.37)

with x =
(
tS, tD, tl, Q̄B, α, β, γ, δ, k, χ

)T and Ω is given by an empirical generated
table:
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Variable lower bound upper bound unit
tS tS,0 tS,e s
tD tD,0 tD,e s
tl tl,0 tl,e s
Q̄B Q̄b,0 Q̄b,e

ml/min

α 1.2 5
β 0.5 0.9
γ 0.01 0.49
δ 0.01 0.49
k 2 10
χ 0.01 0.99

This problem can be solved using the SQP–algorithm.
Due to tiny gradients along variable χ we can not use the SQP–algorithm in this
dimension. The best results in a complete vessel tree were achieved by optimizing
all parameters, except χ, in the root segment and each χ with the downhill–simplex
algorithm. Another justification for this approach is that commonly the root
segment has biggest diameter. Consequently this segment contains most hemody-
namic information.
Finally the algorithm for parameter estimation is given by:

Algorithm 6: Parameter Identification
input : Extracted Flow maps F i

E

input : Initial values for the parameters (see table above)
input : all other values needed for algorithm 5
input : boundaries according to the table above
output: estimated parameters[
tS, tD, tl, Q̄B, α, β, γ, δ, k

]
=SQP(E1(x),initial values,boundaries);1

for each branch i following do2

determine parameter χi with the downhill simplex algorithm;3

end4

3.4 Visualization

An interesting application is the visualization of the estimated data. Surgeons could
do a blood flow simulation without injecting contrast agent. Due to the fact that
we can estimate the blood flow we can try to visualize this data, too.
The basic idea of the visualization method is to generate a background image IB
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and a foreground image IF . The goal is to calculate an image series using the
formula:

IV (t) = IB + IF (t), t ∈ {0, τ, 2τ, . . . , T} , (3.38)

where τ are the time steps where we have data in the concentration map C.
In particular, we visualize the blood flow with the concept of digital reconstructed
radiograph (DRR) (see equation (2.20)).
Therefore we set all intensities of the vessel to zero and compute a DRR of this 3D
volume. This is the image IB.
We shortly explain the concept of digital radiograph reconstruction (DRR)? DRR
is a possibility to simulate X–ray images. This means we use equation (2.19) and
do a ray sampling of the volume with a given projection matrix P =

[
M p4

]
.

Here is the algorithm how to create DRRs:
Given: M(t) Projection matrices, the 3D volume, centerline points pC(l) and radii
RC(l) for each centerline point.

1. Do a simulation of contrast agent propagation according to section 3.2 with
#M(t) time steps.

2. For each projection matrix, fill the concentration data from step one into the
vessel, and create a X–ray image.

In a second step we compute the contribution of each voxel of the vessel to the
resulting image. We do this again with the concept of DRR. The current ray is
given by equation (2.19). We define a list of voxels as follows:

X(x2D, λ) =

{
1, if ray x(λ) is inside the vessel
0, otherwise (3.39)

x2D is a arbitrary point in the resulting image IF and x(λ) is the ray corresponding
to x2D.
If a ray at a certain value λ is inside a voxel that corresponds to a vessel segment
(X(x2D, λ) = 1), we compute its contribution Y (x2D, λ) to the resulting image using
trilinear interpolation of V (x(λ))3. Therefore we set the value of the current voxel
to one and all others to zero.
The third step is a lookup in the concentration map C. Additionally we fill in
the data as accurate as possible. This step should not be underrated. Due to
the fact that we solve the diffusion–advection equation with a radial symmetric
assumption and without any concern of vessel geometry, we have to find the voxels
corresponding to a certain length l and radius r. This can be done by(

l(pV )
r(pV )

)
:=

 arg min
p∈pC(l)

‖pV − p‖

min
p∈pC(l)

‖pV − p‖

 (3.40)

3V is the 3D volume
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where pV is an arbitrary voxel of the vessel and pC(l), l ∈ {l0, . . . , lM} is the
set of centerline points. We can estimate the value of the contribution from the
concentration map using the following formula:

Z (pV , t) =

∫ r(pV +1/2)

r(pV −1/2)

C(r, l(pV ), t)dr

r(pV + 1/2)− r(pV − 1/2)
. (3.41)

Of course, this formula can only be applied if r(pV ) is a value between [1, N − 1]
(N is the number of laminae, see figure 3.12). For values of pV ∈ [0, 1)∪ (N − 1, N ]
we have to reflect at the border. Finally the image IF (t) is given by

IF (x2D, t) =
∑
λ

X(x2D, λ) · Y (x2D, λ) · Z(x(λ), t). (3.42)

The profit of visualizing this way is that we can precompute x(λ), X(x2D, λ) and

r

l

r(pV )

l(pV )

Figure 3.12: Contribution of the concentration map

Y (x2D, λ). For a numerical approximation of Z(x(λ), t) it is sufficient to store the
coefficients ci and nodes xi given by a quadrature formula for an arbitrary t. Finally
we replace the concentrations in (3.41) in the sum of the quadrature∫ r(pV +1/2)

r(pV −1/2)

C(r, l(pV ), t)dr ≈
∑
i

ciC(xi, l(pV ), t) (3.43)

for every time step t.
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Algorithm 7: Visualization
input : projection matrix M =

[
M p4

]
input : concentration map C
input : original volume V
input : set of points of the segmented vessel V
input : set of centerline points pC(l)
output: image series IV
Vbg = V ;1

for each pV ∈ V do2

Vbg(pV ) = 0;3

calculate l(pV ) and r(pV ) according to (3.40);4

calculate ci, xi for a numerical approximation of Z (pV , ·);5

end6

IB = drr(Vbg,M);7

for each x2D ∈ IF do8

calculate x(λ) according to eq. (2.19);9

for each µ inside V do10

calculate X(x2D, λ);11

calculate Y (x2D, λ);12

end13

end14

for each t ∈ {0, τ, 2τ, . . . , T} do15

for each p ∈ X(x2D, λ) 6= 0 do16

get corresponding l(p), ci, xi;17

IF (p, t) =
∑

i ciC(xi, l(p), t);18

end19

IV (t) = IB + IF (t)20

end21
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4 Validation

In this chapter we discuss a validation of the model of the previous chapter. We
do this theoretically in two steps. First we create a sample flow map on which we
try to optimize using the SQP–algorithm. Secondly we do some evaluations with
generated volumes. Practical results using real data with a solid ground truth of
the method can be found in [Wae08].

4.1 Simulated Flow Maps

For a first step of validation we generate a single simulated flow map. We estimate
the parameters using the SQP–algorithm. We use the following parameters for
generating the flow map:



4. Validation

Symbol Value Unit
Acquisition
Start time t0 0 s
End time T 4 s
Number of time steps M 120
Injection
Volumetric flow rate of contrast agent QI 70 ml/min

Start time of injection tS 0.5 s
Duration of injection tD 3 s
Characteristic time of lag tl 0.2 s
Iodine density ρ 1 mg/ml

Molecular diffusion coefficient D 10−5 m2/s
Blood flow
Mean volumetric blood flow Q̄B 200 ml/min

Shape parameter α 2.5
Shape parameter β 0.6
Shape parameter γ 0.4
Shape parameter δ 0.2
Duration of cardiac cycle tH 0.8 s
Flow profile k 5
Algorithm
Number of laminae N 10

We consider a straight vessel with constant radius RD(l) = 2 mm, total length
L = 10 mm. Furthermore we assume 100 centerline points.
In figure 4.1 we can see the flow map, resulting from these parameters. For
an analysis of the target function E(x), figure 4.2 shows the course of the tar-
get function depending on the parameters. These plots were created by set-
ting all parameters to the optimum x∗ = (t∗S, t

∗
D, t

∗
l , Q̄

∗
b , α

∗, β∗, γ∗, δ∗, k∗)T =
(0.5, 3, 0.2, 200, 2.5, 0.6, 0.4, 0.2, 5)T . Afterwards a single parameter is varied from
the lower bound to the upper bound, which is given by the following table:
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Figure 4.1: Sample flow map for optimization

Variable lower bound upper bound unit
tS −1 1 s
tD 1 4 s
tl 0.1 0.7 s
Q̄B 50 400 ml/min

α 1.2 5
β 0.5 0.9
γ 0.01 0.49
δ 0.01 0.49
k 2 10
χ 0.01 0.99

We can see clearly that all functions have a single optimum, where the derivative
is zero, except tD. This fact can easily be explained: tD is the duration of the
injection. Due to the fact that the total acquisition time is 4 seconds and the start
time of injection tS is at time 0.5 s, the resulting total time which we can estimate
is 3.5 s. All greater durations can not be estimated.
With this knowledge we try to estimate the parameters using the SQP–algorithm.
We quantify the solution depending on initial values. Therefore we choose 100
random initial values within the given range. For every initial value we calculate
the solution of the problem with a tolerance of 10−2. The results can be seen in
figure 4.3, where the error was calculated by the following formula:

Error =
x∗ − optimized x

upper bound− lower bound
. (4.1)
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Figure 4.2: Course of the function E(x) depending on parameters
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The blue box illustrates the range containing 50% of the data. The horizontal
black lines illustrate the range containing 90% or more of the data. The red line
is the mean value and the red crosses are outliers. The left diagram in figure 4.3
demonstrates an optimization on all parameters, whereas the right diagram sets
the parameter k to the optimum and optimizes all other parameters. The results
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Figure 4.3: Relative error of the estimated parameters depending on initial values

indicate clearly that the parameters tS and tD can be estimated very accurate. All
other parameters are not within the given tolerance of 10−2, if we include parameter
k in the optimization. We can give a reason for this fact. Parameter k describes the
shape of the flow profile in the vessel. This flow parameter is not obvious visible
in the flow map, because the flow map represents only the mean concentration of a
certain cross–sectional area.
We can also see that an optimization without parameter k gives very accurate
results.
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Furthermore we want to quantify the robustness of the method against noise. For a
first approach we apply Poisson noise with mean 100 to the original flow map (see
figure 4.4).
In figure 4.5 the course of the error function E(x) depending on parameters is visu-

Flow map with poisson noise (mean 100) Difference of images

Figure 4.4: Simulated flow map with Poisson noise (mean 100) and difference to
original flow map

alized. Again the parameters are fixed at x∗ = (0.5, 3, 0.2, 200, 2.5, 0.6, 0.4, 0.2, 5)T

and one parameter varies from the lower bound to the upper bound. The circles in
figure 4.5 illustrate the minimum of the function and the red crosses illustrate the
relative error at E(x∗).
Additionally we use the SQP–algorithm for a parameter estimation. The depen-
dence of initial values on the relative error is visualized in figure 4.6. 25 different
noisy flow maps with mean 100 were optimized. Each with 25 different random ini-
tial values. Without k means k set to optimum. The “bad” influence of parameter
k is again visible.
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Figure 4.5: Course of the function E(x) depending on parameters extracted form
simulated flow map with Poisson noise (mean 100).
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Figure 4.6: Relative error of the estimated parameters depending on initial values.
To the simulated flow map Poisson noise with mean 100 was added.
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Secondly we apply Poisson noise with mean 10 to the original flow map (see figure
4.4. In figure 4.8 we see the course of the error function E(x) depending on para-

Flow map with poisson noise (mean 10) Difference of images

Figure 4.7: Simulated flow map with Poisson noise (mean 10) and difference to
original flow map

meters. Again the parameters are fixed at x∗ = (0.5, 3, 0.2, 200, 2.5, 0.6, 0.4, 0.2, 5)T

and one parameter varies from the lower bound to the upper bound. The circles in
figure 4.8 illustrate the minimum of the function and the red crosses illustrate the
relative error error E(x∗). Additionally we use the SQP–algorithm for a parameter
estimation. The dependence of initial values on the relative error is visualized in
figure 4.9. 100 different noisy flow maps with mean 10 were optimized with 100
different random initial values.

Finally we apply Poisson noise with mean 1 to the original flow map (see figure 4.10.
In figure 4.11 we see the course of the error function E(x) depending on parameters.
Again the parameters are fixed at x∗ = (0.5, 3, 0.2, 200, 2.5, 0.6, 0.4, 0.2, 5)T and one
parameter varies from the lower bound to the upper bound. Additionally we use
the SQP–algorithm for a parameter estimation. The dependence of initial values
on the relative error is visualized in figure 4.12. 100 different noisy flow maps with
mean 1 were optimized with 100 different random initial values. If we compare
figures 4.6, 4.9 and 4.12 with figure 4.3, we can see the robustness of the method to
noise.
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Figure 4.8: Course of the function E(x) depending on parameters extracted form
simulated flow map with Poisson noise (mean 10).
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Figure 4.9: Relative error of the estimated parameters depending on initial values.
To the simulated flow map Poisson noise with mean 10 was added.
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Flow map with poisson noise (mean 1) Difference of images

Figure 4.10: Simulated flow map with Poisson noise (mean 1) and difference to
original flow map
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Figure 4.11: Course of the function E(x) depending on parameters extracted form
simulated flow map with Poisson noise (mean 1).
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Figure 4.12: Relative error of the estimated parameters depending on initial values.
To the simulated flow map Poisson noise with mean 1 was added.

4.2 Flow Maps extracted from DRRs

The simulation for all following examples was done with the parameters of the
previous section.

4.2.1 Straight Tube

Figure 4.13: Straight tube

First we use a simple straight tube with a constant radius of 5 voxel and length of
100 voxel (see figure 4.13). The extracting algorithms returned 98 centerline points
and corresponding radii around 5. The extracted flow map FE and the length map
L using this data can be seen in figure 4.14. The reliability map R is not illustrated,
because we do not have the effects of foreshortening or overlap in a straight tube.
Due to discretization effects the values of th length map L in figure 4.14 change.
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Figure 4.14: Extracted flow map and length map of the straight tube

The mean value is of course 10. To visualize the error depending on initial values,
625 random initial values were generated for the SQP–algorithm. The same was
done by optimizing without parameter k. The results can be seen in figure 4.15.
The error for tS and tD is in both cases (including / without parameter k) are with
in the given tolerance of 10−2. If we include parameter k, we can see that the mean
relative error is around 7%. An optimization without parameter k gave accurate
results. The mean relative error is around 5%. Figure 4.15 illustrates also that the
variance of the mean error is much less if we do an optimization without parameter
k.
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Figure 4.15: Relative error depending on initial values

Again we want to estimate the robustness of the method to noise. For that we
put a Poisson noise with mean 10 on the image–series I(x, y, t), that is to say the
X–ray images. After that we extract the flow map FE out of this image series. An
example for an extracted flow map is visualized in figure 4.16. The length map
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and the reliability map are of course the same as without noise. We generated 25
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Figure 4.16: Extracted flow map from noisy image series

different image–series I(x, y, t), and for each image series 25 random initial values
to visualize the dependence on initial values. The results are shown in figure 4.17.
The astonishing is, that this figure looks very similar to figure 4.15, which was

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

including parameter k

E
rr

or

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

without parameter k

E
rr

or

t
S

t
S

t
D

t
l

Q
b α β γ δ k t

D
t
l

Q
b α β γ δ

Figure 4.17: Relative error depending on initial values

created without noise. For this we can conclude, that the method is very robust to
noise.
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4.2.2 Curved Tube

Figure 4.18: Curved tube

For a validation of curved tubes, a curved geometry was generated (see figure 4.18).
The extraction algorithms returned 124 centerline points. The radius of this tube
is again 5 voxels. In figure 4.19 the extracted flow map, the length map and the
reliability map are illustrated. The white dots in the length map indicate an over-
lapping in the projection. These regions are marked as unreliable in the reliability
map.
We optimize the extracted flow map with the SQP–algorithm. For validation 100
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Figure 4.19: Extracted flow map, length map, reliability map of curved tube

random initial values were chosen the results can be seen in figure 4.20 and figure
4.21. In figure 4.21 Poisson noise with mean 10 was applied to the image–series
I(x, y, t).
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Figure 4.20: Relative error depending on initial values
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Figure 4.21: Relative error depending on initial values. Including Poisson noise with
mean 10 in the image–series
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4.2.3 Branch

Figure 4.22: Branch

For a validation of bifurcations, a branched geometry was generated (see figure 4.22).
This geometry has also a constant radius of 5 voxels. The extraction algorithms
returned three centerline–radii representations of the branch. The first segment
has 39, the second 61 and the third 68 centerline points. The extracted radii were
about 5 voxels. The extracted flow maps, length maps and the reliability maps of
this branch can be seen in figure 4.23.
Again we have a look on initial values. For validation 100 random initial values
were chosen the results can be seen in figure 4.24 and figure 4.25. In figure 4.25
Poisson noise with mean 10 was applied to the image–series I(x, y, t). We can see
that the results for parameter χ are really bad. For this we do a further analysis.
In figure 4.26 we present two times a course of the error function with respect to
χ. For the first we set all remaining parameters to the optimum (x = x∗). For the
other one we chose x = (0.503, 2.987, 0.18, 198, 2.51, 0.601, 0.399, 0.204, 5.5)T , which
stands for an arbitrary optimized value for x. The red cross indicates the minimum
of the course of the function. We can see that the course of this function has several
local minima and most regions have tiny gradients. This is why the estimation of
parameter χ requires good initial values.
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Extracted flow map of first segment
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Figure 4.23: Extracted flow maps, length maps, reliability maps of branch
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Figure 4.24: Relative error depending on initial values
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Figure 4.25: Relative error depending on initial values from noisy extracted flow
map
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Figure 4.26: Error by varying k
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5 Discussion and Conclusion

This chapter is a small forecast what could be done furthermore, to improve the
achieved results. But first we will have a look at the results so far:
This is the first method to present quantitative results for blood flow estimation
from rotational angiographic images, discovered by [Wae08]. Therefore the results
are hard to directly compare to other methods. A major advantage of the method
is that it uses an explicit model for the flow and contrast agent propagation. In
this case, a simple convective dispersion model with laminar flow was used. The
framework adopted for the flow fitting algorithm is such that the model can by
readily replaced with an alternative, more sophisticated model if required.
A further advantage is that the model allows the use of additional information, for
example information about the injection or information from the attenuation cali-
bration. On the other hand, if this information is not available, the method can still
give quantitative flow estimates. Unknown injection and calibration parameters can
be estimated during the fitting process.
The algorithm for blood flow estimation is robust concerning noise. The estimated
values for the parameters are relatively precise and adequate for practical purpuses,
where commonly the first two digits are sufficient. It is possible that this is because
the method uses two different kinds of information from the flow map: kinematic
and densitometric information.
Due to the fact that vessels mostly cover only small parts of the volume (small
arteries sometimes have a radius of 1 voxel) this method can not be applied for
any data, because this method needs radial information. It does not make sence to
estimate, for example the flow profile, if we have a vessel with radius of a voxel.
Section 4.1 showed that the flow profile is a very sensitive parameter which requires
good initial values. One should weigh how far this parameter should be considered.
Due to the small radius of vessels in the body it is questionable how the flow profile
looks inside a vessel.
The modeling of branches is physically not correct (see figure 5.1). Furthermore the
division factor χ is hard to optimize, because the function course has several local
minima and huge regions with tiny gradients. This is why future works should
have a closer look to the navier stokes equations - maybe for a first suggestion - just
for incompressible fluids. On the one hand doing a simulation with navier stokes is
rather time consuming. On the other hand, the velocity field according to the navier
stokes equations is more realistic and, in a good implementation, is only necessary



5. Discussion and Conclusion

Figure 5.1: Incorrect setting of the new boundary conditions

as a precalculation step.
Calculating the diffusion–advection equation in 3D would really improve the val-
idation with infilled volumes and the visualization, because we do not have dis-
cretization effects. But some disadvantages could result from solving the diffusion–
advection equation in 3D: the flowmap would not be good mapping anymore, be-
cause the discretization problems would arise here instead of the visualization. A
meaningful mapping could be, to infill the data, then do a raycast and finally ex-
tract the data again. Furthermore a consideration of solving the diffusion–advection
equation in 3D does only make sence connected with a 3D velocity field. This is in
general very time consuming. Another open question is the boundary condition at
the inlet of the segment when solving in 3D.
If an intraoperative application developes out of this method, it is obligatory that
the algorithm structure is as parallel as possible, because an optimization on a stan-
dard PC takes about 4 to 20 minutes, depending on how much data is given. Maybe
this can be computed much faster using an internal hardware like the graphic card.
Another important implementation detail is the memory management. So far all al-
gorithms were implemented in MatLab R2008b on a PC with 2 GB system memory.
If there is a bad memory management, it is impossible to load data which occupies
approximately 500 MB of system memory even if there is physically enough space,
for example 1 GB. The reason, why this fact arises in MatLab, is that the memory
gets very fragmented due to the fact that MatLab creates copies of a variable each
time a command is executed.
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