

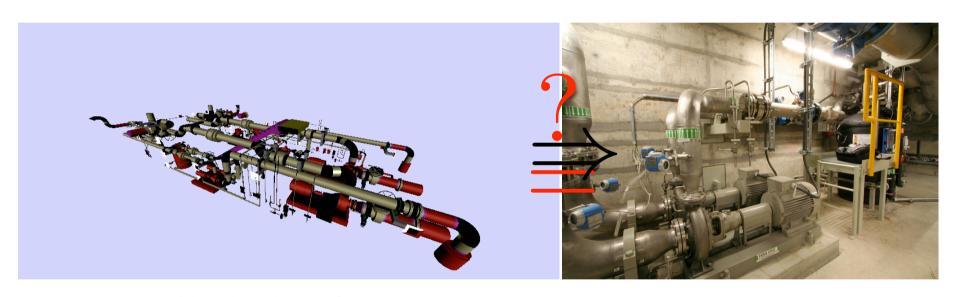
Photo-based Augmented Reality

Registration And Navigation Methods

Application to Discrepancy Check

Imperial College London 11/09/09 Pierre Georgel

Agenda


- Problem statement and application
- Software features

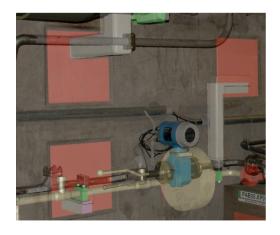
- Recovering the Full Pose from a Single Keyframe
- Outline of future work

Application Overview

Discrepancy check between CAD data and built items

3D Model used as Planning for Construction

Finished Construction



Application Overview

- Support engineer in charge of this verification task
- Project started in February 2006
- Consortium of CAMP Siemens CT Areva NP

"[...] senior project manager at Siemens, estimates that the software will reduce the cost of constructing a typical medium-sized coal-fired power plant by more than \$1m." The economist 2007

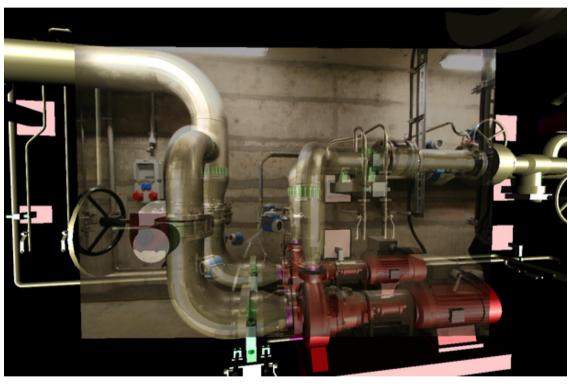
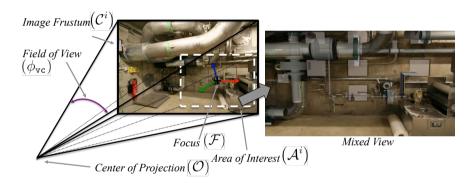
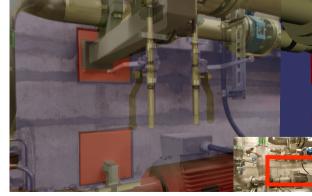


Photo-based Augmented Reality

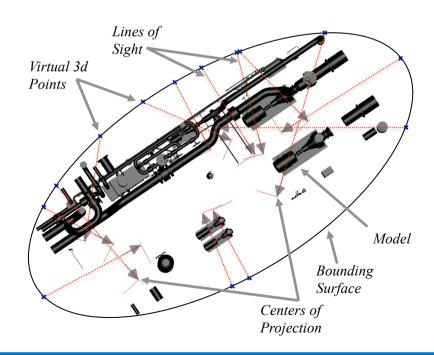
Single frame augmentation

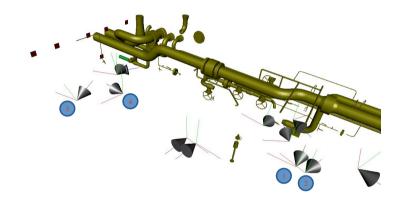

Requirements

- 1. Interaction
- 2. Registration


3D User Interface for an Augmented CAD Software

- New paradigm requires new interactions
 - Extension of 2D zoom/pan interface to Mixed views





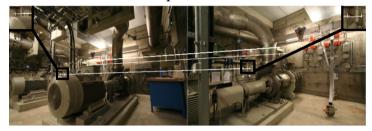
3D User Interface for an Augmented CAD Software

- New paradigm requires new interactions
 - Intuitive 3D image navigation
 - No points track are required
 - No Model is considered

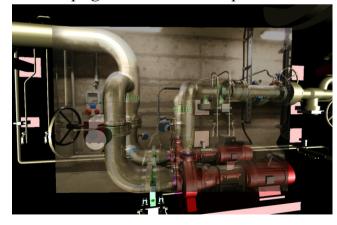
Landmark-based Registration

- Goal
 - Register images to the CAD coordinate system
- Approach
 - Extract landmarks (Anchor-Plates) from images
 - Find corresponding 3D landmarks
 - Compute the Pose (Rotation, Translation)

Need of 2d visible Landmarks



Automatic 6 DoF Stereo Registration


- Goal
 - Register images using a unique keyframe
- Approach
 - Compute epipolar geometry using keypoints
 - Extend the relative pose to a full pose using
 - Planar structure
 - 2d-3d correspondences
 - Non-linear estimation
 - Bundle adjustment with planarity constraint
 - Hybrid pose estimation that includes intensities

Extracted planar structure

Propagated 2d-3d correspondences

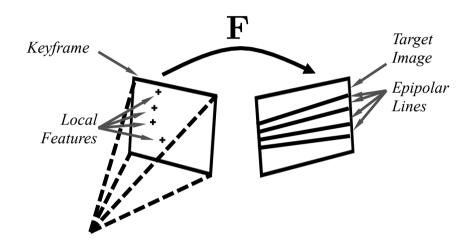
Recovering the Full Pose from a Single Keyframe

WACV 12/2009

Pierre Fite Georgel, Selim Benhimane, Juergen Sotke and Nassir Navab

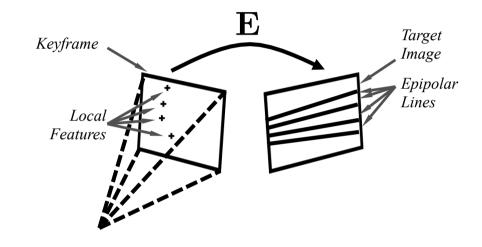
Agenda

- Registration
- Registration with single keyframe
 - Challenges
 - Initial scale estimates
 - Non-linear refinement
- Results
 - Synthetic experiments
 - Plant inspection images
- Closing statement

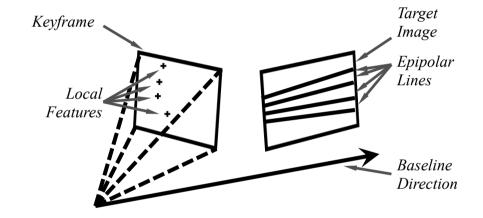

Registration Find Geometric Transform between CAD and Image

- Marker based [1,2]
- External tracking system
 - Magnetic [3]
 - Optical [4]
 - GPS + Compass [5]
- Model based approach
 - Edges [6,7]
 - Keyframes (Multiple [8], Unique with model [9, 10])
- [1] Goose et al. Speech-enabled augmented reality supporting mobile industrial maintenance. Pervasive Computing 2003.
- [2] Pentenrieder et al. Augmented Reality-based factory planning an application tailored to industrial needs. ISMAR, 2007.
- [3] Webster et al. Architectural Anatomy. Presence, 1995.
- [4] Schoenfelder & Schmalstieg. Augmented Reality for Industrial Building Acceptance. IEEE VR, 2008.
- [5] Schall et al. Virtual redlining for civil engineering in real environments. ISMAR, 2008.
- [6] Lowe. Fitting parameterized three-dimensional models to images. IEEE Trans. PAMI, 1991.
- [7] Drummond & Cipolla. Real-time tracking of complex structures with on-line camera calibration. BMVC, 1999.
- [8] Chia et al. Online 6 dof augmented reality registration from natural features. ISMAR, 2002.
- [9] Vacchetti et al. Stable real-time 3d tracking using online and offline information. IEEE Trans. PAMI, 2004.
- [10] Platonov et al. A mobile markerless AR system for maintenance and repair. ISMAR, 2006.

- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i,\,\mathbf{q}_i
angle$

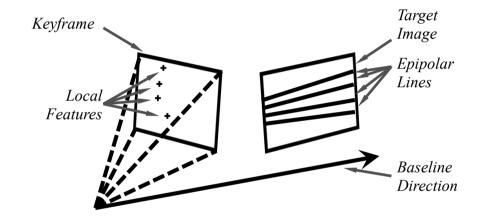

$$\mathbf{q}_i^{\mathsf{T}} \mathbf{F} \mathbf{p}_i = 0$$

- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i, \mathbf{q}_i \rangle$ $\mathbf{q}_i^{\top} \mathbf{F} \mathbf{p}_i = 0$
- Derivation of essential for calibrated cameras [11]


$$\mathbf{E} = \mathbf{K}_{\mathcal{T}}^{ op} \mathbf{F} \mathbf{K}_{\mathcal{S}}$$

- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i,\,\mathbf{q}_i \rangle$
- Derivation of essential for calibrated cameras [11]
- Essential matrix decomposition

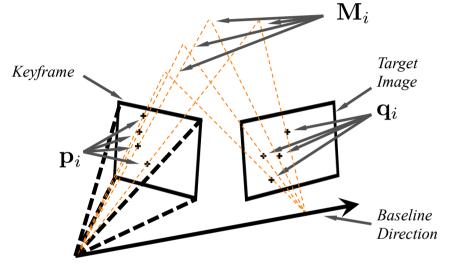
$$\mathbf{E}=\left[\mathbf{t}
ight]_{ imes}\mathbf{R}$$



- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i, \, \mathbf{q}_i \rangle$
- Derivation of essential for calibrated cameras [11]
- Essential matrix decomposition

$$\mathbf{E} = oldsymbol{[t]}_{\! imes}\,\mathbf{R}$$

Unknown translation norm

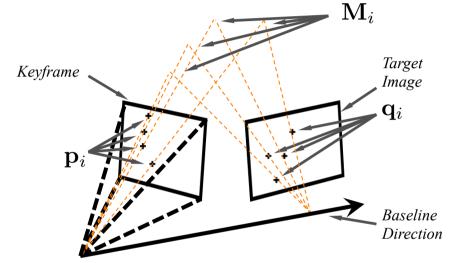


- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i, \, \mathbf{q}_i \rangle$
- Derivation of essential for calibrated cameras [11]
- Essential matrix decomposition

$$\mathbf{E}=\left[\mathbf{t}
ight]_{ imes}\mathbf{R}$$

Bundle adjustment cost

$$\mathcal{C}_{\mathcal{G}}\left(\mathbf{M}_{i},\mathbf{R},\mathbf{t}
ight) = \sum_{i=1}^{n} + rac{\left\|\mathbf{K}_{s}\mathbf{w}\left(\mathbf{M}_{i}
ight) - \mathbf{p}_{i}
ight\|^{2}}{\left\|\mathbf{K}_{t}\mathbf{w}\left(\mathbf{R}\mathbf{M}_{i} + \mathbf{t}
ight) - \mathbf{q}_{i}
ight\|^{2}}$$



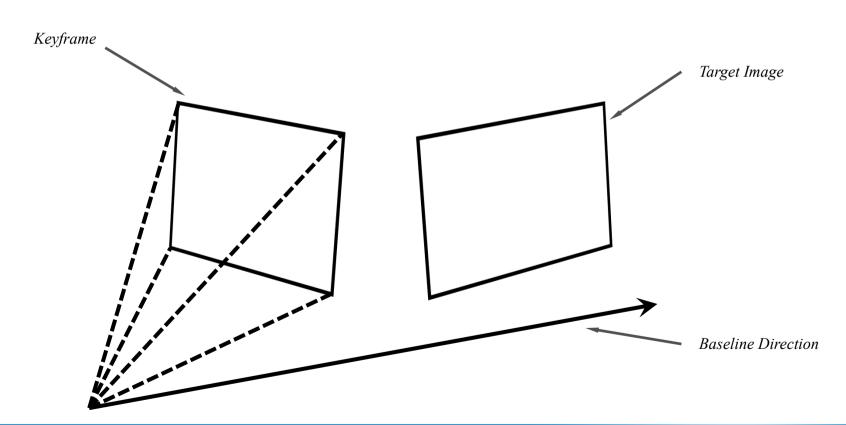
- Compute fundamental matrix using keypoints $\langle \mathbf{p}_i, \, \mathbf{q}_i \rangle$
- Derivation of essential for calibrated cameras [11]
- Essential matrix decomposition

$$\mathbf{E}=\left[\mathbf{t}
ight]_{ imes}\mathbf{R}$$

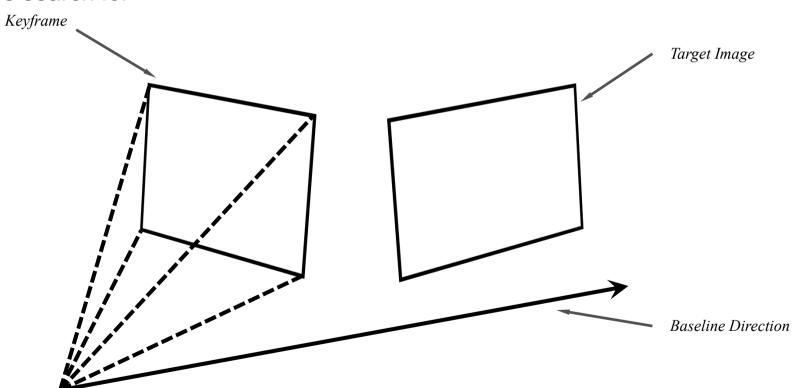
Bundle adjustment cost

$$\mathcal{C}_{\mathcal{G}}\left(\mathbf{M}_{i}, \mathbf{R}, \mathbf{t}\right) = \sum_{i=1}^{n} + \frac{\left\|\mathbf{K}_{s} \mathbf{w}\left(\mathbf{M}_{i}\right) - \mathbf{p}_{i}\right\|^{2}}{\left\|\mathbf{K}_{t} \mathbf{w}\left(\mathbf{R} \mathbf{M}_{i} + \mathbf{t}\right) - \mathbf{q}_{i}\right\|^{2}}$$

$$\forall s \neq 0, \quad \mathcal{C}_{\mathcal{G}}(s\mathbf{M}_i, \mathbf{R}, s\mathbf{t}) = \mathcal{C}_{\mathcal{G}}(\mathbf{M}_i, \mathbf{R}, \mathbf{t})$$



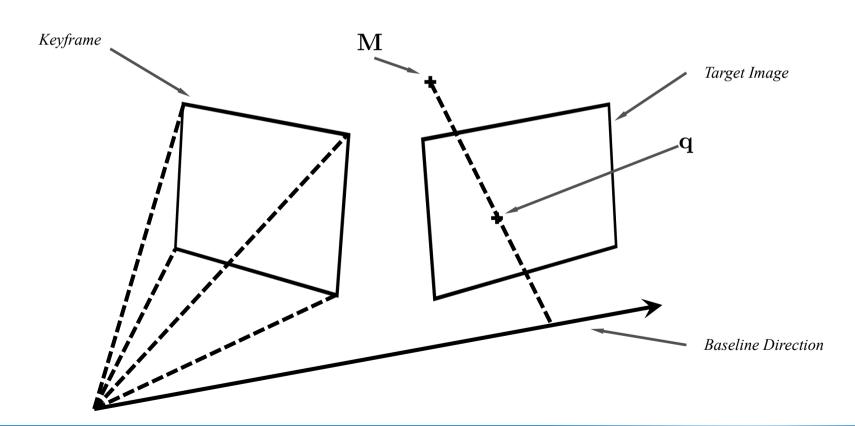
Full Pose from Single Keyframe Challenge \mathbf{M}_i Keyframe Target Image Baseline Direction



• We suppose that we know ${f R}$ and ${f t}$ $(\|{f t}\|=1)$

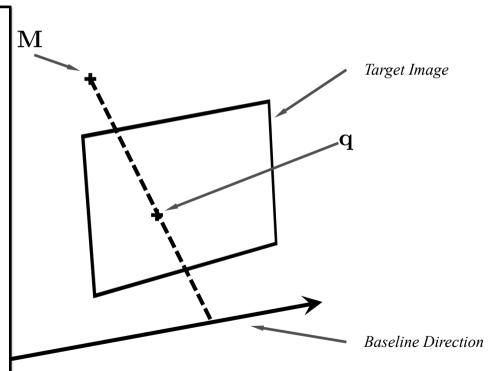
- We suppose that we know ${f R}$ and ${f t}$ ($\|{f t}\|=1$)
- We search for S

Using a known 3D distance D $d_1 = \|\mathbf{AB}\|$ Keyframe Target Image Baseline Direction



Using a known 3D distance D $d_1 = \|\mathbf{AB}\|$ Target Image Baseline Direction

• Using the location of a known 3D point in the target image $\langle \mathbf{M}, \mathbf{q} \rangle$



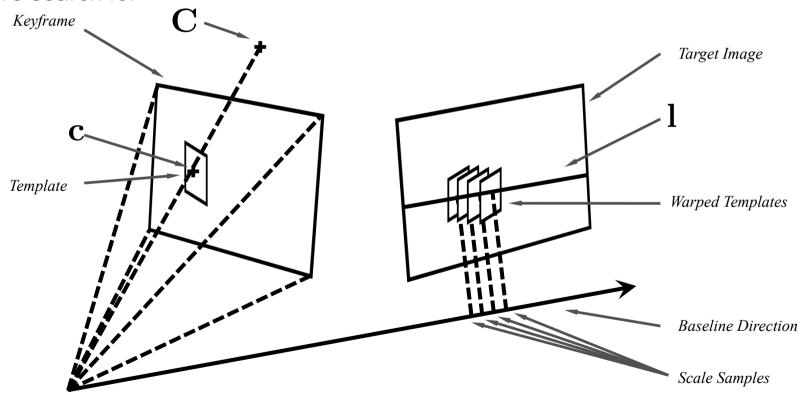
• Using the location of a known 3D point in the target image $\langle \mathbf{M}, \mathbf{q} \rangle$

$$s = -\frac{\left(\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{t}\right)^{\top}\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{RM}}{\left\|\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{t}\right\|^{2}}$$

Using a known 3D distance D

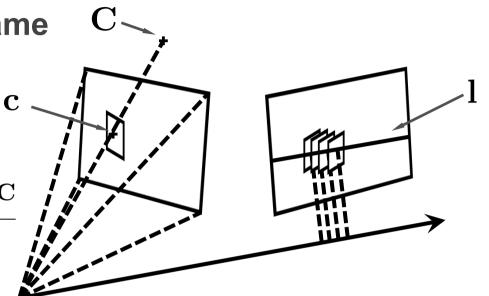
$$s = \frac{D}{d_1}$$

• Using the location of a known 3D point in the target image $\langle \mathbf{M}, \mathbf{q} \rangle$

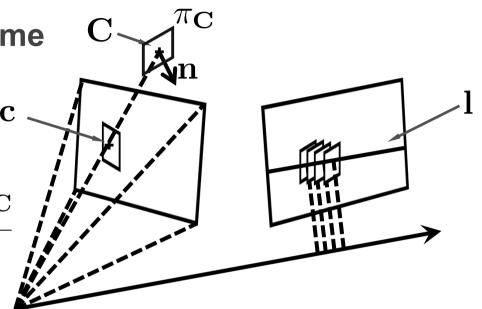

$$s = -\frac{\left(\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{t}\right)^{\top}\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{RM}}{\left\|\left[\mathbf{K}_{t}^{-1}\mathbf{q}\right]_{\times}\mathbf{t}\right\|^{2}}$$

Both methods requires interactions

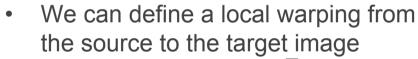
Full Pose from Single Keyframe *Method Overview*

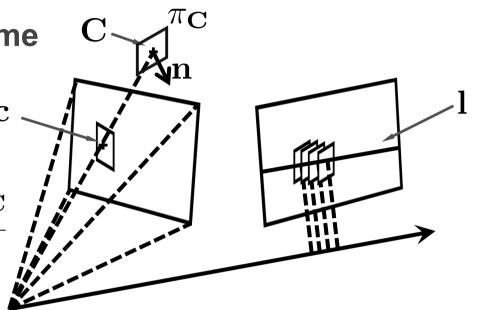

- We suppose that we know ${f R}$ and ${f t}$ $(\|{f t}\|=1)$
- We search for S

Every point on a line gives a scale sample


$$\forall \mathbf{c}' \in \mathbf{l}, \ s = -\frac{\left(\left[\mathbf{K}_t^{-1} \mathbf{c}'\right]_{\times} \mathbf{t}\right)^{\top} \left[\mathbf{K}_t^{-1} \mathbf{c}'\right]_{\times} \mathbf{RC}}{\left\|\left[\mathbf{K}_t^{-1} \mathbf{c}'\right]_{\times} \mathbf{t}\right\|^2}$$

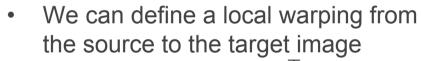
Every point on a line gives a scale sample


$$\forall \mathbf{c}' \in \mathbf{l}, s = -\frac{\left(\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right)^{\top}\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{RC}}{\left\|\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right\|^{2}}$$



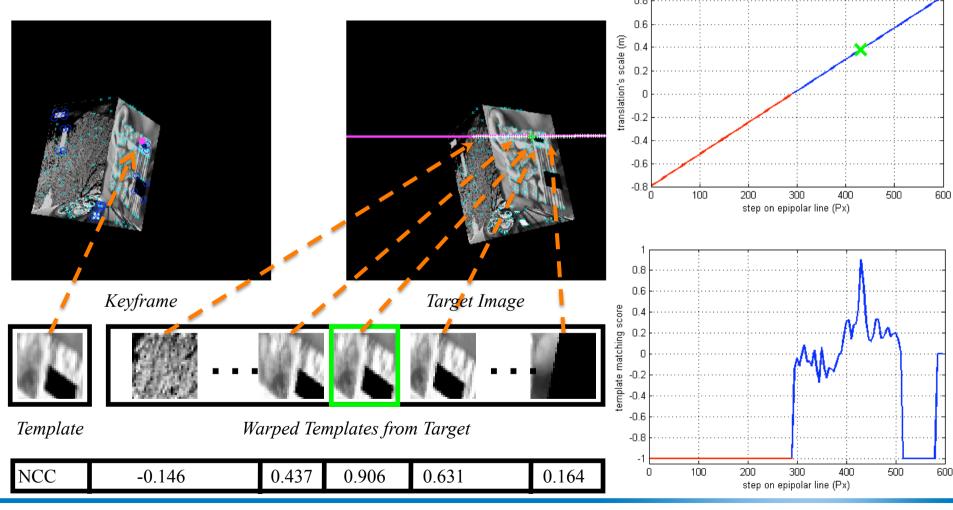
Every point on a line gives a scale sample

$$\forall \mathbf{c}' \in \mathbf{l}, s = -\frac{\left(\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right)^{\top}\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{RC}}{\left\|\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right\|^{2}}$$


$$\mathbf{H}\left(s, \pi_{\mathbf{C}}\right) = \mathbf{R} - s \frac{\mathbf{t}\mathbf{n}^{\top}}{d}$$

Every point on a line gives a scale sample

$$\forall \mathbf{c}' \in \mathbf{l}, \ s = -\frac{\left(\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right)^{\top}\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{RC}}{\left\|\left[\mathbf{K}_{t}^{-1}\mathbf{c}'\right]_{\times}\mathbf{t}\right\|^{2}}$$


$$\mathbf{H}\left(s, \pi_{\mathbf{C}}\right) = \mathbf{R} - s \frac{\mathbf{t}\mathbf{n}^{\top}}{d}$$

Template search

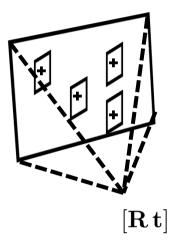
$$f(s) = \mathrm{SM}\left(\mathcal{S}, \mathbf{H}^{-1}\left(s, \pi_{\mathbf{C}}\right)(\mathcal{T})\right)$$

Full Pose from Single Keyframe Initial Estimates - Overview

Full Pose from Single Keyframe Nonlinear Refinement

Sub-optimal solution

$$\sum_{i} SM \left(\mathcal{S}, \mathbf{H}^{-} 1 \left(s, \pi_{c_{i}} \right) \left(\mathcal{T} \right) \right)$$


Full Pose from Single Keyframe Nonlinear Refinement

Sub-optimal solution

$$\sum_{i} \mathrm{SM}\left(\mathcal{S}, \mathbf{H}^{-} 1\left(s, \pi_{c_{i}}\right) \left(\mathcal{T}\right)\right)$$

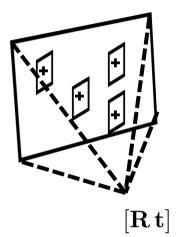
We introduce a quadratic cost $\mathbf{t} \leftarrow s\mathbf{t}$

$$\mathcal{C}_{\mathcal{P}}\left(\mathbf{R},\mathbf{t}
ight) = \sum_{j=1}^{m} \sum_{\mathbf{X}}^{\mathcal{N}_{\mathbf{C}_{j}}} \left\|\mathcal{S}\left(\mathbf{K}_{s}\mathbf{w}\left(\mathbf{X}
ight)
ight) - \mathcal{T}\left(\mathbf{K}_{t}\mathbf{w}\left(\mathbf{R}\mathbf{X} + \mathbf{t}
ight)
ight)
ight\|^{2}$$

Full Pose from Single Keyframe Nonlinear Refinement

Sub-optimal solution

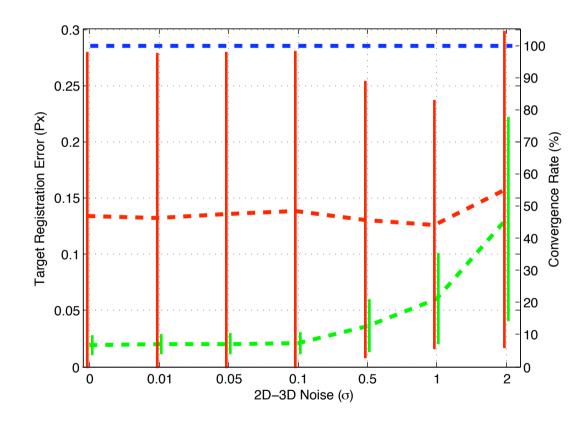
$$\sum_{i} SM \left(\mathcal{S}, \mathbf{H}^{-} 1 \left(s, \pi_{c_{i}} \right) \left(\mathcal{T} \right) \right)$$

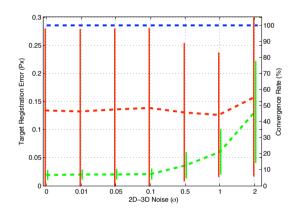

• We introduce a quadratic cost $\mathbf{t} \leftarrow s\mathbf{t}$

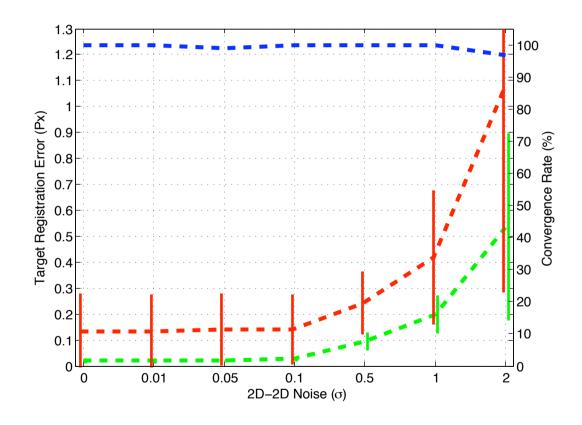
$$\mathcal{C}_{\mathcal{P}}\left(\mathbf{R},\mathbf{t}
ight) = \sum_{j=1}^{m} \sum_{\mathbf{X}}^{\mathcal{N}_{\mathbf{C}_{j}}} \left\|\mathcal{S}\left(\mathbf{K}_{s}\mathbf{w}\left(\mathbf{X}
ight)
ight) - \mathcal{T}\left(\mathbf{K}_{t}\mathbf{w}\left(\mathbf{R}\mathbf{X} + \mathbf{t}
ight)
ight)
ight\|^{2}$$

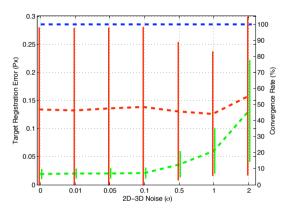
$$\arg\min_{\mathbf{M}_{i},\mathbf{R},\mathbf{t}} \mathcal{C}_{\mathcal{G}}\left(\mathbf{M}_{i},\mathbf{R},\mathbf{t}\right) + \mathcal{C}_{\mathcal{P}}\left(\mathbf{R},\mathbf{t}\right)$$

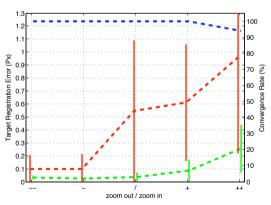
with
$$\mathcal{C}_{\mathcal{G}}\left(\mathbf{M}_{i}, \mathbf{R}, \mathbf{t}\right) = \sum_{i=1}^{n} + \frac{\left\|\mathbf{K}_{s} \mathbf{w}\left(\mathbf{M}_{i}\right) - \mathbf{p}_{i}\right\|^{2}}{\left\|\mathbf{K}_{t} \mathbf{w}\left(\mathbf{R} \mathbf{M}_{i} + \mathbf{t}\right) - \mathbf{q}_{i}\right\|^{2}}$$

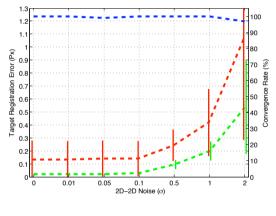


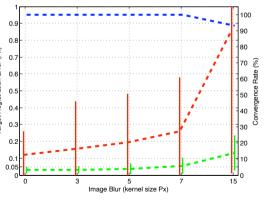

Full Pose from Single Keyframe Algorithm Overview

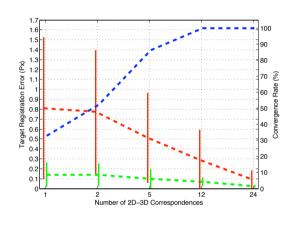

- 1. Estimate E
- 2. Decompose E in R and t
- 3. for each 2D-3D correspondences
 - Find scale s
- 4. end
- 5. Select the scale s with best consensus
- 6. Nonlinear estimation

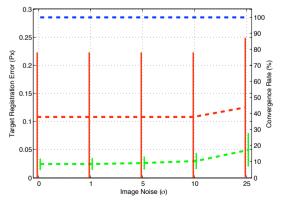


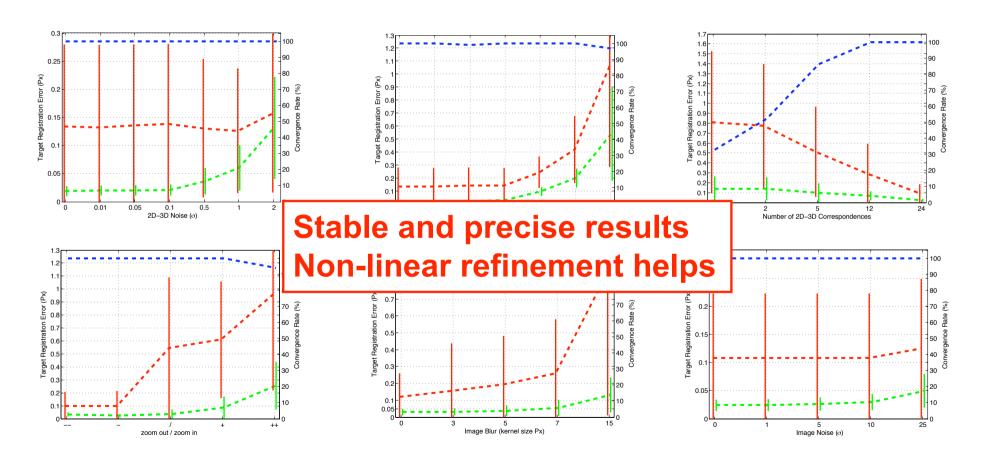


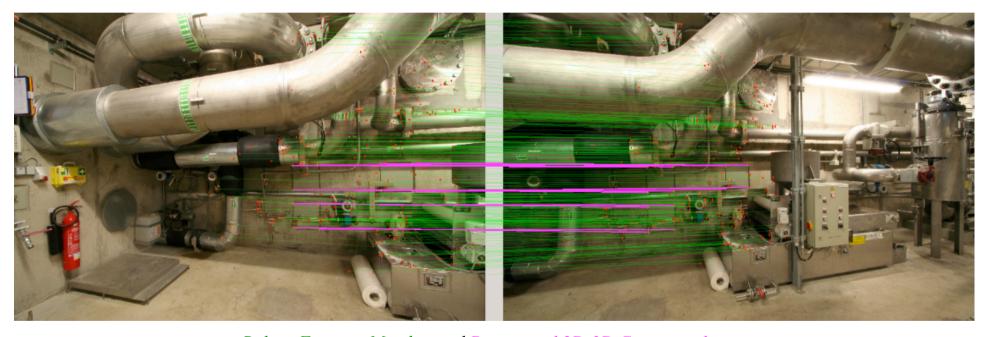




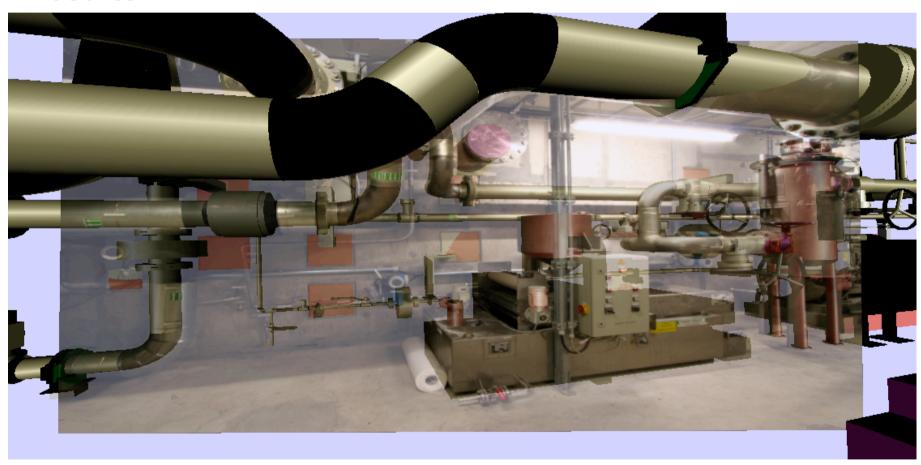


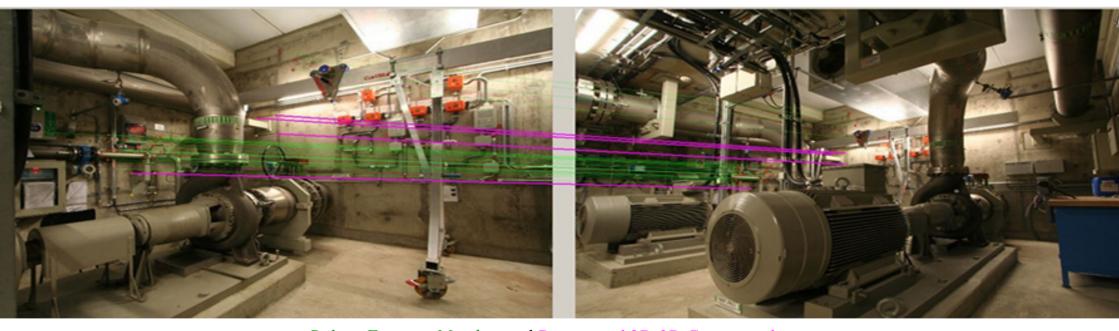


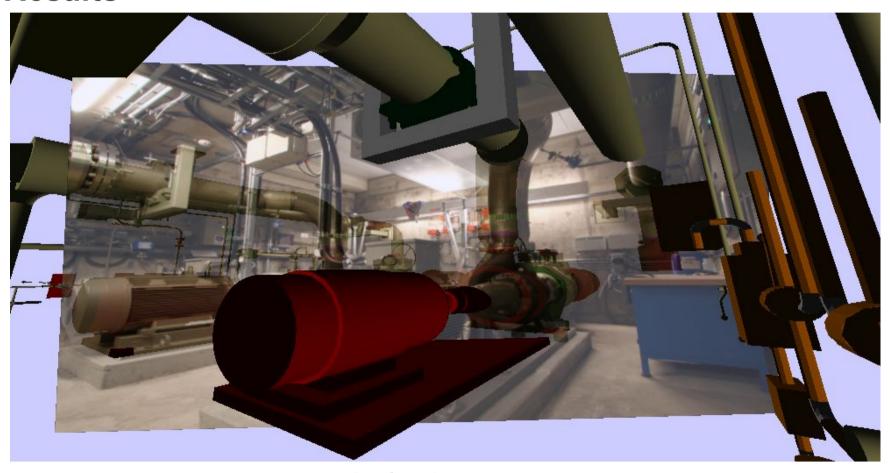



Discrepancy Check using Augmented Reality Keyframe Computation

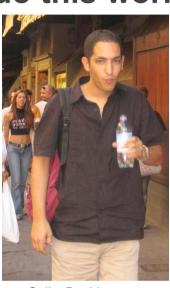
- Landmark-based registration
 - Register images to the CAD coordinate system
- Approach
 - Extract landmarks (Anchor-Plates) from images
 - Find corresponding 3D landmarks
 - Compute the pose (Rotation, Translation)


- Information stored
 - Image
 - Full pose
 - 3D points: location and normal.


Robust Features Matches and Propagated 2D-3D Correspondences


Resulting Augmentation

Robust Features Matches and Propagated 2D-3D Correspondences


Resulting Augmentation

I did not do this work alone

Selim Benhimane

Juergen Sotke

Stefan Hinterstoiser

Stefan Holzer

But also

Adrien Bartoli (universite d'Auvergne)

Bernard Ziesl

Mirko Appel (siemens CT)

Sumit Paranjape, Xinxing Feng, Xavier Fernandez, Hagen Kaiser

Conclusion and Perspectives

About this method

- ✓ Automatic full pose estimation
 - Perspectively corrected template matching
 - ✓ New non-linear cost function
- ✓ Solution is used on site for inspection

About the application

- ✓ Landmark based registration
- ✓ Automatic 6 DoF stereo registration
- ✓ Bundle Adjustment with fix 3D points
- √ 3D Measurements
- ✓ Inspection / Documentation

Future Work

- Extension to more than two images
- Non calibrated case
- Estimation of the normals

- Mobile AR using keyframes
- Guided 3D reconstruction
- > 3D Annotations

Thank for the attention

(Any) Questions?

Bibliography

- [1] Goose *et al.* Speech-enabled augmented reality supporting mobile industrial maintenance. Pervasive Computing 2003.
- [2] Pentenrieder *et al.* Augmented Reality-based factory planning an application tailored to industrial needs. ISMAR, 2007.
- [3] Webster et al. Architectural Anatomy. Presence, 1995.
- [4] Schoenfelder & Schmalstieg. Augmented Reality for Industrial Building Acceptance. IEEE VR, 2008.
- [5] Schall et al. Virtual redlining for civil engineering in real environments. ISMAR, 2008.
- [6] Lowe. Fitting parameterized three-dimensional models to images. IEEE Trans. PAMI, 1991.
- [7] Drummond & Cipolla. Real-time tracking of complex structures with on-line camera calibration. BMVC, 1999.
- [8] Chia et al. Online 6 dof augmented reality registration from natural features. ISMAR, 2002.
- [9] Vacchetti et al. Stable real-time 3d tracking using online and offline information. IEEE Trans. PAMI, 2004.
- [10] Platonov et al. A mobile markerless AR system for maintenance and repair. ISMAR, 2006.
- [11] Hung and Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE Trans. PAMI, 1989.
- [12] Georgel *et al.* A Unified Approach Combining Photometric and Geometric Information for Pose Estimation. BMVC, 2008.
- [13] Georgel et al. An Industrial Augmented Reality Solution For Discrepancy Check. ISMAR, 2007.