

Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences

Olivier Pauly, Ben Glocker, Antonio Criminisi, Diana Mateus, Axel Martinez-Möller, Stephan Nekolla, and Nassir Navab

What it's all about...

What it's all about...

Potential application...

Pauly et al., Fast Multiple Organ Detection and Localization

Semantic navigation:

Direct navigation to **organs**

Potential application...

Pauly et al., Fast Multiple Organ Detection and Localization

Database retrieval:

Retrieve organs of interest

Atlas registration

Atlas registration

Detection approach...

Pauly et al., Fast Multiple Organ Detection and Localization

Exhaustive search in position-size parameters
A classifier evaluates each position-size candidate

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR 2001.

Detection approach...

Pauly et al., Fast Multiple Organ Detection and Localization

Exhaustive search in position-size parameters
A classifier evaluates each position-size candidate

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR 2001.

Marginal Space Learning

Pauly et al., Fast Multiple Organ Detection and Localization

Learn sequentially in marginal spaces

Exhaustive search in position parameters only
Refinement search in position-size parameters

Zheng, Barbu, Georgescu et al.: Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes using Marginal Space Learning and Steerable Features, IEEE TMI (2008)

Marginal Space Learning

Pauly et al., Fast Multiple Organ Detection and Localization

Learn sequentially in marginal spaces

Exhaustive search in position parameters only
Refinement search in position-size parameters

Y. Zheng, B. Georgescu, D. Comaniciu: Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images, IPMI 2009

Towards multiple organ detection?

Our regression approach

Pauly et al., Fast Multiple Organ Detection and Localization

Learn a **probabilistic** mapping from **voxels** to **all organ bounding boxes**

Our regression approach

Pauly et al., Fast Multiple Organ Detection and Localization

Learn a **probabilistic** mapping from **voxels** to **all organ bounding boxes**

Discover implicitly anatomical **key landmarks** which best predict organ positions

Our contributions in this paper

Pauly et al., Fast Multiple Organ Detection and Localization

Our previous work:

Organ localization in CT studies

A. Criminisi, J. Shotton, D. Robertson and E. Konukoglu: **Regression Forests for Efficient Anatomy Detection and Localization in CT Studies**, MCV workshop, MICCAI 2010

Our contributions in this paper

Pauly et al., Fast Multiple Organ Detection and Localization

Our current work:

Multi-channel whole-body MR

Regression ferns

3D LBP-like features

Comparison with forests

Organ localization as a regression task

1. Input feature space

INPUT SPACE REGRESSION OUTPUT SPACE

2. Output space

Pauly et al., Fast Multiple Organ Detection and Localization

Relative displacement between voxel and organ bounding box

$$\mathbf{v}_{\text{heart}} = (\mathbf{v}_{\text{heart}}^0, \mathbf{v}_{\text{heart}}^1)$$

$$\mathbf{v}_{\text{liver}} = (\mathbf{v}_{\text{liver}}^0, \mathbf{v}_{\text{liver}}^1)$$

 $\mathbb{R}^{6 \times K}$

For all **K** organs:

 $\mathsf{V} = (\mathsf{v}_1, \mathsf{v}_2, \dots, \mathsf{v}_k, \dots, \mathsf{v}_K)$

INPUT SPACE REGRESSION OUTPUT SPACE

Pauly et al., Fast Multiple Organ Detection and Localization

Use regression ferns to divide and conquer:

1. Subdivide the input feature space in "cells" $\{C_t\}_{t=1}^T$

2. Learn $p(\mathbf{V} \mid \mathbf{X})$ in **each cell** using a simple model

INPUT SPACE REGRESSION OUTPUT SPACE

Pauly et al., Fast Multiple Organ Detection and Localization

Random fern = constrained random tree

INPUT SPACE REGRESSION OUTPUT SPACE

Pauly et al., Fast Multiple Organ Detection and Localization

1. Partition input space

Input feature space

2. Learn p(V|X)

Output values

Pauly et al., Fast Multiple Organ Detection and Localization

Each voxel: probabilistic prediction for all organ bounding boxes

REGRESSION

OUTPUT

SPACE

INPUT

SPACE

Experiments and Results

Experiments

Results

Pauly et al., Fast Multiple Organ Detection and Localization

MEAN LOCALIZATION ERRORS (mm)

Organs	Head	Left lung	Right lung	Liver	Heart	Overall
Random ferns	9.82 ± 8.07	14.95 ± 11.35	16.12 ± 11.73	18.69 ± 13.77	15.17 ± 11.70	14.95 ± 11.33
Random forests	10.02 ± 8.15	14.78 ± 11.72	16.20 ± 12.14	18.99 ± 13.88	15.28 ± 11.89	15.06 ± 11.55
Atlas lower bound	18.00 ± 14.45	14.94 ± 11.54	15.02 ± 13.69	18.13 ± 16.26	13.31 ± 11.03	15.88 ± 13.40
Atlas upper bound	70.25 ± 34.23	60.78 ± 29.47	63.95 ± 30.13	70.59 ± 32.88	60.38 ± 28.90	65.19 ± 31.12
Atlas Mean	35.10 ± 13.17	30.41 ± 11.39	29.85 ± 12.62	31.74 ± 13.49	29.82 ± 12.23	31.38 ± 12.58

Size: 192 x 124 x 443

Pixel spacing: 2.6mm x 2.6mm x 2.6mm

Accuracy

Best overall accuracy

Lower standard deviation

<u>Ferns</u>: training/testing times of a few seconds

<u>Forests:</u> training/testing times of a few minutes

Conclusion

Thank you for your attention

Pauly et al., Fast Multiple Organ Detection and Localization

Microsoft Research Inner Eye project

http://research.microsoft.com/en-us/projects/medicalimageanalysis/

Microsoft*

Research

Cambridge

Nuklearmedizin, Klinikum Rechts der Isar http://www.nuk.med.tu-muenchen.de/

Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences

Olivier Pauly, Ben Glocker, Antonio Criminisi, Diana Mateus, Axel Martinez-Möller, Stephan Nekolla, and Nassir Navab

