Computer Aided Medical Procedures | Technische Universität München

Photo-based Augmented Reality

Registration And Navigation Methods

Application to Discrepancy Check

Imperial College London 11/09/09 Pierre Georgel

Agenda

- Problem statement and application
- Software features
- Estimation of uncertainty localization for multi-scale local features.
- Outline of future work

Project Overview

• Discrepancy check between CAD data and built items

Project Overview

- Discrepancy check between CAD data and built items
- Project started in February 2006
- Consortium of CAMP Siemens CT Areva NP

SIEMENS

• Yearly release - version 3.5 was ship last month

Photo-based Augmented Reality

Single frame augmentation

Requirements 1. Registration 2. Interaction

Landmark-based Registration

- Goal
 - Register images to the CAD coordinate system
- Approach
 - Extract landmarks (Anchor-Plates) from images
 - Find corresponding 3D landmarks
 - Compute the Pose (Rotation, Translation)

- Limitation
 - Need of 2d visible Landmarks

Automatic 6 DoF Stereo Registration

- Goal
 - Register images using a unique keyframe
- Approach
 - Compute epipolar geometry using keypoints
 - Extend the relative pose to a full pose using
 - Planar structure
 - 2d-3d correspondences
 - Non-linear estimation
 - Bundle adjustment with planarity constraint
 - Hybrid pose estimation that includes intensities

CAMP

Extracted planar structure

Propagated 2d-3d correspondences

3D User Interface for an Augmented CAD Software

- New paradigm requires new interactions
 - Extension of 2D zoom/pan interface to Mixed views

- Intuitive 3D image navigation
 - No points track are required
 - No Model is considered

CAMP

Estimation and Exploitation of Localization Uncertainty for Scale Invariant Feature Points

BMVC 2009

Bernhard Zeisl, Florian Schweiger* Eckehard Steinbach* Nassir Navab

I stole these slides from Bernhard Zeisl

* Institute for Media Technology, see http://www.lmt.ei.tum.de

Agenda

1. Motivation

2. Image Feature Detection and Related Work

3. Uncertainty Estimation Framework and its Application

4. Experiments

5. Results for Model Fitting

Introduction

Motivation and Problem Statement

Local features are state-of-theart for a number of computer vision problems, e.g.:

Object detection and localization

Object recognition and Image retrieval

Wide baseline matching and 3D reconstruction

Common assumptions for detected local features:

- Accurately detected or same deviation in localization error ($N(\mu, \sigma \mathbf{I})$)
- \rightarrow Does not hold for image detectors searching in scale space.

Introduction

Motivation and Problem Statement

Repeated detection of same local feature under noise in the image:

Our method: Estimation of individual localization error for each feature found parameterized by a covariance matrix.

Image Feature Detection

Concept of Detector and Descriptor

	Detector	Descriptor		
Purpose	Localization of feature points	Matching of feature points		
Approach	Spatial detection done via a mathematical operator e.g.: DoG, det(H), trace(H)	Description by the structure of the local neighborhood e.g.: weighted sampling of gradient field		
Desired properties	 Stability – detection independent of changes in the image conditions Measured in terms of repeatabi- lity, i.e. 3D point detectable in two images capturing the same scene Localization precision 	 Distinctiveness Robustness to occlusions Invariance to image transformations. Reached by appropriate size and sampling of the gradient field 		

Image Feature Detection

Corners and blobs in an image are complementary features

	Corner Detector	Blob Detector
Examples	Harris corner detector	MSER detector
Feature definition	Location where two dominant directions intersect	Areas brighter or darker than the surrounding.
Detector	is sensitive to local regions which have a high degree of variation in all directions.	localizes blobs by a well-defined point - the blob center.

Related Work in Feature Detection

In recent work blob detectors have found increasingly popular use

Corner Detectors

- Harris (1988): Harris corner detector: Based on second moment matrix; measures the local change of the image.
- Smith, Brady (1995): SUSAN: Based on the definition of corners using no image derivatives.
- Mikolajczyk, Schmid (2002): Harris Laplace & Harris-Affine: Scale space adaption of the second moment matrix (representation as pyramid); the latter is also invariant to affine transformations.
- Rosten, Drummond (2005): FAST, efficient implementation of SUSAN using decision trees; extensively used in SLAM.

Blob Detectors

- Lowe (1999): SIFT (Scale invariant feature transform): DoG filter to search for features in scale space; Efficient implementation for descriptor matching.
- Matas (2002): MSER (Maximally stable extremal regions): no scale space representation, but still scale invariant; detects blobs by subsequently thresholding the image.
- Mikolajczyk, Schmid (2002): Hessian-Affine: Similar to the Harris-Affine, but Hessian based detector finds blobs in an image.
- Bay et. al. (2006): SURF (Speed up robust features): Hessian based detector; similar to SIFT, but fast implementation by usage of integral images and block filters.

Uncertainty Estimation Framework

Inaccuracy is caused by pixel noise and the detection algorithm itself

Pixel Intensity Noise

Noise in pixel intensity values results from the image capturing process.

True feature point \mathbf{x} is mapped to different points according to the noise distribution for each image taken from the scene.

Detection Algorithm

Feature point detection algorithms are based on the exploration of the local scene structure (1st or 2nd derivatives).

 \rightarrow Additional error introduced for the feature point $\hat{\mathbf{x}}$ depending on the algorithm.

Related Work in Uncertainty Estimation

Localization error addressed without scale-space consideration

- Kanatani & Kanazawa (2001): Argue that meaningful covariance matrices can be computed from the self-matching residual, but no improvement for homography or fundamental matrix computation.
- Brooks et. al. (2001): Curvature of self-matching residual for covariance estimation. Show performance gain for fundamental matrix computation.
- Steel & Jaynes (2005): Argue that gradient based methods overestimate covariances. Derive covariances from different noise models for pixel intensities.
- Haja et. al. (2008):

Comparison of detectors with respect to localization accuracy. Localization accuracy evaluated in terms of matching precision.

• Wu et. al. (2008):

Observe relation between location precision and detection scale. Introduce less weighting for points at higher scales.

Residual from template matching

Related Work in Uncertainty Estimation

Localization error addressed without scale-space consideration

- Kanatani & Kanazawa (2001): Argue that meaningful covariance matrices can be computed from the self-matching residual, but no improvement for homography or fundamental matrix computation.
- Brooks et. al. (2001): tion Curvature of self-matching residual for covariance estimation. Show performance gain for fundamental flatrix computation. Steel & Jaynes (2005): Argue that gradient basic methods overestimate covariances.
- Steel & Jaynes (2005): Derive covariances from different noise models for pixel intensities.
- Haja et. al. (2008): Comparison of detectors with respect to localization accuracy. Localization accuracy evaluated interms of matching precision.
 Wu et. al. (2008): Observe server between dotation precision and detection scale. Introduce less weighting for points of high surverse.
- Introduce less weighting for points at higher scales.

Due to focus on scale invariant interest regions, we claim:

- 1. Shape of covariance will be in general anisotropic.
- Magnitude will vary 2. according to detection scale.

Scale Invariant Feature Detection

The same feature can be detected at different scales

Scale Invariant Feature Detection

A novel general formulation for feature detection in scale space

Scale Space Representation

• Scale space representation of the image with detection operator f_{dec} .

 $D(\mathbf{x}, \sigma_i) = \mathbf{f_{dec}}\left(I(\mathcal{N}_{\mathbf{x}}), \sigma_i\right)$

• Candidate set \mathbb{P}_1 of feature points $\langle \mathbf{p}, \sigma_i \rangle$ by local maxima detection in $D(\bullet, \sigma_i)$.

Scale Selection

- Scale space representation of the image with scale selection operator f_{sel} .

$$S(\mathbf{p}, \sigma_i) = \mathbf{f_{sel}}(I(\mathcal{N}_{\mathbf{p}}), \sigma_i)$$

• Set \mathbb{P}_2 of feature points $\langle \mathbf{p}, \sigma \rangle$ by local maxima detection at positions \mathbf{p} in $S(\mathbf{p}, \sigma_i)$

$$\mathbb{P}_{1} := \bigcup_{i=1}^{N} \left\{ \langle \mathbf{p}, \sigma_{i} \rangle \left| \mathbf{p} = \arg \max_{\mathbf{x} \in \mathcal{N}_{\mathbf{p}}} D(\mathbf{x}, \sigma_{i}) \right. \right\} \qquad \mathbb{P}_{2} := \left\{ \langle \mathbf{p}, \sigma \rangle \left| \langle \mathbf{p}, \sigma \rangle \in \mathbb{P}_{1}, \sigma = \arg \max_{\sigma_{i}} S(\mathbf{p}, \sigma_{i}), S(\mathbf{p}, \sigma) > \tau \right. \right\}$$

Applicable for all detectors building upon a representation in scale space.

Uncertainty Evaluation Framework

Covariance are estimated from the detector response curvature

Residual at feature point:

Covariance based on Hessian:

$$\begin{split} R(\Delta \mathbf{p}) &= |D(\mathbf{p}, \sigma) - D(\mathbf{p} + \Delta \mathbf{p}, \sigma)| \\ \mathbf{p} &= \arg \max_{\mathbf{x} \in \mathcal{N}_{\mathbf{p}}} D(\mathbf{x}, \sigma) = \arg \min_{\Delta \mathbf{p} \in \mathcal{N}_{\mathbf{0}}} R(\Delta \mathbf{p}) \\ R(\Delta \mathbf{p}) &\approx \tilde{R}(\Delta \mathbf{p}) = \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H} \Delta \mathbf{p} \end{split}$$

 $\Sigma = \mathbf{H}^{-1} = \mp \begin{bmatrix} D_{xx}(\mathbf{p}, \sigma) & D_{xy}(\mathbf{p}, \sigma) \\ D_{xy}(\mathbf{p}, \sigma) & D_{yy}(\mathbf{p}, \sigma) \end{bmatrix}^{-1}$

 $\Sigma^{(0)} =$

low curvature \rightarrow error due to the missing discriminative behavior of $D(\bullet, \sigma_0)$ in $\mathcal{N}_{\mathbf{P}}$. high curvature \rightarrow detection process more accurate

Framework Application

Application is identically for SIFT and SURF

Octaves

Optimal Images for SIFT and SURF

Image feature for maximal detector response are computable

SIFT	SURF
DoG is a linear filter → matched filter approach	det(H) is non-linear detector: \rightarrow Optimization via quadratically constrained quadratic program $h_{xx} = \mathbf{f}_{xx}^{\top} \mathbf{I}$ $\det \mathbf{H} = \det \begin{bmatrix} h_{xx} & h_{xy} \\ h_{yx} & h_{yy} \end{bmatrix}$ $h_{xy} = h_{yx} = \mathbf{f}_{xy}^{\top} \mathbf{I}$
$I(\mathbf{x}) = G(\mathbf{x} - \mathbf{p}, \sigma_{i+1}) - G(\mathbf{x} - \mathbf{p}, \sigma_i)$	$\hat{\mathbf{I}} = \arg \max_{\mathbf{I}} \mathbf{I}^{\top} \underbrace{(\mathbf{f}_{xx}\mathbf{f}_{yy}^{\top} - \mathbf{f}_{xy}\mathbf{f}_{xy}^{\top})}_{\mathbf{A}} \mathbf{I}$ $h_{yy} = \mathbf{f}_{yy}^{\top} \mathbf{I}.$ $h_{yy} = \mathbf{f}_{yy}^{\top} \mathbf{I}.$

Location and scale where feature will be detected is controllable.

Statistical Error Modeling

Maximum likelihood estimate and our covariance coincide

The covariance estimates fit the modeled error distribution

Covariance Dependence on Scale

Feature points are localized better on smaller scales

1 **A**

small covariances

large covariances

Change of Frobenius norm over detection scale for feature points detected in real images.

Feature points with small ($\sigma < 2.1$) or large ($\sigma > 8$) covariances.

Blobs are worse localized than distinctive image points.

ПΠ

CAMP

Covariance Dependence on Scale

Quality of image has no influence on the localization accuracy

High and low resolution images:

3072x2304 pixel

800x600 pixel

Covariances of matching feature points in the two images: (covariances are projected with the underlying homography)

SIFT SURF Corresponding feature points are detected at different scales; however particular feature shapes are equally sized

 \rightarrow Localization error is similar in both images in relation to their size

Covariances normalize the error function in an optimization and thus differently sized images can be used

Covariance Dependence on Projective Transformations

Projective distortions modify covariance shape and scale

Tracking of a feature points in an image sequence and estimation of covariance matrix in each frame Test criteria: stability

→ expected outcome: smooth change of covariance according to viewpoint change between frames.

Bundle Adjustment

Performance is evaluated with the reprojection error of corner points

Reprojection error of 3D corner points:

$$e = \frac{1}{4} \sum_{i=1}^{4} \left\| \bar{\mathbf{c}}_i - w(\hat{\mathbf{T}} \bar{\mathbf{C}}_i) \right\|$$

Mean performance as pixel offset for about 100 different image pairs

	mean	all patches	smallest patch		largest patch	
covariance usage	no	yes	no	yes	no	yes
SIFT	2.031	1.759	1.941	1.672	2.088	1.828
SURF	2.554	2.363	2.518	2.292	2.631	2.464

We get a performance improvement for the reconstruction with bundle adjustment using our feature point covariances.

I did not do this work alone

Juergen Sotke

Stefan Hinterstoiser

Stefan Holzer

Pierre Schroeder But also

0

Adrien Bartoli (universite d'Auvergne)

Bernard Ziesl

Mirko Appel (siemens CT)

Sumit Paranjape, Xinxing Feng, Xavier Fernandez, Hagen Kaiser

Conclusion and Perspectives

About this method

- General formulation for feature detection in scale space
- Automatic computation of covariance
- Justification of correctness for the covariance estimates
- Performance improvement for bundle adjustment

About the application

- Landmark based registration
- Automatic 6 DoF stereo registration
- Bundle Adjustment with fix 3D points
- 3D Measurements
- Inspection / Documentation

Future Work

- Further registration evaluation
- Comparison to methods for Harris
- Improvement for Matching?

- Scale stable corner?
- Mobile AR using keyframes
- Guided 3D reconstruction
- 3D Annotations

Computer Aided Medical Procedures | Technische Universität München

Thank for the attention

(Any) Questions?

http://wwwnavab.in.tum.de/Main/PierreGeorgel - Pierre.Georgel@gmail.com

References

Key papers.

- Bay, H. and Tuytelaars, T. and Van Gool, L., *SURF: Speeded Up Robust Features*, Computer Vision and Image Understanding (CVIU), 2008
- Brooks, MJ, et. al., What value covarienace information in estimating vision parameters?, ICCV 2001
- Kanazawa, Y., Kanatani, K., Do we really have to consider covariance matrices for image features?, ICCV 2001
- Lindeberg, T, Scale-Space: A framework for handling image structures at multiple scales, In Proc. CERN School of Computing,1996
- Lowe, D., Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 2004
- Matas, J. et. al., Robust wide-baseline stereo from maximally stable extremal regions, Image & Vision Computing, 2004
- Mikolajczky, K., Schmid, C., An affine invariant interest point detector, ICCV 2002
- Mikolajczky, K., Schmid, C., Scale & Affine Invariant Interest Point Detectors, Intern. Journal of Computer Vision, 2004
- Ochoa, B. and Belongie, S., Covariance Propagation for Guided Matching, 2006
- Park, Y., Lepetit, V., Woo, W., Multiple 3D Object Tracking for Augmented Reality, ISMAR 2008
- Schmid, C., Mohr, R., Bauckhage, C., Evaluation of Interest Point Detectors, Intern. Journal of Computer Vision, 2000
- Steele, R.M., Jaynes, C., Feature Uncertainty Arising from Covariant Image Noise, Proc. of IEEE CVPR 2005
- Sur, F., Noury, N., Berger, M., *Computing the uncertainty of the 8 point algorithm for fundamental matrix estimation*, Proc. of the British Machine Vision Conference (BMVC), 2008
- Triggs, B. et.al., *Bundle Adjustment A Modern Synthesis*, Proc. of the Intern. Workshop on Vision Algorithms, ICCV 1999