


The Second International Workshop on Computer Vision for Intravascular
and Intracardiac Imaging (CVII) was held in New York, USA on September 10,
2008 and in conjunction with the 11th MICCAI Conference. This was the second
workshop dedicated to the subject of intravascular and intracardiac imaging, and
the workshop aimed to bring together researchers in the field and present state-
of-the-art techniques in computer vision and image processing of intravascular
and intracardiac images. Technological advances in intravascular and intracar-
diac imaging offer increasingly useful information regarding vascular anatomy
and function and are poised to have dramatic impact on the diagnosis, analy-
sis, modeling, and treatment of vascular diseases. Computer vision techniques
designed to analyze intravascular images for anatomic modeling, simulation, vi-
sualization, tissue classification, and the assessment of interventional procedures
are therefore playing a role of increased clinical importance.

There was much interest in the workshop, with 20 papers submitted. Based
on the reviews of program committee members, 9 papers were accepted for oral
presentation and 6 for short oral presentation. The papers cover many aspects
of recent advances in intravascular and intracardiac imaging, including, but not
limited to, segmentation, registration, plaque image analysis, tissue modeling,
and classification. In addition to oral presentations, the workshop included two
invited talks by speakers Dr. Johannes Rieber on trends and future applications
of invasive and non- invasive coronary imaging, and Dr. Stephane Carlier on
the evolution of intravascular imaging from ultrasound to optical coherence
tomography. Dr. Robert Bard also presented the last results of a patient study
on Elastographic Sonography of carotid artery plaque disease. We hope the oral
and short oral sessions and invited talks will inspire new research in the field.

We thank our sponsors Siemens Corporate Research and Siemens AG for
their support.

Gozde Unal, Ioannis A. Kakadiaris, Nassir Navab, Milan Sonka

Sponsored by



Workshop Organizers
Gozde Unal, PhD, Sabanci University
Ioannis A. Kakadiaris, PhD, University of Houston
Nassir Navab, PhD, Technical University of Munich
Milan Sonka, PhD,University of Iowa

Invited Speakers
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Quantification of Vessel Wall Motion in IVUS
Pull-backs With Dense Optical Flow

M. G. Danilouchkine1 ?, F. Mastik1, and A. F. W. van der Steen1,2

1 Dept. Biomedical Engineering, Erasmus MC Rotterdam, the Netherlands
2 Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands

{m.danilouchkine,f.mastik,a.vandersteen}@ErasmusMC.nl

Abstract. In this paper we propose a novel method for the assessment
of (apparent) vessel wall motion in intravascular ultrasound (IVUS)
pullbacks. It is based on the Lukas-Kanade algorithm for optical flow
(OF) and aligns consecutive frames in IVUS acquisitions. From the the-
oretical standpoint there are two fundamental improvements. Firstly,
using a simplified representation of the vessel wall as a medium with
randomly distributed scatterers, it was proven that the OF equation
satisfies the integral brightness conversation constraint, alternatively
known as dense OF. Secondly, a scale-space embedding for the OF
equation was derived under the assumption of the spatial consistency in
IVUS acquisitions. The spatial coherence is equivalent to a locally affine
motion model. The hypothesis about the dense character of the flow
was validated on the simulated IVUS images of thin-cap fibroatheroma
(TCFA) subjected to varying pressurizing conditions and controlled
amount of rotational deviation. The experimental results showed that
proposed dense OF outperforms the classical LK method. The robust
and reliable tracking was observed for angular deviations within the
range between 1◦ − 5◦ of rotation. Subsequently, the algorithm was
used to analyze 5 IVUS pullbacks from 4 patients. The results of the
in-vivo experiments demonstrated that motion of the coronary arteries
is primarily determined by the cardiac contraction.

1 Introduction

A number of imaging modalities are capable of assessing the vascular plaque
burden. The most common modalities include Magnetic Resonance (MR) [1]
and Computer Tomography (CT) [2] Angiography as well as Intravascular Ul-
trasound (IVUS) [3]. The primary challenge for all angiographic techniques is
to suppress the motion-related artifacts in order to produce images of a good
diagnostic quality. As results of the dedicated efforts along these directions [4,
5], CT and MR angiographic modalities are finding a wider clinical acceptance.

In spite of the non-invasive character of MR and CT, IVUS remains the
gold standard in coronary imaging, owing to the inherently high spatial and
temporal resolutions. The recently emerged IVUS-derived techniques, i.e. elas-
tography [6, 7] and modulography [8], rely on the information, obtained from
the same cross-section of the coronary artery at different levels of the intra-
luminal pressure. Subsequently, the information in two frames is compared to
deduced the amount of vessel wall deformation and to compute its mechani-
cal properties. Thus, the analyzed IVUS images should spatially match each
other. However, the probe displacement causes interframe misalignment and
? This work is funded by the Dutch Foundation for Technical Sciences (STW) and
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partially invalidates the information coming out of elastography and modu-
lography. Hence, further clinical acceptance of the aforementioned techniques
depends on their ability to cope with the motion-related artifacts.

This paper pursues two main goals. First, an automated registration method
is developed to align the consecutive frames in IVUS pullbacks. We are primar-
ily interested in rotational tissue motion, which can be used to spatially realign
the IVUS frame prior to elastographic computation. Second, this paper is also
an attempt to identify the major physiological factors, contributing to vessel
wall motion. The physiological background of in-plane vessel wall motion in
IVUS acquisitions has not been studied until now.

2 Methods

The aim of this section is to demonstrate that the amplitude of the reflected
ultrasonic signal is related to the density of the biological scatterers. A simple
geometric model of a healthy coronary artery was adopted for these purposes.
The vessel wall can be represented as an infinitely long cylindrical structure
with the inner and outer surfaces with the radii Rl and Rm, respectively. The
whole space between these two surfaces is filled with the randomly distributed
biological scatterers. An average radius of the scattering particle is ā. We are
interested in finding how much of the emitted intensity I0 is being scattered in
a small volume V inside the vessel wall. The volume contains n̄ · V scattering
particles, where n̄ the average number of scattering particles per unit volume.
As the volume of interest is located with the vessel wall, it is reasonable to adopt
plane-wave incidence and far-field observation model. For weakly scattering in
continuous, isotropic, random medium, the intensity 〈I〉 of the acoustic wave
reflected from an agglomeration of scatterers at R with respect to the intensity
I0 of the emitted wave is given by the following expression [9]:

〈I〉
I0

=
k4ā4n̄γ2

0

12
√

2πR2
e−k

2ā2/2 (1)

where k is the wavenumber; ā - the average size of the scatterer; γ2
0 - mean-

square variation in acoustic impedance per scatterer.
In order to derive the variation in the intensity of the reflected echo waves,

it is worth considering the following physical argument. The coronary artery is
modeled as an infinitely long cylinder. Any cross-section of the cylinder, as a
result of the compression in the radial direction, wants to push outwards in the
longitudinal direction as a consequence of Poisson effect. However, the neigh-
boring cross sections in the longitudinal direction are the subject to exactly
same behavior. The cumulative results from the infinity of interactions is that
neither of the cross-sections actually squish. Thus, it is reasonable to assume
that the total number of scatters, contained in the imaged cross-section, re-
mains the same. However, the scatter density changes in response to the radial
deformation of the vessel wall:

∆n = n̄pre 2 ·∆P (1 + ν)(1− 2ν)R2
l

E(R2
m −R2

l )
(2)

where n̄pre - the scatterer density in the pre-compressed state; 4P - the in-
traluminal pressure difference; E and ν are the Young’s modulus and Poisson
ratio of the vessel wall.

Provided that the parameters of the imaging system as well as the physical
properties of the scatterers remain the same, the redistribution of scatterers
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within the vessel wall (Eq. 2) is the primary cause for intensity variation (Eq. 1).
This variation can alternatively be formulated via the conservational laws of
continuum mechanics:

∂

∂t

∫

Ω

〈I〉(r, t)d2r +
∮

∂Ω

〈I〉(r, t)v · dτ = 0 (3)

where Ω - imaged region of interest;τ - differential normal element on ∂Ω; v -
vector velocity field, characterizing the scatterer redistribution or motion. The
temporal change in the backscattered intensity should match its flux through
the vessel wall boundaries ∂Ω. After applying the divergence theorem to the
second integral and taking into account the fact that the conservation equation
must hold for any arbitrary region within the vessel wall, one may obtain the
following equation:

∂〈I〉(r, t)
∂t

+∇〈I〉(r, t)v + 〈I〉(r, t)∇ · v = 0 (4)

The derived equation ties up the spatiotemporal changes in the average
backscattered intensity with the vector velocity field and its divergence. The
direct physical interpretation of Eq. 4 suggests that variation in the intensity
may occur due to spatial displacement of the region and the possible changes
in the scatterer density inside its boundaries. In the other words, the scattering
particles are susceptible to the divergence of the vector velocity field. Eq. 4 is
frequently referred to as the generalized motion constraint equation of dense
optical flow (OF) [10], with v denoting the optical flow vector field.

The OF equation uniquely defines a single component of the vector velocity
field. To resolve this ambiguity, Lucas and Kanade [11] (LK) assumed a certain
consistency in the local motion pattern and proposed to solve the OF equation
as a least-square minimization problem:

arg min
v

∑

r∈Ω
w2(r, t) [〈I〉t(r, t) +∇〈I〉(r, t)v + 〈I〉(r, t)∇ · v]2 (5)

where w(r, t) is a binary weighting function, assigning value 1 to all pixel in
the neighborhood, and 0 otherwise.

The evident advantage of the OF algorithm is that it can be readily adjusted
to incorporate more complex motion model and to suppress the negative influ-
ence of a high noise level. Indeed, one of the error sources in speckle tracking
with the OF algorithm is attributed to an inherently low signal-to-noise ratio,
causing spurious responses of the employed differential operators. To amend the
situation, a scale-space embedding of the OF equation was derived. It provides
a well-founded framework for robust computation of the image derivatives via
the convolution of the image with the precalculated multidimensional Gaussian
derivatives. The OF vector field in Eq. 5 describes a pure translational motion
of the small window. However, such a model is too restrictive to adequately
represent complex deformation of the vessel wall. Instead, the affine motion
model was considered. These two extensions yield the following minimization
problem:

arg min
v

∑
r∈Ω

w2(r) [ Lx(r)u− (σ2Lxx(r) + L(r))ux − σ2Lxy(r)uy+

Ly(r)v − σ2Lxy(r)vx − (σ2Lyy(r) + L(r))vy + Lt(r)
]2
(6)
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Fig. 1. The thin-cap fibroatheroma model (A) and a simulated ultrasound image (B),
corresponding to the diseased cross-section.

where L(·) = I∗G(·) designates a convolution of the original image with a Gaus-
sian kernel G or its spatial derivatives Gx, Gy, Gxx, Gxy, Gyy with the vari-
ance parameter σ, while Lt designates the difference between the post- and pre-
compressed frames for the convenience of the notations; v = (u, v, ux, uy, vx, vy)
are the components of the OF vector velocity field up to the first order with
(u, v) components describing the translation of the patch and (ux, uy, vx, vy) -
its eventual deformation.

3 Experiments and Results

3.1 Simulation Experiments

As it is mentioned above the intensity variation in ultrasound images can be at-
tributed to the redistribution of the scattering particles. The analytical expres-
sion for scatterer density changes (Eq. 2) was derived for a healthy cross-section
of the coronary artery with the homogeneous structure. However, a moderately
diseased artery has a fairly heterogeneous morphology. Unfortunately, there
exists no analytical solution to compute the scatterer redistribution in diseased
cross-sections of the coronary artery.

Nevertheless, the main principle of elastography [12] offers an intuitive ex-
planation why the concept of dense OF is suitable to characterize vessel wall
motion in general in-vivo applications. A higher rate of deformation for the
compliant (softer, lipid) tissue due to variation in the intraluminal pressure is
expected. Consequently, those regions of the atherosclerotic plaque would ex-
hibit a higher rate of intensity divergence and the integral brightness constancy
constraint holds. Contrarily, the stiffer (calcified) tissue would hardly change
its shape upon application of a quasi-static compression load and, therefore, the
classical pixel brightness constancy constraint is more appropriate. Thus, the
dense OF concept is generic enough to handle the heterogeneous atherosclerotic
plaques.

To validate this hypothesis we resorted to the numerical methods. A simple
model of thin-cap fibroatheroma was utilized (Fig. 1A) for these purposes. The
diseased cross-section was modeled as a cylindrical structure without compen-
sational remodeling. The radii of the luminal (internal) and medial (external)
vessel surfaces were equal to 1.4 mm and 2.5 mm, respectively. A plaque with
the lipid-rich content spanned angle between 6 and 10 o’clock as shown in
Fig. 1A. It was shielded from the luminal cavity by a thin fibrous cap with the
approximate thickness 70µm. Recent pathological findings have shown that
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Fig. 2. A comparative plots between the classical Lucas-Kanade and proposed dense
OF for the mean magnitude (%) and angular (◦) errors in speckle tracking for different
degrees of vessel wall rotation (horizontal axis).

this type of the atherosclerotic plaques is most vulnerable and a precursor for
the acute cardiac events in 60-75% of the cases [13].

The COMSOL Multiphysics finite element package (Burlington, MA, USA)
was utilized to compute the vessel wall deformation. The cross-sectional consti-
tutive behavior was modeled as linear elastic, isotropic, nearly incompressible,
plane-stress material. The assigned Young’s modulus values were equal to 16.8
kPa, 4.2 kPa and 4 MPa for the wall region, lipid pool area and fibrous cap,
respectively [14]. The pressure differential of 130Pa, which is typically observed
in the IVUS acquisitions with 30 frames per second acquisition rate, was ex-
erted in the luminal surface in the radial direction. To assure a unique finite
element solution the modeled cross-section was embedded into a soft cylinder
(Young’s modulus 0.01 Pa) with the internal and external radii of 2.5 mm and
3 mm, respectively. The outer boundary was fixed.

The IVUS images of the vascular cross-section were created using FIELD
II [15] package for simulation of the linear acoustic fields. The scatterers of
equal echogenicity were randomly positioned within the vessel. The density of
scattering particle depended on the region and amounted to 8000, 800 and
100 particles/mm3 for the fibrous cap, vessel wall and lipid, respectively. The
synthetic phased array with the imaging parameters of an industrially produced
IVUS catheter operated at the center frequency 20MHz with the sampling
frequency of 100 MHz [?]. The 64 transducer elements were evenly spaced
(0.56λ kerf) along the circumferential length of the probe (3F diameter). The
IVUS image was reconstructed along 256 evenly distributed beams. For each
beam the active aperture consisted of the nearest transducer element as well as 7
transducers located in the clockwise and counter-clockwise directions. Dynamic
focusing and Hanning apodization were applied to the active aperture during
transmission and reception. The simulated radio-frequency tracers were further
converted into the B-mode images in the Cartesian coordinate system (5 mm
x 5 mm; 5122 matrix).

In order to estimate accuracy of speckle tracking with dense OF two types
of images were utilized. A reference IVUS image was simulated in the pre-
compressed state of the vessel wall, while all moved images - in the post-
compressed state. The scatterers were displaced from their reference positions in
a realistic manner representative for vessel wall deformation, computed with the
COMSOL software package. Additionally the scatterers were rotated around
the catheter center. The degree of angular deviation ranged from 1◦ to 7◦ with
a 1◦ increment. The discrepancy between the reference and moved images was
eliminated with the classical LK and proposed dense OF algorithm.
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Fig. 3. The estimated amount of tissue rotation, predicted with the proposed OF
algorithm at the diastole. The thick line represents the mean tissue rotation, averaged
over 5 pullbacks.

Two different error measures, namely the absolute angular and relative
magnitude errors [16], have been employed for the validation purposes. The
first error is given by abs(arccos(dt,de)), where dt and de are the true and
estimated tissue displacements. It reflects the orientational discrepancy between
the OF and true vector fields. The second error equals to |dt−de|/|de| ∗ 100%
and represents displacement magnitude deviation. All quantitative results are
summarized in terms of the mean error values, averaged over the vessel wall
and shown in Fig. 2.

3.2 In-vivo Experiments

The data set for the in-vivo experiments comprises of five pullback acquisi-
tions from 4 patients. Each pullback contained approximately 3500 frames and
corresponded to a coronary length of roughly 58 mm. The ECG signal was
simultaneously recorded during IVUS acquisition. The number of images per
cycle varied between 25 and 30.

The acquired images were processed off-line. After automatic delineation of
the vessel boundaries, the computation of the OF field was performed over the
detected region. The OF displacement vectors were converted into the rota-
tional angles for each pixel of the vessel wall. Subsequently, the mean angular
deviation of the tissue was computed by averaging the estimated rotational
angles over the vessel wall.

To identify the contribution of the physiological factors to coronary artery
motion, the images were synchronized with the ECG recordings. The pullback
acquisition was regrouped into smaller parts, with each part representing only
a one cardiac phase. Consequently, each cardiac cycle was divided into 10 eq-
uitemporal fractions. The IVUS images were temporally sorted in accordance
with the phase of the cardiac cycle. In our experiment we considered only the
temporal fractions between the begin (30%) and end (100%) diastole in accor-
dance with the clinical protocol used in our establishment for the elastographic
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analysis of the coronary arteries. For each diastolic fraction the average an-
gle of tissue rotation was computed. The obtained values were averaged over
the entire pullbacks. The results of the in-vivo experiments are summarized in
Fig. 3, showing the plots of mean rotational tissue deviation during diastole for
all 5 pullbacks.

4 Discussion and Conclusions

This paper presents a novel scale-space dense OF algorithm for accurate quan-
tification of the tissue displacement induced by IVUS probe motion.

Using a simplified model of the coronary artery with the homogeneous mor-
phological structure a close-formed solution for intensity variation in IVUS im-
ages was derived. This variation was attributed to the redistribution of the
biological scatterers due to deformation of the vessel wall. However, the theo-
retical solution has a limited practical value, as it is only suitable for motion
tracking in the healthy cross-sections of an IVUS pullback. A mildly diseased
part of the coronary artery usually has a more complex heterogeneous mor-
phology.

Nonetheless, it was demonstrated that the concept of dense OF [10] provides
a suitable alternative for motion description in IVUS images of a deformed
coronary artery. Consequently, the flux of the biological scatterers through
the boundaries of the imaged region results in the amplitude variation of the
backscattered echo signals. This variation is highly dependent on the local ma-
terial properties of the vessel wall. As the soft lipid-rich regions undergo larger
deformation, the flux of scatterers and, thus, intensity variation are expected
to be larger. However, for the stiff calcified formation the flux of scatterers is
negligible and the classical intensity conservation constraint is applicable. The
aforementioned flux is nullified, when the difference in the intraluminal pres-
sure drops to zero (Eq. 2). In this case, OF equation reduces to the classical
LK formulation. Hence, dense OF properly models the intensity variation in
IVUS images.

The last hypothesis was also validated on the simulated IVUS images of a
diseased cross-section with a TCFA. The analysis of the mean errors (Fig. 2)
favorably agrees with the previous findings about the accuracy of tracking in
the tissue-mimicking phantoms [17]. The range of accurate prediction of tissue
rotation is limited to 5◦. Within this capture range, we observed that the
proposed method noticeably outperforms the LK algorithm in terms of the
average magnitude error, and is slightly better than the classical approach in
terms of the mean angular error.

The in-vivo experiments clearly emphasize the complexity of tissue motion
during diastole. A similar general trend in the average rotational tissue was
observed for all five pullbacks (Fig. 3). The amount of angular deviation in
coronary arteries amounted to 1.7◦ at end diastole and showed a definite grad-
uate rise to 2.6◦ at early diastole. Coronary vessel motion generally agrees with
the pattern of cardiac contraction. During the beginning of the diastole, the
heart undergoes the stage of rapid filling, while it exhibits static behavior during
end-diastole. The rate of rising varied from one patient to another, suggesting a
certain influence of the patient respiration on motion of the vascular structures.
However, we can conclude that the cardiac contraction dominates the respira-
tory motion. The similar results were observed by Shechter and et.al. [18], who
studied the influence of the physiological factors on the 3D displacement of the
coronary vessel tree with MRI.
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Abstract. We describe an approach for harmonic surface mapping of
blood vessel aneurysms into a topologically equivalent canonical space.
We use this approach to map and visualize local hemodynamic variables
associated with the surface of sidewall internal carotid artery aneurysms
(ICA) imaged by 3D X-ray angiography. These variables are derived
from steady-state computational fluid dynamic simulations. An invert-
ible harmonic map of the aneurysm surface onto the unit disc allows
visual inspection of the entire surface and associated quantities at once,
unobscured by shape irregularities. Results indicate that the developed
approach is close to being conformal, thereby preserving local shape.
This approach has applications in the generation of statistical atlases of
aneurysms and in quantitative group studies of aneurysm development,
growth, rupture, and treatment.

1 Introduction

An aneurysm is a localized disease of the wall of an artery, leading to its bulging
or dilatation. Aneurysms may occur at any location in the body, but are most
commonly associated with the aorta or blood vessels feeding the brain. Intracra-
nial aneurysms bear the medical risk of vessel rupture leading to intracranial
bleeding, which may cause irreparable neurological damage or fatality [1]. Two
approaches exist for the treatment of brain aneurysms. The endovascular ap-
proach is performed under fluoroscopic guidance and it involves the insertion of
wire coils or glue inside the aneurysm with the intention of forming a blood clot
that stops the blood flow into it. The second approach involves neurosurgical
clipping of the aneurysm at its neck.

While some aneurysms rupture quickly after their formation, others may re-
main without complications for many years. The risk of aneurysm rupture is
estimated to be between 0.5% and 2.5% per year [2]. The risks and costs asso-
ciated with aneurysm treatment, combined with the uncertainty of rupture has
created a large body of research efforts aiming to differentiate aneurysms that
carry a high risk of rupture from those with a low risk. Studies have revealed some
overall shape characteristics that affect the risk of rupture, including aneurysm
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size, shape, aspect ratio [3]. Other recent studies have implied a link between the
overall distribution of hemodynamic variables such as wall shear stress (WSS)
and the risk of rupture[4, 5]. However, since populations of ruptured and unrup-
tured aneurysms overlap under many of the metrics designed to assess the risk of
rupture, it is still not possible to estimate the risk of rupture of some aneurysms
with reasonable certainty. Large longitudinal and cross-sectional group studies
that could reveal possible links between the risk of rupture and the distribution
of local variables, such as WSS, are currently not possible due to the absence of
an approach for establishing correspondence across aneurysms in different pa-
tients and in the same patient at different points in time. The availability of such
a technique will enable the use of analysis methods that could unravel important
local factors affecting aneurysm rupture.

We describe an approach for generating bijective smooth maps of aneurysm
surfaces onto a common topologically equivalent canonical space. By solving a
pair of linearized harmonic equations via the finite element method, these invert-
ible maps are generated in a consistent manner across aneurysms. This approach
makes many useful analysis methodologies applicable to the study of aneurysms,
their formation, growth, and the risk of rupture. The theory behind the map-
ping approach is explained in Section 2. In Section 3, the use of this approach
is demonstrated for the mapping of sidewall intracranial aneurysms of the inter-
nal carotid artery (ICA) imaged by three-dimensional (3D) X-ray angiography.
The resulting mapping onto the unit disc makes it possible to visualize and in-
spect the whole aneurysm surface and associated Computational Fluid Dynamics
(CFD)-derived WSS at once, unobscured by surface irregularities. We show that
in reality, the resulting map is close to being conformal, thereby preserving the
local shape of the aneurysm surface during mapping. The presented preliminary
results also visually suggest the existence of differences in the configuration of
an area distortion measure between ruptured and unruptured aneurysms. In
Section 4, we discuss directions for future work.

2 Methods

2.1 Harmonic Mapping to the Unit Disc

In Fig.1, an illustration of the developed approach for aneurysm surface mapping
is provided. Assume that a representation of the aneurysm surface and the blood
vessels to which it is attached is available. This surface representation may,
for example, be obtained through segmentation of the vasculature from a 3D
angiographic medical image (e.g., X-ray or magnetic resonance angiography)
followed by isosurface extraction to produce a triangular surface mesh. Assume
that the surface of the aneurysm has been separated from the parent artery
after identification of the neck and performing mesh partitioning via a proper
method. Sidewall aneurysms originate from a diseased focal spot of the artery
wall and their surface may therefore be assumed topologically equivalent to the
unit disc. Therefore, the unit disc may be chosen as a canonical space for this
class of aneurysms.
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Fig. 1. Illustration of the mapping of sidewall ICA aneurysms to the unit disc. The
aneurysm neck is a closed topological circle and the most proximal neck point may be
found from the parent vessel’s orientation. Mesh partitioning separates the aneurysm
from its parent vessel at the neck. The function φ maps the aneurysm surface onto the
unit disc such that the most proximal point goes to θ = 0.

Let S ∈ R3 denote the surface of the aneurysm and assume that S is a smooth
genus 0 (with no holes or handles) orientable surface. Since S is topologically
equivalent to the unit disc D = {(u, v) : u2 + v2 ≤ 1}, its boundary B with total
length L is a topological circle. The goal of the surface mapping problem is to
find a smooth and bijective (therefore invertible) function ϕ : S → D such that B
is mapped to the unit circle. To specify the problem further, assume that point
A ∈ B must be mapped to the point (1, 0) and define lp as the distance along
B from A to any point p ∈ B traveling in the counterclockwise direction while
observing the outside surface of S. We choose point A to be the most proximal
point on the aneurysm neck. Defining ∆ as the Laplace-Beltrami operator on S,
a harmonic mapping ϕ = (u, v) is found by solving the Dirichlet problem [6, 7]:

∆u(p) = 0
∆v(p) = 0

}
p ∈ S\B (1)

u(p) = cos(2πlp/L)
v(p) = sin(2πlp/L)

}
p ∈ B (2)

The harmonic mapping ϕ is the minimizer of the Dirichlet functional [8]:

D(ϕ) ≡ 1
2

∫

S
(‖∇u‖2 + ‖∇v‖2)dS (3)

subject to the boundary conditions (2). Equation (3) implies that ϕ minimizes
the deformation induced by the mapping.

2.2 Finite Element Formulation

To obtain a discrete harmonic map ϕT over the triangular surface mesh ST

which is a discretization of S, we use linear finite element theory [8, 6]. Let BT
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be the boundary of ST . The minimization of the functional (3) over the set of
all piecewise linear functions on ST is achieved by the transformed mesh node
coordinates (UY , VY ), Y ∈ ST \BT satisfying the linear equations:

∑

Y ∈ST \BT
DXY UY = −∑

Y ∈BT DXY cos(2πlY /L) (4)

∑

Y ∈ST \BT
DXY VY = −∑

Y ∈BT DXY sin(2πlY /L) (5)

which can be written in matrix form as:

Du = bu and Dv = bv (6)

The elements DXY are easily computed from the geometry of ST as follows [6].
For each edge XY belonging to two triangles XY J and XY K, we have

DXY = −0.5(cot(∠J) + cot(∠K)) (7)

where ∠J is the angle at the vertex J in the triangle XY J and ∠K is the angle
at vertex K in the triangle XY K. If mesh nodes X and Y are not connected by
an edge then DXY = 0. The diagonal entries of D are computed as :

DXX = −
∑

Y 6=X

DXY (8)

Since the matrix D is positive definite, symmetric and sparse [8, 7], we use
the conjugate gradient method to compute the solutions u and v. Since ϕT

is harmonic and maps the boundary BT homeomorphically into a convex region
D ∈ R2, therefore, ϕ is bijective [8]. We note that a harmonic map need not
be conformal (preserve local angles) in general. However, the results provided
below, indicate that the deviation of this harmonic map from conformality is
small

3 Experiments and Results

We illustrate the utility of the mapping approach described above in the sur-
face flattening and visualization of CFD simulation results for sidewall ICA
aneurysms. The triangular surface meshes used for CFD simulations and for flat-
tening are based on 3D digital subtraction angiography (DSA) images (syngo
Inspace 3D, Siemens Healthcare, Forchheim, Germany) with a typical size of
512x512x400 and isotropic voxel size of 0.4mm. A subvolume region of interest
for CFD simulations is defined manually to include the aneurysm and the parent
vessel. The used image segmentation approach involves smoothing, thresholding,
connected component labeling, and hole filling in order to generate a segmented
object with a genus 0 surface. Steady-state (diastole) CFD simulations are car-
ried out and the resulting surface attached WSS is extracted. Details of the
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Fig. 2. Mapping an unruptured sidewall ICA aneurysm to the unit disc. Left to right:
volume rendered 3D DSA image of the artery and aneurysm; surface rendered image af-
ter CFD simulation showing wall pressure values; aneurysm surface with attached wall
pressure after neck identification and mesh partitioning; wall pressure values mapped
to the unit disc.

surface mesh generation approach and CFD simulations methods can be found
in [4, 5]. Mesh partitioning via a clip plane is used in order to separate the
aneurysm from the parent vessel. Point A, which is the most proximal point on
the aneurysm neck, is determined manually.

We evaluate the angle and area distortion introduced by the devised mapping
via the following measures. Let Aa be the total original aneurysm mesh surface
area and XY Z be a triangle in this mesh with area AXY Z before mapping and
area ÃXY Z after mapping. With the area of the unit disc equal to π, the area
distortion of XY Z may be defined as

dXY Z ≡ ÃXY Z

AXY Z
· Aa

π
(9)

At each mesh vertex X connected to M triangles in the original mesh, let
aXi, i = 1, .., M denote the ratio of the angle i to the sum of all angles around
X . Let the similar ratio for the mapped mesh be denoted by ãXi, i = 1, .., M .
The angle distortion error |ãXi−aXi|/aXi is averaged over all triangles attached
to X to produce a single value at X , and then the overall average for the whole
mesh is computed. Angle distortion errors computed over 15 aneurysms were
6.1% on average with a maximum of 10.6% and minimum of 2.8%. These results
indicate that the devised mapping is at least close to being quasi-conformal.
The FE implementation of the mapping typically takes one second or less on a
modern day computer (2.13 GHz Intel Pentium M, 2.0GB of RAM). The number
of nodes of the aneurysm surface meshes was 11192 on average.

In Fig.2, we demonstrate the approach via an example unruptured ICA
aneurysm. The mapping allows the visualization of the whole aneurysm sur-
face at once, thereby easily understanding the spatial variation of quantities,
such wall pressure. For dynamic CFD studies, our results indicate that it is sub-
stantially more easy to visually observe pattern changes over the whole surface
across time in a cine-type image over the unit disc.

In Fig. 3, we compare WSS patterns from two unruptured and two ruptured
aneurysms. These patterns agree with the conclusions drawn in [5]. Despite the
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Fig. 3. Mapping of two unruptured (left) and two ruptured (right) ICA aneurysms
to the unit disc. Top to bottom: WSS values for the ICA with attached aneurysms;
mapping of WSS onto the unit disc; area distortion for the mappings; parameterization
of the aneurysm surfaces via radial lines and circles of increasing diameters in the unit
disc.

absence of differences in the range of WSS between ruptured and unruptured
aneurysms, the distribution of the WSS seems to vary more rapidly over the unit
disc for ruptured aneurysms. These rapid changes seem to be related to shape
irregularities of ruptured aneurysms. From the flattened WSS maps, it is further
easy to conclude that the low WSS region occurs at the proximal aneurysm wall,
locates at the dome, or occupies most of the entire aneurysm; the high wall shear
stress region often, but not always, occurs at the distal part of the surface. In
the same figure, we show the area distortion due to the mapping. The results
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based on these limited samples, as well as others not shown here, indicate that
the distribution of the blue areas (dXY Z close to 0, or relative compression due
to mapping) is more eccentric and distal for ruptured ICA aneurysms than for
unruptured ones. The same observation of significant distortion off the center of
the disc is also evident through the parameterization of the aneurysm surface
according to the computed mapping.

4 Disucssion and Future Work

We presented an approach for generating smooth, invertible harmonic maps of
aneurysm surfaces onto a standardized canonical space. In the experiments pre-
sented above, we demonstrated the utility of the generated maps in the flattening
of saccular intracranial aneurysm surfaces to the unit disc, the unobscured vi-
sualization of CFD-derived variables such as wall pressure and WSS, and the
visualization of area distortion maps. The choice of the canonical space for the
mapping depends on the topology of the analyzed class of aneurysms. A fusiform
aneurysm involving the whole circumference of the artery is topologically equiv-
alent to a cylinder and therefore may be mapped to a sphere with two caps cut
off, or to the unit square after one surface cut parallel to the cylinder’s axis [6].

Beside aneurysm surface flattening and visualization, the presented approach
has many applications in the study of aneurysm formation, growth, and risk of
rupture. By bijectively mapping different aneurysms in a consistent way, corre-
spondence between points on the surfaces of these aneurysms may be established,
and surface-attached variables are transformed into a space where statistical
analysis can be performed. This allows the construction of statistical atlases that
link these surface attached variables (e.g., local curvature and WSS) to clinical
variables, such as the risk of rupture and treatment outcome. These statistical
atlases, when mapped to new patients, provide a wealth of information that
may help in clinical decision making [9]. Additionally, the inverse mapping from
a canonical space to an aneurysm provides a parameterization of the aneurysm
surface [8], thereby allowing the use of frequency and space-time analysis meth-
ods for the study of surface associated quantities affecting risk of rupture, such
as local curvature [10]. Furthermore, the properties of the mapping itself, such as
the transformation Jacobian, may act as a shape descriptor that will help under-
stand anatomical shape variability and differences between groups of ruptured
and unruptured aneurysms [11].

The presented approach relies on harmonic maps, which minimize shape dis-
tortion. For a non-closed surface, such as the surface of a saccular aneurysm
separated from the parent artery, harmonic maps are not conformal (angle-
preserving) in general [12]. However, the presented results indicate that the gen-
erated maps are close to being conformal and therefore, preserve the local shape.
To guarantee the generation of a conformal map (or quasi-conformal for a dis-
crete surface mesh), it is possible to use the approach described by Jin et al. [13]
for changing a topological disc into a topological sphere. Further future work
includes investigating robust approaches for the localization of the aneurysm
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neck, approaches for automatically identifying the most proximal point of this
neck, and investigating the sensitivity of the mapping to these approaches.
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Abstract. There is an increasing demand for the development of virtual
environments for training in vascular interventional radiological proce-
dures. This requires fast and precise segmentation of varied abdominal
structures from a wide range of image modalities. This paper presents
an efficient semi-automatic segmentation system which combines image
processing techniques and mathematical morphology operations to ob-
tain an initial segmentation close to the target structure shape. This
initial segmentation is then embedded into a level set function to ob-
tain a refined segmentation result. Minimal intervention is required in
comparison to other level set based approaches. The approach also dra-
matically decreases processing time and reduces the risks of leaking at
weak boundaries, without compromising the accuracy of the segmenta-
tion.

1 Introduction

Our work is part of the CRaIVE1 project to develop a physics based Virtual
Environment (VE) for training in vascular interventional radiological procedures.
It aims to provide an alternative to apprenticeship training using physical and
animal models where not only are the traditional physical models expensive,
but their fixed anatomy also constrains the training achievements where a wide
range of pathology is required to be presented to trainees.

Creating virtual humans for this task requires major abdominal structures to
be segmented with particular interest in those cases where typical symptoms are
presented. Currently, our data are collected from various hospitals and research
institutes in order to cover a large variety of cases. Consequently, the resource
images to be segmented vary greatly in quality, size and resolution and the
presented abdominal structures are typically significantly different from those
found in healthy cases.

A myriad of different segmentation methods have been proposed and imple-
mented in recent years. See [14][6][1] for recent reviews. Model-driven, knowledge
based image analysis is one of the techniques often used; this aims to describe
1 Collaborators in Radiological Interventional Virtual Environments,

http://www.craive.org.uk
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and capture a priori information regarding the shape, size and position of each
structure. Normally deformable models[4], statistical shape models[5] and proba-
bilistic atlases[9] are employed. The limitation of these approaches is the genera-
tion of a suitable template model which is able to capture both natural variations
and deformations caused by pathology. As our system needs to handle various
abnormalities, sometimes with extreme shape deformation, current model-driven
approaches are not well suited to our application.

In addition, the varied image modalities further limit the applications of pre-
vious segmentation techniques. For example, approaches based on the region
growing technique[11] or mathematical morphology operations[19] such as DTT
(Differential tip-hats) and conditional dilation etc., can provide good results on
contrast-enhanced images. However since these techniques are based on the im-
age intensity similarity, when adjacent neighbouring tissues have similar intensity
to the target structure, the region growing approach is easily over segmented,
while mathematical morphology operations could fail to divide the adjoining
tissues completely.

Approaches based on the level set method [13][2] have also been used suc-
cessfully for medical image segmentation. However, the problem of ”leaks” on
the boundary is still open to research. Pan and Dawant[10] propose to progres-
sively slow down the speed as the front passes over boundary points. They also
added a priori anatomical information to the accumulative speed function. Other
drawbacks include its sensitivity to positioning seeds in the volume data and the
non-trivial work of setting parameters according to the image modalities and ob-
ject structures[16]. Tools [7][18] have been developed to allow interactive editing
of level set models.

In this paper, we are interested in developing a general solution to recovering
abnormal structures in real time with minimal user interaction. In contrast to
previous work focusing on either specified image type, (e.g. CT or MR image[14])
or specified structures (e.g. liver or vascular segmentation[6][1]), the proposed
segmentation system must be able to cope with a wide variety of structure shapes
and image modalities. As automatic segmentations relying on the statistics of im-
age intensities, mean organ shape or position do not work effectively for our pur-
pose, we develop an efficient semi-automatic segmentation system. Fig.1 shows
the major components involved in our segmentation framework. Our approach
combines image processing techniques and mathematical morphology operations
to identify the tissue of interest and obtain an initial segmentation close to the
target structure shape. The initial segmentation is then refined using a level set
method, instead of growing a new segmentation from seed points as in previous
approaches. For many cases, this framework requires little pre-processing on its
input. Smoothing the input image is not usually required to produce reasonable
solutions, though it may still be warranted in some cases.

Although this is a semi-automatic system, the required external interventions
are limited to two interactive operations:
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* Definition of a range of intensity values that classify the tissue type of in-
terest, which is an alternative to automatic estimation based on intensity
distribution;

* A seed point is placed in a desired region as an input to a simple region
growing algorithm to provide the initialization for the level set approach.
This can greatly reduce the labour requirement of manual seed placement
used by other level set based approaches.

Unlike other level set based approaches, our system is not sensitive to the
parameter settings. Default parameters are applied without the need to tune on
a case by case basis. Furthermore, no information on general shape, location and
orientation of an anatomical structure of interest is required in our system.

Fig. 1. Work flow

2 Methodology

A large body of work has explored the level set method and its applications in
image segmentation[3][17]. Although the level-set technique is relatively insen-
sitive to initial conditions, a reasonable prior segmentation as the initialization
could 1) increase the chances of segmenting a complex object without missing
parts and 2) help to reduce the amount of time needed by the front to propa-
gate through a whole object and hence reduce the risk of leaks on the edges of
regions visited earlier. Many approaches place seeds and implement a fast march-
ing algorithm to grow the seeds as the initial segmentation which is the input of
level set method applied afterward. The disadvantage is the initial segmentation
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result is sensitive to the seed positions and seed numbers. For example, when
segmenting an elongated object, it is undesirable to place a single seed at one
extreme of the object since the front will need a long time to propagate to the
other end of the object. Obviously placing several seeds along the axis of the
object is probably the best strategy to ensure that the entire object is captured
early in the expansion of the front. However, this normally requires users with
sufficient anatomical knowledge and it is also a non trivial process.

To overcome those shortcomings, we propose an initialization method which
employs edge enhancement following by mathematical morphology operations to
ensure that the major object structures could be captured. This prior segmenta-
tion will then be embedded into the level set function for further refinement. As
the level set then starts from a close approximation to the actual structure shape,
this approach can improve the accuracy of results and dramatically decrease pro-
cessing time. Consequently, the risk of leaks which is common to previous level
set based approaches can be minimized.

In this section, our approach is demonstrated using an example of aorta
segmentation. The abdominal CT data set was collected at an in-plane resolution
of 0.84375mm by 0.84375mm with an inter-slice distance of 1mm. The data
dimensions are 512×512×401. No contrast was infused. The images show slices
through the point (284, 271, 203).

2.1 Segmentation Initialization

Edge enhancement Generally speaking, the first step in automatic segmen-
tation is region of interest (ROI) detection. A common approach is based on
statistical estimation of image intensity values that could classify the tissue type
of interest. Normally an assumption is made based on the intensity histogram
of the ROI[12]. Sometimes the anatomical structures have to be used as guid-
ance. For example, the liver is the biggest organ in the abdomen and adjacent to
the lung area which always appears as the darkest region. Obviously, when the
original images vary greatly in resolution and quality, and organ segmentation is
not limited to liver, relying on such estimations is not sufficient. Alternatively,
we provide interactive tools to explicitly define an interval [K1,K2], where the
intensity values of the tissue of interest lie. The same intensity interval [K1,K2]
is applied to calculate the feature image in section 2.2. Given an intensity range
[K1,K2], we have

I1(x) =
{
I0(x) if I0(x) ∈ [K1,K2];
0 else. (1)

The gradient magnitude of image I1 at each pixel is computed (fig.2b) and a
lower hysteresis threshold T is applied to the result to suppress spurious edges,
similar to that used in the Canny edge detection algorithm, as shown in fig.2c.
Currently, the threshold T is estimated using the histogram of the gradient
image. However, an interactive way to adapt the threshold value in real time
is also provided. The remaining edges are enhanced to the maximum intensity
value C of image I1. These can be briefly described as Equation 2:
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I ′1(x) =
{
C if ▽I1(x) > T ;
0 else. (2)

Next, image I ′1 is subtracted from the image I1. The resulting image I2 is
shown in fig.2d. The image I2 results in better performance than image I1 when
applying morphological operations to separate adjoining tissues, as discussed in
the following section. Fig.3 illustrates the differences.

I2(x) = I1(x) − I ′1(x) (3)

Fig. 2. Edge enhancement. (a) Original slice in sagittal view (image I1). The area inside
the rectangular box indicates the location of the abdominal aorta. (b) The gradient
magnitude of image I1 (only partial image I1, i.e. the area inside the rectangular box
of (a) is displayed). (c) Spurious edge suppression. (d) Image I2 after subtracting the
enhanced edge from image I1 (e) Feature map of image I0

Mathematical morphology scheme We apply morphological erosion fol-
lowed by interactive region growing algorithm to remove the areas that do not
belong to the target organ. The morphological erosion is defined as:

E(I2, B) = I2Θ(−B) =
⋂

β∈B

(I2 − β) (4)

B is the structure element, having: −B = {−β|β ∈ B}. By applying it to the
image I2, we can separate the adjoining tissues (as shown in fig.3).

Next, the object regions are extracted to provide an initial segmentation
to be embedded into the level set function. Although it may be possible to
automatically identify the target organ from a set of candidate regions using prior
knowledge of organ shape, for best efficiency and accuracy we simply provide a
user interface to guide the extraction. Starting from a user-supplied seed point
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Fig. 3. Applying morphological erosion on images with or without edge enhancement.
(a) Original slice in axial view (the square indicates the location of abdominal aorta).
(b) Result without edge enhancement. (c) Result with edge enhancement, where the
adjoining tissues have been correctly separated (indicated by the green color areas).

Fig. 4. Prior segmentation which is extracted from a set of candidate regions by placing
one seed inside the region representing the real abdominal aorta. Red indicates the
region of the prior segmentation. (a) original image in axial view. (b) original image in
sagittal view. (c) 3D view of the prior segmentation result.

or a seed region, the system implements a simplified region growing algorithm
based on connected-components to extract the target organ, as shown in fig.4.

The initial segmentation is further refined by a level set approach. Using
the property of keeping the evolution front smooth, this can reduce some of the
”leaking” that is common in connected-component schemes, e.g. applications
using region growing or morphology operations.

2.2 Level Set Initialisation

It is shown in section 2.1.2 that the initial segmentation is a good approxima-
tion of the actual organ shape. In this section, the accurate shape recovery is
implemented in a modified form of the basic level set equation developed in[8],
i.e.
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d

dt
ψ + αP | ▽ ψ| − βK| ▽ ψ| = 0 (5)

ψ(x, t) is the level set function. The evolution front is obtained by extracting
the zero level set i.e. ψ(x, t) = 0. We embed the initial segmentation as an initial
front of the function ψ at t = 0. The propagation term P from Equation 5 is
an image based force defined from the feature image g(I). In our framework,
we compute the feature image using a modified version of the region competi-
tion method by Zhu and Yuille[20], where the intensity values fall in the interval
[−1, 1]. Fig.2e displays the feature image, which is calculated according to Equa-
tion 6. The intensities of the feature image have been mapped into the interval
[0, 255].

g(I) = {Pobj(i)− Pback(i) i ∈ I } (6)

where Pobj(i) is the probability that a pixel in the image belongs to the
foreground; Pback(i) is the probability that the pixel belongs to the background.
The intensity ranges of the foreground and background have been defined in the
section 2.1.1 in an interactive way.

2.3 Level Set Evolution

Fig.5 shows some screen shots obtained at intermediate evolutions to demon-
strate the idea that our approach requires less iterations and can efficiently re-
duce the risk of leaking at weak boundaries. For comparison, we also segmented
the same dataset using SNAP2 where its evolution speed is calculated based on
the same feature map as ours (fig.2e). As with other level set based applications,
SNAP is sensitive to both the seed positions and seed numbers. Here, 27 seeds
have been placed evenly along the aorta carefully avoiding areas close to weak
edges (fig.5d). Other parameters required by SNAP were set to the same values
as ours if possible. For our approach, the segmentation is nearly complete at 60
iterations. At 115 iterations, the result has not changed significantly, nor have
any ”leaks” occurred in the result. In contrast, using SNAP the aorta shape has
only been roughly formed at 240 iterations, except the left common iliac (fig.5g).
At 520 iterations, the aorta segmentation is completed. However, ”leaking” has
occurred between the abdominal aorta and the spine, as shown in fig.5h.

3 Evaluation and Experimental Results

3.1 Example results

Besides the aorta segmentation demonstrated in section 2, we visualize other
segmentation results to illustrate that our method is a general approach for
2 SNAP is an application developed on the National Library of Medicine Insight Seg-

mentation and Registration Toolkit (ITK). http://www.itksnap.org or as part of
ITK from http://www.itk.org
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Fig. 5. Intermediate evolution results: comparison between our approach and SNAP.
(a)-(c) our approach, showing results of (a) initial segmentation (b) at 60 iterations (c)
at 115 iterations. (d)-(h) intermediate results from SNAP (d) initial segmentation by
placing 27 seeds evenly along the aorta (e) at 60 iterations (f) at 115 iterations (g) at
240 iterations (h) at 520 iterations.

abdominal structure segmentation on varied image modalities. The same proce-
dure and default parameters (as in section 2) were applied to obtain aorta, vein,
kidney and liver segmentations (fig.6). Fig.6a shows a result from a high resolu-
tion CTA image provided by St. Mary’s London Hospital and Imperial College
London. The result in Fig.6b is also from contrast enhanced CT, but at low
resolution (provided by St James’s University Hospital Leeds). Fig.6c shows the
segmentation from a CT image provided by Royal Liverpool University Hospital
with no contrast infused. This is a typical case of right renal obstruction used in
a VE for performing nephrostomy. Fig.6d is from an MR renal donor angiogram
image with contrast infused, provided by Royal Liverpool University Hospital,
which is used to construct a VE of renal collecting system.

The successful segmentation demonstrates the wide applicability of the work.
Current tests demonstrate that other image modalities such as CT, MR and
Angiogram images etc. could be suitable to segment abdominal structures and
create the virtual environments. The approach is however unlikely to be success-
ful for modalities with very poor SNR such as Ultrasound. As CT images are
our major resource for creating virtual human anatomy, the evaluations in the
following section focus on CTA image segmentation.

3.2 Evaluation of accuracy

We evaluated our method on 17 cases where the manual segmentation results
were provided by Imperial College London. All cases are contrast enhanced im-
ages (CTA) of high resolution (provided by St. Mary’s London Hospital). The
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Fig. 6. Abdominal structure segmentations. (a) 275th slice (sagittal view) in image
of dimension 512 × 512 × 615. (b) 117th slice (sagittal view) in image of dimension
230× 200× 346. (c) 284th slice (sagittal view) in image of dimension 512× 512× 423.
(d) 39th slice (coronal view) in image of dimension 384 × 384× 65.

segmentation results include ascending aorta, arch of the aorta, brachiocephalic
arteries, common carotids, subclavian arteries, descending aorta, celiac artery,
superior mesenteric artery, renal artery, common iliac arteries, external lilac ar-
teries, internal iliac arteries and common femoral arteries. Table 1 lists some
representative comparison results. The numeric evaluation is based on the mea-
surement of volume overlapping rate[15] and voxel distance. Manual segmenta-
tion results are taken as reference models.

TPVF denotes the fraction of the total amount of tissue in reference model
with which our result overlaps. The relatively low volume overlap rate is caused
by the inconsistent segmentation along the aorta medial axis when it is per-
formed by different observers. The main differences between our result and the
manual segmentation are at the common carotids, subclavian arteries and renal
artery (as shown in fig.7c). Although there is a basic segmentation guidance on
which part of the aorta should be segmented, it is impossible to define case by
case on how far those branches should be presented in the segmentation result.
Fig.7 visualizes the differences using the case of STM002, where the blue de-
picts those voxels which are missed by our method but included by the manual
segmentation (mainly at common carotids, subclavian arteries and ascending
aorta); the yellow illustrates voxels which are missed by the manual segmen-
tation but correctly identified by our method (mainly at the renal artery and
external iliac arteries). Here, red indicates voxels of being segmented by both
methods. When results are evaluated explicitly on the specified areas which are
common to both methods, the performance improves significantly, as shown in
Table 2. The datasets STM002 and STM010 are taken as examples, as they
currently have the worst performances.
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Table 1. Evaluation results

Dataset FNVF FPVF TPVF Max.
Positive
Dist.[mm]

Max.
Negative
Dist.[mm]

Ave.
Positive
Dist.[mm]

Ave.
Negative
Dist.[mm]

STM002 0.1764 0.1329 0.8236 35.15 25.48 2.91 2.31

STM003 0.1016 0.0286 0.8984 32.81 21.09 2.72 2.07

STM004 0.1083 0.0706 0.8917 20.26 10.91 2.56 2.04

STM005 0.1575 0.0389 0.8425 26.62 12.85 2.79 2.40

STM006 0.1636 0.0824 0.8364 27.25 17.03 2.58 2.37

STM007 0.1511 0.0789 0.8489 31.38 23.77 3.11 2.35

STM008 0.1368 0.0567 0.8632 36.70 24.75 3.02 2.28

STM009 0.1371 0.0367 0.8629 30.69 12.27 2.43 2.69

STM010 0.2469 0.0638 0.7530 28.94 26.66 2.33 2.30

STM011 0.0814 0.0577 0.9186 16.60 16.60 2.57 2.87

STM012 0.0552 0.1246 0.9448 20.39 21.28 2.47 2.45

STM013 0.0843 0.0732 0.9157 40.62 14.06 2.24 2.08

Table 2. Performance evaluation is carried out explicitly on the specified areas

Dataset FNVF FPVF TPVF

STM002 0.0434 0.1002 0.9566

STM010 0.0551 0.0414 0.9449

The segmentation resolution can also cause differences between two methods.
This can be seen in fig.7, where the descending aorta has been amplified and
displayed at the right corner of (a) and (b), respectively. As shown in fig.7a,
being done slice by slice on DICOM data, the manual segmentation normally
has aliasing artefacts in the result. On the contrary, our method refines the
segmentation using the level set, which helps to smooth the blood vessel wall,
as shown in fig.7b.

3.3 Evaluation of efficiency

The practical viability should also be considered when evaluating a semi-automatic
segmentation method. The computational time and the human operator time re-
quired to complete segmentation can be used to characterize the efficiency of a
segmentation method.

Our system includes computing the image gradient and the level set task
for which the computational time increases significantly when image resolution
and data size increases. The datasets in table 1 have also been used to test the
efficiency of our system. From the data we currently have, they represent the
largest volume size and the highest resolution. The data resolutions range from
0.779297mm×0.779297mm×1mm to 0.951172mm×0.951172mm×1mm. The
data dimensions vary from 512 × 512 × 554 to 512 × 512 × 659. All 17 cases
are contrast-enhanced CTA. Because of the simplicity of the user interactions in
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Fig. 7. Visualization of the differences between our result and the manual segmentation
result on case STM002. (a) Manual segmentation result. (b) Our segmentation result.
(c) Visualization of differences.

our system, the human operation time is negligible compared to the computa-
tional time of the image processing and level set tasks, so we do not time them
separately. The evaluation is carried on a PC with a Core2 CPU at 2.66GHz.
The average segmentation time is 5 minutes to obtain the segmentation accu-
racy shown in table 1. In contrast, for another semi-automatic level set based
approach (SNAP), a minimum of 2 hours is needed for the same dataset, where
the segmentations were completed by an experienced medical student. No exact
operation time has been given for the manual segmentation.

4 Conclusion and Future Work

One of our primary motivations in developing this framework is to achieve both
greater efficiency and accuracy in segmentation on a variety of image modalities
and for a variety of structures. Our approach combines image processing tech-
niques and mathematical morphology operations to identify the tissue of interest
and obtain an initial segmentation close to the target structure shape. The initial
segmentation is automatically embedded into the level set function to obtain a re-
fined segmentation result. Note that only minor intervention is required to set up
individual computations. Traditional seed positioning is replaced by seed fronts
representing a good approximation to the original structures. Consequently only
50 to 70 iterations are needed to propagate to the structure boundaries. This dra-
matically decreases processing time and reduces the risks of leaking at the weak
boundaries, without compromising the accuracy of segmentation. Currently, the
default parameters used by our system work well in a variety of image modali-
ties, such that adjustment of these parameters for each case which is common in
other level set based methods tends not to be necessary. The evaluation will be
extended to other image modalities as manual segmentations become available.
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Abstract. Atherosclerotic plaques and their rupture cause narrowing or blockage
of the coronary arteries and may lead to sudden cardiac death. As a remedy, after
a coronary angioplasty, often a stent is implanted to prevent restenosis. Although
it was observed that drug-eluting stents can significantly reduce the occurrence of
neointimal hyperplasia, in-stent restenosis still occurs, therefore, studying the dis-
tribution of the stent struts during patient follow-ups is important. In this paper, we
will present new computer methods for automated analysis of strut distribution in
monitoring the restenosis and degree of neointimal tissue growth over struts from
the intravascular optical coherence tomography data. Our system will be a useful
computer-aided monitoring tool for follow-up studies of stent implantation in the
clinical workflow.

1 Introduction

Coronary artery diseases such as atherosclerosis are the leading cause of death in the in-
dustrialized world. Medical imaging techniques have greatly assisted the diagnoses and
treatments for coronary artery diseases. These imaging approaches include coronary X-
ray angiography, computed tomography angiography (CTA), magnetic resonance angiog-
raphy (MRA), intravascular ultrasound (IVUS), and optical coherence tomography (OCT).
Among them, CTA and MRA are non-invasive imaging modalities, but the low resolution
has limited their ability to resolve different constituents of atherosclerotic plaques. IVUS
and intravascular OCT, however, are able to achieve much higher resolution than CTA and
MRA by performing invasive catheterization on patients. OCT is a relatively new imaging
technique that is analogous to ultrasound, but it measures the intensity of back-reflected
infrared light instead of acoustical waves [1]. OCT has shown promise as a method for
intravascular imaging, and was compared to IVUS in several works [2, 3]. The biggest ad-
vantage of OCT is its high resolution. Both in vitro and in vivo studies [2, 4] have shown
that the resolution (on the order of 10 µm) can not only differentiate between typical con-
stituents of atherosclerotic plaques, such as lipid, calcium, and fibrous tissue, but can also
resolve the thin fibrous cap that is thought to be responsible for plaque vulnerability[5].
Atherosclerotic plaques may cause narrowing or blockage of the coronary arteries, result-
ing in reduced blood supply to the heart tissue, and sometimes lead to serious results such
as heart attacks. To open a blockage, the procedure of percutaneous transluminal coronary
angioplasty (PTCA) is usually applied, and a stent is often implanted after angioplasty
to keep the artery open and prevent restenosis (regrowth of the plaque). Stents are small
metal scaffolds either made from bare metal or coated with drug to inhibit restenosis. The
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former are known as bare-metal stent (BMS) and the latter are known as drug eluting
stents (DES). It was observed that drug-eluting stents can significantly reduce the occur-
rence of neointimal hyperplasia (NIH) [6]. However, in-stent restenosis after drug-eluting
stents implantation still occurs[7]. Studies have shown that nonuniform circumferential
stent strut distribution affects local drug concentration [8], thus the number and distribu-
tion of the stent struts might also affect the magnitude of NIH after stent implantation in
human coronary arteries [9]. Therefore, automatic computer methods for analysis of strut
distribution in monitoring the restenosis and degree of neointimal tissue growth over struts
will help the clinical workflow and increase efficiency of stent implant follow-ups.

Previous studies on stent strut distribution, mentioned above, performed manual detec-
tion and measurement of the stent struts, and require enormous amount of time to process
OCT pullbacks. An automatic stent detection method in [10] was developed by using
brightness pattern in IVUS images. In this paper, we present a novel automated method
for analysis of strut distribution during stent implant follow-up in patients from the OCT
pullback datasets, which exhibit different characteristics than IVUS data. We developed a
new spline contour evolution for delineating both the lumen boundary and the struts in the
case of neointimal hyperplasia. We then describe an algorithm for detecting stent struts in
a series of OCT images. In our developed computer application, for clinical use purposes,
we also incorporated interactive features for correcting the splines and marking struts if
necessary. Section 2 explains the steps and details of our algorithm, Section 3 presents the
validation results and experiments, and Section 4 concludes with discussions.

2 Method
In this section, we explain our method for stent detection and analysis in OCT pullbacks.
The raw image data format is in the rectangular domain as shown in Figure 1.a, and we de-
veloped our method completely using the native image data rather than the scan-converted
polar image in Figure 1.b.4

2.1 Preprocessing the OCT pullbacks

Catheter artifacts, which form ring-like shadows around the catheter center in the image
interferes with the image processing operations such as computation of image gradients,
therefore, a prefiltering of the image is usually required.

We observe that in OCT pullbacks, the arterial wall and stent struts fall into the brighter
intensity range, which hence contains the useful target information for our purposes. As a
preprocessing step, we carry out a histogram based filtering approach to exploit this char-
acter of the OCT image. The density for image intensities, call p(i), is estimated through a
histogram, and typically, a unimodal distribution with a heavy tail towards the bright inten-
sity side is obtained (Figure 1.c). The most likely value of p(i), i.e. its mode, is computed.
To eliminate the noise from the lower intensities, and concentrate on the brighter side of
the density values on the right side of the mode, a certain percentage, say b, of the mode is
computed, and all those intensities below that value is annihilated to 0 (Figure 1.f). After
this step, a Gaussian filter with a variance of σ = 2.5 was applied and a morphological
opening operation was performed to remove the remaining isolated bright pixels in dark

4 Note that in the intravascular image processing community, the terms polar and rectangular image
are used interchangeably. We call the display image (circular) as the polar image and the raw
image as the rectangular image as recommended by the cardiologist imaging expert in the team.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) raw image (rectangular domain); (b) display image (polar domain); (c) Density estimate of
the image (a); (d) rectangular image after filtering (a); (e) display image of (d); (f) Density estimate
of the image (d).

regions. The result of the overall pre-filtering operation is shown in Figure 1.d-e. The pre-
filtered image will be utilized next in the spline contour propagation step, which will be
followed by the strut detection.

2.2 Spline Segmentation for Lumen and Stent

The lumen boundary is represented by a deformable spline contour and will be propagated
with ordinary differential equations, which will be derived for its evolution. Deformable
models or active contours [11] have proven to be versatile models in segmentation of
various anatomic structures such as vessel borders [12].

First, as required in most active contour methods, a good initialization is preferable for
the success of the active contour method. For that purpose, we will detect the arterial wall
that appears as a wide bright 1-dimensional (1D) blob from the near field towards the far
field of the catheter.

Spline Initialization: We developed an algorithm for initializing our spline control points
on a pullback image frame as follows:

1. Shoot rays from the center of the image, i.e. take a row, say row y, of the rectangular
image, apply a closing operation (dilate and erode) to smooth and fill small gaps in
order for the 1D signal I(x) where x ∈ [0, N ] to become differentiable. This operation
is done on every other kth row (e.g. 6th) to initialize a certain variable number of
control points of the spline so that enough variability of the lumen contour will be
captured.

2. Detect the following over each 1D signal:

(I(x1) = 0)&
(
dI(x1)
dx

> 0
)

(1)

then (
dI(x2)
dx

< 0
)

& (I(x2 + 1) = 0) (2)

These rules lead to detection of the bright intensity peaks.
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3. Over the detected intervals h = x2 − x1, find the maximum width h.
4. If h < ”minimum width threshold”, go to the next selected row signal, i.e. go to step

1.
5. If a maximum h is found, detect the beginning of that interval, i.e. x1. Record x1 as

the control point.
6. Repeat 1-5 until all rows of the rectangular image is processed.
7. The spline now can be initialized at the control point set (x1, y) collected via the above

algorithm.

Spline Evolution: We utilized a cubic spline, with four polynomial blending functions.
The initial spline obtained from our method above is usually very close to the lumen
border, and is only supposed to evolve a few pixels for a refinement. We utilize a geodesic
active contour energy functional [13, 14]:

E(C ) = w1 · image term + w2 · smoothness term = w1

∫

C
Fds+ w2

∫

C
ds (3)

where w1, w2 are the weights of the data term and the smoothness term on the contour,
and F = g(|∇I|), where g is a monotonically decreasing function inversely proportional
to the image gradient: g = 1/(1 + |∇I|).

In an earlier similar spline-based active contour work [15], uniform rational B-splines
[16] were utilized. Here, the lumen contour is represented with a Catmull-Rom spline,
which belong to a family of cubic interpolating splines, [17] with four cubic polynomials
functions: h00(t) = 2t3 − 3t2 + 1, h10(t) = t3 − 2t2 + t, h01(t) = −2t3 + 3t2, and
h11(t) = t3 − t2, where t ∈ (0, 1) for each interval, i.e. between two control points. One
difference of Catmull-Rom splines from B-splines is that the interpolated contour goes
exactly through the control points since the segments are formed using the two end points
Pj and Pj+1 and their tangents Tj and Tj+1:

C j(t) = h00(t)P j + h01(t)P j+1 + h10(t)T j + h11(t)T j+1, j = 1...K (4)

The contour C will be a concatenation of the segments Cj . Note that the control points
Pj and segments Cj have the same index for a clockwise transversal of the spline, and
very close control points will be deleted for regularity of the contour. The tangent vectors
are formed by the simple three point differences:

T j =
(P j+1 − P j) ∗ 0.5
|(P j+1 − P j)|

+
(P j − P j−1) ∗ 0.5
|(P j − P j−1)|

(5)

for internal points j = 2, ...,K − 1, and one-sided differences are used at the endpoints
of the control point set. One nice property of the Catmull-Rom spline is its practicality
for interaction purposes because when the user clicks to draw or correct spline points, the
constructed contour goes through the exact points, which the user marks.

We propose a new modified spline evolution, in which the control points of the spline
will be evolved by integrating image energy terms from its two adjacent segments. The
differential equation for the control points, i.e. the motion equation of the spline, are thus
obtained as:

∂Pj

∂t
=
∫

Cj

(w1Fκ+ w2κ) Njds+
∫

Cj−1

(w1Fκ+ w2κ) Nj−1ds−w1

(∫

Cj

∇Fn +
∫

Cj−1

∇Fn

)

(6)
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(a) (b) (c) (d)

Fig. 2. (a) and (c) OCT images without splines; (b) and (d) with splines deformed to fit to the lumen
border.

where κ is the curvature on the spline segment, and Nj is the unit normal vector over the
segment Cj , which is the next segment and Cj−1 is the previous segment for the control
point Pj . The last two terms include the normal component: ∇Fn = (∇F · N )N .
Geodesic active contours have a well-known drawback as being too local during contour
evolution since they depend on pointwise image gradients. With Eq (6), this problem is
alleviated by the both the semi-globalization and the smoothing effect provided by inte-
gration of the image terms on two adjacent spline segments of the current control point.

In summary, Eq (6) updates the control points Pj , and hence the contour C is updated
to deform towards the lumen border in a smooth geometry as shown in sample results in
Figure 2.

Three situations require attention during processing OCT pullbacks for stent implant
follow-up: newly implanted stent case; minimum neointimal hyperplasia case such as a
follow-up of a DES; and more important NIH or instent restenosis cases, which all present
different challenges to the algorithm.

Newly Implanted Stent case: This is the situation with a stent freshly implanted into the
artery, hence the vessel wall tissue did not have the chance to grow over the struts yet. The
struts shadows are usually visible as in Figure 2. The first spline contour estimated using
the update equation Eq (6) is used in strut detection which will be explained in the next
section.

Minimum and Important Neointimal Hyperplasia Cases: In the follow-up studies of
stent implantation, the stent struts are usually not directly in contact with the blood pool.
Instead, there is an extra layer of neointimal hyperplasia (NIH). Figure 3 depicts a case
with minimal NIH development (a) and a case with more prolific development of NIH
(c). For a strut detection using our method (next subsection) on the images with NIH, the
results would not be satisfying because the lumen spline segmentation result is far away
from the actual stent boundary. The spline contour estimated using the update equation
Eq (6) is used as the first spline, and a second one is initialized as a dilated version of
the first one over the artery wall. Then, Eq (6) is used for the second spline as well over
smoothed image intensities. This second spline then gets stuck at the bright strut edges,
and will be used in the strut detection that will be explained in the next section. Fig. 3(b)
and (d) show the two spline contours on the OCT images with NIH.

2.3 Stent Strut Detection

Looking at a typical OCT frame with stents (Figure 4-a), it is easy to observe that stent
struts usually block the penetration of the infrared light and leave a dark shadow in the
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(a) (b) (c) (d)

Fig. 3. (a) an OCT image frame with minimum NIH; (b) Spline is deformed over the image (a) to fit
to the strut boundary; (c) an OCT image frame with extreme NIH; (d) Spline is deformed the over
image (c) to fit to the strut boundary.

far field of the image domain. We developed a stent strut detection algorithm based on
the shadows by shooting imaginary rays from the center of the catheter to imitate the real
light beams. Traversing the rows of the rectangular OCT image data, and starting from the
spline contour C on each row, we sample the intensity profile towards the far field to form
the energy:

E(y) =
∫ C (y,x+r)

C (y,x)

I(x)dx

This forms a vector of estimated energies in the vicinity of the lumen contour in its normal
direction, which coincides with the infrared beam direction. Here, r, which is the extent
of the energy interval, is a certain percentage set intuitively and heuristically, e.g. 10% of
the range size M (column size) of the rectangular image.

Next, to detect possible shadows of struts, using the normal energy, the contour is
traversed tangentially. The energy E(y)’s are differentiated to detect the start and end of
the strut shadows. Hence, the following rules are obtained:

Strut = { strut shadow start if ∇E−(y) < S%
strut shadow end if ∇E+(y) < S% (7)

where the ∇− and ∇+ indicate discrete approximations to one-sided derivatives of E on
each side of the current coordinate y, normalized to (0,1), and S is a percentage that
signifies the drop in the energy of the intensity, hence the strut shadow. The parameter S
was set to 80%.

Even if the struts are narrow and have vague trailing shadows, our strategy of traversing
the image both in radial and tangential vessel wall direction and integrating the intensities
helps improve the robustness. Our shadow detection algorithm works for most cases when
there are reasonably defined trailing shadows of struts, as shown in Figure 4. In the figures,
the circles depict the struts that are detected by our algorithm with their radii indicating
the width of the shadow, hence an approximation to the strut width. As can be seen from
images in (c)-(f), starting from the second spline contour, our algorithm is able to detect
struts in the more challenging NIH imaging scenarios as well.

Sew-up stitch problem in the Pullbacks: A typical artifact, called as the sew-up stitch,
is observed in Figure 5.a at 8 o’clock. During a pullback operation, the catheter is moving
while sending the light beam sideways to image the vessel wall. As the full 360o rotation

40



(a) (c) (e)

(b) (d) (f)

Fig. 4. (a) an OCT image frame with newly implanted stents; (b) detected struts ; (c) image with
minimum NIH case; (d) detected struts over the second spline; (e) image with extreme NIH case; (f)
detected struts over the second spline.

(a) (b)

Fig. 5. (a) an OCT image frame with sew-up stitching problem; (b) Detected and marked with a red
circle.

is completed for recording one cross-section image, the catheter has already advanced
slightly in physical space in 1/15th of a second during a catheter pullback at 1mm/s,
therefore, the 0o and 360o beams do not end up at the same position, and the sew-up
stitches appear as easily observed as a seaming artifact in the display image. Our strut
detection method will sometimes label these artifacts as struts when they leave shadow-
like trails. Therefore, we detect this situation by computing the tangent of the spline on
the rectangular image, and the persistence of the orientation of the tangent vector to stay
roughly horizontal (i.e. ±10o) for a few positions on the contour. Figure 5.b shows an
example detection of the stitch region and it is marked with a red circle and later removed
from the strut list.

3 Results

Our data set consisted of 20 in vivo OCT pullbacks of each several hundred image frames,
with raw rectangular image size of N ×M = 200 × 700. The pullback images were ac-
quired with a LightLab OCT transducer and the pullback speed was 1mm/s with an axial
resolution of 12 microns. Parameters in our algorithm are fixed as follows. The density
mode parameter b in the prefiltering step, is set to 15%. The ”minimum width threshold”
in the spline initialization step is set to 20% of the rectangular image column M . For the
spline motion equation Eq 6, the weight w1 = 1, and w2 = 0.1. Our method is robust
against the parameter set, and once set, they were not changed during the experiments.
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Our algorithm works in near real time, which takes less than 1 second to complete the
spline segmentation and strut detection, therefore can be used interactively online.

For our validation studies, we compared manual strut detection with automatic detec-
tion over a set of images. The expert interventional cardiologist in our team, went through
7 of the OCT pullbacks and tested our method over a total of 33 images. Among these
seven pullbacks, three of them had newly implanted stents, three had minimum NIH in
the stents (DES), and one had much more NIH (BMS) over stents. For the assessment of

Cases % correctly detected number of struts Max Angle btw struts Stent Eccentricity
New Implant 0.86 ± 0.12 59.6 ± 15.4 0.73 ± 0.08
NIH Cases 0.86 ± 0.09 77.5 ± 21.3 0.67 ± 0.11
All cases 0.86 ± 0.10 71.3 ± 21.1 0.69 ± 0.10

Table 1. Validation Studies: Normalized number of detected struts, maximum angle between struts,
stent eccentricity are calculated over our dataset with newly implanted stent cases and neointimal
tissue growth cases.

strut distribution, on each image frame, we measure the total number of detected struts, the
strut eccentricity, and the maximum angle between the struts as shown in Table 1 as the
mean±standard deviation values. The percentage of correctly detected struts is calculated
over each image as 1 − normalized error where the normalized error is defined as the ab-
solute difference between the number of struts marked by the physician and the number of
struts detected by our algorithm, which is later normalized by the physician marked strut
count. In these first set of validation studies, our algorithm achieved a reasonably good
accuracy in detection, which is around 86%.

One interesting parameter to assess is the maximum angle between struts in a frame.
Looking from a circular distribution point of view, if one half of the stent circumference
has less struts than the other, this may be an indicator for less drug presence hence more
NIH on that side of the vessel wall.

Another measure we calculated is the stent eccentricity, defined as the minimum di-
vided by the maximum stent diameter calculated by our algorithm. This is another indica-
tor for malpositioning of the stent as can be observed in the last column of Table 1 farther
away from 1, the ideal eccentricity.

Finally, the computer application we have developed is aimed at clinical use, there-
fore, we have included interaction components such as possibility of correcting the spline
contours, and marking the struts that are misdetected. To distinguish between the different
phases after stent implant, mode of operation is easily chosen to indicate that the OCT
pullback has a newly implanted stent or an NIH case, so that in the latter case a second
spline contour can be estimated or drawn by the user.

4 Conclusions and Discussions

We presented novel computational methods for automatic stent implant follow-up from
OCT pullbacks. We developed a new spline-based segmentation method for both the lu-
men boundary and stent strut boundaries. Following that, we described a strut detection
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algorithm by detecting their trailing shadows in the OCT images, which is to the best of
our knowledge new in the computational medical imaging. In the end, a strut distribution
analysis is carried out and a number of measures important for stent implant follow-up and
monitoring of the neointimal tissue growth over struts are calculated. Our experimental re-
sults demonstrated that our algorithm works well on the segmentation of target boundaries
in OCT images, and detected stent struts and their trailing shadows in presence. In most
cases, the shadow that corresponds to a stent strut is visible and detectable, but sometimes
there are struts whose trailing shadows are not visible. Our ongoing work to improve our
method includes a second pass to follow the contour and detect the visible bright struts,
which were missed with the shadow detection only.

Our results and initial validation tests are very promising, however, further extensive
validation studies will be performed to test and improve our stent follow-up analysis sys-
tem. Our algorithm provides a convenient tool that automatically detects and analyzes the
distribution of stent struts, thus reduces a lot of manual work that is associated with this
task and thus will be a useful computer-aided monitoring tool in the procedure of stent
implantation and its follow-up studies.
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Abstract. Accurate quantification of coronary artery calcium provides
an opportunity to assess the extent of atherosclerosis disease. Coronary
calcification burden has been reported to be associated with cardiovascu-
lar risk. Currently, an observer has to identify the coronary calcifications
among a set of candidate regions that are obtained by thresholding and
connected component labeling. To relieve the observer of such a labor-
intensive task, an automated tool is desired that can detect and quan-
tify the coronary calcifications. However, the diverse and heterogeneous
nature of the candidate regions poses a significant challenge to the ac-
curate detection of coronary calcifications. In this paper, we investigate
a supervised hierarchical classification-based approach to distinguish the
coronary calcifications from all the candidate regions. At each level of
the hierarchy we learn an ensemble of classifiers where each classifier is a
cost-sensitive learner trained on a distinct asymmetrically sampled data
subset. Our method attained the accuracy, sensitivity, and specificity of
97.95%, 90.76%, and 98.35%, respectively, on a dataset of electron beam
computed tomography scans from 205 subjects.

1 Introduction

Coronary artery calcium (CAC) burden as measured by non-contrast computed
tomography (CT) is a significant and independent predictor of the atherosclero-
sis disease, and is associated with future cardiac events [1]. Therefore, accurate
identification and quantification of the CAC may allow diagnosis and monitoring
of progression of the atherosclerosis. The calcifications are highly dense regions
compared to other soft tissues and, hence, they appear as bright structures in
the CT scans. The coronary calcifications are located in the three main coronary
arteries and their sub-branches - the left main/left anterior descending artery
(LM/LAD), the left circumflex (LCX), and the right coronary artery (RCA) -
that cover different portions of the heart surface area. The clinical standard to
detect the coronary calcifications is to apply a connected component labeling
method using a threshold of 130 Hounsfield units (HU) and a minimum size
constraint of four pixels. The thresholding also results in candidate regions from
non-coronary calcifications, noise artifacts, and metal implants. Figure 1 shows
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Fig. 1. CT image of a heart depicting typical candidate regions from the positive and
the negative class - coronary calcifications in LAD (A), RCA (B), aorta (C), and image
noise (D,E).

the typical candidate regions for the coronary and the aortic calcifications as
well as the image noise. The coronary calcifications are then identified manually
from all the candidate regions. However, manual annotation is a labor inten-
sive and time-consuming task, especially for longitudinal studies and large-scale
screening. Hence, automated computational methods for detecting the coronary
calcification are desired to ease the manual burden as well as to provide means
to investigate possible improvements in cardiovascular risk assessment.
Related Work: Surprisingly little work has been performed towards the detec-
tion of the coronary calcifications from the non-contrast CT scans. To the best
of our knowledge, Ukai et al. [2, 3] first proposed a method for coronary calcifica-
tion detection using some diagnostic rules, and later improved their method by
utilizing a neural networks based classification method to discriminate between
the coronary calcifications and the artifacts. The method was evaluated on CT
scans (acquired in the mass screening for lung cancer) of subjects with very few
coronary calcifications and, thus, is limited in scope.

Recently, Isgum et al. [4] proposed a two-stage classification method using
the k-nearest neighbor classifier for coronary calcification detection. In their
method, the candidate regions of size greater than a certain threshold were ex-
cluded to reduce the complexity of the problem. The candidate regions with high
negative probability in the first stage of classification were discarded and only
the remaining ones were considered for the second stage of classification. The
second stage was employed to reduce the effect of uneven class priors present
due to very small number of coronary calcifications as compared to the rest of
the candidate regions. However, the classifiers were trained on the unbalanced
data and, hence, were biased towards the majority class. Aorta segmentation
was used to characterize the aortic calcifications in order to overcome the com-
plex composition of the negative class. However, the effect of the complex class
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composition was not investigated without the aorta segmentation. Moreover, it
is desirable to penalize the misclassification of the coronary calcifications more
severely than the false positives. This introduces an asymmetry in the learning
goals for the two classes which was not explored by the authors.

In this paper, we propose a novel hierarchical classification method to detect
coronary calcifications in the non-contrast cardiac CT scans. Our contributions
are as follows. First, we utilize a hierarchical tree structure in an attempt to
resolve the asymmetry in the class compositions. At the top level, we learn to
distinguish the arterial (the coronary and the aortic) calcifications from other
highly dense regions present within the heart region. At the second level, we
learn to separate the coronary calcifications from the aortic calcifications. We
investigate the possibility of such separation without requiring the segmentation
of the aorta in this work. Second, for each level of the hierarchy we construct an
ensemble of classifiers that are trained on different asymmetrically sampled sub-
sets to overcome the problems of uneven class priors and large dataset. Thirdly,
each classifier in the ensemble is designed to be a cost-sensitive learner to deal
with the asymmetric learning goals. We also introduce novel meta-features to
characterize the coronary calcifications and their neighborhood region for better
discrimination.

This paper is structured as follows: In Section 2, we present our proposed
hierarchical classification scheme. In Section 3, we present the experimental eval-
uation of our method and compare the results with other classification schemes.
Finally, we conclude in Section 4.

2 Materials & Methods

Data: The heart scans were obtained by electron-beam CT (EBCT) imaging
with a slice thickness of 3 mm and an x-y pixel spacing of 0.508 - 0.586 mm.
Scans from 205 subjects with approximately 20-35 image slices per scan were
used in our experiments. There were 20 coronary calcifications and 335 negative
candidate regions in the heart region per scan on average. We created three mu-
tually exclusive data subsets - S1 (50 subjects) and S2 (50 subjects) - for training
and validation, respectively, and S3 (105 subjects) for testing. For training and
testing purposes the arterial calcifications were manually annotated.

Feature Extraction: To identify a coronary calcification among the candidate
regions, a human observer mostly relies on prior knowledge of the expected loca-
tion of the coronary arteries relative to the heart. To incorporate the information
about the location, we compute the three-dimensional coordinates of the loca-
tion of the peak HU pixel of the candidate region in a relative coordinate system
defined by a unit bounding box around the heart region. The unit heart region
bounding box is obtained from the segmented heart region [5]. The observer also
uses appearance clues from the candidate region and its surrounding neighbor-
ing region to distinguish the coronary calcification from the rest of the candidate
regions. Since the coronary arteries mostly span through the pericardial fat af-
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ter originating from the ascending aorta, except in the distal section when they
enter the ventricular wall, the neighboring regions of the coronary calcifications
provide significant clues to distinguish the coronary calcifications from the image
noise, which mostly has blood in its neighboring region. Based on these observa-
tions, we extracted meta-features or region-features for three regions of interest:
the candidate region, its neighborhood region, and both regions combined. The
neighborhood region is defined as a ribbon-like region of certain width around
the candidate region. Specifically, we compute the mean, standard deviation,
skewness, kurtosis, and entropy of pixel level texture features from the region
of interest. In our experiments, we use the Laws texture energy measures [6]
to compute the pixel features. Other than the above-mentioned features, the
partial list of features include: area in mm2, shape moments (λ1 and λ2), eccen-
tricity, compactness, anisotropy, inertia, and HU density-based region statistics
(e.g., mean, maximum, minimum, standard deviation, skewness, kurtosis, and
entropy).

Hierarchical Classification Method: In our classification-based approach,
the positive class is composed of the coronary calcifications, while the negative
class consists of the aortic calcifications, image noise, and metal implants. The
majority of the candidate regions belong to the negative class. Moreover, the
negative class is broader and richer than the positive class, introducing asym-
metry in the class compositions. To account for this asymmetry, we utilize a
hierarchical structure for classification of coronary calcifications. At the first
level, an ensemble of classifiers is constructed using features selected specifically
to discriminate the arterial (coronary and aortic) calcifications from the rest
of the candidate regions. At the second level, another ensemble of classifiers is
constructed using features selected specifically to separate the coronary calci-
fications from the aortic calcifications. The final decision is a combination of
decisions of the classifiers from the two stages and is given by

D(x) =





+1, if D2(x) = +1
−1, if D2(x) = −1
−1, if D1(x) = −1

, (1)

where D1 and D2 are the hard-output decisions of the ensemble of classifiers
from the two levels of the hierarchy. Next, we describe the important character-
istics of our hierarchical classification approach.

Asymmetric Sampling for Data Selection: At the first level of the hierarchy, the
number of coronary and aortic calcifications is comparatively much smaller than
the number of other candidate regions. At the second level of the hierarchy, the
number of coronary calcifications is higher than the aortic calcifications. Train-
ing on such unbalanced data will be biased towards the majority class and it will
degrade the performance of the classifier. We address the large dataset problem
and the unevenness of the positive and negative classes by employing an asym-
metric random sampling strategy. Asymmetric random sampling is performed
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by randomly selecting candidates from the majority class until the number of
the selected candidates is equal to the number of the minority class candidates.

Ensemble of Classifiers: A single classifier trained on an under-sampled subset
assumes that the distribution of candidates in the sampled subset is the same as
in the original dataset, which may not be the case in practical situations. Thus,
some potentially relevant candidate regions may get eliminated during the sam-
pling process, hampering the performance of the classifier. Use of multiple clas-
sifiers trained on differently sampled subsets would improve the accuracy of pre-
diction, and also there would be less possibility of distortion of data distribution.
Thus, for each level of the hierarchy, we constructed four asymmetrically-sampled
subsets from the training set to train individual classifiers whose decisions were
combined to obtain the final decision. We investigated two combination rules
- simple majority voting rule (MVR) and weighted majority rule (WMR) - to
combine the decisions of the individual classifiers. In the WMR, the weights are
directly related to the competency or accuracy of the classifiers, and are com-
puted as the logarithm of odds of competency, (wi = log( Ai

1−Ai
, where Ai is the

prior probability for correct classification, computed from the validation set).

Asymmetric Cost for Misclassification: Failing to detect coronary calcifications
may cause a serious atherosclerotic condition go undiagnosed, leading to further
complications with the subject’s health, whereas false detections may lead to fur-
ther, more expensive and intrusive examinations, which may ultimately discover
the correct diagnosis. This asymmetry in the learning goals of the positive and
negative classes demands cost-sensitive learning algorithms. The support vector
machines (SVMs) are capable of incorporating different costs for the positive
and the negative classes by modifying its objective function as follows:

1
2
wTw + Cp

k−1∑

i=1

ξi + Cn

n∑

i=k

ξi, (2)

where Cp and Cn are the cost parameters for the positive and the negative
classes, respectively [7]. However, the specific costs for this problem are not easy
to determine. Hence, we employ a greedy search algorithm in which the classi-
fiers determine the optimal costs using the 3-fold cross-validation method. For
each value of Cp, we vary the ratio wC = Cp/Cn for a range of values above 0.5
to favor high detection rate.

Feature Selection: The classification accuracy of a classifier depends largely on
the selection of relevant features and removal of non-redundant features from
a large set. The relevance of a feature with respect to a particular outcome
or the redundancy between any two features can be characterized in terms of
correlation or mutual information. We used a mutual information (MI)-based
minimum-redundancy-maximum-relevance (mRMR) feature selection heuristic
proposed by Peng et al. [8]. The feature selection is performed in two steps.
First, a subset F1 of N features is selected from the large feature set Fo such
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that an mth feature is added incrementally to the currently selected set F1
m−1

with m− 1 features, if it maximizes the following condition:

max
fi∈F1∗

m−1


MI(fi, L)− 1

m− 1

∑

fj∈F1
m−1

MI(fi, fj)


 , (3)

where the first term corresponds to the relevance, the second term corresponds
to the redundancy, F1∗

m−1 is the set {Fo − F1
m−1}, L is the target class, and fk

is the kth feature. In the second step, we form P sequential feature subsets in
multiples of k features such that F1

1∗k ⊂ F1
2∗k ⊂ ... ⊂ F1

p∗k and select the feature
subset F that corresponds to the minimum classification error using the SVM.

Classification Algorithms: We refer to our proposed hierarchical classifica-
tion method that utilizes an ensemble of SVMs combined using either MVR or
WMR at each hierarchy level as HEC. The individual SVMs in this method were
trained with and without the asymmetric costs (AC) separately. Moreover, we
constructed two additional hierarchical classifiers that used only a single SVM at
each stage of the hierarchy. We refer to these hierarchical single SVM-based clas-
sifiers as HSC. To compare with non-hierarchical methods, we also constructed
a single SVM classifier and an ensemble of SVMs, referred to as SSC and SEC,
respectively, that were trained to identify coronary calcifications in a single stage.

We extracted three different feature subsets that provided the highest aver-
age cross validation accuracy - two sets of 30 and 80 features for the first and
second level of the hierarchy, respectively, and one set of 120 features for the
single level classification method. We observed that the location features were
always selected, confirming the idea that the location of the candidate regions
with respect to a heart-centered coordinate system plays a significant role in the
identification of coronary calcifications. We expected the shape and size features
to be relevant because of the tubular structure of the coronary arteries, how-
ever, these feature never got selected, signifying that shape and size are not the
discriminating characteristics of coronary calcifications.

3 Results and Discussion

In our experiments, we used LIBSVM [9] to train the SVMs with the gaussian ra-
dial basis kernel function. The width parameter γ, the penalty cost parameter C,
and the ratio of asymmetric misclassification cost Cp/Cn were optimized using a
grid search technique in the 3-fold cross-validation method. The performance of
the classification methods was evaluated using accuracy (ACC) and F-measure
(F1). The F-measure combines precision and recall to provide a single metric for
performance evaluation. Table 1 reports the overall performance of the selected
classifiers on the unseen test dataset. It can be observed that the proposed hier-
archical classification method, HEC-MVR-AC, provided the highest accuracy of
97.95%. The highest precision of 75.48%, the highest F-measure of 82.42%, and
the lowest misclassification error of 767 candidate regions further demonstrate
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Table 1. Performance evaluation of selected classifiers. The initials are defined as
follows: SSC (single stage classifier), SEC (single stage ensemble of classifiers), HSC
(hierarchical classification method with single classifier at each level), HEC (hierarchi-
cal classification method with ensemble of classifiers at each level), AC (asymmetric
cost), MVR (majority voting rule), WMR (weighted majority rule), TPR (true positive
rate), TNR (true negative rate), ACC (accuracy), P (precision), F1 (F-measure), FP
(false positives), and FN (false negatives).

Method TPR (%) TNR (%) ACC (%) P (%) F1 (%) FP+FN

SSC 91.97 97.79 97.48 69.89 79.42 944

SEC-MVR 91.37 98.09 97.73 72.78 81.02 848

SEC-WMR 91.92 97.80 97.49 69.98 79.47 941

HSC 91.72 97.83 97.51 70.26 79.57 933

HEC-MVR 90.71 98.33 97.92 75.19 82.22 777

HEC-WMR 91.77 98.09 97.75 72.84 81.22 841

HEC-MVR-AC 90.76 98.35 97.95 75.48 82.42 767

the strength of the proposed method. It missed 1.74 coronary calcifications at
the expense of 5.56 false candidates per scan on average.

Table 2 presents the number and the percentage of the candidate regions that
were misclassified by the proposed method for different regions/categories. The
category-wise misclassification error percentage was computed as the ratio of the
number of misclassified candidate regions in a particular category to the total
number of candidate regions in that category. It can be observed that, though
most of the errors were from the noise artifacts among the false positives, the
error percentage of the ascending aorta candidates was the highest. Likewise, the
number of errors from the right coronary artery were highest among the false
negatives but the error percentage of the left main calcifications was the high-
est. The location of the ascending aorta calcifications among different subjects
overlaps significantly with the left main and the proximal region of the right
coronary artery leading to such high error percentages. Further investigation is
required in to the design of informative features to discriminate between the
ascending aorta calcifications and the coronary calcifications near the ostia.

4 Conclusion and Future Work

In this paper, we have demonstrated that using a hierarchical classification
method, and combining the decisions of multiple classifiers improved the de-
tection of the coronary calcifications over a single classifier. At the top level
of the hierarchy, the method discriminates between the arterial (the coronary
and the aortic) calcifications and other highly dense regions present within the
heart region. At the second level, the method distinguishes the coronary calcifi-
cations from the aortic calcifications without requiring explicit segmentation of
the aorta. Multiple classifiers are trained on different asymmetrically sampled
data subsets for each stage of the hierarchy and their decisions are combined to
overcome the problem imbalanced dataset and to improve the prediction accu-
racy. Each classifier is trained using different penalty costs for the positive and
the negative classes to accommodate asymmetric learning goals. The proposed
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Table 2. The number and percentage (%) of the candidate regions misclassified by
the HEC-MVR-AC method on the unseen test data subset. The initials are defined
as follows: N (noise artifacts), AA (ascending aorta), DA (descending aorta), LM (left
main), LAD (left anterior descending), LCX (left circumflex), and RCA (right coronary
artery).

N AA DA LM LAD LCX RCA

542 40 2 43 24 40 76

1.56% 13.94% 0.50% 46.24% 3.38% 11.63% 9.12%

method provided encouraging preliminary results, and it has opened multiple
avenues for future research to achieve the final goal of improving cardiovascular
risk assessment. Development of a more compact frame of reference using a lo-
cal heart-centered coordinate system, aligned in terms of translation, scale, and
rotation, could further improve the accuracy of the method.
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Abstract. In this paper, the discrete wavelet packet frames are used to delineate 
the atherosclerotic plaque components using intravascular ultrasound (IVUS) 
backscattered signals. The frames are classified in an unsupervised fashion 
deploying K-means clustering technique and the generated prognosis histology 
(PH) images are quantified using relative histology images. While existing 
tissue characterization algorithms fail to differentiate between blood and plaque 
signals, the proposed algorithm can be used to estimate the lumen border at 
higher levels of wavelet expansion. We will demonstrate the in-vitro and in-
vivo tissue characterization as well as lumen border detection results employing 
40 MHz rotating unfocused single-element transducers. It is concluded that our 
two dimensional (2-D) algorithm, which is independent of the cardiac and 
catheter motions, performs well in both in-vivo and in-vitro cases. 

Keywords: Wavelet Packets, Atherosclerotic Plaque Characterization, 
Intravascular Ultrasound (IVUS). 

1   Introduction 

Cardiac catheterization supplemented with IVUS is often used in routine 
interventional procedures to investigate the sides of stenosis throughout the artery in 
addition to angiogram. The IVUS not only provides the 2-D gray scale cross sectional 
images of the arterial wall and atherosclerosis but also its radiofrequency (RF) signals 
can be further processed to characterize the plaque constitutes. The ultimate goal of 
such characterization is: 1) to detect the vulnerable plaques, 2) to study the 
progression or regression of the plaques subject to treatment approach. Although there 
are different definitions for plaque vulnerability by different histopathologists, we will 
justify our results with the one introduced in [1]. 
     Real time acquisition, sufficient signal penetration and low cost image formation 
and acquisition techniques/instruments make IVUS superior to other imaging 
modalities to date. Accordingly, researchers have developed IVUS-based algorithms 
using different techniques such as elastography [2], integrated backscatter (IB) 
coefficients [3] and spectral analysis [4]. The later has been implemented in the 
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                       (a)                                                                 (b)                    

         
Fig.1. Tissue cage fixture (a), experiment setup (b).  

VOLCANO (Rancho Cordova, CA) IVUS clinical scanners using 20 MHz 64 
elements phased array transducers. It has been shown that the variability among 
extracted spectral features using 8-features algorithm and transducer’s spectral 
parameters (bandwidth, center frequency) make the classification challenging [5]. 

This motivated us to develop a texture-based algorithm using discrete wavelet 
packet frame (DWPF) and 2-D envelope detection method based on the work by 
authors in [6]. The extracted textural features are perfectly suited for classification 
and capture characteristics of the plaque with the highest correlation to histology. This 
would resolve one of the main current limitations of IVUS, which is discrimination 
between fibrotic and lipidic tissues [7]. 

2   In-vitro Data Collection 

We collected the hearts from two sources; autopsy and transplant surgery, within 24 
hours postmortem. The arteries were dissected from the hearts with approximate size 
of 20 60 20 20− × × mm2 ( )l w h× × . We tied off the major branches, attached the 
endplates to the distal and proximal ends, and placed the segment into a tissue cage 
fixture, Fig. 1(a). Circulating phosphate buffered saline (PBS) was used to ensure 
constant pressure (100 mmHg) as well as flow and to maintain the artery 
physiologically open at 37° Celsius, Fig. 1(b). The 40 MHz Atlantis Boston Scientific 
(Fremont, CA) IVUS catheter was introduced and advanced on a 0.014′′ guide wire 
and a complete automatic pullback was performed from the distal to proximal side. 
The RF data was collected using two 12-bit Acqiris boards (Monroe, NY) and 
digitized at periodic time intervals, ( )2.5 400s sT ns f MHz= = . The catheter pullback 
speed and the frame rate were set to 0.5 mm/s and 30 frames/s, respectively. After 
imaging, the artery was pressure fixed with 10% buffered formaldehyde under 100 
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mmHg for three hours followed by decalcification. The histology blocks were 
sectioned from distal to proximal every 2mm (corresponding to 120 frames of the 
IVUS pullback) using the side rods. Blocks were then embedded in paraffin. For each 
block, three sections were used for histology. The first two sections were stained with 
hematoxylin and eosin (H&E) and Movat Pentachrome, and the last section was kept 
unstained for future necessary staining (e.g., Sirus Red). 

3   Methods 

Discrete wavelet packet transform (DWPT) [8] is the over complete version of the 
decomposition process in the discrete wavelet transform (DWT) [9-10], in which 
every generated coefficient in the decomposition tree is passed through high-pass and 
low-pass filters. The cost of such a generalization is an increased in computational 
complexity. Unlike the DWT and DWPT, the decompositions are translation invariant 
in DWPF and no decimation occurs between levels (Fig. 2). This makes the DWPF 
superior in algorithms used for texture segmentation. Since the IVUS signals are 
sampled at the rate of sf , it is more appropriate to consider the discrete signals that 
can be represented by a set of wavelets packet coefficients at the first level ( )0l = . 
For the tree-structured scheme demonstrated in Fig. 2, we can write: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2 2 1, 1l l l l

k l k k l kS G S S H Sω ω ω ω ω ω+ +
+= =          

 
where ω  represents the radian frequency and ( )l

kS ω
 
is the Fourier transform of the 

frame coefficients at channel k and level l . 

 Fig. 2. Tree structure for discrete wavelet packet frames (DWPF) and associate indexes. 
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3.1   Filter Bank Specification 

The high-pass ( )lG ω  and low-pass ( )lH ω filters at level l , as described in [8], can 
be written as follows: 
 

( ) ( ) ( ) ( )0 02 , 2 (2)l l
l lH H G Gω ω ω ω= =          

 
Consequently, the multi-channel wavelet schematic in Fig. 2 behaves like a filter bank 
with channel filters: 
 

( ){ } ( )0 2 1 3l l
kF kω ≤ ≤ −          

 
where ( )l

kF ω can be derived recursively as follows: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0
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F G F H
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     It has been shown that the selection of the filters ( )0G ω and ( )0H ω can have 
significant impact on the texture classification performance [6]. The filter candidates 
must satisfy crucial criteria such as symmetry as well as boundary accuracy and have 
optimal frequency response. Hence, we selected Lemarie-Battle [10] wavelets, that 
are symmetric (have linear phase response) and quadrature mirror filters (QMF). The 
former property alleviates boundary effects through simple methods of mirror 
extension. The wavelets using QMF, as well as constructed filter bank ( )l

kF ω cover 
exactly the frequency domain and satisfy the property: 
 

( ) ( ) ( ) ( )

( ) ( )

2 2
0 0 0 0

2 1 2 12

0 0

1 (7)

1 (8)
l l

l l
k k

k k

G H G H
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ω ω
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= =∑ ∑
 

 

3.2   Feature Extraction 

The features were extracted by processing the IVUS signals for every frame in 
( ),r θ domain. Each frame contains 256 lines that span 360 degree with 2048 samples 
per line. In order to have an optimized frame size in respect to the computational 
complexity and the textural resolution, we interpolated (spline) and decimated the 
signals in the lateral and axial directions by factor of 2 and 4, respectively to generate 
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the square M=512 pixels frame. For each IVUS frame, a tensor product extension was 
used in which the channel filters were denoted by ( ) ( ) ( ),l l l

i j r i r jF F Fθ θω ω ω ω× = . 
Consequently, such an extension will lead to the orientation selectivity in the 
decomposition tree. Four possible orientations can be considered excluding the root 
node, which is omnidirectional: 

1. The node last filtered by ( ) ( )l r lG H θω ω corresponds to the vertical 
orientation. The highpass filter lG and lowpass filter lH are applied in 
the axial and lateral directions, respectively. 

2. The node last filtered by ( ) ( )l r lH G θω ω corresponds to the horizontal 
orientation. The lowpass filter lH  and highpass filter lG  are applied in 
the axial and lateral directions, respectively. 

3. The node last filtered by ( ) ( )l r lG G θω ω corresponds to the diagonal 
orientation. The highpass filter lG  is applied in the axial and lateral 
directions, respectively. 

4. The node last filtered by ( ) ( )l r lH H θω ω  has the same orientation as its 
parent. The lowpass filter lH  is applied in the axial and lateral 
directions, respectively. 

      Finally, the envelope of the signals was computed and the feature matrix was 
constructed as follows:  

( ){ }1
, , , 0 2 , , 1,..., (9)l l

i j k i jV e k i j M−= ≤ ≤ =
 

where , ,
l
k i je represents the envelope value of pixel ( ),i j for the k -th components at 

level l . 

3.3   Classification 

The overall justification of in-vivo real-time plaque characterization is performed 
by the interventional cardiologists through the use of classified tissues. For this 
reason, we chose the k-means clustering algorithm in order to classify the extracted 
features and generate the prognosis histology (PH) images. We utilized the 
unsupervised classifier to quantify the reliability of the extracted signatures. Our 
hypothesis is that if the classification results (PH images) driven by the unsupervised 
signatures preserve their high correlation with the histology images used here as 
ground truth, then the features can be used reliably in the training data set for 
supervised classification. We have categorized plaque components into four classes 
( )4cN = i.e., lipidic, fibrotic, calcified and background (no tissue).  
      For every representation matrix M MX ×  a label was assigned to each pixel by 

modulo cN . We computed the center of clusters { }0 1cC Nκ κ≤ ≤ −  by calculating 

the mean vector for each class. The pixel { }, , 1,...,i jx i j M= was assigned to the class 
κ  if the Euclidean distance between the corresponding pixel and the class center 
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Cκ was the closest. The centers of the clusters were updated in an iterative fashion by 
recomputing the relative mean vectors. The procedure was terminated once no change 
in labeling occurred.  
 

4   Experimental Results and Quantification 

Sixty four cross-sections of interest (CSI) collected from 32 cadaver hearts, including 
26 left anterior descending (LAD), 28 right coronary artery (RCA) and 20 left 
circumflex (LCX) segments  that  had  more than  30%  stenosis.  As we mentioned  
in  the  preceding section, we decimated the signals and used spline interpolation to 
generate 512-by-512 scan converted (Cartesian domain) B-mode images. For each 
frame, an expert manually segmented the plaque by tracing the vessel wall and lumen 
borders, Fig. 3(a). The corresponding plaque signals were read and saved in a matrix 
with the same size of IVUS image in the ( ),r θ domain, Fig. 3(c).  

(a)                                           (b)                                              (c) 

                                    (d)                                               (e) 
Fig. 3. IVUS image with manually traced vessel wall (green) and lumen (red) borders (a), 
segmented plaque in Cartesian coordinates (b), segmented plaque in ( ),r θ coordinates (c), 
generated PH image (pink, yellow and blue represent lipidic, fibrotic and calcified 
components, respectively) (d), Movat Pentachrome histology image (e) 
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We performed our algorithm on 512-by-512 matrices and selected Lemarie-Battle 
filters of order 18, decomposition level 2L =  and number of classes 4cN = . Finally, 
the resulting classified images were mapped onto Cartesian plane, Fig. 3(d). Fig. 3 
demonstrates a CSI, corresponding Movat Pentachrome histology image, and the PH 
image. The blue, yellow and pink colors exhibit calcified, fibrotic, and lipidic plaque 
components, respectively. Two independent histopathologists evaluated the results 
contrasting the histology images corresponding to the PH images. The accuracy of 
classified tissues was found to be 81.71%, 82.76% and 85.51% for fibrotic, lipidic 
and calcified components, respectively. The accuracy of IVUS-VH technique using 
autoregressive (AR) analysis in combination with a classification tree for 30 MHz 
single element transducers has been reported to be 90.4%, 92.8%, 90.9% and 89.5% 
for the training data set and 79.7%, 81.2%, 92.8% and 85.5% for the test dataset in 
fibrotic, fibro-lipidic, calcified and calcified necrotic regions, respectively. 

As we mentioned in Section 1, none of the existing algorithms is capable of 
characterizing the atherosclerotic tissues and differentiate between blood and plaque 
signals (estimate the lumen border). We evaluated the algorithm performance on 
lumen border estimation using 18 in-vivo CSI collected from three patients and 14 in-
vitro CSI collected from two cadaver hearts. Fig. 4 demonstrates the automatic 
detected lumen contours (green) and the manually traced contours (red) by an expert 
for both cases. Our results show that the manual and automated detected lumen 
borders are correlated very well ( )0.9854, 0.953 0.725r y x= = + , Fig. 5(a). We also 

computed the Tanimoto coefficient ( )η  , Fig. 5(b), to measure how well the 
automated detected contour is matched with corresponding manually traced contour: 

(10)
contour
c

contour contour contour
a m c

N
N N N

η =
+ −

 

  (a)                                                              (b)   
Fig. 4. Automated detected lumen contour (green) by the algorithm using Lemarie-Battle 
filters of order 18, expansion level L=4, number of classes Nc=2 and manually traced 
contour (red) by and expert. In-vivo (a), In-vitro using circulating human blood (b) 
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5   Summary and Conclusion 

In this paper, we presented a reliable two 2-D texture-derived atherosclerotic tissue 
characterization algorithm as an alternative to spectrum-based approaches like IV-
VH, IB-IVUS and full-spectrum analysis. We processed the IVUS signals for each 
frame and extracted the textural features by using multi-channel wavelet packet 
analysis. The wavelet packet signatures were classified in an unsupervised fashion 
using K-means clustering algorithm.  
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Fig. 5. Comparison of automated detected lumen area and expert-defined lumen area (a), 
Box-Whisker plot of Tanimoto coefficients of lumen border. 
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     The main advantage of the proposed algorithm is that it can reliably classify 
tissues regardless of the transducer center frequency or spectrum while inconsistency 
among the spectrum-derived features within the transducer’s bandwidth still remains 
a major challenge. However, we were not able to detect the necrotic core components 
directly. Although both necrotic core tissues and lipid-rich pools have been 
recognized as markers for detection of vulnerable plaques, it is an advantage to have a 
classification algorithm that is able to detect the necrotic core in addition to fibrotic, 
lipidic and calcified tissues. In the future, we will attempt to extend the algorithm to 
supervised classification on raw IVUS backscattered signals and investigate this issue.  
     We will focus on two important aspects in future studies. First, the effects of blood 
on generated PH images and classification performance will be considered. In fact, it 
is an inevitable step to validate the reliability of the in-vitro trained classifier for in-
vivo atherosclerotic plaque characterization. Secondly, the feasibility of tissue 
classification within the regions of acoustic shadowing behind calcification will be 
tested.  It has been reported that the tissue characterization in these regions remains 
difficult [11]. Our hypothesis was that sufficient spectral features would not exist due 
to signal attenuation in the densely calcified regions. This can be investigated through 
our proposed technique, since the background (no tissue) had been considered as one 
of the classes. We will test the tissue characterization and lumen border detection 
performance using mechanically rotating single-element 40 MHz Atlantis Boston 
scientific and 45 MHz Revolution Volcano catheters in future studies.  
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Abstract. We present a novel method to analyze the growth of ab-
dominal atherosclerotic plaques based on x-ray projections. The growth
analysis can aid progression monitoring in clinical trials and in popula-
tion screening programs. Our results are based on a longitudinal study
over 8.5 years. The annotations of the calcifications are matched longitu-
dinally using thin plate spline registration and area overlap calculations.
The growth of the calcifications is measured by the distribution of the
geometry statistics of the calcifications. The method was evaluated on
135 subjects with a total number of 611 calcifications. Our results show,
for instance longitudinal growth of calcifications with a mean of 2.53 mm
(± 1.95) in the blood flow direction and correlations with pathologically
related biomarkers.

1 Introduction

Atherosclerosis is a primary cardiovascular disease (CVD), that is the main cause
of the disease burden (illness and death) in Europe. The cost of CVD is estimated
to 192 billion euro per year spread out on direct health care, productivity losses
and informal health care [1]. Atherosclerosis is a chronic inflammatory process
that builds up plaque in the intimal wall of the arteries. Atherosclerosis starts in
the childhood and progresses during adolescence as development of fatty streaks,
that evolves to fibrous caps and lastly formation of calcifications, which could
lead to ruptures possibly resulting in strokes and heart attacks. Calcifications
are widely used as a clinical indicator of atherosclerosis [2, 3].
X-ray imaging is an attractive image modality for quantification of calcifications
that can aid in large scale clinical trials and screening programs due to the low
cost, fast examination and non-invasiveness. Other image modalities such as in-
travascular ultrasound, computed tomography and magnetic resonance imaging
have also been used for studies of the atherosclerotic growth [4–6], but to a
smaller extent due to the cost and the patient discomfort. Available x-ray data
already exist from clinical trials and routine screening for osteoporosis, which
can be used for identifying the growth pattern of calcifications.
Our hypothesis is that the growth patterns are good estimators of the pro-
gression of atherosclerosis. The gold standard severity score for atherosclerotic
calcifications is the AC24 score introduced by the Framingham group. AC24 is
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quantifying the amount of calcification only as the amount along the arterial
wall [7, 8]. To our knowledge this is the first study that characterize the growth
patterns of atherosclerotic calcifications from x-ray projections. Our region of
interest is the lumbar region denoted by L1-L4. The amount of calcified deposit
in L1-L4 can be an indicator of the risk of future cardiovascular events [9]. The
annotations of the calcifications are registered by thin plate spline registration
and then a suitable match is found using area overlap. Now we extract informa-
tion of the individual calcifications about the growth patterns.
In this work we have used manual annotations of the images by radiologists, but
an automated segmentation method [9] could be used instead, which would be
cost-saving and minimize the degree of subjectivity.
In the next section we describe our dataset and then we give a brief overview of
the thin plate spline algorithm and a description of our registration and match-
ing process. We then describe the statistical geometry used to characterize the
growth patterns. Finally we present our results and we discuss the validity of
the method used in respect to well-known biomarkers of the pathology.

2 The Dataset

The dataset consists of 135 women with mean age 62.4 (± 7.0) and mean BMI
24.3 (± 4.0) at the initial scanning. The patients in our dataset had x-ray images
taken twice, once in 1992 (baseline) and again in 2000/2001 (follow-up) as part
of an osteoporosis study. The images are lateral x-ray projections, which were
digitalized with a Vidar DosimetryPro Advantage scanner with a pixel size of
44.6 × 44.6 µ. The images were scanned at the Center for Clinical and Basic
Research (CCBR) in Copenhagen. The annotations of the images were done
by three trained radiologists from CCBR. The annotations include six points
of each vertebrae L1-L4, the posterior and anterior aorta wall and the calcified
deposits, that were included if a dense area was visible in an area parallel to the
lumbar spine; an example can be seen in Fig. 1. From the dataset 103 patients
had baseline calcifications with an average of 4.8 ( ± 8.1) calcifications.

3 The Registration

The position in the scanner and the anatomy of the patients have changed in
between the x-ray images. The calibration of the scanner also differs. This causes
a significant variability in the position of the vertebrae and the aorta. Due to
these combined variabilities image registration is needed to be able to extract the
biological information about the growth of the calcifications. The registration is
used to align the aorta and thereby the calcifications in the follow-up image to
the baseline image. We use thin plate splines (TPS) for the registration [10].
Thin plate splines form a class of non-rigid mapping functions that are globally
smooth. This makes them desirable for registering the deformable aorta and
thereby the calcifications. We want to make predictive growth patterns from the
baseline information by use of the follow-up information. TPS is non-symmetric
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Fig. 1. The follow-up image (right) and the baseline image (left), where the aorta from
the follow-up is registered to the baseline aorta. Blue are the original annotations of
the structures and green are the registered annotations of the follow-up aorta on the
baseline. Note that the registered follow-up aorta is well aligned with the baseline aorta.

in source and destination, so we need to register from follow-up to baseline,
see Fig. 1. TPS map the corresponding set of landmarks so they minimize the
bending energy. The landmarks we have used are the intersections between the
line through the vertebrae annotations and the anterior/posterior aorta wall.
Since the alignment in the registration could bias the analysis of the position
and growth of the calcifications, the calcifications are unsuitable as landmarks.
The mapping function f for the follow-up annotations (x, y) ∈ IR2 is given by

f(x, y) = a1 + axx+ ayy +
N∑

i=1

wiU(||(xi, yi)− (x, y)||), (1)

where (xi, yi) are the landmarks from baseline and r = ||(xi, yi)− (x, y)|| is the
Euclidean distance. a1 +ax+ay are affine motion coefficients, wi are the weights
for the combination of the distance measurements for the correspondence points
and the thin plate splines. U(r) = r2log(r2) is the radial basis function.

4 Matching

After the follow-up image is warped into the baseline image, we need to find the
matching of individual calcification from the pair of images. We have matched
the calcifications based on area overlap AO between the baseline and follow-up.

AO =
|Abaseline ∩Afollow−up|
|Abaseline ∪Afollow−up|

(2)

The area overlap is a suitable method for matching, because it captures the
matching calcifications without any assumptions of a certain shape of the cal-
cifications. Alternatively we could have matched using nearest center of mass
calculations. This method would need a threshold for the maximum distance
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allowed between the possibly matching center of masses, which could bias the
result. Ongoing research have not yet clarified how the calcifications emerge, grow
together, rupture or get reabsorbed. Due to lack of knowledge of the behavior
of the growth of the calcifications, more complicated matching methods with
prior information about splitting, merges, creation or clearance of calcifications
are likely not able to increase the quality of the matching without biasing the
resulting growth pattern. We have based our growth descriptors on one-to-one
correspondence; where there is only found one area overlap between the baseline
and follow-up calcifications, see Fig. 2. The one-to-one correspondence ensures
that no bias effect in the interpretation of how a one-to-many or many-to-one
correspondence is created.

5 The Growth Measurements

The growth of the calcifications can be measured in three different biologically
meaningful directions; longitudinal (in the blood flow direction), circumferential
(around the aorta) and radial (the direction into the aorta).
Our hypothesis is that these directions can give good indicators of the growth
pattern. The longitudinal growth would give an idea of whether the calcifications
are making the aorta wall more stiff, due to calcifications occupying a longer part
of the aorta wall. We have measured the longitudinal growth as the change in
height of the calcifications. The x-ray attenuation makes the calcifications on
the anterior/posterior sides of the aorta wall most visible in the x-ray images.
This makes us capable of measuring the radial growth as the change in width
of the calcifications. The area of the calcifications could give information about
the overall growth of the calcifications. The area of the calcifications combines
contributions from the circumferential and radial directions, due to the 2D pro-
jection. Because of the x-ray attenuation, the area will be based mainly on the
radial and longitudinal direction.
To measure the overall growth direction we calculate the difference in the center
of mass of the matched calcifications. This way we should get an identifier of
the longitudinal growth direction. The difference in center of mass could also

Fig. 2. An example of the
matched calcifications. Blue
shows the annotations of the
vertebrae and the aorta wall.
Red are the baseline calcifica-
tions and green are the follow-
up calcifications. Note that
the area overlap is a good in-
dicator of the matching calci-
fications.
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give an indicator of the radial growth direction, but we have to keep in mind
that calcifications on the anterior and posterior aorta walls both grow towards
the center of the aorta; causing the mean change in the radial direction to be
canceled out by the movements in opposite directions.
The knowledge of the directions in the aorta is an important indicator of the
growth pattern, because the growth needs to be measured in an aorta coordi-
nate system. We have assumed that the y-direction in the images corresponds to
the longitudinal direction and the x-direction to the radial direction which is a
simple approximation to the aorta coordinate system. In future work the growth
patterns will be based on the shape of the aorta.
Measurements of the shape of the calcifications in any direction using shape
models or moments will be hard to interpret without biasing the growth patterns
due to the projections into 2D and the correspondence to the aorta coordinate
system. We have chosen to use the least committed method to avoid influence
of artifacts in our method. The height H of a calcification is therefore simply
measured as:

H = max(y1, . . . , yi)−min(y1, . . . , yi), (3)

where yi is the y-coordinate of the i’th boundary point of the calcification.
We have based the width of the calcification on the local width to avoid overes-
timation due to the curvature of the aorta. The width calculation is based on a
modified scan-line algorithm [11], that finds the width for each scan-line through
the calcifications and then chooses the maximal local width as the width of the
calcification. The area of a calcification [12] is measured as:

A = 1
2

∑n
i=1(xiyi+1 − xi+1yi), (4)

where (xi, yi) are the i’th boundary point of a calcification and n is the total
number of annotation points. The center of mass (CM) of the calcification is
calculated as the position of the calcification in the aorta. This way we can
describe the growth direction based on differences in the center of mass position
for the matched registered calcifications. We assume the mass density is uniform
and then by use of Green’s theorem the CM is given by 5, where A is the area
and (xi, yi) is the i’th annotation of the calcification [12]:

CMx = 1
6A

∑n
i=1(xi + xi+1)(xiyi+1 − xi+1yi)

CMy = 1
6A

∑n
i=1(yi + yi+1)(xiyi+1 − xi+1yi)

(5)

6 Validation of Matching

The total number of calcifications at baseline is 611 and the number increases
to 1321 at follow-up. We have been able to match 32.4% of the baseline calcifi-
cations to one corresponding follow-up calcification. This is in respect to 16.4%
one-to-many correspondences (the calcifications may have grown together) and
to 8.7% many-to-one correspondence, and 42.4% where no correspondence were
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Table 1. The mean and standard deviation of the area, height and width of the
unmatched and matched calcifications in mm. †=p < 0.1, *=p < 0.05, **=p < 0.01 and
***=p < 0.001 on a unpaired t-test between the unmatched and matched calcifications
and a paired t-test for the growth. Note that the matched calcifications is a little larger
than the total number of calcifications and that the calcifications grows significantly
in area, height and width and the position of the calcifications in the aorta is moved
in the blood flow direction.

Unmatched Unmatched Matched Matched Growth
Baseline Follow-up Baseline Follow-up

Area 172** 211*** 205 325 120*** (± 240)
(mm2) (± 199) (± 313.57) (± 206) (± 317)

Height 5.02** 5.76*** 5.81 8.35 2.53*** (± 4.33)
(mm) (± 3.75) (± 4.81) (± 3.55) (± 5.26)

Width 2.12† 2.23* 2.17 2.46 0.29** (± 1.32)
(mm) (± 1.20) (± 1.35) (± 1.24) (± 1.45)

Cx (mm) - - - - 0.91*** (± 0.81)

Cy (mm) - - - - 2.02*** (± 1.95)

found. In an intra/inter observer study of the manual annotations, the radi-
ologists have area overlaps of 40-60 % of the calcifications. The relative low
reproducibility in the annotations could account for a large number of the non-
matched calcifications. The average size of the matched calcifications is a little
larger than the average baseline calcification - e.g. mean height of unmatched
and matched baseline calcifications are 5.02 mm and 8.35 mm respectively. This
is due to difficulties in matching the smaller registered calcifications and the in-
creased activity in the growth of the new and smaller calcifications. Tab. 1 shows
mean and standard deviations for heights, widths and areas of the unmatched
and matched calcifications.

7 Characterizing the Growth of the Calcifications

The linear correlation coefficients for unmatched and matched calcifications for
the height, width and area can be seen in Tab. 2. Intuitively there are correlations
between growth in area and growth in height and width. Our results also show
a correlation between growth in width and height, indicating that calcifications
grow both longitudinally and radially.

The characteristica of the growth of the calcifications can be seen in Tab.
1, based on signed values. The results show that the matched calcifications are
growing longitudinally with a mean growth of 2.53 mm (± 4.33). This is an
increase of 50.4 %. The mean growth in the radial direction is 0.29 mm (± 1.70),
corresponding to 13.7 %, see Fig. 3. The center of mass is moved 2.02 (± 1.95)
mm in the longitudinal direction, see Fig. 3. The absolute anterior/posterior
center of mass movement is 0.91 (± 0.81) mm in the absolute inside radial
direction. This indicate that more calcifications are placed on the anterior wall
or the calcifications are growing towards the posterior wall.
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Fig. 3. Height and width (left) and center of mass (right) of the matched calcifications.
Red is baseline and green is follow-up. Note that the calcifications grow longitudinally
and the center of mass is moved in the flow direction.

We have correlated our growth patterns with known biological risk factors [13],
see Tab. 3. A high cholesterol or triglyceride level correlates with growth in width
and area of the calcifications. High glucose level correlates with growth in area
and height of the calcifications.

8 Discussion and Future Work

The registration and matching process is necessary to describe the growth pat-
terns for the calcifications and especially the growth direction, measured by
change in the center of mass. Our results show that the calcifications grow longi-
tudinally and the center of mass is moved with the blood flow. The calcifications
will occupy more of the aorta wall as they grow. The calcifications grows down-
ward the aorta, which could be caused by the turbulence in the direction of the
blood flow, when the aorta wall becomes non-smooth, due to the existing calci-
fications.
Our results show that high cholesterol and triglyceride levels correlate with
growth in width of the calcifications. This could correspond to intimal calci-
fications that likely are related to cholesterol and lipids that induce atheroscle-
rosis [14]. A high glucose level correlates mainly to growth in heights possibly
corresponding to the elongated medial calcifications observed in diabetes pa-
tients [2]. Glucose is a main factor of growth of all types of calcifications, which

Table 2. The linear correlation coefficient of the width, height and area of the matched
and non matched calcifications. The correlations are all significant with p < 0.001. Note
that there is correlation between height and width indicating that the calcifications
grow longitudinally and radially.

Correlation coefficient Width vs. Height Width vs. Area Height vs. Area

Baseline (unmatched) 0.5156 0.7664 0.8587

Follow-up (unmatched) 0.5240 0.7443 0.8250

Baseline (matched) 0.3412 0.7391 0.8062

Follow-up (matched) 0.2701 0.7340 0.7380

Growth 0.2302 0.6753 0.7053

69



VIII

Table 3. The linear correlation between our growth patterns and the biological risk fac-
tors; †=p < 0.1, *=p < 0.05, **=p < 0.01 and ***=p < 0.001. Note correlation between
area/width and cholesterol, area/height and glucose and area/height and triglyceride.

Correlation coefficient and p-values Cholesterol Glucose Triglyceride

Growth in area 0.21* 0.33** 0.21*

Growth in height 0.15 0.39** 0.22*

Growth in width 0.26** 0.20† 0.18†

can also be seen in the correlation.
At this point we can describe clinically meaningful growth patterns of the athero-
sclerotic plaques. More work will be based on modifying the growth patterns and
get correlations with the different characteristic biomarkers. We will also try to
further distinguish the growth pattern of medial and intimal calcifications [14] in
our future growth patterns. We have shown that registration and plaque match-
ing based on x-ray images can give a good description of the growth patterns,
which indicates the ability for a simple and low cost method to measure the
longitudinal progression of atherosclerosis.

Acknowledgments: We thank the radiologists Paola C. Pettersen, Qing He, and
Jianghong Chen from CCBR for providing the annotated x-rays used in this
study.
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Abstract. Intravascular ultrasound (IVUS) is a valuable tool to assess
atherosclerotic plaque in coronary arteries. However, IVUS is also an
inherently noisy modality and is difficult to segment. We have developed
a new approach based on 3-D optimal graph search and a novel cost
function. Principal component analysis is used for pre-processing, and
active contours provide the initial segmentation for the graph search.
Our method was validated in vivo against manual expert tracings in
IVUS pullbacks from 15 patients, demonstrating a good performance.

1 Introduction

Cardiovascular diseases are among the leading causes of death in the indus-
trialized world. X-ray angiography is commonly used to assess atherosclerosis
in coronary arteries, which however is limited to displaying the contrast-dye
filled lumen and allows only an indirect assessment of atherosclerotic plaque.
Intravascular ultrasound (IVUS) has been developed for analysis of angiograph-
ically visible and non-visible plaques, also more recently allowing plaque char-
acterization. Of special interest are the lumen/plaque border, marking the inner
boundary, and the media/adventitia border, marking the outer boundary of the
vessel. Klingensmith et al. provide an overview of segmentation methods in [1].
IVUS is an inherently noisy modality, which makes conventional edge and region
based segmentation techniques largely ineffective by themselves. Common meth-
ods are based on deformable geometries [2] or graph search with minimum-cost
algorithms [3, 4]. Our approach uses optimal graph search in combination with a
novel cost function. Li et al. [5] demonstrated an adaptation of max-flow/min-cut
graph search techniques to optimal surface detection which permits an optimal
solution to the problem of multiple surfaces in n-dimensions in polynomial time.
This technique is ideally suited to the problem of IVUS segmentation, also al-
lowing a simultaneous 3-D segmentation by coupling of the two borders.

Using the Rayleigh distribution for segmentation works well for catheters
with high frequency (≈40 MHz). In our case, images from the Volcano IVG 3
were acquired using a solid-state catheter with much lower frequency (20 MHz).
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This reduces the incidence of blood speckle in the lumen considerably, thus the
Rayleigh correlation derived cost function fails to yield a usable segmentation.

A different approach is to filter out the Rayleigh-distributed speckle rather
than trying to utilize it for segmentation of lower-frequency images. Lueck et
al. [6] successfully applied principal component analysis (PCA) to the reduction
of such noise in ultrasound images of the liver. Tao et al. [7] further applied
the technique to the isolation of specific features (vessel wall) in Doppler ul-
trasound, further suggesting its utility for vascular segmentation. We developed
a sliding-window approach to consider a restricted segment before and after
the IVUS frame under consideration for PCA-based filtering. After quantization
and thresholding using a method similar to Otsu [8], an active contour provides
the initial segmentation as basis for a following graph-search segmentation step
[4, 5]. Regional costs terms are used for the inner contour, 3-D edge terms for
the outer contour. Interactive resegmentation allows for easy semi-automated
manipulation of the result where necessary.

2 Methods

2.1 Pre-Processing

Principal Component Analysis. Lueck et al. [6] demonstrated a method for
removing Rayleigh distributed noise from liver ultrasound images to improve
segmentation results. The liver changes relatively little during imaging, whereas
anywhere from 600 to 3000 or more IVUS frames are taken along the segment
of the coronary artery, depending on pullback length, speed of the pullback,
and acquisition rate. Of these frames, roughly 100–300 end-diastolic frames re-
main after gating, which are used in the present study. The appearance of the
artery tissues being imaged often changes dramatically from frame to frame, and
features are often extremely ambiguous, even for an expert. The use of phase-
synchronous (here: end-diastolic) frames minimizes effects from cardiac motion.
The remaining variability in appearance is handled by only processing a small
sliding window at a time, thereby preserving most important local information
in each frame while minimizing the loss of detail. Local intensity values were far
more uniform and edges much stronger, making the extraction of cost terms for
the graph search simpler than they otherwise might have been.

The entire pullback is treated as a matrix where the mean frame is computed
and then subtracted from each frame on a voxel by voxel basis. The resulting
matrix is multiplied by its transpose, to form a covariance matrix. This covari-
ance matrix is a square matrix of dimension equal to the number of frames in
the window. The sequence is outlined in the equations below, where the Γ ’s are
the frames, Ψ is the average frame, C is the covariance matrix, and 2W + 1 is
the size of the window (with W =6 used in this study). In this way, we obtain
the matrix containing the eigenvectors of the window in E, where X are the
eigenvectors of C.
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(a) (b)

Fig. 1. Example of PCA output: (a) raw IVUS frame, (b) PCA-filtered frame.

Ψ =
1

2W + 1

+W∑

n=−W
Γn (1)

Φi = Γi − Ψ =⇒ A = [Φ0Φ1...Φ2W ] (2)

C = AAT (3)

E = [Γ−W ...Γ0...Γ+W ]TX (4)

The eigenvectors of C represent the principal modes of intensity variation in
the image data as a function of position in the frame – thus the net effect is to
isolate commonalities between the frames in the selected window. Done correctly,
this should reduce noise and, more importantly, increase the homogeneity of
intensity within the regions of interest. Figure 1 shows the effect of multiplying
the 6 greatest magnitude eigenvectors computed over a ±6 frame window back
against the original frame. The vessel wall (outside the outer border) is fairly
uniformly high intensity (white), and the plaque layer is shown as a darker band
just inside, while the blood speckle within the lumen is filtered out such that
the lumen now has an appearance of uniform black.

The eigenvectors are sorted in order of eigenvalue magnitude. This has the
implicit theoretical effect of treating the noise in the IVUS images as Gaussian
distributed noise. This is strictly speaking incorrect. For optimal results, it would
be best to sort them by their correlation with a Rayleigh distribution [6]. This is
an avenue that may be pursued in the future to improve the results; however it
can be seen from Figure 1 that simple sorting by magnitude yields a substantial
clarification of the borders of interest.

Quantization and Thresholding. The PCA procedure yields a floating point
image with fractional intensity values, with a large bias near zero. To effectively
make use of the image, we quantize the image to integral values and then perform
a histogram equalization. To preserve as much information as possible within the
image, two different quantization levels are used: a higher, initial level, to which
each of the original floating point values are mapped prior to the equalization,
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and a lower, collapsed final value, to which the values are remapped after a his-
togram equalization is performed. Finally, the image is median filtered to clean
up any residual blood speckle and optimal thresholding is applied, as described
by Otsu [8], but the intensity values of the pixels are not actually changed.
Instead, the algorithm runs to the point of convergence and returns a thresh-
old. This threshold is then defined as the stopping criterion for the subsequent
estimation of the lumen boundary by an active contour.

Active Contour Estimation. IVUS images frequently contain large sections
of dark shadow from highly echogenic plaque deposits, such as calcifications,
which can adversely impact the overall border. Side branches are not followed,
but introduce gaps in the contours at the bifurcation site which need to be
bridged. A priori, we know that the border should be roughly elliptical, in all
but the most diseased cases. While the PCA makes it possible to extract the
cost information from local neighborhood information, it is useful to have an
estimation of the location of the border prior to computing these cost terms,
in order to address gaps in the border, shadows, and other artifacts. An initial
estimate of the location of the lumen border is made using a spline-based active
contour model.

On the data sets targeted with this cost function, the lumen is uniformly
black in the center, and may contain blood speckle with low intensity values at
its outer edges. The lumen/plaque border, after the histogram equalization, is
nominally rather bright, but may contain holes as a result of shadows or artifacts
preserved by the PCA. To account for that, 72 control points are initialized at the
center and sequentially perturbed by one pixel at a time. After each perturbation,
360 data points around the contour are interpolated from the original 72 using
B-splines, and each in turn is checked to see if the pixel beneath it has an
intensity value above the computed threshold. If it does, the control point that
caused the data point in question to cross the pixel is frozen, and its position is
backtracked by 1 pixel to its location prior to the crossing of the threshold. This
procedure continues until all control points are frozen. This gives us a contiguous
border with a plausible shape sufficiently approximating the actual border.

2.2 Regional Cost Terms (Inner Border)

The estimate of the border computed with the active contour model of Section 2.1
may be close, but needs refinement. The PCA procedure considerably improves
the homogeneity of the pixel intensity values throughout the image, thus we
can use these as regional information. The cost terms for the inner border are
formulated based on the local neighborhood and proximity to the estimated
border from the active contour result. Those terms are generated according to:
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C(r, θ) = R(x, y, θ) +D(r, θ) (5)

D(r, θ) = e
r−E(θ)

4 + e
E(θ)−r

2 (6)

R(x, y, θ) =

{
0 x,y outside ROI,∑nSize
n=0 IPCA(x+ nx(θ), y + ny(θ)) else

(7)

The region of interest is designed to coincide with the same parts of the
image where D(r, θ) is small – the exponent is small where we examine the local
neighborhood, and it is large everywhere else in order to emphasize the ROI
in the graph search. E(θ) is the location of the active contour at each angle θ.
nx and ny are the x and y components of the normal to the active contour at each
angle θ. nSize is the size of the neighborhood, in the current implementation
that value has been set to 15. The region of interest has been set to 8 pixels
on either side of the active contour. Raw intensity information from the PCA
output is used as the cost information. This has the benefit of more predictably
uniform gray values; it also means that places where the PCA loses information
the regional cost terms may suffer.

2.3 3-D Edge Terms (Outer Border)

The outer border was virtually impossible to identify with the active contour
model used to estimate the inner border. The presence of plaque between the
two borders makes it very difficult to identify a suitable stopping criterion. Edge
information exists, but suffers due to the noise in the image. Moreover, simple
edges fail to take 3-D relationships into account. To address this, we used a 3-D
“ridge detection” for the cost terms for the outer border. For these terms, we
used a single 7 by 7 convolution mask on a log-polar representation of the image.
Two convolution operations were performed: one normal to the direction of the
pullback, in the plane of the individual frames, such that the two dimensions
were the radial and angular directions (r, θ), and the other in the longitudinal
direction, (directions r, z). The kernel used was designed to emphasize the fact
that the voxels immediately outside the media/adventitia surface were often
some of the brightest in the image, while those below it are much darker.

0BBBBBBBB@

+2 +3 +4 +5 +4 +3 +2
+2 +3 +4 +5 +4 +3 +2
+3 +4 +5 +6 +5 +4 +3
0 0 0 0 0 0 0
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Fig. 2. New cost function tested on Volcano data.

2.4 Interactive Resegmentation

The 3-D graph search method described in more detail in [4, 5] is employed
with our new cost functions to simultaneously detect both borders. Automated
segmentations may naturally fail. Most frequently, this is caused by artifacts pro-
viding a high attraction to minimize the cost, or gaps in the boundary resulting
in a high cost for the correct path. To compensate, we allow the user to manu-
ally trace a portion of the border where the computed segmentation has failed
in one or more longitudinal planes. Then, all costs on a surface corresponding
to the traced portion plus a spline-estimated surrounding region stretching to
the adjacent longitudinal planes (the tracing tool uses a total of 6 such planes)
are set to an arbitrarily chosen, but highly negative value. The cost terms in a
local volume neighborhood of the computed surface are then subjected to Gaus-
sian smoothing to retain the original cost information as being relevant, and to
account for inaccuracies in the border location indicated by the user. Then, the
graph search is recomputed with the altered cost function.

3 Results

3.1 Experimental Methods and Quantitative Analysis

Data from 15 patients were available, all imaged at the Charles University in
Prague, Czech Republic. A Volcano IVG3 imaging system was used with 20MHz
solid-state catheters. The typical processing time for the automated border de-
tection was 2–3 minutes on a 2.4 GHz Intel Core 2 processor (quad-core, only
a single core used). Error metrics used for the evaluation of the cost function
were computed point by point, at 360 angles around the border. Mean per-point
signed, unsigned, and root-mean-square (RMSE) errors were determined radi-
ally from the frame center over all points in all pullbacks. The area error was
computed by taking an estimate of the area within each border on each frame,
computing the error frame by frame, and then taking the signed and unsigned
means and the RMSE.

Figure 2 shows an example of our new cost function’s performance on data
from the Volcano catheters. Table 1 illustrates the quantitative analysis of our
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Table 1. Error statistics for Volcano catheter, using our cost function

Lumen/Lamina Media/Adventitia
Data from 15 patients: Signed Unsigned RMSE Signed Unsigned RMSE

Positioning Error † -0.123 0.302 0.482 0.004 0.240 0.390
— failures >20 pixels removed -0.016 0.178 0.220 0.042 0.141 0.186
— failures >10 pixels removed -0.005 0.117 0.137 0.027 0.097 0.120

Area Error ‡ -2.174 2.709 4.437 0.684 2.726 4.224

Error statistics, single patient, after interactive resegmentation

Positioning Error (Before) † -0.109 0.132 0.245 -0.232 0.242 0.472

Positioning Error (After) † -0.095 0.125 0.238 -0.046 0.115 0.273

Area Error (Before) ‡ -1.297 1.298 2.277 -3.369 3.398 6.484

Area Error (After) ‡ -1.178 1.178 2.110 0.370 1.042 2.238

Inter-Observer Variability, three patients

Positioning Error † 0.041 0.127 0.210 0.011 0.072 0.104

Area Error ‡ 0.750 1.117 1.493 0.724 1.180 2.129
† Values in mm distance, computed point by point along the border.
‡ Values in mm2, estimated by triangulation. (1 pixel ≈ 0.026mm)

new cost function. The unsigned error value indicates that the performance is
roughly equal to that reported in [4] for a Boston Scientific system with rotating
40 MHz transducer. Figure 2 also shows that there are often places within a seg-
mentation that don’t require any manual correction at all. Despite our new cost
function being correct in the majority of cases, occasional failures as reflected
by the RMSE errors have to be addressed.

3.2 Interactive Resegmentation

Due to the distribution of the segmentation errors, we evaluated the performance
both over all data and with gross outliers excluded. We computed the error
statistics with all samples as well as with any samples for which signed error
was greater than 20 and 10 pixels each excluded. Table 1 shows that the error
becomes much smaller when these failures are excluded, as would be expected,
a point also reflected in the fact that the RMSE for both borders is considerably
higher than the unsigned positioning error. The remaining errors are in the range
of the inter-observer variability, determined in a subset of three patients.

Removing error samples regarded as outright failures has justification beyond
theoretical definition of failure. We developed a feature for our segmentation
program that permits an interactive resegmentation as discussed in Section 2.4.
This feature works remarkably well, as demonstrated in Figure 3. In the initial
segmentation, the outer border is completely missed in the latter half of the pull-
back, as the edge detector gets caught on the strong edges at the lumen/plaque
surface. This in turn pushes the inner border several voxels into the vessel dur-
ing this part of the pullback, causing increased error throughout. By manually
tracing the outer border in a single longitudinal plane at two segments, and then
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Fig. 3. IVUS frame in which the initial segmentation failed, before (top) and after (bot-
tom) interactive resegmentation, by modifying only two outer-border segments in a
single longitudinal plane.

re-running the graph search, we were able to completely correct this portion of
the pullback, illustrating that the underlying cost function contained most of
the information required for a correct segmentation, but localized errors caused
the graph search to occasionally find an incorrect path in certain places.

4 Discussion and Conclusions

In summary, a new cost function for the segmentation of intravascular ultrasound
data acquired with a solid-state catheter using optimal dual-surface detection
graph search methods has been developed and validated against 15 manual trac-
ings by human experts. While there remains room for improvement, the segmen-
tation is accurate enough in a substantial number of cases not to require any
manual correction. Table 1 shows that our error on the Volcano data is roughly
comparable to that of a cost function reported for Boston Scientific catheters.
Figure 2 and the RMSE values for the new cost function show better results than
the error statistics indicate for those cases where it works well, and substantial
deviations where it fails. Critical areas are pockets or regions of concavity arti-
ficially filled in by the combination of blood speckle with high intensity voxels
adjacent to these, or lesions protruding into the vessel are completely eliminated
due to zero intensity valued voxels on either side. To allow for easy correction
of these areas, we developed a method for manually guiding the segmentation
back onto the right track. Figure 3 shows that this method works well with-
out the need for retracing the contours across larger segments as necessary with
other methods.
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from Multiple Views of Rotational X-Ray Angiography 
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Abstract. The purpose of this study is to present an efficient and robust method 
for 3-D symbolic reconstruction of coronary artery tree from multiple ECG-
gated views of X-ray angiography. 2-D coronary artery centerlines are ex-
tracted automatically from X-ray projection images using enhanced multi-scale 
analysis. For the difficult data with low vessel contrast, semi-automatic tool 
based on fast marching method is implemented to allow for user modification 
on the automatically-extracted 2-D centerlines. We first formulate 3-D sym-
bolic reconstruction from multiple views as an energy minimization problem 
incorporating a soft epipolar line constraint and a smoothness term evaluated in 
3-D. The minimization output, i.e. the 3-D coronary artery centerlines, there-
fore can be robust to the inaccuracies in 2-D centerline extraction and is inher-
ently smooth in 3-D. We further propose to solve the energy minimization 
problem using α -expansion moves of Graph Cuts, a powerful optimization 
technique that yields a local minimum in a strong sense at relatively low com-
putational complexity. Experiments on a synthetic phantom and on real porcine 
and human datasets demonstrate the efficacy of the proposed method.      

1   Introduction 
Cardio-Vascular Disease (CVD) is responsible for more than one third (36.3%) of 

total deaths in the United States in 2004 [1]. The gold standard for diagnosis of CVD 
is X-ray coronary angiography, which are 2-D projections of the coronary arteries 
and hence are subject to significant foreshortening that limits clinicians’ ability to 
accurately determine geometric properties of coronary arteries and intracoronary 
devices. It is shown in [2] that 3-D reconstruction of coronary arteries from tradi-
tional angiography allows for 3D measure of the lesion length and hence is a promis-
ing technique to optimize the choice of length and number of stents used during Per-
cutaneous Coronary Intervention (PCI). 3D symbolic model can further guide clini-
cians to choose the optimal patient-specific views that minimize vessel overlap and 
foreshortening [3,4,5], and provides the magnification factor for the vessel that’s 
needed for estimation of lumen diameter in 3D [6,7]. Furthermore, 3D symbolic re-
construction is a critical step in modeling the dynamics and shape changes of coro-
nary arteries during cardiac cycle [8], as well as in generating full vessel models by 
subsequent tomographic reconstruction for stenosis detection and analysis [7].  

3-D symbolic reconstruction of coronary arteries from biplane angiography was 
investigated using two synchronized projections [4,5,8]. In many cases, however, 
using only two views is not sufficient to obtain a precise reconstruction of the com-
plicated coronary tree, because the extracted 2-D vessel centerlines may not be accu-
rate or complete due to low image contrast or superposition of vessels from a certain 
view. The advantage of utilizing multiple views for robust 3-D symbolic reconstruc-
tion of coronary trees was demonstrated in [6,7]. In these methods hard epipolar line 
constraint was typically imposed in order to reduce the number of candidate matching 
point per pixel, without which the computational complexity for the global optimiza-
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tion by dynamic programming would be extremely high. However, hard epipolar line 
constraint is problematic for the vessels that are close to being parallel to the epipolar 
line or contain missing segments. In addition, smoothness regularization can be im-
posed only to the extent of the set of epipolar line intersection points, which are rela-
tively sparse and hence, not guaranteed to be smooth in 3-D. Therefore, the recon-
structed 3-D centerlines can be relatively jagged, especially when there is inaccuracy 
in the 2-D centerline extraction or projection matrix calibration. 

A rotational X-ray sequence is acquired by rotating the C-Arm with constant SID 
(Source Intensifier Distance), constant cranio/caudal angle, and varying anterior/ 
oblique angle in the range of -100 to 100 degrees, with the increment of ~2 degrees 
per projection. The goal of this paper is to describe an efficient and robust method for 
3-D symbolic reconstruction of coronary artery tree using all the projections that 
correspond to the same cardiac phase. The contribution of this paper is twofold: first, 
Coherence Enhanced Diffusion (CED) is introduced for improved automatic coronary 
artery segmentation, and for the very difficult case of low contrast in coronary vessels 
where it is not reliable to perform fully automatic centerline extraction, semi-
automatic interactive tool is implemented to allow user to edit the automatically ex-
tracted 2-D centerlines. Second, automatic 3-D symbolic reconstruction of coronary 
artery is formulated as an energy minimization problem that incorporates a soft epipo-
lar line constraint and a smoothness term evaluated in 3-D, and is then realized using 
a new optimization approach named α -expansion moves of Graph Cuts (GCs) [9]. 
Graph Cuts has shown to be a powerful and efficient optimization technique, and has 
been successfully applied on a wide variety of computer vision problems including 
image restoration, stereo and motion, and image synthesis. For medical imaging, GCs 
optimization yields promising results for fast segmentation. To our knowledge, this is 
the first application of Graph Cuts technique for efficient 3-D centerline reconstruc-
tion of the coronary artery tree.  

2   Methods 

2.1   2-D Coronary Segmentation and Centerline Extraction 
In order to reduce the noise and enhance coherent flow-like structures such as vessels 
in the X-ray projection images, a nonlinear diffusion technique named Coherence 
Enhanced Diffusion (CED) [10] is introduced. The diffusion equation is given by: 

 ));(();( txIDtxIt ∇⋅∇=∂  (1) 
Here D is a diffusion tensor that depends on local image structures so that not only 
the amount, but also the direction of the diffusion can be regulated.  was 
adopted in our algorithm for the trade-off between performance and efficiency. Multi-
scale Hessian-based filtering [11] is then applied on the CED preprocessed image to 
generate the vesselness feature image. The filter identifies the tubular structures using 
the eigenvalues 
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Here  is the convolution of the CED preprocessed image with a Gaussian kernel of 
size 

σu
σ . Ideally σ  should be the radius of the vessel of interest. The vesselness 

strength is calculated as [11]: 
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where 21 / λλ=BR , 2
2

2
1 λλ +=S , and the vesselness orientation is calculated as the 

eigenvector corresponding to 1λ . Here α  and β  controls the sensitivity of the filter 
and was set to 3 and 1 respectively.  

Coronary arteries are segmented by a hysteresis thresholding process on the ves-
selness image that retains connected components with all points that have vesselness 
above a low threshold and with at least one pixel with vesselness above a high thresh-
old. The low and high thresholds were calculated as fixed quantiles (90 and 96 per-
cent) of the accumulated histogram of the vesselness image. Only sufficiently large 
connected components are retained and the minimal size was set to 25 pixels.  The 
segmented coronary arteries are then hole-filled by close operation and the centerlines 
are extracted automatically using topological thinning [12]. For large vessels with 
local diameter variations, small braches may be produced artificially by topological 
thinning. Only sufficiently long branches are retained by pruning and the minimal 
branch length was set to 5 pixels. Line linking is further performed according to their 
vesselness orientation and spatial location in order to connect those line segments that 
belong to the same vessel and are broken due to local vesselness discontinuity.  

Our fully automatic 2-D centerline extraction algorithm in general works robustly 
for typical coronary angiography with sufficient contrast. Some examples are shown 
in Fig.1. Nevertheless, clinically there could be cases where the contrast of vessels is 
relatively low (e.g. due to diseases and blockages), and there is presence of peripheral 
anatomical structures of high contrast, as shown in Fig.2.a. Fully automated method 
that can robustly segment the coronary arteries in this challenging case is not yet 
known.  Motivated by Intelligent Scissor (IS) [13] we propose a method for interac-
tive editing of the automatically extracted centerlines when need is observed. In par-
ticular, when user moves the mouse, the shortest path between a seed point (e.g. the 
root of the coronary tree) and the current mouse position is searched on-the-fly by 
Fast Marching method [14]. The cost of a path L is:   

  )())(001.0/(1)C(
1

4 LωSpvL
m

p
++= ∑

=
(4) 

where v(p) is the vesselness at pixel p, m is the number of pixels on the path L, S(L) is 
the length of the path L, and  controls the relative weights of these two factors (set 
to 50 experimentally). In order for the extraction of the smaller vessels to be less 
susceptible to the influence from the neighboring large vessels, a modified vesselness 
v(p) is used. In particular, all points on the automatically extracted centerlines in 
Fig.2.e are assigned the same (maximum) value for their vesselness, and the vessel-
ness for the points not on the automatically extracted centerlines is their coherence 
enhanced multi-scale vesselness response in Fig.2.c. Hence more accurate automatic 
centerline extraction leads to more convenient and robust semi-automatic editing. It 
can be seen that a path of stronger vesselness and shorter length is preferred over a 
path of weaker vesselness and a longer length. Since fast marching may produce 
jagged line segments due to the fact that it does not consider global topology, the 
output of the editing can be optionally smoothed by fitting B-Spline(s) that has mini-
mized weighted summation of the total curvature and the distance to the original 
centerlines, as was done for the root segment pointed by the red arrows in Fig.2.f. A 
block diagram of the 2-D centerline extraction algorithm is shown in Fig.3.a. 

ω
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Fig. 1. X-ray angiography (upper) and automatically extracted coronary centerline (bottom). 

Fig. 2. Semi-automatic 2-D coronary artery segmentation and centerline extraction. (a) original 
X-ray image (b) multi-scale analysis (c) coherence enhanced multi-scale analysis (d) binarized 
mask by hysteresis thresholding (e) topological thinning with line segment pruning and con-
nection (e) manual editing based on fast marching using the modified vesselness.

a b c 

e d f 
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2.2   Multi-view Correspondence Matching  
Suppose we have n views (I1 … In) taken at the same cardiac phase and their corre-
sponding acquisition geometry (M1 … M n). One view (I1) is selected as the reference 
view and its optical center is computed according to M1. The 3-D space between the 
optical center and the imaging plane is divided into 3-D planes of equal depth incre-
ments, and a label l ( ) is attributed to each depth. Therefore, for a given pixel p 
on I

Ll∈
1, (p, l ) corresponds to a point in 3-D space, which is the intersection of plane 

and the ray passing through the optical center and pixel p (Fig.3.b). The mapping 
for all the pixels on the 2D centerline P extracted from I
l

1, ),(: lfPpfpf pp ∈∈→ ,  
is established via the minimization of the energy function: 
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where  is the projection of the 3-D point  onto the i),( pi fpproj ),( pfp th view,  
is the point on the 2-D centerline of the i

)(rci
th view that is closest to a given 2-D point r, 

and d(p,q) = min(|p-q|,K1) for some constant K1. The cap K1 (set to 20) is to make the 
distance penalty robust when the corresponding stereo point is missing in some 
views. A kd-tree structure [15] is implemented for an efficient search of the point 

 for any point r. It is clear that while the data term favors 3-D points that are 
closer to the epipolar lines, no hard epipolar line constraint is imposed. This property 
is crucial for the robustness of the reconstruction algorithm, especially when there is 
inaccuracies and incompleteness in the extracted 2-D centerlines. In addition, soft 
epipolar line constraint allows the smoothness regularization to be optimized up to the 
accuracy of a small depth increment

)(rci

L∆ in 3-D (further details are given later), which 
helps to improve the smoothness of the reconstructed coronary tree in 3-D. 

The smoothness term  involves the notion of neighborhood N: )(⋅V
}1||||,,),,{( =−+−∈∈= yyxx qpqpPqPpqpN  (7) 
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where B denotes the union of branching points that have three or more neighboring 
points on the 2-D centerline P in its eight-connection neighborhood. Higher smooth-
ness penalty is imposed between non-branching points by 32  (kk > 15,50 32 == kk  in 
our algorithm). It is important to allow for discontinuity at a branching point because 
it may be the intersection of two vessels at different depth. Meanwhile reasonably 
high smoothness penalty for non-branching is necessary in order to achieve a smooth 
3-D reconstruction. Furthermore, Vp,q(.) is a metric for any (p, q), satisfying the neces-
sary condition for α-expansion move of GCs optimization. 

Consider a given input f and a label α, another configuration f’ is defined to be 
within a single α-expansion of f when all pixels Pp∈  either  orpp ff =' α='pf . The 
critical step in the minimization of the energy function E in Eq. 5 by GCs is to locally 
decrease the energy function E for a given configuration f and a label α by finding 
the , among all α-expansions of f, that minimizes the energy function E. It has been 
shown that global searching of  for a given f and α can be done efficiently by 

'pf
'pf
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constructing a directed graph using the data term and smoothness term defined in Eq. 
6 and 7, and solving the maximum flow problem (see [9] for details). This local im-
provement is run over all the labels in L either in a fixed order or at random. If there 
is some label α that decreases the energy E, another circle of local improvements is 
repeated over all the labels. Otherwise the optimization process stops. It is shown [9] 
that experimentally the computational time increases only linearly with the number of 
labels in L, implying that a large number of labels (hence small depth increment ) 
can be searched within tractable time. In comparison, most existing methods use 
dynamic programming for global optimization, whose time complexity increases 
quadraticly with the average number of candidate positions per pixel. Hard epipolar 
line constraint hence has to be imposed in order to make the computation tractable. In 
our algorithm the number of labels was set to 256 and the increment

L∆

L∆ was about 
0.5mm. Note that the output Eoutput of Graph Cuts α-expansion move is a local mini-
mum within a known factor of the global minimum: Eoutput ≤ 2  E2k optimal . 

 

Coherence Enhanced Diffusion

Vesselness Enhanced Filtering 

Vessel Segmentation by Hysteresis Thresh-
olding and Small Component Removal

Topological Thinning and Pruning

Line Linking  

Optional: Editing by Fast Marching 

Optional: B-Spine Smoothing 

(b) (a)  
Fig. 3. Block diagram of 2-D coronary artery centerline extraction (a) and schematic view of 
multi-view matching using GCs for 3-D reconstruction (b). The intersection of the 3-D ray and 
a labeled plane is re-projected onto the other two views in (b). 

3   Experiments 
A synthetic 3-D heart phantom was designed to incorporate basic LAD, LCX and 
RCA coronary branches (Fig.4.a). 2-D projections of the 3-D centerline phantom 
were simulated using known projection matrices on 2-D images (512x512). Different 
numbers of views were used for reconstruction, and the angle between two consecu-
tive views was determined in order that approximately the same total angulation was 
covered in each case. The 2-D re-projection error was averaged over ten views that 
were distinct from the views used for reconstruction. In Table 1, the 3-D error was 
relatively large when only two views were used, and became less than 1mm when 
five or more views were utilized, demonstrating the advantage of exploiting more 
views for reconstruction. The accuracy was relatively high (sub-millimeter), and the 
execution time increased only slightly with the increasing number of views used. 3-D 
reconstruction is very challenging for any optimization method when the number of 
views is limited and with wide baseline, even for motion-free and not-complicated 
structures. The result therefore demonstrates the strength and efficiency of GCs opti-
mization.  
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The proposed method was further experimented on a porcine data (620x480) and a 
human data (512x512) acquired by Siemens Axiom Artis System. Cardiac phase was 
estimated from ECG signal. Breathing motion was negligible for the human data 
acquired during breathing holding, and was observed to be minimal for the porcine 
data, which otherwise need to be compensated by 2-D translation using bifurcation 
points. 2-D centerline extraction was fully automatic on the human data (Fig.1) and 
semi-automatic editing was needed for the porcine data (Fig.2), which could be ac-
complished reliably within a few minutes for trained users, and intra-observer vari-
ability was observed to be minimal due to the fact that user input was indeed minimal 
(essentially the end points only). CED was observed to improve the vessel segmenta-
tion result noticeably (Fig.2.c). Five projections were used for fully automatic recon-
struction, and the reconstructed 3-D centerlines were re-projected onto the other view 
at the same cardiac phase that was not used for reconstruction. The reconstructed 3-D 
centerlines seem to be highly smooth (Fig.5.a), and their projections overlay reasona-
bly well with the vessels in the X-ray images (Fig.5.b). The 2-D re-projection error 
for a projected point (purple line) was defined as its distance to the closest point on 
the expert-identified centerlines (blue line) in Fig.5.b, and the mean error was 1.15 ± 
1.01 mm and 1.22 ± 0.93 mm respectively. Typical running time was 12s on 2.13 
GHz Intel Pentium M when using five views and 256 labels. 

Table 1. Validation of the proposed 3-D recon-
struction method using a synthetic phantom. 

 

4   Discussion and Conclusion 
A framework based on GCs optimization is presented for efficient multi-view sym-
bolic reconstruction of coronary artery tree. The accuracy as reported from the phan-
tom and patient studies seems promising, and the efficiency is significantly improved 
compared to other approaches reported in the literatures, ranging from a few to tens 
of minutes [5~8]. Visually good and smooth reconstruction is demonstrated. Further 
study is required for in-depth quantitative comparison of the proposed method with 
other approaches in generating a smooth 3-D reconstruction by utilizing soft-epipolar 
line constraint and small depth increment. The reconstructed 3-D symbolic model can 
be used to optimize the visualization, quantitative assessment of coronary lesion, and 
3-D measure of intracoronary devices, and will be clinically evaluated. Future work 
consists of dynamic analysis of each artery from the symbolic reconstructions ob-
tained for different cardiac phases (Fig.6). Furthermore, after the estimated motion is 
compensated throughout the angiography sequence, tomographic reconstruction can 
be applied to obtain the full vessel lumen model for stenosis analysis. 

 

Fig. 4. A heart phantom (a) and 
reconstruction using five views (b).

(a) (b) 

 
 

# of views / angle 
between views 

Execution 
time (s) 

Mean 2-D 
error (pixel) 

RMS 3-D  
error (mm) 

2/90 11.497 5.30 ±15.80 2.67 ± 5.59 
3/60 12.208 2.35 ± 7.99 1.20 ± 2.86 
4/40 12.198 2.08 ± 6.60 1.01 ± 2.08 
5/30 12.869 1.86 ± 5.21 0.83 ± 1.58 
6/24 12.899 1.75 ± 4.56 0.83 ± 1.41 
7/20 13.330 1.75 ± 4.80 0.84 ± 1.55 
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(a) Reconstructed 3-D centerlines of 
coronary artery 

(b) Re-projections (purple line) overlaid with 
expert-generated centerlines (blue line).  

Fig. 5. Results for a porcine (left) and a human data (right). Note that for the human data, the 
vessel pointed by arrow is not visible in the reference view and hence is not reconstructed. 

0% ECG 

30% ECG 

60% ECG 

Fig. 6. Symbolic reconstruction for several cardiac phases. 
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Abstract. In vivo IVUS elastography of human coronaries corroborated by 
histology is presented for the first time. Before elastogram calculation, the pre-
processing included the detection of the vessel wall and global IVUS catheter 
rotation compensation. The pre-processing improved the quality of elastograms, 
particularly the correlation between consecutive radio-frequency IVUS frames 
was increased and the variance of elasticity maps decreased. Peak-systolic and 
end-diastolic strains were estimated from radial elastograms of plaques. Strain 
values with maximum occurrence at peak-systole and end-diastole were 
respectively linked with the presence of inflammation (CD68) and patient 
vulnerability objectively defined by the presence of calcium, lipid, smooth 
muscle cells, thrombi and CD68 marker of inflammation within excised 
plaques, medical history and patient`s clinical condition. 

Keywords: Elastography, Motion compensation, Vulnerable coronary plaques, 
Biomarkers of acute coronary syndrome, Atherosclerotic plaque image analysis. 

1 Introduction 

Intravascular ultrasound (IVUS) is an imaging technique that shows the blood 
vessel from the inside allowing to see the intima, media and adventitia with a good 
resolution. IVUS is widely used to image coronary arteries, especially the 
atherosclerotic pathology to determine the degree of stenosis and plaque burden. 
When a plaque ruptures, the formation of a blood clot within the vessel lumen can 
cause an acute coronary syndrome responsible of a heart attack, which is the leading 
cause of mortality in western countries [1]. Atheromatous plaques formed in the 
intima and the bulk of these lesions are typically made of soft lipid-rich necrotic 
cores, harder collagen-rich sclerotic tissues and often calcium. The main determinants 
leading to ruptured plaques are known to be a large lipid core covered by a thin 
fibrous cap and/or a dense infiltration of macrophages inside the fibrous cap [2]. 

IVUS elastography is a method that can estimate the strain distribution within 
vessel walls. Several studies showed the capability of IVUS elastography to identify 
plaque components, in vitro in human arteries [3] but also in vivo [4]. The major 
technical issue limiting the performance of IVUS elastography to characterize 
coronary arteries is the strong motion due to the heart beat. This motion changes the 
position of the IVUS catheter within the vessel lumen, and leads to rotation and out-
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of-plane motion artefacts observed either on the B-mode or radio-frequency (RF) 
data. Several approaches were recently proposed to circumvent this difficulty [5,6] 
and an alternative is suggested in this manuscript. In addition, elastograms were 
computed with a robust algorithm known as the Lagrangian Speckle Model Estimator 
(LSME) [7]. This paper reports LSME elastograms applied to in vivo data obtained 
from 12 arteries before directional coronary atherectomy (DCA). 

2 Methods 

2.1 Clinical exams 

Twelve patients (including two no re-flow cases and one perforation case) gave 
their written informed consent before being recruited. The research protocol was 
approved by the Review Ethical Committee of Sendai University. Before DCA, 
routine IVUS observations were performed and RF signals acquired at the same 
moment. IVUS scans were conducted with a Galaxy II® echograph (Boston 
Scientific, Natick, MA, USA) equipped with 40 MHz mechanically rotating probes. 
One sequence of 30 images was acquired for each patient with a fixed longitudinal 
position of the catheter within the maximum stenosis, at a frame rate of 30 images/s. 
RF signals were digitized with a CS8500 8-bits 500 MHz acquisition card (GAGE, 
Lockport, IL, USA). The DCA procedure consisted in removing the atheromatous 
plaque with a catheter designed for radial lesion cutting and excision. The excised 
specimens were fixed in 10% formalin and stained with normal Elastica-Masson’s 
trichrome and CD68 monoclonal antibodies. These two staining gave information on 
the presence of calcium, lipid, smooth muscular cells, thrombi and inflammation. The 
vulnerability of the patient was determined based on histology analyses, medical 
history and clinical condition. Patient`s vulnerability is a more generic condition than 
vulnerable plaque (vulnerable plaques are not the only culprit factors for the 
development of acute coronary syndromes, blood prone to thrombosis and 
myocardium prone to fatal arrhythmia also play a role) [8]. Table 1 gives an overview 
of the clinical classification of every patient and plaque components. 

2.2 Data analysis 

2.2.1 Image Segmentation. The first step of the data pre-processing consisted in 
segmenting IVUS images to detect vessel boundaries. The segmentation algorithm to 
detect the lumen and media-adventitia boundaries was based on a fast-marching 
model combining region and contour information [9]. Contours were validated by a 
cardiologist (Y.S.) before the next processing step. The artery wall (area between the 
detected lumen and media-adventitia boundary) defined the region of interest (ROI) 
that was used for image registration (Section 2.2.2). 

2.2.2 Catheter Rotation Compensation. The second step consisted in a rigid motion 
compensation to remove the rotation observed between consecutive RF images. Each 
IVUS frame made of 256 radial lines in polar coordinates was unwrapped to obtain a 
matrix where rows correspond to propagation depths and columns to angles. A lateral 
translation in this representation thus corresponded to a rotation centered on the 
middle of the catheter in the Cartesian system. 
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Table 1: Systemic pressure in mmHg, patient vulnerability (0 = stable, 1 = at risk, 2 = 
high risk), and components of the plaque for each patient assessed on a binary scale: 0 
= absence of the biomarker and 1 = presence. The level of inflammation was graded 
into three categories: 0 = no inflammation, 1 = medium level of inflammation and 2 = 
high level. 

Plaque components Patient Pressure 
(mmHg) 

Patient 
vulnerability Calcium Lipid Smooth 

muscle cells 
thrombus

CD68 
(level of 

inflammation) 
0421KK 138 / 72 0 0 1 1 1 0 
0422MS 124 / 68 0 0 0 1 0 1 
0428NH 132 / 80 1 0 1 1 0 0 
0522KK 158 / 88 0 0 0 0 0 0 
0623AM 142 / 78 1 0 1 1 1 2 
0623YK 152 / 92 2 0 1 1 0 2 
0707SM 138 / 82 0 0 0 1 0 0 
0715RT 114 / 76 2 1 1 1 1 2 
0729TT 162 / 94 0 0 0 0 0 0 
0729YK 128 / 74 1 1 1 1 1 1 
0804ST 168 / 94 2 1 1 1 1 2 
0818KN 132 / 88 2 0 0 1 0 0 

The first 256 columns were selected as the initial image of the sequence. The 
second image was searched by lateral 2D correlations of ROIs and the rotation 
artefact was determined as the lateral shift with maximum correlation. Next, the new 
image compensated for rotation served as the initial image to align the third one and 
so on. A complete sequence was reconstructed with all images compensated for 
rotation. To quantify the improvement with this method, three parameters were 
evaluated before and after compensation: 1) the average correlation between RF 
images of the sequence, 2) the number of pixels in the whole sequence with 
correlations > 0.75 between images and 3) the mean from the whole sequence of the 
spatial variance of strain elastography images (which included variance due to 
mechanical heterogeneity within the ROI and tissue movement artifact). 

2.2.3 Elastography algorithm. The LSME is described in details elsewhere [7]. The 
first step of this algorithm consisted in another local rigid registration on overlapping 
sub-windows (measurement windows – MWs) within the ROI that allowed 
compensating for potential residual translation movement using 2D cross-correlation 
analysis. For each MW, radial and circumferential displacement fields and correlation 
coefficient distributions were computed. The LSME is formulated as a nonlinear 
minimization problem that allows assessing the complete 2D-deformation matrix (Δ). 
In the context of IVUS elastography, Δ can mathematically be defined as [7] : 
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In this equation, Ur and Uϕ are the radial and tangential displacement fields, 
respectively. The matrix component Δrr computed from consecutive RF images of the 
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IVUS sequence is the radial strain distribution that was analyzed in this study. The 
LSME numerical solution was reached using an inversion algorithm [10]. The size of 
2D MWs was 350 × 20 pixels (359 μm × 28°), with 90% axial and lateral overlaps. 
LSME elastograms were filtered using a median filter (5 × 5 pixels). 

For each elastogram, the spatial mean strain within the segmented ROI was 
estimated. A strain profile as a function of time (equivalent to a strain rate) was 
obtained by cumulating these average strain values. The strain profile permitted to 
detect easily the peak systolic and end diastolic moments of the cardiac cycle (Figure 
2-b). Instantaneous strain histograms of the vascular wall (and plaque) were plotted at 
these two time periods. The primary strain was estimated as the peak of the histogram 
(Figure 2-d and f), and this value was used for quantitative analysis. 

2.3 Statistical analyses 

Quantitative variables are reported as mean ± standard deviation. Statistical 
analyses were made with the SigmaStat software (version 3.1, Systat Software, San 
Jose, CA, USA). Analyses of variance were performed to detect any significant 
relation between primary strains (at peak systole and end diastole) and plaque 
components, patient vulnerability and status of inflammation. Spearman correlations 
were also calculated between primary strains, mean correlations of the RF sequence 
and systemic pressures. 

3 Results 

3.1 Global rotation compensation 

The importance of the motion artifact was very different for each patient. The 
range of rotation within the cardiac cycle varied from 1.4° to 16.8°, see Table 2. For 
most patients, the rotation was not negligible, indeed IVUS scans of nine patients had 
a rotation superior to 5°. Moreover, for eight patients a cyclic rotation was clearly 
observed along the sequence, as depicted in Figure 1-a. The cyclic pattern was not 
obvious for four other patients because there was either an incomplete cardiac cycle 
available (scans of 1 s only) or a lack of correlation between consecutive images. 

After rotation compensation, the three quality criteria defined earlier showed 
improvements, as presented in Figure 1-b. The improvement of each criterion in 

percent was assessed as: 100
 

  ×
−

oncompensatibefore

oncompensatibeforeoncompensatiafter

C
CC

, where C is one of 

the three criteria. 

3.2 Elastogram analysis 

One patient (0707SM) was excluded because of the lack of correlation between 
consecutive images of the sequence, and because the B-mode data clearly showed a 
longitudinal motion of the probe. Otherwise, for all other sequences, at least one 
elastogram at peak systole and another at end diastole could be estimated. Primary 
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strains at these two instants are given in Table 2. The statistical analysis showed that 
patient`s vulnerability could be detected by the end-diastolic primary strain (0.08 ± 
0.04 % when not vulnerable, 0.27 ± 0.15 % for patients at risk and 0.05 ± 0.05 % for 
patients at high risk, p < 0.05). Moreover, the inflammation status was linked with the 
peak-systolic primary strain (0.005 ± 0.08 % for no inflammation, -0.33 ± 0.07 % for 
medium level of inflammation and -0.03 ± 0.07 % for high level of inflammation, p < 
0.005). Deformations were not linked with the systemic pressure, neither to a better 
correlation of the data (p > 0.1 for all cases). On the other hand, systolic and diastolic 
strains could not give information on the presence of any of the plaque components. 
Figure 2 presents examples of data processed to obtain results of Table 2. 

 

  
a) b) 

Figure 1: a) Estimation of the catheter rotation with respect to the first frame (patient 
0422MS). A cyclic pattern of rotation in synchronicity with the cardiac beat is 
identified. b) Evolution of the three quality criteria after rotation compensation. A 
value close to zero indicates no improvement due either to the failure of the 
registration algorithm or absence of motion artifacts. The number of pixels with a 
high correlation and the mean correlation increased following registration, whereas 
the mean variance of elastograms decreased. The best improvement was observed for 
the first patient (0421KK) where the number of pixels with a high correlation 
increased by 21%, the mean correlation of the sequence increased by 2% and 
variances of elastograms decreased by 33%. Note that the mean correlation was 
multiplied by 10 to enhance visualization. 

4 Discussion 

The global rotation compensation improved significantly the quality of several 
sequences. Visually the arterial wall appeared more stable over time, and 
quantitatively the three quality criteria were improved. Typically, the efficacy of the 
rotation compensation could be predicted by the mean correlation between 
consecutive RF frames before compensation. Indeed, when the mean correlation was 
high, the rotation motion was small and the compensation did not improve 
appreciably elastograms. At the opposite, for cases with a small mean correlation 
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before compensation, the motion artifact was important and not due to a single 
rotation but also to out of plane motion. In such circumstances, the rotation 
compensation was not very efficient. Best results were obtained for intermediate 
levels of correlation before compensation. 

Table 2: Summary of the different parameters measured for each patient. 

Patient Rotation 
[min, max] 

Cyclic 
behavior 

Mean correlation 
of the sequence 

after compensation

End-diastolic 
primary strain in 

% 

Peak-systolic 
primary strain 

in % 
0421KK [-15.4°, 1.4°] Uncertain 0.80 0.0840 -0.0120 
0422MS [-4.2°, 2.8°] Yes 0.81 0.0960 -0.2800 
0428NH [-1.4°, 2.8°] Uncertain 0.78 0.1400 0.0960 
0522KK [-1.4°, 7°] Yes 0.84 0.1200 -0.0600 
0623AM [-9.8°, 0°] Uncertain 0.88 0.2200 0.0360 
0623YK [-4.2°, 2.8°] Yes 0.88 0.0240 0.0000 
0707SM [0°, 8.4°] No 0.40 X X 
0715RT [-1.4°, 0°] Yes 0.84 0.1300 -0.0480 
0729TT [-2.8°, 1.4°] Yes 0.78 0.0240 0.0720 
0729YK [-7°, 0°] Yes 0.83 0.4400 -0.3800 
0804ST [0°, 11.2°] Yes 0.80 0.0120 -0.1200 
0818KN [-5.6°, 2.8°] Yes 0.82 0.0360 -0.0720 

RF data in this study were of good quality, with the catheter often located near the 
center of the lumen, and with the principal motion artifact being a centered rotation. 
Nevertheless, a more complex motion compensation algorithm could be required for 
complex motion artifacts. For example, Leung et al. combined a global rotation with a 
local block matching as a pre-processing of their strain estimation [11]. In the present 
study, the rotation compensation algorithm did not try to reach a subpixel resolution 
by performing interpolation to optimize detection of maximum correlation. Indeed, a 
2D local block matching was performed on segmented plaques as a first step before 
applying the LSME to refine afterward the motion compensation on every MW. 

For most patients (11/12), strain images could be calculated on the whole vessel 
wall, with coherent and reproducible elastograms. Numerical analyses showed that 
primary strains estimated at different instants of the cardiac cycle were significantly 
linked with the vulnerability of the patient and to the inflammation status. De Korte et 
al [12] also found a similar relation between the presence of macrophages and high 
strain peaks on their palpograms. According to them, it could refer to the presence of 
active macrophages, causing plaque weakening. Our observations revealed that 
primary peak-systolic strains were statistically higher in plaques with a medium level 
of inflammation (grade 1). Similarly, higher primary end-diastolic strains were 
measured for patients with moderate vulnerability (grade 1). As these deformations 
were not linked with the plaque components, we still need to elucidate which clinical 
factor explains these results. On strain images, regions with different elasticity were 
detected, as in Fig. 2, but a careful attention at strain heterogeneity and location 
within the plaque were not yet addressed. 
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a) b) 

  
c) d) 

  
e) f) 

Figure 2: Example of analysis for patient 0729YK. a) B-mode image with contour 
detection highlighting the ROI. b) Cumulated mean strain within the segmented 
plaque as a function of time. The cardiac cycle can be detected (ED is end diastole 
and SP is systolic peak). c) Peak-systolic elastogram and d) corresponding histogram. 
The peak-systolic primary strain was defined as the peak of this histogram. e) End-
diastolic elastogram and corresponding histogram. The end-diastolic primary strain 
was defined as the peak of this histogram. Note that an area with large deformations 
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(≈ ± 3 %) is identified on these elastograms close to the vessel lumen, which may be 
indicative of a necrotic core (lipid pool) of a vulnerable plaque. 

5 Conclusion 

In this study, we performed for the first time in vivo vascular elastography 
corroborated with histology. A global image rotation compensation and rigid 
registration of measurement windows were performed to increase the quality of IVUS 
sequences and that of elastograms. The study showed that peak-systolic and end-
diastolic primary strains were significantly linked with the status of inflammation and 
patient`s vulnerability, respectively. 
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Abstract. Intravascular ultrasound is a medical imaging technique that
produces cross-sectional images of the vascular wall as a catheter is
pulled-back inside blood vessels. A multiscale 3D fast-marching method
with minimal user interaction is presented for the detection of the lu-
men and external vessel wall boundaries. The proposed segmentation
framework is based on a combination of local and global image features.
The method was applied to 5 in-vivo pullback datasets of 678 images on
average acquired on diseased femoral arteries. No difference was found
between the contour area measurements of the lumen and external vessel
wall from the segmentation results and manually drawn contours by ex-
perts. Area differences between segmentation and validation contours of
-1.9 ± 8.7 % and -1.8 ± 2.5 % were respectively found for the lumen and
the external vessel border. The multiscale optimization of fast-marching
provides accurate results with 40 % less computation.

1 Introduction

Intravascular ultrasound imaging (IVUS) provides high-resolution axial images
of the lumen and vessel wall as a catheter is pulled-back inside blood vessels.
IVUS imaging has been used in several studies that evaluated the effect of ther-
apies on atherosclerosis [1]. IVUS datasets provide information on the lumen
cross section area, the wall thickness and on the length, volume and position
(concentricity or eccentricity) of the lesion. Moreover, IVUS is becoming a tool
of choice in the treatment of peripheral disease [2]. IVUS acquisitions often
contain several hundreds of images that are subject to artifacts such as ultra-
sonic speckle, catheter ring-down or calcification shadows. Automated segmen-
tation of the IVUS series is thus desirable for the analysis of the voluminous
datasets acquired in clinical trials evaluating the progression and regression of
the atherosclerotic disease.
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Recent works in IVUS image segmentation include models that are based on
edge information. Active contour models were considered with implementations
based on gray level gradient with automatic initialization [3] and gradient vec-
tor flow of canny edge maps [4]. A graph search algorithm implemented using
gray level properties and first- and second-derivative gradient filters was also
described [5]. Another edge based segmentation model relies on a multi-agent
method [6].

A fast-marching method for the segmentation of IVUS images based on the
intensity gradient and probability density functions (PDFs) of the vessel wall
components was proposed in [7]. An interactive initialization procedure was used
for the segmentation. The aim of the current work was thus to identify the
luminal and outer vessel (or external elastic membrane, EEM) borders on IVUS
sequences of diseased femoral arteries with an optimized segmentation method
where the initialization and segmentation computation load is reduced with the
multiscale optimization of the fast-marching method.

2 Fast-Marching Segmentation and Multiscale
Optimization

The fast-marching method, a particular case of the level-set model, was devel-
oped to follow the evolution of an interface propagating under a unidirectional
speed function F [8]. In the segmentation framework, the detected boundary
is defined as the propagating interface final position [9]. The speed function is
defined in terms of image or shape features. When the propagating front meets
the boundaries of the image objects, the velocity should tend toward zero to
stop the segmentation. The evolution of the contour is expressed as a function
of the arrival time T of the front at a point in the image. The T function satis-
fies Eq. (1), stating that the arrival time difference between two adjacent points
increases as the velocity of the contour decreases.

| ∇T | F = 1 . (1)

For the segmentation of IVUS images, the luminal and EEM borders must be
identified. Both contours were detected in parallel using a multiple interface
extension of the fast-marching algorithm [10]. For this particular case, a bound-
ary is defined as the meeting position of two fronts propagating in opposite
directions. Each of the multiple interfaces was propagated according to a speed
function defined in terms of the image gradient and the PDF of the correspond-
ing wall component [7, 11]. The propagation speed Fm of interface m is given
by :

Fm(i, j, k) = αFm,pdf (i, j, k) + βFm,grad(i, j, k). (2)

where Fm,pdf (i, j, k) and Fm,grad(i, j, k) are the speed function components, at
position (i, j, k) in the IVUS image volume I. They are respectively defined in
terms of the PDF and intensity gradient components; α and β are the weights
of the velocity components.
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A multiscale optimization of the fast-marching method was used to provide
large exploration regions to the propagating fronts with less computation. The
segmentation results of a lower resolution representation of the data were mapped
into the next level of resolution. These mapped results were used to initialize the
front propagation at this higher resolution level. At a resolution level l, a pixel
represents a 2l×2l block of pixels from the original image. To overcome this lost
of information, a PDF-based energy function calculated using the whole data at
each resolution was proposed in [12] for a multiscale deformable template. The
fast-marching speed function was adapated using this approach. The PDFs and
image gradient computed on the original dataset were thus used at each scale.

To obtain a multiscale fast-marching method without information loss, the
velocity function of Eq. (2) was thus redefined as :

F l
m(i, j, k) = αF l

m,pdf (i, j, k) + βF l
m,grad(i, j, k), (3)

where F l
m,pdf (i, j, k) and F l

m,grad(i, j, k) are the speed function components of
the pixel positioned at (i, j, k) in the IVUS image volume Il at resolution level l.
The multiscale velocity function components were defined as :

F l
m,pdf (i, j, k) =

1
Nν

∑

q∈ν

∑

s∈bl
q

pm(ys). (4)

F l
m,grad(i, j, k) =

1
1 +

∑
s∈bl

q
|gσ(ys)|

. (5)

where ν is the set of the Nν 3D neighbors of the pixel positioned at (i, j, k); bl
q

is the 2l × 2l block of pixels of the highest resolution dataset corresponding to
the point q; ys is the gray level value of the pixel positioned at s in the original
dataset; and gσ(ys) is the gaussian filtered (with standard deviation σ) gradient
g at pixel ys.

With these speed functions, the occurring probability of the point q in the
image volume Il, when the propagation is done at level l, was replaced with
the average of the occurring probabilities of the 2l × 2l block of pixels from the
original dataset. Similarly, the gradient at q was replaced with the average value
of the pixel block gradient. The initial resolution level was set to l = 2.

Pre-processing. The IVUS images were converted in the polar format and
all processing was performed in this format. The pre-processing calculations
involved the catheter artifact detection and removal, the estimation of the PDF
parameters and the intensity gradient computation.

The pixels near the catheter with gray level values that correlated highly
(with r > 0.9) through frames across the whole pullback were labeled as being
part of the ring-down artifact and subtracted from the 2D IVUS frames. This
catheter related artifact was detected for each dataset because it is specific to
the catheter used to scan a given patient.

The speed function of Eq. (4) uses the occurring probability of the gray level
values in the different vessel component distributions calculated with pm(ys).

98



The gray level PDF of the whole IVUS pullback was modeled as a mixture of
Rayleigh PDFs [13] where each distribution corresponds to a vessel structure
(lumen, vessel wall, surrounding tissues). The PDF mixture pY |Θ that contains
M Rayleigh distributions with parameter Θ = {(ωm, a2

m)}M
m=1, was defined by:

pY |Θ(ys | Θ) =
M∑

m=1

ωmpm(ys | a2
m) (6)

where ωm is the proportion of the mth component of the mixture so that∑M
m=1 ωm = 1; am is the parameter of the Rayleigh distribution pm. The

Rayleigh distribution is defined by:

pY (ys; a2) =
ys

a2
exp

(
− y2

s

2a2

)
(7)

with ys > 0 and the variance σ2 = a2(4 − π)/2. The mixture parameter Θ was
estimated with the expectation-maximization algorithm (EM) [14]. A detailed
description of the estimation of a Rayleigh PDF mixture is provided in [11].

The speed function of Eq. (5) uses the gradient that was computed along the
radial lines using a radial difference operator.

Initialization. The initialization procedure was divided in two steps: auto-
matic lumen initialization and interactive EEM initialization. All initial contour
computations were performed on longitudinal views (LViews) of the IVUS vol-
ume. The initialization procedure was based on the method described in [7].
With the multiscale fast-marching, only LViews need to be initialized whereas
cross-sectional images were also necessary in [7].

Four LViews were selected at regularly spaced angles over 360 degrees. The
lumen longitudinal contours were automatically detected: they were positioned
outside the catheter and grown to maximize the lumen likelihood computed
according to the lumen PDF pLum:

LLum(i, j, k) =
1

Nν1

∑

s∈ν1

log pLum(ys) (8)

where ν1 is the set of the Nν1 pixels inside the contour. The longitudinal EEM
contours were then interactively detected. Smooth contours surrounding the pre-
viously found lumen were grown radially to maximize the EEM log-likelihood :

LEEM (i, j, k) =
1

Nν1

∑

s∈ν1

log pinEEM (ys)

+
1

Nν2

∑

s∈ν2

log poutEEM (ys) +
1

Nν3

∑

s∈ν3

gσ(ys) . (9)

where ν1 and ν2 are sets of Nν1 and Nν2 pixels in regions of interest respectively
inside and outside the vessel boundary ; ν3 is the set of Nν3 pixels on the bound-
ary; pinEEM (ys) and poutEEM (ys) are the estimated occurring probabilities of
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ys in the tissue regions inside and outside the EEM, respectively; and gσ(ys) is
the value of the filtered gray level gradient at ys.

These automatically detected EEM contours were then proposed to the user
and corrected if necessary. The initial longitudinal contours were directly con-
verted into propagation regions for the fast-marching segmentation [11].

3 In-Vivo IVUS Data

A total of 5 in-vivo IVUS pullbacks of 600 to 989 frames from diseased superfi-
cial femoral arteries were acquired with a Volcano Therapeutics IVUS imaging
system (In-vision gold, California, USA) using a 20 MHz transducer. Images of
size 10 x 10 mm were digitized on 384 x 384 pixel matrices and stored using the
DICOM standard. The acquisition was done at a 10 images / sec frame rate and
the catheter pullback velocity was set to 1 mm / sec.

The multiscale segmentation method was applied to the in-vivo IVUS datasets.
For validation purpose, the segmentation results were compared with manually
traced contours from two experts on 1 every 10 frames. Results were also com-
pared with an implementation of the fast-marching without the multiscale op-
timization. The average and maximum (or Hausdorff) point to point contour
distances, area and percentage of area difference were calculated for the lumen
and EEM boundaries.

A two way analysis of variance was carried out for the average and Hausdorff
distances, and for the area measurements; multiple pairwise comparisons with
Tukey tests were performed. The accuracy of the segmentation was compared to
the inter-user variability. All statistical analyses were performed with SigmaStat,
version 3.11, Systat Software Inc., San Jose, California, USA.

4 Results

Typical segmentation results for the multiscale 3D fast-marching method com-
bining PDFs and gradient are shown in Fig. 1. The lumen and EEM boundaries
are presented for cross-sectional IVUS images from pullbacks acquired on 4 dif-
ferent patients. The segmentation, including the interactive initialization, was
performed in 1.1 sec / image instead of 1.7 sec / image for the implementation
of the algorithm without the multiscale optimization corresponding to a 40 %
improvement of the processing time.

Table 1 shows the average and Hausdorff distances between the detected
contours and the validation boundaries. The area measurements and percentage
of area difference are also shown in Table 1. No difference was found between
the area measurements computed from the detected contours and the experts’
validation boundaries; small area differences lower than −1.9% were obtained.
However, statistically significant differences for the average and Hausdorff dis-
tances were found (p < 0.01) for the lumen and EEM.
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(a) (b)

(c) (d)

Fig. 1. Typical intravascular ultrasound cross-sectional images, corresponding segmen-
tation results (solid contours) and manually traced contours by one of the experts
(dashed contours). The lumen and EEM detected boundaries are drawn.

Table 1. Segmentation accuracy: average and Hausdorff distances; and area measure-
ments of manual segmentation and detected boundaries.

Man-Man AutoMulti-Man Auto-Man

Lumen AD (mm) 0.08±0.03 0.12±0.06 0.10±0.05
EEM AD (mm) 0.05±0.03 0.09±0.03 0.07±0.03

Lumen HD (mm) 0.20±0.10 0.37±0.20 0.34±0.18
EEM HD (mm) 0.14±0.08 0.23±0.09 0.22±0.12

Lumen Area Difference (%) -5.1±4.2 -1.9±8.9 0.7±8.0
EEM Area Difference (%) -0.4±2.5 -1.8±2.5 -0.07±2.7

Manual AutoMulti Auto

Lumen Area (mm2) 17.9±5.6 17.4±5.2 17.9±5.4
EEM Area (mm2) 29.4±5.1 28.9±5.2 29.4±5.1

Man-Man shows the difference metrics between the manually traced contours of the
two experts, AutoMulti-Man and Auto-Man shows the difference between the manual
boundaries and the segmentation results respectively with and without the multiscale
optimization. AD is the average distance; HD is the Hausdorff distance. Lumen and
EEM areas show the average areas of the experts and segmentation contours with
(AutoMulti) and without (Auto) the multiscale optimization. The pixel size is 26 x
26 µm2. Statistically significant differences (p < 0.01) were found for the lumen and
EEM between the Man-Man and AutoMulti-Man, between the Man-Man and Auto-
Man and between the AutoMulti-Man and Auto-Man columns for the AD and HD.
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5 Discussion

A multiscale optimization of the fast-marching method based on the vessel com-
ponent PDFs and gradient was presented for the segmentation of IVUS images.
A qualitative examination of the typical results of Fig. 1 reveals that the lu-
men and EEM boundary were close to the manually drawn contours. Accurate
segmentation results were found for different types of plaque: a plaque with a
brighter section (Fig.1 (a)), a large plaque (Fig.1 (b)), an irregular eccentric
plaque (Fig.1 (c)); or for a thin hypoechogenic wall (Fig.1 (d)).

A quantitative evaluation of the segmentation accuracy was performed in
Table I. It shows that the average and maximum point to point distances be-
tween the detected and manually traced boundaries were higher than the inter-
user variability. However, these differences correspond to variations close to the
boundaries since no difference was found between the area measurements and
small percentages of area differences of -1.9 % and -1.8 % were obtained for
the lumen and EEM, respectively. These values are in the range of the experts’
variability of -5.1 % and -0.4 % for the lumen and EEM, respectively. The area
measurements are important since they are used in the computation of the steno-
sis percentage, lumen and wall volumes, wall thickness, and plaque burden to
evaluate the atherosclerotic disease. In [4], percentages of area differences, for the
lumen and EEM respectively, of 11.09% and 4.98% for the interactive version of
their active contours and of 10.95% and 7.27% for their automatic segmentation
that are higher than those achieved with the multiscale fast-marching presented
here were obtained. Absolute area differences were presented in [3, 5, 6], but it is
difficult to compare with these methods since the measurements were made on
coronary vessels that are smaller than femoral arteries.

The multiscale optimization provided accurate results on areas with less ini-
tialization computation. An improvement of 40 % of the computation time was
feasible without sacrificing the accuracy since average and Hausdorff distances
in a close range to those obtained without the multiscale optimization were com-
puted and no difference was found for the area measurements (see Table 1). This
was possible due to the fast coarse exploration of a wide area that was performed
with the low resolution dataset to correct the rough initialization contours. At
the higher resolution, a fine segmentation was performed in smaller propagation
areas. The initialization was thus performed with LViews only. Without the mul-
tiscale scheme, a more precise initialization procedure must be performed on the
cross-sectional frames and the segmentation must be done over a larger area of
the highest resolution dataset hence the larger computation time.

These segmentation results on a small database of femoral artery IVUS im-
ages showed that the vessel wall boundaries were accurately detected with less
computation. The usage of local and global image features such as the gray
level gradient and PDFs in a fast-marching model provided a robust segmenta-
tion that was optimized in a multiscale framework. Further investigations on a
larger IVUS database will provide a more precise evaluation of the multiscale
optimization performances.
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Abstract. Intravascular ultrasound (IVUS) is currently the gold-standard
for assessing the morphology of blood vessels and atherosclerotic plaques
in vivo. IVUS combined with contrast agents in form of microbubbles
is used for the detection of neovessels in plaques, which are markers
of inflammation and plaque vulnerability. Recently, differential imaging
techniques have been developed for the detection of microbubbles in
stationary sequences. However, these methods work with the gray scale
B-mode IVUS images and involve several preprocessing steps as gating
and registration. In this work, we investigate the feasibility (using two
approaches) of detecting microbubbles in IVUS data by acoustic charac-
terization using one-class cost-sensitive learning. In the first approach,
we build a model for the microbubbles from samples taken from the
lumen during the contrast agent injection. In the second approach, we
detect the microbubbles as a change from the baseline IVUS data model
(learned using random samples from different tissues within frames be-
fore injection). Using the first approach, we obtained an average accuracy
of 99.17% for the detection of microbubbles and 91.67% for the classi-
fication of pre-injection frames as not containing microbubbles. Using
the second approach, the average accuracy on the detection of baseline
IVUS data was 89.65% and 96.78% on the classification of microbubbles
as change. Our results indicate that it is possible to identify microbubbles
in IVUS data using one-class cost-sensitive learning.

1 Introduction

Intravascular ultrasound is currently the gold-standard modality for intravascu-
lar imaging. IVUS is a catheter-based imaging technique used to provide high-
resolution, cross-sectional images of the interior of blood vessels in vivo. Contrast
agents in the form of microbubbles are commonly used as a tracer of blood and
can be used for the detection of neovessels in plaques, which are markers of in-
flammation [1]. Recently, differential imaging techniques that allow detection of
microbubbles in stationary sequences have been developed [2]. However, the dis-
advantage of these methods is related to the necessity of using gated sequences
and a registration step. These tasks are difficult due to the nature of the IVUS
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images. In addition, these methods work with the cartesian B-mode representa-
tion of the IVUS signal. This is a disadvantage because the transformation to
this representation results in loss of potentially valuable information.

In this work, we investigate the feasibility of detecting microbubbles in IVUS
data by acoustic characterization of the raw IVUS data using two approaches
based on one-class cost-sensitive learning. In the first approach, we build a model
for the microbubbles from samples of microbubbles present in the lumen during
the contrast agent injection. In the second approach, we detect the microbubbles
as a change from baseline IVUS data. For this, we build a model using random
samples from different tissues of the vessel extracted from frames before the
injection.

The primary advantage of these approaches is that we make use of the raw
IVUS data, thus we do not lose information contained in the frequency of the
radio frequency IVUS (RF) signal. The second advantage is that by using one-
class learning, we do not need to provide “background” samples for building the
models. In our case this is important because, although samples for microbubbles
in lumen can be easily acquired by manual annotations from an expert, the
background can consist of a wide variety of other imaged tissues. Thus, obtaining
samples for the other tissues may be difficult and labor-intensive to obtain.

Our contribution is a method for the identification of contrast agent in un-
gated IVUS data based on one-class cost-sensitive learning using the raw RF
IVUS signal. The advantages of our method are: 1) we do not need to compute
pixel correspondence between frames; and 2) we can process ungated sequences.

The rest of this paper is organized as follows: In Section 2, we provide back-
ground on the problems surrounding our task. In Section 3, we present the details
of our method. In Section 4, we present our results. Finally, Sections 5 and 6
present a discussion and our conclusions, respectively.

2 Background

Intravascular ultrasound: The IVUS catheter consists of either a solid-state or a
mechanically-rotated transducer which transmits a pulse and receives an acoustic
signal at a discrete set of angles over each radial scan. Commonly, 240 to 360 such
one-dimensional signals are obtained per rotation (digital or mechanical). The
envelopes of these signals are computed, log-compressed, and then geometrically
transformed to obtain the familiar disc-shaped IVUS image (Fig. 1). In this
paper, we define the received acoustic signal as I, the positive-envelope of this
signal as Ie and the log-compressed envelope of this signal by Il . The signal I has
a large dynamic range and retains far more information than Ie and Il , including
the frequency-domain information lost during envelope calculation. This “raw”
signal is the basis for more recent radiofrequency-domain IVUS studies [3, 4].

Contrast agents: Most modern ultrasound contrast agents consist of solutions
of echogenic microbubbles. These gas-filled spheres are surrounded by a shell
designed to aid their longevity in the bloodstream. The scale of these bubbles
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(diameter: 1-10 µm) is similar to the scale of red blood cells (diameter: ∼8 µm),
and hence they may be used as tracers of blood flow. While these agents are
used routinely for non-invasive ultrasound applications (e.g., echocardiography),
in IVUS, these agents have proven useful for imaging plaque perfusion in the
coronary arteries [5]. Fundamental [2] and harmonic [6, 7] imaging have been
used for detecting microbubble contrast agents in IVUS.

One-class learning: The one-class support vector machine (SVM) method is a
widely-studied learner or “recognizer”. The strategy of one-class SVM is to map
the data into an infinite feature space and then use a hyper-sphere to describe the
data in that feature space. We want the hyper-sphere to be as small as possible,
while at the same time including most of the training data. The trade-off between
the radius of the hyper-sphere and the number of training samples that it can
hold is set by the parameter ν ∈ [0, 1]. Small values of ν will attempt to put more
data into the hyper-sphere while larger values of ν will try to squeeze the size of
the hyper-sphere. The second parameter of interest is the width, γ, of the SVM
radial basis function (i.e., k(x,x′) = exp(−γ ‖x− x′‖2) for a pair of feature
vectors x and x′). Properties of a good SVM solution include an acceptable
classification rate as well as a low number of resulting support vectors relative
to the number of training examples.

(a)

(b)

Fig. 1. (a) The log-compressed envelope of the IVUS signal in polar format. The r
axis is horizontal (the origin being at the left, at the catheter) and the θ axis, vertical
(of arbitrary origin). (b) The same signal after Cartesian transformation. The arrows
marked 4 and � (provided for orientation only) are positioned similarly in the polar
and Cartesian spaces.
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3 Materials & Methods

3.1 Data Acquisition

In vivo ungated IVUS sequences were acquired in swine using a 40 MHz catheter,
from which the raw backscatter data was sampled at 400 MHz. Recordings were
made over a matter of minutes, during which time the catheter was held steady.
Approximately half-way through recording, a bolus injection of microbubbles
(SonoVuer) took place proximally to the imaging catheter. This resulted in a
brief (1 to 3 s) period of luminal echo-opacity followed by a gradual diminution
of contrast in the lumen (5 to 10 s).

By stacking the 1-D raw signals we obtain a 2-D frame in polar coordinates.
Stacking consecutive frames over time, we obtain a 3-D volume i(r, θ, t) where
r indicates radial distance from the transducer, θ is the angle with respect to
an arbitrary origin, and t is the time since the start of the recording (i.e., frame
number).

3.2 Features

For our models, we use those features based on frequency-domain spectral char-
acterization that represent measures of high-frequency signal proposed by O’Malley
et. al [8] since spectral analysis have shown to be reliable to analyze the backscat-
tered signals in IVUS [4]. Specifically, these features are defined for a 3-D signal
window of dimensions r0 × θ0 × t0 as follows:

Fζ =
dr0/2e∑
i=1

dθ0/2e∑
j=1

dt0/2e∑
k=1

ijkŴ (i, j, k) (1)

Fη = Fζ
dr0/2e∑
i=1

dθ0/2e∑
j=1

dt0/2e∑
k=1

Ŵ (i,j,k)

, (2)

where Ŵ indicates the magnitude of the Fourier spectrum of the windowed signal
W . Each feature Fζ and Fη, is computed on Ie and Il in addition to I. Hence,
each feature is a vector of three values. The samples are extracted by placing
a 3-D fixed size window (r0, θ0, t0) around each sample in the volume. The
features Fζ and Fη are computed for this window and are associated with the
class contained by it. To improve the scaling of the feature space, each feature
of the samples used for training is normalized to zero mean and unit variance.
The normalization values are retained for use in testing and deployment.

The microbubble samples were obtained from a manual segmentation of the
lumen by a human expert on those frames that encompass the period from when
the lumen was no longer echo-opaque following injection to when contrast was
no longer visible in the lumen. It is important to mention that we only obtained
samples from the volume regions where the label corresponded to lumen on all
the frames along t.

For obtaining the baseline IVUS samples, we use data from the pre-injection
period that corresponds to those frames that encompass the period from the
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start of the recording to one frame before the contrast agent was first visible in
the lumen.

For the first approach, microbubble samples are used as examples for the
positive class S+ in training and testing. In addition, baseline IVUS samples
are used as negative examples S− for testing, since we know that there are
no microbubbles. Similarly, for the second approach, samples from the baseline
IVUS are used as the positive examples S+ for training and testing, and samples
of microbubbles are used as negative examples S− for testing the detection of
the change.

3.3 Training & Testing Scheme

In each case, given a set of positive S+ and negative S− examples, a grid search
for the one-class SVM parameters γ and ν is performed over a subset of the
positive and negative samples to optimize the models. Optimization in this case
aims to obtain an acceptable true positive rate on S+, true negative rate on S−,
and low number of support vectors. The one-class SVM models for each approach
are computed using only the positive examples of the subset corresponding to
each case. Next, the rest of the positive and negative examples are used for
testing. Thus, we will have two accuracy results: accuracy on the samples of
the class of interest (microbubbles for the first approach and baseline IVUS for
the second) correctly classified as positive, and accuracy on the other samples
correctly classified as negative. The parameters γ and ν must be selected in
such a way that high accuracy on the classification of the class of importance
and in the classification of the negative samples is obtained. However, since it is
possible to have higher accuracy on the classification of negative samples than
in the class of interest, we will constrain the selection of parameters to provide
an accuracy on the class of interest as close to 100% as possible. Therefore, the
criteria for the selection of the best parameters is given by a weighted linear
combination of the accuracy on the classification of both classes:

A = w1AP + w2AN , (3)

where A stands for total accuracy, AP and AN are the accuracies on the class
of interest and on the negative samples respectively, and w1 and w2 ∈ [0, 1]
are the weights associated with the class of interest and negative sample ac-
curacy respectively. This can be considered cost-sensitive learning for one-class
classifiers.

4 Results

We evaluated our method in two different IVUS sequences using LibSVM [9] to
train the one-class SVMs with the Gaussian radial basis kernel function. We use
as features Fζ , Fη, as well as the concatenation of both features over a window
of size (r0, θ0, t0) = (255, 13, 13) that is equal to a radial resolution of ∼600 µm,
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Table 1. Number of examples used for training and testing.

Case 1 Case 2
Microbubbles Baseline IVUS Microbubbles Baseline IVUS

Training 28,386 25,800 4,692 25,784

Testing 177,940 101,248 28,661 101,208

angular resolution of ∼18◦, and temporal resolution of ∼0.4 s. These values will
vary by IVUS system but, in general, larger windows provide better classification
at the expense of resolution (note that a temporal window of t0 = 13 may be
excessively long for an IVUS system whose framerate is below 30 frames/s). The
weights used for the cost-sensitive learning were w1 = 0.8 and w2 = 0.2 for both
approaches.

The number of microbubbles and baseline IVUS samples used for training and
testing in each sequence are shown in Table 1. These samples were used for both
approaches just by changing the class of importance (microbubbles for the first
approach and baseline IVUS for the second). For both approaches the accuracy
on the class of interest was below 60% when the features were used individually.
We found that the best results are obtained by using the concatenation of the
two features.

For the first approach, we obtained an average accuracy of 99.17% on the de-
tection of microbubbles and 91.67% on the classification of pre-injection frames
as having no microbubbles, with an average percentage of support vectors less
than 1% of the total training examples. Most of the misclassifications on the pre-
injection frames were in the lumen. This is due to the fact that the microbubble
samples were acquired from the lumen on the frames corresponding to the mi-
crobubble injection where some blood can be still present. However, this does
not pose a problem at all since the long term goal of microbubble detection is
the revealing of angiogenesis in the plaque. Then, we can exclude the lumen
from the analysis. Figure 2 depicts the classification results on frames during
the injection and pre-injection.

(a) (b)

Fig. 2. Classification results in (a) frame with microbubbles in the lumen and (b) IVUS
frame before injection. In both images, the red color indicates the pixels classified as
microbubbles and the green color those classified as non-microbubbles.
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For our second approach, we obtained an average accuracy of 89.65% on the
detection of baseline IVUS data and 96.78% on the classification of microbubbles
as change, with an average percentage of support vectors less than 10% of the
total number of samples used for training. This low accuracy on the classification
of baseline IVUS is due to insufficient samples from the baseline IVUS data.
In order to obtain a higher accuracy on the classification of baseline IVUS it
will be necessary to have a set of samples representative of the IVUS tissues.
However, despite this low accuracy, our results indicate that it is possible to
detect microbubbles as change. Figure 3 depicts the classification results on
frames before the injection and during the injection.

(a) (b)

Fig. 3. Classification results in (a) IVUS frame before injection and (b) frame with
microbubbles in lumen. In both images, the red color indicates the pixels classified as
baseline IVUS and the green color those classified as an anomaly.

5 Discussion

The results obtained in our experiments indicate that it is possible to identify
microbubbles in IVUS data using one-class learning techniques. In general, mi-
crobubbles will have larger energy compared with other tissues within the vessel.
In this case Fζ would be enough to discriminate between microbubbles and other
tissues. However, in some cases the energy of the microbubbles’ spectra is com-
parable with the energy of other tissues (e.g., calcified plaque, soft tissue). The
normalized Fζ (i.e., Fη) provides complementary information to differentiate be-
tween regions with similar spectral energy. Thus, concatenation of these two
features is necessary for better classification.

Even though we employ samples of two classes for finding the best parameters
for the classifier, this approach is better compared with traditional two-class or
multi-class learning because one-class is robust to unbalanced samples since the
trainer is exposed to only one class.

Since the radius of the hyper-sphere is controlled by the parameter ν, cost
sensitive learning is possible with one-class using the approach presented in the
methods section. In this paper, we proposed estimating the parameters for the
one-class SVM based on a weighted sum of the accuracy on the classification of
the class of interest and the negative class.
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Our method provides good results without the necessity of gating or a reg-
istration step, the inclusion of such preprocessing could increase accuracy and
would let us use a smaller window to achieve higher resolution.

6 Conclusion

We have presented a method for the identification of microbubbles in IVUS data
based on one-class cost-sensitive learning using with two approaches: 1) iden-
tification by a microbubbles’ model, and 2) by detecting change from baseline
IVUS data. Both approaches have demonstrated the feasibility of detecting mi-
crobubbles using the raw IVUS signal without the necessity of a reference image
or registration.
Acknowledgements: This work was supported in part by an award from The Methodist Research
Institute-UH-Cornell Institute of Biomedical Imaging Sciences, the Eckhard Pfeiffer Endowed Chair
Fund, and by NSF grants IIS-0431144 and CNS-0521527. Any opinions, findings, conclusions or
recommendations expressed in this material are the authors’ and may not reflect the views of the
sponsors.

References
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Abstract. In this paper we introduce coronary artery zones and present
a novel heart-centered coordinate system (HCCS) which is based on
anatomical landmarks. The HCCS is used to align non-contrast CT heart
volumes for the purpose of developing a supervised classification schema
which discriminates between coronary artery zones and their surround-
ing tissue. The proposed method has been deployed to 30 non-contrast
CT data sets. The results show an accuracy of approximately 85% for
the correct detection of the coronary artery zones.

1 Introduction

Cardiovascular disease is the leading cause of death in the United States and
around the globe. Recent studies have shown that coronary artery calcifica-
tion is a significant and independent predictor of atherosclerotic disease and is
associated with future coronary events [1][2]. Currently, the total coronary cal-
cium burden is semi-automatically quantified using information from computed
tomography (CT) heart scans by applying several scoring algorithms. Various
attempts have been undertaken to improve current coronary calcium quantifi-
cation techniques. For example, Brown et al. [3] proposed the calcium coverage
score, which represents the percentage of coronary arteries affected by calcified
plaque. The new calcium score was evaluated on manually annotated data from
3552 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). How-
ever, for an efficient deployment of coronary calcium quantification techniques,
the automatic detection of the coronary artery regions is necessary.

Automated calcium scoring requires detection of the lesions and labeling of
the artery they belongs to. However, these arteries are not clearly visible in
non-contrast CT data. Thus, we introduce the concept of zones that can help
with labeling the regions of the coronary arteries. To the best of our knowledge
no other group has tackled the problem of identifying coronary artery zones in
non-contrast CT data. However, several authors have developed coronary artery
segmentation methodologies for contrast-enhanced CT scans. It has to be noted
that it is significantly easier to identify the coronaries in contrast CT scans
than in non-contrast CT data, as the specific intensity values of the contrast
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agent constitute a strong feature. For example, Yang et al. [4] proposed a hybrid
approach to automatically segment the coronary arteries using a multi-scale
vessel filtering and a Bayesian probabilistic method in a level set image seg-
mentation framework. Banh et al. [5] followed a different approach based on a
rule-based threshold framework to segment the coronary arteries from contrast-
enhanced computed tomography angiography (CTA) data. Both authors used
CTA datasets for their evaluations.

In this paper, we introduce coronary artery zones, and present a novel heart-
centered coordinate system (HCCS) that is used for the automatic detection of
coronary artery zones in non-contrast CT data. The HCCS is based on anatom-
ical landmarks reflecting the hearts’ symmetry, and it provides a framework to
align heart volumes. Based on the scaled and aligned heart volumes, we introduce
a supervised classification schema for the detection of coronary artery zones.

Our contributions are: 1) the introduction of coronary artery zones, 2) design
of a novel heart-centered coordinate system, and 3) a supervised classification
schema for the automatic detection of coronary artery zones.

The rest of the paper is organized as follows. Section 2 presents the coronary
artery zone detection algorithm. Section 2.1 describes the landmarks used to
construct the HCCS (Sec. 2.2). The coronary artery zones are discussed in Sec-
tion 2.3. The results of the coronary artery zone detection method are presented
in Section 3. Conclusions are drawn in Section 4.

2 Method

The steps for the creation of the HCCS and for the detection of coronary artery
zones are outlined in the algorithm below.

Algorithm Artery zone learning
1. Detect of the heart landmarks

– Detect the origin of the aorta and the apex of the heart
2. Create the heart-centered coordinate system

– Express the voxel coordinates using a spherical coordinate system
– Align each heart volume w.r.t. two axes: Aa and Av (Sec. 2.2)

3. Learn the coronary artery zones detection model
– Extract random points from within and outside of the coronary artery zones
– Normalize both sets of points w.r.t. to spherical coordinates
– Learn the coronary artery zones using SVM

2.1 Anatomical Landmarks of the Heart

We introduce a heart-centered coordinate system that is based on two anatomical
landmarks: 1) the origin of the aorta, and 2) the apex of the heart. These two
landmarks are currently obtained manually by an expert. Plans for an automatic
detection of the landmarks are underway. The origin of the aorta is located inside
the heart and forms the center of the proposed HCCS. We chose this point as
origin for three reasons. First, the origin of the aorta is a robust landmark. The
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robustness is to be understood with respect to ease of identification for a trained
observer and small variations in its location. Second, the origin of the aorta is
located at or very close to the coronary artery ostia. Third, the origin of the aorta
is inside the heart, which makes this landmark very suitable as a center location.
In terms of error minimization, a location inside the heart is more favorable than,
for example, selecting the apex as origin. In fact, coordinate systems in other
organs such as of the brain have shown superior accuracy when the origin was
placed inside the organ [6].

The landmarks are located as follows. The origin of the aorta is identified
from the axial view of non-contrast CT scans. The trained observer can identify
the origin of the aorta as the location where the aortic valve appears in the axial
view. The exact point of origin is marked at the location of the left posterior
sinus, where the left coronary artery originates. The second landmark is the apex
of the heart being the tip of the left ventricle located at the level of the fifth
intercostal space and approximately 8 cm left of the mid-sternal line.

2.2 Heart-Centered Coordinate System

In this section, we describe the strategy to define the HCCS using the landmarks
described above. In order to account for the geometry of the heart we opt for a
spherical coordinate system. The center of the coordinate system is located at
the origin of the aorta. The coordinate system can be described using variables
{r, θ, φ}, within the ranges of r ≥ 0, 0 ≤ θ ≤ π and, 0 ≤ φ ≤ 2π, respectively.

The proposed spherical coordinate system is used for the detection of coro-
nary artery zones and has two clear advantages over a cartesian coordinate sys-
tem: 1) the origin of the frame of reference is located inside the heart and 2) it is
adjusted to the organs’ symmetry. We form the HCCS as follows. First, we trans-
form the voxel coordinates of the axial CT scans to the spherical space. There
is a simple way to convert a voxels’ coordinate from cartesian to the spherical
coordinate system and vice versa using the following set of transformations:

r =
√
x2 + y2 + z2; φ = arctan

(
y

x

)
; θ = arctan

(√
x2 + y2

z

)
; (1)

x = rsin(θ)cos(φ); y = rsin(θ)sin(φ); z = cos(θ). (2)

Next, we translate the center of the coordinate system to the origin of the aorta
by using a simple rigid transformation. We accomplish the translation of the co-
ordinate system, Xo, to the origin of the aorta XA, by a vector t, as: XA = Xo+t,
where t = (tx, ty, tz)T , with tx, ty, tz ∈ R. In order to finalize the HCCS we scale
and align each heart scan. The scaling is performed by setting the radius equal to
one, which corresponds to the distance from the center of the coordinate system
(origin of aorta) to the apex of the heart. Since the coronary arteries are usually
located in the same respective regions of a heart, we align the heart using two
axes that reflect anatomical symmetry. The first axis Aa, traverses from the ori-
gin of the aorta (center of HCCS) along the left and right ventricles toward the
apex. Note that this direction coincides with the anatomical trajectory of the
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Fig. 1. The HCCS including the three axis, embedded in one of the cardiac scans.

left anterior descending artery (LAD). In order to perform an accurate align-
ment according to the two axes we need to ensure orthogonality of both axes.
Therefore, the second axis Av is based on the heart’s available segmentation.
Specifically, we construct a plane P perpendicular to Aa (origin of the aorta to
the apex). Next, we compute the maximum intensity projection (MIP) of the
binarized heart volume along the first axis Aa onto the plane P. Then, we obtain
the axis Av from the principal component analysis of the MIP. The axis Av ex-
tends roughly across the left and right ventricles, reflecting a near symmetry axis
of the heart. Anatomically, the axis Av corresponds roughly to the trajectories
of the right coronary artery (RCA) and the left circumflex artery (LCX), which
follow the atrio-ventricular groove. Subsequently, each heart dataset is aligned
by Aa and Av, using Euler rotations. The alignment is performed such that the
point {r = 1; θ = π

2 ;φ = 0}, corresponds to the apex of the heart, and that
the axis Av is aligned at θ = 0 and is orthogonal to Aa. In detail, we perform
three consecutive Euler rotations. First by rotating about the x-axis by an angle
θ, followed by a rotation about the z-axis by an angle φ, and finally about the
y-axis by an angle ψ:

X′A = RψRφRθXA. (3)

The rotations are performed in R3, where the rotation matrices are defined as:

Rθ=




1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)


 , Rφ=



cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1


 , Rψ=



cos(ψ) 0 −sin(ψ)

0 1 0
sin(ψ) 0 cos(ψ)


.

(4)
The HCCS is finalized once the three Euler rotations are complete. Specifically,
the HCCS is scaled and aligned with respect to two anatomical symmetry axes
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of the heart ensuring a high degree of robustness. The construction of the co-
ordinate system is based on robust anatomical landmarks, such that is should
be fairly easy to apply the proposed frame of reference to any cardiac CT/MRI
dataset. Next, we describe a strategy to uniquely depict 3D locations of heart
scan data. To that end, we incorporate the heart segmentations into the HCCS.
Specifically, we create binary masks from each axial heart segmentation, such
that points Pi on the interior of the heart boundary are labeled as 1, and all
other points are labeled as 0. The labels pi are determined by:

{pi}Ni=1 =





1 if Pi is on/inside heart contour

0 otherwise.
(5)

The distances from the center of the coordinate system to the heart boundary
are recorded. Specifically, we measure the distances to the heart boundary for
discrete θ and φ values. In our experiments we typically use a 5◦ resolution for ev-
ery θ and φ, respectively. However, more details on parameter settings/variations
are provided in Sections 2.3 and 3. In other words, we could describe the heart
boundary encoding as a radius vector: r = r(θ, φ). Figure 2 shows the coronaries
for one subject, as represented in the HCCS. Note that, anatomically, the coro-
nary arteries traverse on, or very close to, the surface of the heart. Now that
the HCCS is outlined and the heart contours are represented appropriately, we
describe the strategy for the second contribution of this paper: how to detect the
coronary artery zones based on the HCCS.

2.3 Coronary Artery Zones

The HCCS serves as the frame of reference for defining the coronary artery
zones. In general, the zones are defined using the location of the main arteries:
RCA, LCX, left main coronary artery (LM) and the LAD. However, we combine
the zones of the LM and LAD. Hence, the heart is divided into three artery
zones corresponding to LAD, LCX, and RCA. Each zone will be defined as a
tubular region around manually supplied coronary artery trajectory points. We
will conduct experiments using three different radii of 3 mm, 5 mm, and 7 mm
for every zone. A radius of 8 mm was proposed by Carr et al. [2] for the manual
identification of coronary calcifications.

As the distances from the center of the HCCS to the heart boundaries are
readily available, we can commence with the learning step (see Algo. Artery zone
learning Step 3). To that end, we incorporate a support vector machine (SVM)
[7] as supervised classifier. The objective of the learning step is to discriminate
between the coronary artery zones (positive class) and surrounding tissue (neg-
ative class). Thus, we supply the SVM with the radial distances from the center
of the HCCS to the coronary artery trajectory points (labeled by an expert),
and to the points from the non-artery locations, as well as their respective angles
θ and φ. The labeled points are converted and represented in the HCCS, such
that the actual distance, with respect to the center of the coordinate system,
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Fig. 2. Coordinates of the coronary artery trajectory points for one subject, as rep-
resented in the HCCS. The colors green, purple and red correspond to the LM-LAD,
LCX, and RCA, respectively.

of the coronary trajectory points dt is normalized by the actual heart boundary
distance dh:

dnt =
dt
dh
, (6)

where dnt , denotes the normalized distance of a point from the center of the
HCCS for a specific θ and φ. In detail, we deploy a two-class SVM using a
Gaussian radial basis kernel function (RBF). This type of SVM requires to set
two parameters: γ, the width of the gaussian, and C the penalty cost parameter.
The trained SVM model will be deployed to the test data in order to classify
points as being inside or outside of a coronary artery zone. The test data points
are converted in a similar fashion as the training data points. More details on
the experimental setup can be found in Section 3.

3 Results and Discussion

The proposed coronary artery zones detection method is tested on single electron
beam CT (EBCT) datasets from 30 patients.
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Data: The non-contrast cardiac scans were acquired at an EBCT (GE Ima-
tron eSpeed) scanning facility (HealthWISE Wellness Diagnostic Center, Dublin,
Ohio). Each participant provided written informed consent. For each scan, a
stack of 20-36 contiguous slices with slice thickness of 3 mm each, covering the
heart, were acquired. The pixel sizes ranged from 0.508 mm to 0.586 mm.

The heart segmentations used in this paper have been obtained manually by
an expert who delineated the contour of the parietal pericardium in the axial
view. The segmentations extend from the start of the heart to the apex of the
heart. The start of the heart is identified as the center point of the ascending
aorta at the z-location near the aortic arch. Specifically, it is the z-location -
in scanner space - where the aorta, superior vena cava and pulmonary trunk
propagate into the heart.

Experiments: The SVM is trained using only location information of the points
belonging to the coronary artery zones (positive class) and the background class
(negative class). In detail, each point is represented by the normalized radial
distances dnt (see Eq. 6), and their respective angles (θ and φ), as obtained from
their HCCS representations. The positive class points are obtained by an expert
who visually identifies the location of the coronary arteries and marks points
along the arteries. Note that the number of annotated points changes across
patients and that the points are not equidistant. We obtain a larger number of
coronary artery trajectory points by sampling the regions of the zones. As the
labeled artery points are always to be found inside one of the coronaries, we can
assume a radius around each point. On average, coronary artery vessels exhibit
diameters of 3.06±0.93 mm in EBCT data [8]. Therefore, we investigate three
different coronary artery zone radii 3 mm, 5 mm, and 7 mm around each and
every artery trajectory point in order to provide training data for the positive
class. We sample additional artery points around each trajectory point inside the
zones at angles of 45◦. Hence, we obtain a set whose size is 8-fold the size of the
set of the initially labeled trajectory points. This setup allows us to study the
classification performance with respect to different zone radii and it provides us
with a densely sampled point set. In order to train an accurate model of coronary
artery zones we also need a sufficiently large number of background class points.
To that end, we densely sample points for the background class from outside the
zones. The normalized distances from the center of the HCCS to the background
class points are defined in the same manner as for the positive class points (see
Eq. 6).

The SVM model is trained using 30% of the datasets for each of the three zone
radii, and tested on the remaining data. The training and testing was conducted
three times in order to ensure a stable performance. We have performed 3-fold
cross validation as well as conducted a grid search in order to identify the best
γ (2.82) and C (1448) parameters (using the training data only). For the cross-
validation of the training data we can report an average accuracy of 84.52%.
We have computed the averaged accuracy, as well as the standard deviation of
the accuracy, for the three different artery zone radii. Our proposed coronary
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artery detection achieved an average accuracy of 83.82±0.06%, 84.49±1.12%,
and 85.56±0.38% for coronary artery zones of radii 3 mm, 5 mm, and 7 mm,
respectively.

4 Conclusion

We have introduced coronary artery zones and presented a novel heart-centered
coordinate system that is based on anatomical landmarks. The proposed HCCS
was used to align non-contrast CT heart volumes of 30 patients. The aligned
datasets have been used for the development of a supervised classification schema
for the detection of coronary artery zones. Our coronary artery zone detection
method achieved an accuracy of approximately 85%. The results indicate that
location information is a significant feature for the detection of the coronaries,
provided an aligned coordinate system is used. We plan to further investigate
the HCCS and the coronary artery zone detection in a larger cohort.
Acknowledgments: This work was supported in part by the Biomedical Dis-
covery Training Program of the W.M. Keck Center for Interdisciplinary Bio-
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Abstract. Computer tomography angiography (CTA) allows to assess
the degree of stenosis in vascular systems, but requires the separation
of vessels against bone and calcifications. In this paper, a new technique
of converting dual energy data into a virtual native and contrast agent
scan pair allows to use a graph based method of bone removal for CTA
[1]. For evaluation purposes, patients with a high degree of calcification,
i.e. complicated cases, are considered.

Our automatic bone-removal technique requires 28-30 minutes on a Intel
Core 2 Quad 2.66 GHz with 4 GByte RAM for a 1.2 GByte data set and
is applied in the clinic for evaluation purposes. For 10 evaluated patients,
sensitivity, specificity, and accuracy are 90%. A further improvement of
the differentiation quality is limited by the noise of the CT images.

1 Introduction

Arterial occlusive diseases are a major issue especially for the aging population.
For example, intermittent claudication in lower extremities is found in 3-7%
of the population of age 60 or more worldwide [2]. One non-invasive imaging
strategy for diagnosis is computed tomography angiography (CTA). Standard
techniques for bone removal in CTA are not addressed here. Corresponding de-
tails can be found in [3–5]. Recently, with upcoming dual energy computed
tomography devices (DECT) new diagnostic options appear.

A DECT is equipped with two X-ray tubes and two corresponding detectors.
Both X-ray sources are operated at different energy levels. While material de-
composition on DECT has been studied for the determination of vertebral bone
mineral content [6], for the evaluation of calcium in pulmonary nodules [7, 8],
and for the quantification of abdominal fat tissue [9], the most recent method
for material differentiation on DECT is presented in [10]. This method is based
on the fact that iodine, which is commonly used in CT as contrast material,
shows a much larger increase of the CT value with decreasing X-ray tube volt-
age than hydroxyapatite [11]. By locally denoising the volumes1, the algorithm
determines the iodine content based on a three-material decomposition to simu-
late the virtual unenhanced image, and then extract the object edges with their

1 By this denoising the resolution of the data set is reduced and thus small vessel
structures cannot be handled, which is a systematic limitation of this approach.
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neighbor information. The related phantom studies and clinical evaluations can
be found in [12–15].

After overcoming initial problems [16], the recently developed DECT system
SOMATOM Definition (Siemens Medical Systems, Forchheim, Germany) can
provide both image data sets, acquired at low kV (e.g. 80 kV) and at high kV
(e.g. 140 kV), with similar image noise [17]. This scanner offers a limited field of
view where the volume is reconstructed for both energies, which is a systematic
problem when the patient body does not fit within this volume. Further, within
that field, differentiation between calcification and vessel in current methods is
based on different absorption characteristics. In this paper, we show that due to
artifacts and noise, a reliable segmentation of calcified structures and contrast
agent is not feasible using the Hounsfield units alone. Therefore, a problem-
specific post processing is necessary to overcome the limitation and to include
structural knowledge in order to achieve high separation quality. The goal of this
paper is an automatic and fast alternative for bone removal for CTAs, which can
partially be applied for calcifications as well.

2 Method

The workflow of our method is shown in Fig. 1. First, a pair of DECT images is
used to classify bone (BC), vessels (V C) by using a three-material decomposition
technique. In parallel, the thresholding routine selects all bright structures out
of the background (BV C) from the high energy image. Next, the binary volume
BV C is post-processed with a priori information about the structures to be
the segmentation of all bones, vessels, and calcifications (BV S). With the same
procedure, the classified bone volume BC is interpreted as the segmentation of
a native scan (BS) and used to markup bone areas in the segmentation image
BV S. It allows, finally, detecting and accurately separating bones and nearby
vessels to obtain the final bone-removed volume using a graph technique.

Classification
80 kV Image

140 kV Image
Segmentation

Thresholding Segmentation

BC

140 kV Image

BVC

BS

BVS

Bone
Vessel

Seperation

Bone
Mask

Fig. 1: Workflow of the method.

2.1 Dual energy classification

Dual energy image pairs are analyzed to determine the material content of each
bright voxel based on a three-material decomposition. Each voxel is assumed
to be a tissue-iodine combination or a tissue-calcium combination. Considering
noise, the confidence region around the decomposition line is used for classifica-
tion. Formally, two hypotheses are tested:
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Fig. 2: (a) Soft tissue peak in the histogram; (b) Different material levels in 10 real cases
and the decomposition lines approximated in one case; (c) Material classification in the
dual energy graph; (d) Graph matching: Left: Colored graph; Right: Corresponding
colored volume.

HI :

{
gray value = α1 × soft tissue level + α2 × iodine level + ηI

ηI ∼ N(0, σI)
,

HC :

{
gray value = β1 × soft tissue level + β2 × calcium level + ηC

ηC ∼ N(0, σC)
,

where N(x, y) represents a normal distribution with mean x and spread y. If
HI is accepted, i.e. the gray value is a linear combination of the typical values
of soft tissue and iodine with a Gaussian noise, the voxel is considered as a
tissue-iodine combination. Similar relationships are expected for HC and the
tissue-calcium combination. The higher iodine concentration increases α2 and
decreases α1, which makes the vessel voxels more separable against the others.

A typical value of the soft tissue level is represented by the soft tissue peak
in the histogram (Fig. 2a), which is robust against noise in the data due to the
summation procedure. This level is 47.7 ± 6.2 HU (Hounsfield units) in the 140
kV data and 60.3 ± 6.6 HU in the 80 kV data for our 10 cases.

As an initial evaluation, for each patient, we assign typical voxel regions of
different material separately in the original gray value image with the normal
region growing approach. The typical voxels of vessels are selected from the
highly enhanced arteries in the thigh, while the region of bone is assigned to the
compact and homogeneous part of the femur. The iodine level and calcium level
are the mean value of the corresponding sample set, which contains at least 104

voxels. Fig. 2b shows the gray value pairs of the case study of our 10 datasets.
The tissue-iodine decomposition line and the tissue-calcium decomposition line
are defined by connecting the soft tissue level and the respective material level.
The lines do not overlap, similarly as the observation before [11]. The contrast
enhanced vessels and bone/calcifications are separable in practice based on the
three-material decomposition strategy.

The confidence regions around the decomposition lines are estimated based
on the typical voxels assigned by the user. The gray value of each voxel is taken
as a 2-element random vector X, corresponding to two energy levels. For each
kind of material, the assigned voxel samples are used to calculate the 2-by-2
covariance matrix Σ = E

[
(X− E[X]) (X− E[X])>

]
, where E[X] is the expected
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value of the random vector. The square root of the small Eigenvalue of Σ repre-
sents the standard deviation of noise in the dual energy graph.2 According to the
underlying reconstruction process, we can assume the noise being normally dis-
tributed. Thus, the region within two standard deviations of the decomposition
line contains about 95% of the values.3

Hence, in order to classify different materials, the following rules4 are used.
• The threshold seperation level = (soft tissue level + iodine level)/2 dif-

ferentiates the background and the bright structures. Any voxel with gray value
less than this threshold in one energy image is classified as background, i.e. the
yellow region in Fig. 2c.
• Testing HI on the remaining voxels, those within the confidence region

around the tissue-iodine decomposition line are classified as vessels (V C), i.e.
the green part in Fig. 2c.
• Testing HC on the remaining voxels, those within the confidence region

around the tissue-calcium decomposition line are classified as bone and calcifi-
cations (BC), i.e. the red part in Fig. 2c.
• The Other voxels are left as undecided, i.e. the white region in Fig. 2c.

2.2 Post-Processing

From the high energy (140 kV) image with a larger scan field-of-view than that
of the low energy (80 kV) image, all bright structures are separated from back-
ground by thresholding with the threshold seperation level, considered as a
pre-segmentation of the interlaced bone and vessel structures (BV C). In par-
allel, the bone voxels BC that are classified according to the rules above are
considered as an initial set of markers for bone.

Binary volumes BC and BV C are denoised using opening and closing opera-
tors in order to overcome small reconstruction artifacts, which limits the spatial
resolution to 3 voxels (transversely 2.4 mm in our case). In addition, the body of
the patient is extracted as the region of interest. Furthermore, for both BC and
BV C, 2D level-sets are used in all slices to find proper boundaries of the bone
and to unify all inner structures to one bone node. Starting from the bounding-
box of each object, the propagation of the level-set curve Φ follows the equation:

∂Φ
∂t

+ (1− I(x, y)) ‖∇Φ‖ − 2(1− I(x, y)) ‖∇Φ‖∇ · ∇Φ‖∇Φ‖ = 0,

where I(x, y) is the binary 2D section of the volume. Here, the second item
represents the propagation force, which shrinks the contour, and the third item
corresponds to the curvature force, which keeps the contour smooth.

The result of the level set processing of BC yields the segmented bone BS
(see Fig. 3), which indicates the bone structure in the image. The result on the
BV C data set yields the BV S, i.e. the segmented bone and vessels. BS and

2 By chosing homogeneous materials for the estimation of the bone and contrast agent
curve, we minimized the deviations and thus the spread is only related to noise.

3 Hereby, we ignore reconstruction artifacts which are corrected later.
4 The rules are designed for point to point measurement, without considering the

non-linear behavior for the partial volume effect.
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BV S are the basic structures that correspond to native and contrast enhanced
CT and thus our CTA bone removal program can be applied [1]. In order to
understand the following processing, a short summary of this approach follows.

Both segmentation results BS and BV S are represented as graphs in form
G = (E ,V). The node n ∈ E presents an 8-connected area of one particular slice.
n is enriched with two attributes: a1, the position of the slice for the area, and a2,
the boundary of this area. The edge e = (n1, n2) ∈ V is generated for each pair
of nodes n1, n2, if their areas a2 are 26-connected in the volume. From now on,
let us call BG and BV G the graphs generated from BS and BV S respectively.

Both graphs BG and BV G are matched by graph-coloring which generates
a sub-graph SGB as follows:

SGB = {}
for each node nbg ∈ BG

NBV G = {n ∈ BV G | a1(n) = a1(nbg)}
for each node nbvg ∈ NBV G

if size of(a2(nbvg) ∩ a2(nbg))/size of(a1(nbvg)) > 0.2

SGB = SGB ∪ {nbvg}
end if

end for

end for

Here, size of(·) denotes the function that counts the number of pixels inside
a region. After this process, two sub-graphs from BV G are generated. The sub-
graph SGB contains only nodes assigned to bone whereas the disjoint sub-graph
SGV = BV G \ SGB represents the vessel system.

Subsequent graph analysis detects neighboring vessel and bone structures
(see Fig. 2d). By assigning a different ”color” property to the structures, we
state: A conflict situation is given, if an edge of BV G joins two nodes with
different colors:

(n1, n2) ∈ BV G is a conflict edge ⇔ ((n1 ∈ SGB) AND (n2 ∈ SGV )) OR

((n1 ∈ SGV ) AND (n2 ∈ SGB))

Such conflict situations in the graph appear where the vessel touches the
bone. In the coloring step, these nodes are marked as bone.

The separation of bone and vessels in these conflict situations is done by
controlled region-growing. For each conflict situation, the algorithm starts at a
conflict edge and proceeds slicewise (in the direction established by this edge)
growing a correct vessel segmentation in the way described by SGB nodes, until
some possible exit back to the vessel system SGV is found. After all conflict
edges are processed one after the other, the corrected SGV and SGB describe
vessels and bones disconnected from each other.

Masking out of the bone expressed by SGB from the initial gray-scale vol-
ume yields the separated vessel structures. Remaining calcifications are then
separated from the vessel structures by plot-profile techniques assuming that
the calcifications are compact, a property fulfilled throughout our data sets.
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Fig. 3: (a) Original high energy image; (b) BC image; (c) BS image; (d) BV S image;
(e) Bone-removed image; (f) Output image without bone and calcifications; (g) MIP
visualization of the result.

3 Results

We investigated 10 patients (2 female and 8 male) with a mean age of 63.4 years.
All of them have signs of lower extremity occlusive disease. For the acquisition,
the contrast agent with Iodine content 300 mg/mL is used. The data are ac-
quired by a SOMATOM Definition in dual energy mode with the resolution as
0.80×0.80×1.5 mm in cranio-caudal direction. The final size of the data sets is
between 512×512×1034 and 512×512×1242 voxels.

Processing the data with our approach consumes 28-30 minutes on a Intel
Core 2 Quad 2.66 GHz with 4 GByte RAM for a 1.2 GByte data set. As shown
in Fig. 3, our method works fine in general.

During evaluation, MIP (Max- Stenoses ≥ 50%
Sensitivity Specificity Accuracy

All segments 89.8% 90.7% 90.4%
Pelvic region 69.2% 100% 91.5%
Thigh 91.7% 93.9% 93.3%
Calf 100% 83.9% 88.4%

Table 1: Evaluation result

imum Intensity Projection) visu-
alizations of the bone-removed vol-
umes are compared against DSA
(Digital Substraction Angiography),
though a pure visual inspection of
the stenosis could be inaccurate
in case of highly acentric steno-
sis. CTA and DSA are separated
by at least 24 hours, to minimize the contrast medium charge for the individual
patients. The degree of stenosis is visually sorted in 5 classes, i.e. absent, mildly
stenotic (< 50% lumen reduction), moderately stenotic (50-74% lumen reduc-
tion), severely stenotic (75-99% lumen reduction), and occluded. Meanwhile,
the arterial system is subdivided into 13 segments: A. iliaca com (P), A. iliaca
externa (P), A. iliaca interna prox (P), A. femoralis com (T), A. femoralis super-
ficialis (T), A. femoralis profund (T), A. poplitea P1 (C), A. poplitea P2 (C), A.
poplitea P3 (C), A. tibio-fibularis (C), A. fibularis (C), A. tibialis post (C), and
A. tibialis ant (C). In order to evaluate the different regions, they are classified
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in 3 groups: Pelvic region (P), Thigh (T), and Calf (C), with the corresponding
letter in the bracket.

Overall, 260 vascular segments are investigated, whereas 82 segments can-
not be directly compared because of the limitation of data acquisition for legal
reasons concerning a part of the patients. By considering only segments with
stenosis > 50% occlusion (which is a reasonable limit), of the 178 segments as-
sessable on both modalities, the sensitivity, specificity and accuracy of CTA are
89.8 %, 90.7% and 90.4 % respectively. The test values are also calulated for
different parts of the leg. The complete results are presented in Table 1.

4 Discussion

The developed method is fully automatic and processes the data sets of 1.2
GByte in less than 30 minutes. Further optimization and parallelization of this
code could then yield processing times of a few minutes. As an initial evaluation,
we need to assign the typical voxels of vessels and bone. After accumulating
enough patients, the empirical value of iodine level and calcium level can be
used for particular system parameters, such as the current of the source and the
dose of the contrast agent.

Comparing to the normal CTA, our results contain more of artifacts where
the gray value of the bone is too small and is not correctly classified. Some
calcifications in the small vessels are not accurately removed, leading to a larger
grade of stenosis. A severe limitation of this approach is that it does not consider
reconstruction artifacts, a problem that has to be addressed in future in more
detail.

Meanwhile, the system parameters are set by default. One possibility to make
the two decomposition lines more separable in the dual energy graph is to in-
crease the concentration of the contrast agent, which allows pushing the points in
Fig. 2b to larger values. Further, an increase of the applied dose to the patient or
a pre-processing using dedicated denoising filter could improve the classification
results as well. It should be balanced on behalf of the health of the patients.
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bach, S., Becker, C., Kopp, A., Ohnesorge, B.: First performance evaluation of a
dual-source ct (dsct) system. European Radiology 16 (February 2006) 256–268

127



Improved Rigid Registration of Vessel Structures
using the Fast Radial Symmetry Transform

Carlo Gatta1, Oriol Pujol1, Oriol Rodriguez Leor2, Josepa Mauri Ferre2 and
Petia Radeva1

1Computer Vision Center, Campus UAB, Edi�ci O, 08193, Bellaterra, Barcelona,
Spain. cgatta@cvc.uab.es

2Unitat d'hemodinàmica cardíaca hospital universitari �Germans Trias i Pujol�
Badalona, Spain

Abstract. Intravascular UltraSound (IVUS) imaging is unique in the
possibility to explore internal vessel structures of the coronary wall, being
a powerful tool for diagnosis. The coronary vessel is moving due to the
periodical contraction and expansion of heart muscles, thus the acquired
images present di�erent artifacts. This instability, among other problems,
makes harder the analysis of data in the longitudinal cut, especially for
the visual evaluation of length and size of vessel structures, like e.g.
calcium plaques. In this paper, we propose important improvements to an
algorithm for rigid vessel structures alignment. We improve the estimate
of vessel's center using the Fast Radial Symmetry Transform; then we
perform the rotation estimation focusing only on the vessel boundary
thus improving the alignment of vessel structures. A quantitative and
qualitative comparison on 9 pullback is presented.

1 Introduction and previous work

The Intracoronary UltraSound imaging is a powerful technique for diagnosis
of coronary diseases [1]. Unfortunately, the catheter and heart motion artifacts
a�ect its usability in di�erent ways. The induced longitudinal movement a�ects
the interpretation of longitudinal cuts and the computation of reliable volumetric
measurement; research is ongoing to devise e�cacious and e�cient proper gating
algorithms. Moreover, the apparent roto-translation that a�ects the short axis
view also makes harder the visual inspection of longitudinal cuts and a�ects
the performance of automatic or semi-automatic methods for area and volume
measurement. This paper focuses on the reduction of short axis roto-translation
of a non-gated pullback by rigid registration of subsequent pullback frames.

Two excellent reviews on medical imaging registration can be found in [2] and
[3]. However, despite a total amount of about four hundred cited papers, in these
two reviews no paper has been found regarding IVUS images alignment. There
is an evident need for ad-hoc solutions designed to adapt to the nature of IVUS
images (heavy textured and with multiplicative noise), to estimate strong and
fast apparent movement and rotation between subsequent frames while tackling
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the large amount of data in a pullback (thousand frames each). In [4] the au-
thors present a sophisticated method for non-rigid alignment of IVUS image.
It is based on the use of rich local and global (contextual) descriptors and, at
the same time, using cooperative-iterative strategy in order to get a good set of
correspondences as well as a good �nal transformation. In [5] the authors present
a method to suppress the IVUS image rotation based on a kinematic approach.
The method is based on the assumption that the vessel wall can be described as
a discrete structure which kinematics temporal evolution can be followed by a
trained Neural Network, during at least one heart cycle. In [6] authors present
an alignment algorithm that estimates the vessel center based on center of mass
computation, followed by the estimation of rigid rotation with center in the pre-
viously obtained center of mass. The most important lack of this method is that
the estimation of rigid rotation (second step of the algorithm) heavily depends
on the correct estimation of translation (�rst step of the algorithm). To compute
the rigid roto-translation between subsequent frames the authors use the center
of mass as a method to estimate the center of the rotation; then computing the
translation just by coordinate subtraction. While this is robust with respect to
noise and changes in image texture, it performs poorly if the vessel structure is
changing due to e.g. a bifurcation or a calcium plaque. Moreover, an unbalanced
position of the catheter with respect to the real center of the vessel produces a
heavily unbalanced spatial distribution of gray scale values in the image due to
the e�ect of image reconstruction from radio frequency data; i.e. vessel structures
far from the catheter appear darker than the ones close to the catheter. In this
case, even without important changes in the vessel structure, the estimation of
translation using the center of mass can be very poor. In [7] the authors present
a method based on the scale-space optical �ow algorithm with a feature-based
weighting scheme. The algorithm has been demonstrated on a tissue-mimicking
phantom, subjected to controlled amount of angular deviation.

2 Rigid registration using the Fast Radial Symmetry
Transform

The proposed method is an extension of the method presented in [6]. We esti-
mates the rotation, that was demonstrated to be e�ective and su�ciently robust,
as in [6], but we propose to change the estimation of vessel center. We start with
the assumption that the vessel boundary on the short axis can be approximated
as a circle. This assumption is quite simplistic since usually a better, and well ac-
cepted, approximation is to describe it as an ellipse [5]. To support this decision,
we have two main reasons. (1) Our assumption is necessary because an elliptic
model can be easily �cheated� by the deformation of vessel boundary caused by a
bifurcation. In these cases, an elliptic model will estimate the center of the vessel
with an important error in the direction of the bifurcation. (2) The algorithm
we are going to use for detecting the center of the vessel, highlights any possible
radial symmetry in the image, thus it is not easy to identify an elliptic shape.
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Using this vessel model, we adapted the Fast Radial Symmetry Transform
[8] (FRST) to be able to estimate the center of the vessel. IVUS images are
far more complex than real world images, so we designed a pre-processing step
and modi�ed the FRST according to our needs. Moreover, we force the rotation
estimation to work only on the part of the image that represents the vessel
boundaries. The following subsections explain the method in detail.

2.1 Pre-processing for optimal FRST performance

Since the detection of a circle performed in [8] is done computing the image
gradient, we need to highlight the vessel boundaries by preprocessing the IVUS
image reducing, at the same time, both the noise and the texture. Identifying a
circle that �ts well with the vessel is di�cult since gradients that represent the
vessel boundary are not well de�ned and bright areas far from the vessel center
generate important gradients not correlated to the vessel shape. We compute the
cumulative probability density function (cpdf) of gray scale values with the goal
to identify a good threshold to remove lower values (no signal or blood) and keep
high values (vessel tissues). Thus we suppose that vessel tissues are represented
by the pixels that contribute to the cumulative cpdf between 0.75 and 1 (see
�gure 1 (b)). These parameters have been set empirically but the fact that they
act on the cpdf, and not on the pdf directly, makes the method less sensitive to
variations of contrast and image average value. The next step is to remove the

(a) (b) (c) (d)

Fig. 1. From left to right: (a) the input image; (b) the cumulative probability function
of gray scale values, note that the 0.75 percentile, in this case, give a threshold of 107;
(c) the image after thresholding and (d) after gaussian smoothing.

texture and noise. The anisotropic di�usion can be an excellent �ltering method,
but it is extremely computationally expensive even using recent fast approach.
Thus, we apply a strong Gaussian �lter (σ = 0.4mm). This procedure smooths
the texture and removes the noise (see �gure 1 (d)); nevertheless, a remaining
problem is that the outer boundary of the pre-processed image can be interpreted
as a circle by the FRST. This has been tackled by modifying some part of the
FRST as discussed in the next section.

130



2.2 Fast Radial Symmetry Transform

The Fast Radial Symmetry Transform has been developed to detect points of
interest in an image that correspond to center of radially distributed image
features (in our case to detect the center and the radius that approximate the
vessel). Let us assume that we examine the detection of a radial symmetry
generated by a circle of radius r. Given an input image I(p), we can easily
compute the gradient G(p), thus for each point p we can compute the unit vector
of the gradient as D(p) = G(p)

‖G(p)‖ . Now, for each pixel p, we can de�ne the center
of the symmetry (as a pixel q) that potentially generated its gradient G(p) (e.g.
a circle). The coordinates of this pixel are computed as qr(p) = p− rD(p). To
obtain the transform, a set of r matrices, Or and Mr are instantiated with the
same size of I and zero values and, while exploring every point p and radius r,
are updated following the equations:

Or(qr(p)) = Or(qr(p)) + 1 (1)

Mr(qr(p)) = Mr(qr(p)) + ‖G(p)‖ (2)

Intuitively, if in the image I there exists a circle with radius r̃ and center p̃, the
edges representing the circle will have gradients that point opposite to the center
of the circle. This means that Or̃(p̃) will have a value conspicuously greater
than in other pixel positions. For a similar reason, if the edges were strong,
the Mr̃(p̃) will be very high, because it collects a lot of important gradient
magnitudes. Finally, since the transformation can span over di�erent radii, a
possible synthetic bi-dimensional result can be expressed as follows:

S(p) =
∑

r∈Ω
Lr(p) =

∑

r∈Ω

(
Or(p)

maxpOr(p)

)α
· Mr(p)
maxpMr(p)

(3)

where Ω represents the set of radii spanned by the transform and α can de�ne
how strictly the radial symmetry property has to be computed. As an example,
α = 3 will produce less relevant points with respect to α = 1. This is easily
understandable since α is the parameter of a power function with base in the
range [0 1]. Essentially, once computed S(p), positions with high values represent
highly probable centers of radial symmetries, thus searching for the maxima in
S(p) means searching for the more prominent symmetry in the image.

2.3 Modi�ed Fast Radial Symmetry Transform

We modi�ed the FRST to force the algorithm to �nd only the inner circle that
�ts into the pre-processed image. This ensures that a bad (non circular) outer
boundary of vessel does not a�ect the algorithm performance. Moreover, to im-
prove the performance, almost without increasing the computational cost, we
implemented sub-pixel precision both in the detection of the center and radius.
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Imposing inner circle detection constraint The vessel boundary cannot
cross the center of the image, since it represents the catheter and thus it is
physically impossible that the boundary can cross it. Taking advantage of this,
we can know if the gradient G(p) at position p is produced by the inner or
outer edges of vessel. Being c the center of the image, d = p− c represents the
vector starting from c, pointing to p. We can compare the vector D(p) (gradient
direction at point p) and d simply by taking the dot product. If D(p) ·d < 0, it
means that the gradient D(p) is pointing in a direction that forms an angle with
d that is minor than π/2. We call this the directional constraint. It is easy to
understand that the gradients forming the outer boundary of the vessel can not
respect this constraint. Using the update equations (1) and (2) only if p respects
the directional constraint improves the detection of the vessel center and radius
avoiding �false symmetries� introduced by the outer vessel boundary.

Implementing sub-pixel precision Instead of searching for the maxima in
S(p), we compute the center of mass of the values in S(p). This gives sub-pixel
precision in the detection of the center. To obtain sub-pixel precision for the
radius, we perform a weighted average between di�erent �layers� Lr(p). Being k
the estimated center of the vessel, then the sub-pixel precision radius is obtained
by the following formula:

R(k) =
1∑

r∈Ω Lr(k)

∑

r∈Ω
rLr(k) (4)

This averaging process is more prone to outliers, however we heavily reduced the
outliers numbers using the directional constraint and the outliers strength using
an α > 1 parameter in equation (3). Applying the Modi�ed FRST over all the T
frames of the pullback, we obtain a sequence of estimated center and radius of
vessel. We denote these quantities as following: {(x1, y1, r1), . . . , (xT , yT , rT )}.

2.4 Rotation estimation focused on vessel boundary

As discussed before, to estimate the rotation between subsequent frames we use
the algorithm proposed in [6]. The authors estimate the rotation between two
subsequent images (represented in polar coordinates with the origin that lies
in the previously estimated center) by spectral correlation analysis [10] but im-
proving the algorithm's robustness (see [6] for details). In our implementation
we take advantage of the estimation of the vessel's radius and thus we perform
the rotation estimation only on a portion of the image that represents the vessel
boundary. Stabilizing the vessel boundary directly implies that the plaque and
calcium structures, linked to it, will be stabilized too. This is a very important
aspect of the proposed method. Actually, if ri and ri+1 are the estimated radii of
two subsequent frames, we sample the �rst image in the range of radii ri ±∆R
and the second one in the range ri+1 ±∆R, where ∆R is an algorithm param-
eter (see �gure 2). In this way, the rotation estimation is focused on the vessel
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boundaries and moreover, if a dilation or a contraction is present between subse-
quent frames, this procedure acts as a scale normalization procedure. Regarding
robustness, if the parameter ∆R is not too small, the sampling catches the suf-
�cient information to estimate the rotation. We empirically set ∆R = 0.64 mm
for all the results presented in the paper.

(a) (b) (c) (d)

Fig. 2. (a) and (b) are two subsequent frames. The red circle is the detection of center
and radius obtained with the modi�ed FRST. The blues circles show the area that has
been sampled to obtain the respective polar images (c) and (d). The rotation estimation
is applied on the images (c) and (d), thus focusing mainly on vessel boundaries.

2.5 Computational issues
First, we estimate the vessel center and second, we estimate the relative rota-
tion between vessel structures as in [6]. The �rst part has computational cost
O(KN) where N is the image pixels and K is the number of radii involved in
the computation of the fast radial symmetry (referring to formula (3), K = |Ω|).
The second part has a computational cost O(Ñ log Ñ) since it involves a convo-
lution, where Ñ is the number of pixels of the polar image. Since creating the
polar image requires a re-sampling, in general Ñ 6= N . However, once Ñ is �xed,
we can reduce the computational cost by transforming just a part of the polar
image as discussed in the previous subsection. Summarizing, our method is K
times slower than the one in [6] with regard to center estimation but it is much
faster regarding the rotation estimation. Keeping K low is important to obtain
a fast algorithm. To tackle this, we assume that the vessel radius changes slowly
during the pullback. Thus, we perform the center estimation of �rst frame with
a large Kinit and, for next frames, we progressively reduce it until it reaches
a smaller prede�ned value Kmin. While doing this, the center of the set Ω at
frame i, r(Ω,i) is set to be the previously estimated radius ri−1. In this way, we
perform a tracking of useful radii for the FRST computation.

3 Results
We tested our algorithm on a set of 9 pullbacks from 7 patients, each containing
1000 frames. Pullbacks can present metallic stents, soft and hard plaque and one

133



or more bifurcations. Some pullbacks present a vessel shape that is seriously far
from being circular. After a preliminary empirical evaluation we found that a
good setting of parameters is: Kinit = 100, r(Ω,1) = 2mm and Kmin = 10, such
that the �rst FRST spans 100 radii from 1mm to 3mm and after some frames
the minimum number of spanned radii is 10, covering 0.2mm thus implicitly
assuming that the maximum radius change between two subsequent frames does
not overcome 0.1mm. Regarding the radial strictness parameter, we set α = 2
as suggested in [8]. During preliminary testing we noticed that, while varying α
does not in�uence heavily the algorithm performance, the setting of Kmin needs
further investigation.

Di�erent quantitative evaluation methods for IVUS pullbacks rigid alignment
have been proposed: among others, [6] proposes the use of normalized cross-
correlation on plaque areas to measure the oscillation due to the heart beating,
and thus an eventual decrease in the oscillation due to the alignment algorithm.
In our opinion, even if this method could be reliable, it is restricted to the analysis
on plaque areas and thus it is not general enough. In [11] authors propose the
Cardiac Alignment Rate (CAR) as a measure of how much the motion artifacts
have been suppressed by an alignment algorithm. The CAR is de�ned as:

CAR = 1− |F(qout(t))(fc)|
|F(qin(t))(fc)|

(5)

where qout(t) and qin(t) are two quantitative measurements respective to the
aligned sequence and input sequences, F is the Fourier transform and fc is the
fundamental frequency of oscillation due to the heart beating. In [11] authors
propose as a measure for computing q(t) the image local density of mass (given
by the local mean) in order to minimize the impact of texture variability and
speckle. Even though this could be a practical solution, this can underestimate
the oscillation, due to the averaging process and moreover it is not focused
on the vessel boundaries. Starting from this approach, we add two important
modi�cations. First, since the oscillation is rarely perfectly sinusoidal we restate
the CAR measure involving the values of the �rst 4 main harmonics of the base
frequency fc, i.e:

hCAR = 1−
∑4
n=1 |F(qout(t))(nfc)|∑4
n=1 |F(qin(t))(nfc)|

. (6)

In the case of a triangular oscillation the Fourier series decreases as 1/n2, thus
the �fth harmonic has an amplitude that is 1/25 of the main harmonic (n = 1)
and consequently, stopping the summation at n = 4 seems su�cient to our
measurement. Secondly, we restrict the analysis to the area of vessel boundaries
but without averaging on a local neighborhood, since we expect that texture
variability and speckle noise will not in�uence the Fourier amplitudes involved
in equation (6) but will be distributed almost randomly on other frequencies.
Moreover, for visual inspection and automatic or manual segmentation in longi-
tudinal cuts, the alignment of the vessel boundaries is far more important than
the alignment of other structures of the short axis image. The Conservation of
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Density Rate suggested in [11] cannot assure that the vessel structures are ac-
tually in�uencing the overall evaluation of the alignment algorithm. Following
these guidelines, we compared the proposed algorithm to the one in [6], obtaining
the table 1. The proposed algorithm outperform the one in [6] in all cases (200%
better on average). Figure 3 shows di�erent longitudinal cuts: row (a) shows the
input sequence, row (b) shows the aligned sequence using the algorithm in [6]
and row shows (c) our results. It can be noticed that our algorithm performs
a registration that aligns important vessel's structures improving the visual in-
spection of e.g. the hard plaque length and the adventitia border. Moreover, in
our results the lumen appears horizontal, thus showing that the algorithm re-
moved great part of the catheter translation. It is worth to remind that di�erent
longitudinal cuts can show di�erent features since the relative rotation between
subsequent frames can be di�erent for di�erent algorithms.

Seq. ] 1 2 3 4 5 6 7 8 9
Osc. Amp. 216.14 322.64 224.02 186.94 203.42 336.36 194.75 263.90 264.93
hCAR-[6] 0.12 0.14 -0.036 0.011 0.038 0.29 0.12 0.15 0.056
hCAR-our 0.18 0.33 0.096 0.072 0.19 0.4 0.2 0.21 0.084

Table 1. The table presents, for each sequence, the input oscillation (actually the
denominator in equation (6)) and the hCAR for both algorithms. Higher values mean
better performance in reducing oscillation artifacts.

Sequence 2 Sequence 4

(a)

(b)

(c)

Fig. 3. Longitudinal cuts showing algorithms performance (see text for details).
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4 Conclusion
The registration can be a precious tool for simplifying the visual inspection and
manual measurements in longitudinal cuts. Moreover, it can be a pre-processing
step for automatic segmentation of sequences and volumetric estimation. In this
paper we presented a new algorithm for vessel's structures registration based on
the Fast Radial Symmetry Transform. Experimental results show that the algo-
rithm outperforms a previous approach with comparable computational cost. As
a future direction, the method can be extended to �t a vessel elliptic model and
also to �t di�erent structures at a time thus detecting the lumen, the adventitia
border and metallic stents.
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