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Abstract

The objective of this master thesis is to estimate the pose change of a time of flight (TOF)
camera between consecutive frames in all six degrees of freedom. To gain visual high-
resolution information of the scene, the TOF camera is combined with an RGB camera.
The proposed algorithm fuses 3D geometric and 2D visual features. Planar surfaces are
extracted directly from the 3D point cloud while SURF is applied to the 2D projections
of these surfaces. Feature positions and plane equations are both used to estimate all six
degrees of freedom of the camera motion. The algorithm outperforms fast coarse pose
registrations, that do not combine the 3D geometry with visual projections in accuracy
while it is suitable for online processing. Fine registrations, that use the complete point
cloud are more precise but also much more time consuming.
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1 Introduction

The objective of this work is to track the motion of a sensor, that consists of a time of flight
(TOF) camera and an RGB webcam. That is the pose change of the sensor between two
consecutive frames. Concretely, the aim is to estimate the pose TOFi−1TTOFi of the mea-
surement coordinate system TOFi of the time of flight camera of frame i in the coordinate
system TOFi−1 of frame i-1.

The estimation of a cameras motion is one of the most significant issues of Computer Vi-
sion. Since computers became affordable for research facilities and companies, they have
been used to process digital 2D images. And since this time, the 3D movement of sen-
sors consisting of one or more 2D cameras became an important topic of research, as such
information opened new fields of application. Be it the examination of trajectories, be it
the 3D reconstruction of scenes, or be it augmented reality just to mention a few of them.
Until the market launch of 3D imaging technologies, the basis to solving for pose changes
in six degrees of freedom (that implies three for rotation and three for translation) had
been the 2D projections of the 3D world. Until such 3D range imaging devices are avail-
able, the way round to 2D had to be accepted inevitably. Beside TOF cameras, there exist
several other devices that generate range data: Light sectioning sensors, 3D laser scanners
and stereo or multiple camera systems with or without fringe pattern projection and light
coding cameras.

The first mentioned technology is just measuring a distance profile of the scene part
that intersect a measurement plane. To generate a depth map and thus a mapping of
the 3D profile of a scene, this device has to be moved precisely on a known trajectory to
capture one frame. 3D laser scanners are also in fact just 2D laser scanners, that measure
the intersection of the scene with a plane. They are rotated for data acquisition. Stereo
cameras (as well as three or more cameras), that use a fringe pattern as artificial landmark,
have to stay on a fixed position for image acquisition, as long as the projector needs to
generate all patterns. Just camera systems without fringe pattern projections and light
coding cameras are able to capture the scene in one measuring step and thus can be moved
arbitrarily during the acquisition process.

All technologies, that use multiple cameras or a combination of a camera with a pro-
jection device do not produce full depth maps due to occlusion. Stereo camera systems
also cannot reconstruct homogeneously textured parts of the scene. Depth maps, that are
generated by these devices contain regions with no range information, so called gaps. In-
terpolation is often used to fill this gaps but nevertheless it is missing information. Only
3D laser scanner produce depth maps without gaps. Table 1.1 gives an overview of the
attributes of above mentioned devices.

Every technology has its popular applications but as can be seen from table 1.1, just TOF
cameras generate full depth maps and can be used in applications with moving sensors.
A further big advantage is their high frame rate compared to the other described systems.

On the other hand their resolution and precision is rather low. Thus it is a challenging

1



1 Introduction

depth map with gaps depth map without gaps
not movable stereo cameras with fringe projector 3D laser scanner

light sectioning sensors
movable stereo camera without fringe projector TOF cameras

light coding cameras

Table 1.1: Comparison of 3D imaging technologies.

task to develop algorithms, that work on this data. But it allows to realize new applica-
tions, that failed due to the restrictions of the other above mentioned sensor systems as for
example gapless 3D mapping with a free-hand moved sensor.

Algorithms, that use the complete 3D point clouds (like ICP) instead of a few 3D inter-
frame point correspondences that have been identified via visual features, are very precise.
But they require a good initial pose (see section 2.1.1). This can be granted in two ways: By
a small pose change between the point clouds. Thus this algorithm is popular for systems,
that capture data with high frame rates and do the processing offline (see section 2.2). Or
by applying a preregistration of the point clouds which can be done for example with
4PCS (see section 2.1.2). These preregistrations are very time consuming due to their high
complexity and would require some seconds per frame. Thus such techniques are just
applied in systems, that capture data offline and process it afterwards.

On the other hand there exist multimodal systems, that combine visual features with
depth data. They can be used to estimate large pose changes with low processing times but
also with low accuracy. They detect and match visual features in 2D images and determine
the pose change by correspondences between the 3D coordinates of the found features.
This feature detection is done regardless of the 3D geometry of the objects and because of
the low accuracy of TOF cameras the so determined pose changes also lack accuracy.

I propose a novel algorithm, that uses planar features of the 3D point cloud as well as
2D visual features and their 3D positions to estimate the pose. Planes have been chosen,
because they are fast to detect. Indoor environments usually contain planes like for exam-
ple the flour, walls or table plates. Because these are 2D surfaces, they encompass many
points which leads to a compensation of the measurement noise of single depth values of
the TOF camera. Thus the algorithm reaches a higher accuracy than other coarse registra-
tions using pure 3D positions of visual features and does not need much more processing
time. Even the algorithm itself benefits from the use of planes, since this reduces the num-
ber of iterations of the outlier detection by RANSAC enormously as can be seen in section
7.4. This makes the algorithm suitable for applications like online 3D mapping (see section
9.1) or augmented reality (see section 9.2).

2



2 Related work

2.1 Algorithms for point cloud registration

Two algorithms, that registrate 3D point clouds, are presented in this section. The ICP
algorithm is a popular method for fine registration. High accuracy can be reached, but it
is only capable for small pose changes. On the other hand, 4PCS is used to registrate two
point clouds with arbitrary pose. It can be used as preprocessing step to ICP.

2.1.1 The ICP algorithm

The iterative closest point (ICP) algorithm is a popular algorithm to registrate two point
sets P and Q. An outline can be found in Besl et al. [7].

The algorithm is an iterative process, that refines the registration of the two point sets
with every iteration. It works as follows:

1. Find a nearest point q ∈ Q for every point p ∈ P .

2. Estimate the transform that converges P to Q by the method of Horn [15]. Apply this
transform to the points of P.

3. Find point correspondences like in step 1. If the average distance of the correspond-
ing points is above a threshold, go back to step 1. Else stop the iteration. The overall
transform is composed by all estimated transforms of step 2.

If the sets P and Q do not overlap to 100% step 1 finds wrong point correspondences
for the non-overlapping areas, because for every point of P a point of Q will be assigned.
Some modifications to the ICP algorithm exist to overcome this problem. The so called
Vanilla-ICP [23] discards the correspondence (pi, qj), if the euclidean distance between pi
and qj exceeds a threshold. Another modification is described in section 2.2.

There exist also some modifications to the ICP algorithm to accelerate it. One, that yields
good results is published by Jost et al. in [19]. It accelerates step 1 of the ICP algorithm by
limiting the search region for corresponding points as follows: if a point correspondence
was already found in the neighborhood of pi in P, qj is searched in the neighborhood of this
correspondence in Q. In the best case, this modification improves the complexity of ICP to
O(n). If ICP would have found a different corresponding point for pi, this modification of
the algorithm yields just approximative results to ICP. This fast version is only profitable, if
the neighbors of points can be found fast. For point sets that have been derived from range
images, the 3D neighborhood of a point can be approximated by the points that occur from
the neighboring pixel in the 2D range image.

If the initial pose difference between P and Q is too high, step 1 does not find correct
point correspondences. This leads to a wrong transform estimate in step 2 which let the
two point sets drift apart or let the algorithm stuck in a local minimum.

3



2 Related work

2.1.2 The 4PCS algorithm

The 4-points congruent sets (4PCS) algorithm was published by Aiger et al. [2]. In contrast
to the ICP algorithm, it is able to registrate two point clouds that have completely arbitrary
poses. It can be used as preprocessing step to ICP, to find a good initial transformation,
because the registration accuracy of ICP is better than the accuracy of 4PCS.

Consider four coplanar but not collinear 3D points A, B, C and D that are aligned as
illustrated in figure 2.1. The intermediate point E is the intersection of the lines AB and
CD. 4PCS is based on the fact, that the two ratios

r1 =
‖A− E‖
‖A−B‖

, r2 =
‖C − E‖
‖C −D‖

(2.1)

are invariant under affine transformations.
The algorithm searches four coplanar points in the set P and calculates the ratios r1 and

r2. Then it calculates the possible two intermediate points

e1 = p+ r1(q − p), e2 = p+ r2(q − p) (2.2)

for each possible pair (p,q) of all points p ∈ P and q ∈ Q. Every couple of point pairs with
coincident intermediate points (one resulting from r1, the other from r2) can be assumed
as affine transformed version of the four coplanar points of P. The transformation of P to
Q can than be calculated with a closed form solution as described by Horn et al. in [15].

Figure 2.1: Physical components of a time of flight camera

With the use of RANSAC the algorithm becomes robust to outliers. The complexity of
4PCS is O(n2) and it is only suitable as preprocessing step to ICP as mentioned before.
Computing times of the 4PCS for point sets of different sizes on a common PC have been
published in [2]. From this listing can be derived, that the processing time of 4PCS for the
registration of range data which is used in this work would be at least one second. Thus
the algorithm is not suggested for online registration of point clouds.

2.2 Pose estimation of Time Of Flight cameras

Several algorithms have been developed to estimate poses of TOF cameras for mainly
two applications: map building and controlling of trajectories of mobile robots. Both are

4



2 Related work

existing, systems using a TOF camera only and multimodal systems. A short overview of
recently published research is presented in the following.

Droeschel et al. [24] designed a sensor system for measuring the trajectory of a mobile
robot in 3 degrees of freedom: The robot is able to move on the ground in x- and y-direction
and to rotate around its z-axis. They used a TOF camera in combination with sensors
for linear and rotational acceleration. The data of this accelerometers is used to improve
the estimated pose change between two consecutive frames. The pose change itself is
calculated as the transformation between two sets of the 3D coordinates of corresponding
feature points. The feature points are found with the SIFT algorithm and matched with the
features of the previous frame. They demonstrated that the use of accelerometers enhances
the accuracy of the pose change estimate.

A path reconstruction system for a mobile robot using a TOF camera was published by
Droeschel et al. in [23]. It was also developed for a robot that moves just in x- and y-
direction and rotates around its z-axis. Data is captured during the move of the robot and
afterward it is evaluated offline. Thus data can be captured with high frame rates. That
results in small pose changes between successive frames which enables them to apply the
ICP algorithm directly on the 3D point clouds of the TOF camera. They compared two
different versions of ICP: the Vanilla-ICP (see section 2.1.1) and the Frustum-ICP which
discards points that are not in the frustum of the TOF camera in both poses. The frustum
of the TOF camera has to be updated in every iteration step of the ICP.

Ohno et al. [26] presented a system for trajectory estimation of a mobile rescue robot
and map construction using a TOF camera and an rotational accelerometer. Here the robot
moves on the ground, too. The data was transmitted to a PC via LAN during the move-
ment of the robot. The authors modified the ICP algorithm to make it usable for online
frame-to-frame registration. They applied the Prewitt operator to the amplitude image of
the TOF camera and used only the range data of the related pixel with edge responses in
the amplitude image. This leads to an enormously reduction of point correspondences in
step 1 of the ICP algorithm (see section 2.1.1) and would lead to an increase of its iteration
number. They overcame this problem by delivering an inertial guess to the ICP. The iner-
tial rotation is calculated from accelerometer data and the initial translation between the
range data of the previous frame and the rotated range data of the current frame by the
shift of their centroids. They reached frame rates of 4 fps. The frame-to-frame errors of
rotation are 1% to 15% and of translation 15% to 17%.

A system that uses only a TOF camera for pose registration and is able to handle large
pose changes is demonstrated by Swatzba et al. in [29]. The authors divide the point
cloud registration in to steps: a coarse registration followed by a fine registration. In the
first step, visual features are extracted in both, the amplitude image and the depth map
of the TOF camera. The 3D positions of this features are used for the coarse registration,
which is calculated by a closed form solution using singular value decomposition. The
coarse registration delivers a initial pose for the second step. The fine registration is then
performed using a modified version of the ICP algorithm. The step 1 of the ICP is done
on the points that emerge from a region of interest of the depth map. This region is de-
termined using the intrinsic parameters of the TOF camera and projecting the 3D point,
for which a corresponding point is searched, into the depth map of the other frame. Also
correspondences to points that are multiple assigned are rejected. This restrictions on the
correspondence search can cause the algorithm to not converge any more. In this case,

5
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the algorithm is stopped after many iterations and the registration accuracy is low. The
algorithm was evaluated with two different TOF cameras, one with 64x16 and one with
120x160 pixel resolution and they evaluated just for translation errors. Depending on the
scene and the type of the camera they reached average translation errors between 5mm
and 85mm. Using the Camera with the high resolution they measured processing times of
3041 ms per frame for the normal ICP and 242ms per frame for the accelerated version of
the ICP.

Huhle et al. introduced a multisensor system in [17] that is directly comparable with
this work because it uses a combination of TOF camera and RGB camera. Instead of a low
resolution RGB webcam they used a 1600x1200 industrial color camera. They are using the
RGB image for SIFT feature detection. The detected features are used to calculate a coarse
registration. For fine registration they are minimizing the sum of two energy functions:
One derives from the normal distributions transform (NDT) which uses gaussian point
distributions of local structures of the point cloud for registration. The other is a measure
of the distances between the 3D feature positions of the 2D SIFT features under a certain
transform. Both energy functions can be differentiated analytically which allows the use
of a nonlinear optimization method to solve for the transform parameters. Unfortunately
they did not publish an evaluation of the accuracy of this algorithm. The processing time
of one frame was between 2 and 3 seconds. Thus this algorithm is not suggested for online
registration.

6



3 Time Of Flight (TOF) Cameras - working
principle and properties

A brief overview of the working principle of time of flight cameras is given in this chap-
ter. There are two kinds of time-of-flight cameras. One uses continuous modulated light
and the other uses light pulses. A TOF camera with continuous modulated light has been
used in this work, so this technology is explained in detail here. The presented overview
includes a description of the physical components and their alignment as well as a descrip-
tion of their output data, properties, restrictions and artifacts. The camera model SR4000
is explained in detail, because it is the underlying hardware for the presented work.

3.1 Physical components of time of flight cameras

Figure 3.1 illustrates the physical setup of a time of flight camera. It consists of an infrared
camera with adjusted infrared bandpass filter, an infrared led illumination and a processor
to calculate the depth map.

Figure 3.1: Physical components of a time of flight camera

7



3 Time Of Flight (TOF) Cameras - working principle and properties

3.2 Working principle of TOF cameras with continuously
modulated light

The illumination LEDs produce infrared light of a single constant frequency fm. This light
wave is emitted into the scene and reflected by its objects (see figure 3.2).

Figure 3.2: Working principle of a TOF camera: reflected light

The reflected light needs less time for near objects to reach the infrared camera than for
far away objects. The camera captures four sample images Si...Si+3 in one modulation
period 1/fm of the emitted light (see figure 3.3). Each sample image is the result of an
integration of the photoelectric current of a time interval ∆t ≤ 1/fm. To increase the signal
to noise ratio, the samples are the integration of several thousand modulation periods [9].

For every pixel the reflected light wave is reconstructed by these four sample points in
the processor. In this way the phase shift between the transmitted and received light is
calculated for every pixel which means for every sight ray. The phase shift is proportional
to the flight time of the light from the illumination source to the camera image plane. So
for every pixel the distance between the illumination-camera setup and the nearest object
crossing the sight ray can be calculated by

D =
c

4πfm
φ (3.1)

where c denotes the speed of light, fm denotes the modulation frequency of the illumi-
nation and φ the phase shift. As per [9] the distance can be calculated directly from the
sample images S0...S3 by

D =
c

4πfm
· atan

�
S1 − S3
S0 − S2

�
. (3.2)

As illustrated in figure 3.3 the amplitude A′ of the received light wave is less than the
amplitudeA of the emitted light wave. This is because of absorption of light on the scene’s

8



3 Time Of Flight (TOF) Cameras - working principle and properties

Figure 3.3: Working principle of a TOF camera: phase shift measure

objects and because of light diffusion and attenuation. Also there is an offset B′ in the
received signal due to background illumination. As the value A′ represents mainly the
absorption on material, it can be used to generate a gray value image of the scene. It can
also be used to measure the quality of the distance measurement, since the bigger A′ is
the bigger is the signal to noise ratio. A high amount of background light and a intense
reflected signal cause over-saturation regarding the conversion process which can also be
dedicated from the values A′ and B′. If B′ is too high, the background illumination is
too bright (for example due to sun light) and should be reduced. If A′ is too high, objects
are too specular or reflectable like mirrors or metallic surfaces. The camera can use this
information to derive a confidence map, which indicates for every pixel, whether the signal
to noise ratio or the saturation is out of scope.

3.3 Technical restrictions of time of flight cameras

Due to the physical working principle of TOF cameras there are effects and restrictions
in imaging which should be known when using this cameras. This section describes all
important issues about these limitations and gives implications for a correct usage of this
type of cameras. Only TOF cameras with continuously modulated light are considered.

3.3.1 Limited range

Depth estimation is done by calculating the phase shift between transmitted and received
light. Therefor it is not possible for the camera to obtain the depth correctly, if objects are
more than half of the wavelength away from the TOF camera. Otherwise the light would
need more than the period time to flight back and the processor would not be able to

9



3 Time Of Flight (TOF) Cameras - working principle and properties

assign the correct phase shift. Measured phase shifts are always in the scope of [0, 2π] and
if the real phase shift is greater, it is folded back to this interval. By this reason it should
be assured, that there are no scene objects more far away than this range. The range is
calculated by

Dmax =
c

2f
. (3.3)

For example, if a modulation frequency of 30MHz is used, the distanced between camera
and objects should not transcend 5 meters.

3.3.2 Movement artifacts

Each of the four samples described in section 3.2 is taken as separate capture. To estimate
the phase shift, it is important, that the reflection point did not move during the exposure
of this four samples. If an object or the camera moves very fast, systematic errors are
introduced to the measurement. Thus it is important, not to move the camera or objects
fast.

3.3.3 Dependence of the measurement accuracy on object properties

The confidence and accuracy of the measurement depends on the object surface properties.
It can be distinguished between 2 surface types, which cause a quality reduction of the
depth values.

• Absorbing surfaces:
Dark surface absorb a big amount of the transmitted infrared light. Hence the am-
plitude of the received light (A’ in figure 3.3) and the signal to noise ratio are low. A
low signal to noise ratio causes a low repeatability of the measured values.

• Specular surfaces:
Surfaces with high reflectivity cause the reflected light to have a high amplitude (A’
in figure 3.3). This causes over-saturation and the range of conversion data is out of
the domain of the analog to digital converter. Over saturated pixel are indicated by
a confidence map. They should not be considered in the algorithms.

3.3.4 Problems caused by background illumination

Background illumination in the infrared band cause a shift (B’ in figure 3.3) in the received
signal. In this way the level of the measured analog values is increased, which makes
measurement data sensible to over saturation. For bright surfaces, depth values might
then not be estimated.

3.3.5 Multiple reflections

Depth value reconstruction works under the assumption, that the light moves directly
from the light source to the object and back to the camera. In practice, light rays are
reflected several times, until they reach the image plane of the camera (see figure 3.4).
Because paths along multiple reflections are longer, the phase shift of this light will be
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3 Time Of Flight (TOF) Cameras - working principle and properties

greater as well as the recognized depth value. One single reflection gives the optimum
depth value accuracy. To avoid multiple reflections, situations as illustrated in figure 3.4
should be avoided.

Figure 3.4: Artifacts due to multiple reflections

3.4 The SR4000

Multiple vendors are supplying TOF cameras, most of them are using continuously mod-
ulated light. The leading vendor is the swiss company Mesa Imaging. In this work, the
Mesa SwissRanger SR4000 (see figure 3.5) has been used. This section gives a quick survey
of the details of this camera, which are important to this work. The here presented dates
are manufacturer informations and taken from the data sheet.

Figure 3.5: The SwissRanger SR4000: rear and front view
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3 Time Of Flight (TOF) Cameras - working principle and properties

3.4.1 Hardware characteristics and image acquisition details

• Maximum frame rate:
The SR4000 achieves a maximum frame rate of 54 fps.

• Pixel resolution:
176 x 144

• Available modulation frequencies and the resulting ranges:
The camera allows the use of eight different modulation frequencies. Equation 3.3
defines the maximum range for each of this frequencies. The available frequencies
reach from 10 MHz to 60 MHz and the relating ranges from 2.5 m to 15 m respectively.
They are listed in table 3.1.

modulation frequency maximum range
60 MHz 2.5 m
31 MHz 4.84 m
30 MHz 5 m
29 MHz 5.17 m

15.5 MHz 9.68 m
15 MHz 10 m

14.5 MHz 10.34 m
10 MHz 15 m

Table 3.1: Available modulation frequencies and the related ranges of the SR4000.

• View angle:
The standard type of the SR4000 has a view angle of 43.6° in X-direction and 34.6°
in Y-direction of the TOF coordinate system. This angle is very small compared to
standard RGB cameras, which results in the fact, that when combining these two
camera types, the TOF camera sees only a subset of the frustrum of the RGB camera.

• Absolute accuracy:
Mesa declares the absolute accuracy of the SR4000 model as ±10mm or ±15mm,
depending on the camera subtype. This values are only valid in a calibrated range
of 0.8 m to 8 m. Also there are temperature drifts in depth measurement of up to
1.5mm/◦C.

• Repeatability:
The specified repeatability depends on the measurement region. If the considered
pixel is near to the principal point, a value of σ ≤ 120% of the maximal depth value
is specified. Else σ ≤ 200% is given.

3.4.2 Sensor measurements

Figure 3.6 shows the three measurement images of the Mesa Swissranger SR4000. The
scene is illustrated in figure 3.6(a). The depth map (figure 3.6(b)) is printed with false color
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rendering. If object points are near to the camera they are blue, if they are in the middle
of the range of the TOF camera they are green and if they are at maximum range, they are
red. Also the confidence map (figure 3.6(d)) is presented with false colors. Pixel with low
confidence (see section 3.2) are painted in red. The amplitude image is shown in figure
3.6(c).
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(a) Scene (b) Depth map

(c) Amplitude image (d) Confidence map

Figure 3.6: Sensor measurements of the SR4000
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4 Mechanical setup and calibration

4.1 Mechanical setup

A combination of a Time-Of-Flight camera and a RGB camera is used in this work. To
evaluate the accuracy of the estimated pose, a system of the company ART was provided
to track rigid bodies. Because every device defines at least one coordinate system and the
registration of these coordinate systems is calibrated and must stay fixed after calibration
a mounting was used which enables a solid attachment of this three devices.

Figure 4.1: Mounted components: front view

Figure 4.1 shows how the devices are assembled to each other. On the back side (see fig-
ure 4.1) the rigid body consisting of infrared light reflecting balls of the ART measurement
system can be seen.
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4 Mechanical setup and calibration

Figure 4.2: Mounted components: rear view

4.2 Coordinate systems

Every device defines at least one coordinate system. Actually the TOF camera brings in
two coordinate systems: The camera coordinate system of the amplitude image denoted by
AMP and the point cloud coordinate system denoted by TOF . The RGB camera defines
the camera coordinate system CAM . The rigid body for evaluation defines BODY and
its pose is measured in the world coordinate system ART of the ART tracking system.
Coordinate systems are denoted in italic letters in the following. It is necessary to register
all coordinate systems to each other. Figure 4.3 shows the mentioned coordinate systems
and the performed registrations (the arrows in figure 4.3). Every registration is explained
in detail in section 4.4.

4.3 Intrinsic calibration

Intrinsic calibration for the RGB and the TOF camera was performed (see camera calibra-
tion by Zhang [31]). A chessboard was used as calibration pattern. The amplitude image of
the TOF camera is very noisy, by this reason it was necessary, to use a chessboard pattern
with just 5x4 corners.

16



4 Mechanical setup and calibration

Figure 4.3: Coordinate systems and the calculated registrations

Figure 4.4: Corner detection of a chessboard pattern for calibration

Due to the bad signal to noise ratio of the amplitude images, the chessboard detection
of OpenCV cannot measure the corners precisely (as can be seen in figure 4.4). Therefore
at least 30 images where used for the intrinsic calibration. Nevertheless the results of
the intrinsic calibration varied. The camera matrices and distortion coefficients of two
consecutive calibrations using 30 amplitude images each, are shown below. It can be seen,
that there is a clear drift of the principal point. Also the focal lengths and the measured
distortions differed much.

M1 =

264 261.450 0 85.167
0 260.111 69.406
0 0 1

375
radial1 = [−0.67783,−0.52733] , tangential1 = [0.00747, 0.02374]

M2 =

264 255.833 0 88.975
0 256.598 64.561
0 0 1

375
radial2 = [−0.89458, 0.95098] , tangential2 = [0.00506,−0.00187]
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4 Mechanical setup and calibration

The extrinsic calibrations which are described in the next sections are influenced directly
by the intrinsic calibration.

4.4 Extrinsic calibration

This section gives a short introduction to coordinate system registration. Two methods
have been implemented and compared. They are explained in detail in the following sec-
tions.

4.4.1 Registration of coordinate systems by corresponding points

One possibility to registrate two coordinate systems is to use corresponding points. There
are several algorithms to perform the registration. Four major methods are presented in
Eggert at al. [11].

At first, an algebraic least squares algorithm, that was introduced by Lowe [21], was
adapted to 3D and implemented. By examination of the calculated transforms it turned
out, that this algorithm does not produce orthonormal rotation matrices. Thus, the calcu-
lated rotation matrices had to be orthonormalized (see below).

The orthonormalization of the found rotation matrix is just the approximation with an
orthonormal matrix and this method is algebraic and independent of the underlying ge-
ometry and thus distorts the results. A further method has been implemented that is con-
sidered as standard method for absolute orientation calculation. It was introduced by
Horn [15] and uses quaternions.

Least Square method

Lowe described an algorithm for 2D coordinate system registration by corresponding
points in [21], which was adapted to 3D for this work.
For one point correspondence the transformation is

p′ = Rp+ t =

264 m1 m2 m3

m4 m5 m6

m7 m8 m9

375264 x
y
z

375+

264 tx
ty
tz

375 (4.1)

After solving this equation for the transformation parameters it can be rewritten as
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26666666666664

x1 y1 z1 0 0 0 0 0 0 1 0 0
0 0 0 x1 y1 z1 0 0 0 0 1 0
0 0 0 0 0 0 x1 y1 z1 0 0 1

· · ·
· · ·

xn yn zn 0 0 0 0 0 0 1 0 0
0 0 0 xn yn zn 0 0 0 0 1 0
0 0 0 0 0 0 xn yn zn 0 0 1

37777777777775

26666666666666666666664

m1

m2

m3

m4

m5

m6

m7

m8

m9

tx
ty
tz

37777777777777777777775
=

266666666664
x′1
y′1
z′1
...
x′n
y′n
z′n

377777777775 . (4.2)

As each point correspondence brings in three equations and the equation system consists
of twelve equations, at least four point correspondences are needed to provide a solution.
Equation 4.2 can be written as

Ax = b. (4.3)

Using the pseudo inverse matrix A+ =
�
ATA

�−1
AT of A, this equation can be solved

by

x =
�
ATA

�−1
AT b. (4.4)

This solution minimizes the sum of squared distances from transformed model points
to the image points. It works also for an overdetermined equation system (if more than
four point correspondences are available).

The drawback of this method is, that the calculated rotation matrices are not orthonor-
mal. This is due to the fact, that the algorithm chooses all values of the rotation matrix and
the translation vector independently in such a way, that the least square error is minimal.
The algorithm has no mechanism to ensure orthonormality of the rotation matrix.

To enforce orthonormality of the rotation matrix, a method described by Zahng [31] was
implemented. This method works by minimizing the Frobenius norm of the difference ma-
trix between the found and the approximated rotation matrix. It is clear, that this method
produces a better rotation matrix in the sense of orthonormality, but this is done without
regard to the geometric error, that the found transformation should minimize.

Registration using unit Quaternions

This section gives a short outline of the algorithm of Horn [15], which is considered as
the standard method for point cloud registration. A complete description of the algorithm
would go beyond the scope of this exposure. Unlike the least squares method described
before, rotation and translation are calculated separately in this algorithm.

1. Rotation estimation:
At first the centroids c and c′ of the two point clouds are calculated by c = 1

n

Pn
i=1 pi,
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4 Mechanical setup and calibration

c′ respectively. This centroids are subtracted from all points to get pi = pi − c =
(x, y, z)T and pi′ = (x′, y′, z′)T respectively.

For each pair of corresponding points the nine possible products of their coordinates
xx′, xy′, ..., zz′, are calculated and summed up to obtain Sxx =

Pn
i=1 xixi

′, Sxy, ..., Szz
respectively. These nine values form the 4×4 matrix N:

N =

26664 (Sxx + Syy + Szz) Syz − Szy Szx − Sxz Sxy − Syx
Syz − Szy (Sxx − Syy − Szz) Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)

37775
The eigenvector e corresponding to the most positive eigenvalue of N contains the
rotation quaternion q in the form

q = (e1, e2, e3, e0).

The corresponding rotation matrix can be calculated directly by the quaternion as
described in [16].

2. Translation estimation:
The translation vector is calculated as the difference between the centroid of the first
point cloud and the rotated centroid of the second point cloud.

Horns method calculates a quaternion which is converted to a rotation matrix. Unlike
the least squares method described in section 4.4.1, this method gives orthonormal rotation
matrices.

The impact of noise and the number of points on the accuracy of this method have been
evaluated. For this reason, two tests have been made. 3D points with random positions
inside a cubical volume of range3 m3 have been created. This points Pi have been trans-
formed by the transformation Treal to the points P ′i . Noise with a gaussian distribution
has then been added to this points which gives points P ′′i with the Box-Muller algorithm
[14]. With Horns method, the transformation Testimated is determined, which transforms
points Pi to the points P ′′i . The points P ′i are then transformed by T−1estimated to yield points
P ′′′i . The mean length of the vectors Pi − P ′′′i is then calculated, which serves as accuracy
measure for the transformation. The lower this mean length is, the higher is the accuracy
of the transformation estimation.

The first test analyzes the impact of noise on the accuracy of the transformation. Points
Pi are generated in a cubic of 2.0m3. 70 points where used for this test. The sigma of the
gaussian noise was set from 0.0 m to 0.1 m. For every sigma value, the test was repeated
3000 times to get an averaging of the accuracy. Figure 4.5 shows the test result. The more
noise is added to the points, the less is the accuracy. The accuracy is not falling very fast
with increasing sigma, it is a linear relationship.

The second test shows the influence of the number of points to the accuracy. For this test,
points where generated in a range of 10.0 m2 and sigma was set to 0.08 m. The accuracy
was measured for sets of four to 250 points. Every measure was again done 3000 times
and then averaged. Figure 4.6 shows the results. The accuracy of the algorithm is very low
with a small number of points but is increasing very fast.
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Figure 4.5: Test of the quaternion method : increasing noise

Figure 4.6: Test of the quaternion method: increasing number of points

4.4.2 Estimation of CAMTAMP

In this calibration step, the transformation of the RGB camera coordinate system to the
camera coordinate system of the TOF camera is determined. Both are monochrome cam-
eras.

After the intrinsic calibration, the camera matrix and distortion coefficients are known.
The camera pose in the calibration target coordinate system can then be estimated by mini-
mizing the reprojection error of the calibration points. OpenCv provides this functionality
by the function cvFindExtrinsicCameraParams2. This function calculates the pose of the
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4 Mechanical setup and calibration

TOF amplitude image coordinate system in the chessboard pattern coordinate system

CHESSTAMP ,

and the pose of the RGB camera in the same chessboard pattern coordinate system

CHESSTCAM .

The pose of the RGB camera in the TOF camera coordinate system can then be calculated
as

CAMTAMP = (CHESSTCAM )−1 · CHESSTAMP . (4.5)

A transformation consisting of rotation R and translation t in the form

p′ = Rp+ t

is inverted as follows:

R−1 = RT , t−1 = −RT t. (4.6)

4.4.3 Estimation of TOFTAMP

As described in section 3.4.2, the camera driver calculates the 3D Cartesian Coordinates
from the depth map. This is provided by the function SR CoordTrfFlt of the software
driver. The returned points are expressed in meters and define the coordinate system
TOF . The Z-axis of this coordinate system increases along the optical axis, Y is increasing
vertically upwards and X is increasing to the left.
It is important to know the transformation between TOF and AMP . For example, if the
projected image point of an arbitrary object point in 3D measurement space is desired, this
coordinate system transformation is required. This is the case for every algorithm, that
works on the 3D points and the amplitude image simultaneously.
Section 4.4.1 describes, how coordinate systems can be registrated by using correspond-
ing points. For the registration of TOF to AMP it is possible to get corresponding point
coordinates. In section 4.4.2 it is shown how to determine the cameras pose relative to a
calibration pattern. The 3D object points of the calibration rig in the cameras coordinate
system are calculated by the use of this pose. Because the calibration target is a flat chess-
board pattern, several measurements with different camera poses are taken (see figure
4.7). So the points are non planar distributed over the 3D space. They are the measure-
ment points in the camera coordinate system AMP .
To obtain the same measurement points in TOF the 3D TOF points are taken on the posi-
tions of the detected chessboard corners in the amplitude image.

These two point sets are then registered by one of the two algorithms described in sec-
tion 4.4.1.

Another method to obtain the 3D points from the TOF camera is by calculating them
from the depth map as described in section 4.5. This method is preferred, because the lens
distortion can then be taken into account and a registration of the coordinate systems TOF
and AMP is then not longer necessary, as this coordinate systems are the same.
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Figure 4.7: Corresponding points for the estimation of TOFTAMP

4.4.4 Estimation of AMPTBODY

The reference system for evaluation is a tracking system of the company ART. To compare
the determined pose difference with the pose difference estimated by ART, it is impor-
tant to know the transformation between the TOF camera coordinate system AMP an the
coordinate system BODY of the rigid body.

To obtain this transformation the following steps are proceeded:

1. Perform an intrinsic camera calibration of the TOF camera.

2. Place the TOF camera before a chessboard in the ART measurement field, so that the
chessboard is fills the amplitude image completely.

3. Register the chessboard pattern in ART world coordinates to obtain ARTTCHESS .

4. Measure the pose of the rigid body in ART world coordinates to obtain ARTTBODY .

5. Estimate the cameras pose to the chessboard pattern to obtain CHESSTAMP .

6. Calculate AMPTBODY by

AMPTBODY = (CHESSTAMP )−1 · (ARTTCHESS)−1 ·ART TBODY (4.7)

4.4.5 Estimation of TOFTCAM and TOFTBODY

The transformation TOFTCAM is calculated by

TOFTCAM =TOF TCAM · (CAMTAMP )−1. (4.8)

TOFTBODY is calculated by

TOFTBODY =TOF TAMP ·AMP TBODY . (4.9)

These both transformations are required later in this work.
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4.5 3D point determination using camera parameters and distance
measure

The calibration of a TOF camera as described in section 4.3 gives the camera matrix

P =

264 kuf 0 pu
0 kvf pv
0 0 1

375 (4.10)

and the distortion coefficients for radial and tangential distortion r1, r2, t1, t2. The pro-
jection equation which transforms an object point Q = (X,Y, Z)T in camera coordinate
system into an image point q = (u, v)T is

u =
kuf ·X
Z

+ pu (4.11)

where X and Z are object coordinates, kuf denotes the focal length expressed in pixel-
related units along the u-axis and pu denotes the u-coordinate of the principal point. The
calculation of the pixel coordinate v is analogous with

v =
kvf · Y
Z

+ pv. (4.12)

D is the radial distance between image point q and Object point Q (see figure 4.8) given by
equation 3.1 or 3.2. It can be expressed by

D =
È
X2 + Y 2 + Z2. (4.13)

Figure 4.8: Object to image point projection
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In disregard of the lens distortion, equations 4.11 and 4.12 can be rewritten as

X = aZ, Y = bZ (4.14)

with
a =

u− pu
kuf

, b =
v − pv
kvf

.

To yield Z equations 4.14 are substituted into equation 4.13. Solved for Z results in

Z =

Ê
D2

a2 + b2 + 1
. (4.15)

The Z value can than be used to calculate X and Y by equation 4.14. In regard of the
lens distortion, the depth map should be undistorted before calculating the object point
coordinates (see [22], [12], [8]).
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5 Plane recognition

Finding the pose difference of two point clouds makes it necessary to detect features in
both point clouds, that can be matched. Features are a description of shapes or portions in
a point cloud and can present different kind of information. For example there are features
which yield 3D positions in space while other features yield orientations. Features can be
geometric primitives as well as subsets of the points which have special characteristics.

Common 3D indoor scenes usually contain geometric standard primitives like planes or
3D edges.

One approach to calculate the pose update between two point clouds is to find signifi-
cant geometric primitives in both point clouds, find the correct mapping of this features in
both coordinate systems and to calculate the coordinate transformation.

5.1 Ability of different geometric primitives as features

This section states the advantages and disadvantages of different geometric primitives for
pose calculation. It is done in regard to the properties of time-of-flight measurements.

5.1.1 3D edges

Edges occur at the intersection of surfaces of different orientations. Therefore one possi-
bility to yield 3D edges is to segment surfaces first, to get their boundaries and thus the
3D edges. Another alternative is to apply a gradient filter on the depth map of the 3D
camera. Figure 5.1 illustrates the problem, that occurs in both cases: Indeed the 3D mea-
surement points lie on the surfaces itself, but not on their boundaries (blue lines). Thus, the
reconstructed edges (green line) would not hit the real edges exactly. The first described
possibility to detect edges would allow a more precise detection of edges between two
surfaces which are seen by the camera because the surface intersection can be calculated
with sub-pixel precision. The disadvantage is that the segmentation and the analytic rep-
resentation of this surfaces must be calculated. If just one adjoining surface is visible to
the camera (like in figure 5.1), this method would not yield an exact edge. The second
described possibility has the disadvantage, that the results of a gradient filter are biased if
on one side of the edge are higher gray values in the depth map than on the other side.

5.1.2 Planes

Indoor scenes contain typically many planes. This can be walls, the floor, the ceiling, table
plates or other objects.

Planar surfaces are 2D structures and therefore include much more points than 1D struc-
tures like edges. As more points are used as more precise the model parameters can be cal-
culated due to the averaging effect. On the other hand, planes are 2D structures with just a
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Figure 5.1: 3D edges as geometric features: sample artifacts

few parameters. By applying sophisticated algorithms, they can be segmented easily and
fast in 3D point clouds. If plane points are segmented successfully, there exist standard
algorithms to estimate the parameters of the plane.

There is one big advantage of planes in respect to this work: Every plane has a normal
vector. It can be used to calculate parts of the rotation of the pose difference.

Using planes as features for pose estimation brings also two disadvantages. With re-
spect to metric transformations planes possess three invariances: Two translation invari-
ances along the plane axes (the green arrows in figure 5.2) and one rotation invariance for
rotations around the normal vector (the blue arrow in figure 5.2). Thus, these parts of a
pose change cannot be detected by using one single plane as feature.

It is not enough to use just one plane for pose estimation. At least three planes with
different normal vectors are required for definite pose estimation. The planes must than
be matched between one frame and the next frame.

Time of flight cameras have a small viewing angle and thus mostly there are just few
planes in an image. Therefore, other features must be used additionally.

5.1.3 More complex primitives

More complex geometric primitives like spheres or conics could also be used as features.
But the higher the complexity of an model, the more parameters must be estimated.
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Figure 5.2: Transform invariances of planes

5.2 Mathematical fundamentals of planes

5.2.1 Representation of planes

Several representations of planes exist. The common ones are described in [27]. The repre-
sentation of a plane by its normal vector and one point of it was chosen. The mathematical
formulation is

~n · (~r − ~r0) = 0, (5.1)

where ~n denotes the normal vector, ~r a running point and ~r0 a fixed point on the plane.
This representation has the advantage, that it is possible to achieve the distance of a point
~rQ from the plane very fast by calculating a scalar product. With equation 5.2 this distance
is calculated.

d =
~n · (~rQ − ~r0)
‖~n‖

(5.2)

In the processing steps described later (for example the region growing), this point-plane
distance has to be calculated very often. This plane representation has also the advantage,
that only few values are needed to define the plane: Three point coordinates for ~r0 and
three vector elements for ~n. In this work, ~r0 is not arbitrary chosen but the intersection
point between the plane and the line which is perpendicular to the plane and goes through
the origin. This point is denoted as foot point of the plane in the following. So the vector
length of ~r0 is the distance of the TOF camera to the plane. Also the normal vector is scaled
to an unit vector to fasten later processing. Only four values are needed then to define the
plane: Three vector elements for the normal vector ~n, and one value for the distance α
between camera and plane. The plane representation is then

~n · (~r − α~n) = 0, (5.3)

with α = 1
‖n‖~n · ~ra, where ~ra is an arbitrary point on the plane. Thus the point-plane

distance calculation is simplified to

d = ~n · (~rQ − α~n). (5.4)
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5.2.2 Intersection of a plane with a line

In this work, the intersection points of planes with sight rays are required in some cases.
Sight rays are straight lines which pass through its corresponding image point on the cam-
eras CCD and the optical center of the camera. If the intrinsic parameters of the camera are
known by calibration, this line equations can be formed. A line is given by the equation

~r = ~r1 + λ~v (5.5)

and the plane is given by Equation 5.3. To determine the intersection point, λ is calcu-
lated by insertion of equation 5.5 into equation 5.3. Using this λ in equation 5.5 yields the
intersection point ~rs:

~rs = ~r1 −
�
~n · (~r1 − α~n)

~n · ~v

�
~v. (5.6)

5.3 Estimation of plane parameters from 3D points

Two methods to estimate the parameters of a plane from its generating points are pre-
sented and compared in this section.

5.3.1 Multiple regression

The multiple regression model (see [28]) assumes, that the z value depends on x and y
and a noise d is added to the correct z value for example by measurement error. Every
measurement point that forms the plane can then be written as

zi = c0 + c1xi + c2yi + di. (5.7)

All points together form the equation system

z = Xγ + δ (5.8)

with

X =

�
1 x1 y1
1 x2 y2
...

...
...

1 xn yn

�
as design matrix,

z =

�
z1
z2
...
zn

�
as vector of the function values,

γ =

�
c0
c1
c2

�
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as vector of the plane parameters and

δ =

�
d1
d2
...
dn

�

as noise vector.
As shown in [28], the plane parameters c0, c1 and c2 can be estimated with the pseudo

inverse of X :
γ = (XTX)−1XT z. (5.9)

This is a least square estimation of a plane, which minimizes the distances to the points
along the z direction.

5.3.2 Principal component analysis

The principal component analysis is a powerful tool to find directional distinctness of high
dimensional point clouds. It is often used to reduce the data to projections on the point
clouds main directions. Physicians use it to calculate the main rotation axes of objects,
which are available in form of a point cloud. These main rotation axes or rather the main
directions of the point cloud are called the principal components.

In detail, for a n-dimensional point cloud, the PCA delivers n n-dimensional vectors.
The first vector is the direction, along which the point cloud possesses the highest variance.
The second vector is the direction along which the variance of the point cloud is maximum
under the restriction, that it is orthogonal to the first vector. Thus the PCA estimates a set
of pairwise orthogonal vectors, which point to the directions along which the point cloud
has the most spread.

For Every direction it delivers also the variance of the point cloud along it.
PCA is often used to classify objects or rather to give classes, to which an object can not

belong. For example, the point cloud of a cube has three rotation axes along the diagonal
of the cube. The variances along this directions are all the same, because of the symmetry
of the cube. The same relation between the variances applies for the point cloud of a ball.
Thus with a PCA it is possible to find out, if points do not form a certain object, but a
unique identification of the objects, which the points are forming is not possible. It can be
used to reduce the set of possible classes for object identification.

Another important fact is, that if an object is identified, its orientation is also known by
the principal components.

The principal component analysis consists of tree steps (see [18]):

1. Average subtraction
The average of all points is calculated

P̂ =
1

n

n−1X
i=0

Pi. (5.10)

This average is subtracted from every point
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P ′i = Pi − P̂ . (5.11)

2. Calculation of the covariance matrix
The next step is to gain information about the point clouds main directions. For
this reason it is important to gather the correlation between all coordinates of the
measurement. This is done by calculating the covariance matrix

C =

�
cov(x, x) cov(y, x) cov(z, x)
cov(x, y) cov(y, y) cov(z, y)
cov(x, z) cov(y, z) cov(z, z)

�
(5.12)

with

cov(a, b) =

Pn−1
i=0 (ai − â)(bi − b̂)

n− 1
.

3. Calculation of the eigenvectors and eigenvalues of C
The principal components are then the eigenvectors of C (see [18]). The eigenvector
according to the largest eigenvalue is the direction along the variance of the point
cloud is maximum. The eigenvalues are a measure of the variance in the direction of
the related eigenvector.

To estimate plane parameters, it is necessary to know how the principal components
of a plane are aligned. A plane in 3D is a structure with a big spread in two orthogonal
directions and flat distribution in the third orthogonal direction. Thus a point cloud of
a plane has two large eigenvalues and one small. The eigenvector corresponding to the
small eigenvalue is orthogonal to the main directions of the plane and it is therefore the
normal vector of the plane.

To estimate plane parameters with a PCA, step one reveals a point on the plane: P̂ . It is
not affected by measurement noise as it is neutralized by averaging (equation 5.10). Step
three gives the normal direction of the plane. It is the eigenvector corresponding to the
smallest eigenvalue.

5.3.3 Comparison of multiple regression and PCA

Figure 5.3 visualizes the difference between PCA and multiple regression for finding plane
parameters. Multiple regression minimizes the distances along the z direction of the mea-
surement points to the plane. PCA minimizes the orthogonal distances of the measure-
ment points to the plane. As multiple regression is a least square approximation, this
method should not be used for planes that are nearly parallel to the axis, for which the
regression is minimizing the distances (in the above representation of the plane it is the
z-axis). In this case, noise causes a much higher variance of the distances between the gen-
erating points and the plane along this direction than in the direction which is orthogonal
to the plane. Thus noise has a much stronger influence on planes in this direction than
on planes orthogonal to it. Both methods have been implemented but only PCA is used
because of the influence of the plane direction on the multiple regression method.
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Figure 5.3: Distances that are minimized by PCA and multiple regression

5.4 Segmentation of planes in 3D images

Before plane parameters can be calculated, the planes have to be segmented. This means,
to find out, which pixel of the depth map belongs to a plane. This is a somewhat difficult
task, as it would be too time consuming to test all combinations of points, whether they are
forming a plane by brute force. Nevertheless, planes can be segmented from depth images
very fast by a more sophisticated technique. For this goal it is important to know, that an
continuous surface of an object appears also as continuous region in the depth map, if the
object is not occluded by another object.

Two methods have been developed and compared in this work. One is a clustering
method, the other uses the above mentioned property of the regions of the depth map,
that belong to a plane.

5.4.1 Clustering method

The first idea to find planes in depth images fast was a clustering technique. The idea
behind this is, that a plane is defined by its normal vector and its distance to the origin. It
can thus be defined by its foot point (see section 5.2.1). This works for every plane that does
not pass through the origin, which is always the case in this work, because a plane passing
through the origin would be parallel to the sight rays an thus invisible to the camera.

The depth image was divided into small sub regions (in the example which is shown by
figure 5.4 sub regions of the size 10x10 pixel where used). Every of this regions defines a
separate point cloud, for which plane parameters have been computed by the regression
method described in section 5.3.1 and the perpendicular foot point was printed into figure
5.4. The scene consisted of two planes only (the floor and a shelf). This two planes produce
two clearly distinguishable clusters in the cluster space.

To detect planes, clusters in the 3D image must be found. As can be seen in figure 5.5,
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Figure 5.4: Clustering of the foot points of two planes

this clusters have a special form. They are not punctual but have some spread. This special
form probably occurs, because of effects caused by multiple reflections, that are described
in section 3.3.5.

The method using foot point clusters entails the problem of finding this clusters. This re-
quires time consuming algorithms. So this method was not implemented further. Instead,
the region growing method described in the next section was developed.

5.4.2 Finding small plane patches and link them by region growing

Dividing the point cloud into sub sets and determining the plane characteristics of
each:

The method to determine plane parameters, which was used in section 5.4.1 has the dis-
advantage that it does not give a measure about the fact, how good the points really form
a plane. For this purpose, the distances of the single points to the estimated plane must be
calculated afterwards. The algorithm described in section 5.3.2 gives the plane equation
and additionally gives a measure for the spread of the points along the normal direction
of the plane by the ratios of the eigenvalues λ0, λ1, λ2.

As plane confidence value the ratio between the third and the second largest eigenvalue
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Figure 5.5: Spread of the clusters of foot points

was used:
c2,1 =

e2
e1
. (5.13)

If c2,1 <= cthreshold this point cloud is considered as plane and regarded in further pro-
cessing steps. Some attempts have been made to use also the first eigenvalue for defining
the plane confidence, but it turned out that results can be achieved by c2,1 only. This is due
to the fact, that a plane has much less spread along its normal vector than along any other
perpendicular direction.

The procedure to segment planes is, to divide the depth map into adjoining or overlap-
ping sub regions like in section 5.4.1. For every such patch of the depth map the principal
components of the related point cloud are computed. Then the plane confidence c2,1 is
calculated and if the patch can be considered as plane, a data structure is generated, con-
taining a reference to the patch and the plane parameters. Figure 5.6 illustrates how the
depth map is divided into sub regions. Every region is quadratic and has an odd size.
Between the sub regions is a shift. The best results for plane segmentation have been
achieved with a patch size of 22x22 points and a shift of 4 pixel. With larger patches, small
plane regions are not detected any more while smaller patches cause a loss in accuracy,
because less points are used to calculate the plane parameters.

Figure 5.7 shows an amplitude image and the corresponding depth map with the found
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Figure 5.6: Attributes of plane patches

plane patches (green marked). The scene consisted of a cubicle on the left side and a
column with low curvature beside it on the right side.

Figure 5.7: Detection of planes on depth edges

For every plane patch a green dot was printed into the image. As it can be seen, plane
patches where found all over the cubicle and also all over the column. The column had a
curved surface, but as the curvature was very low it is an approximation of many small
planes.

As can be seen in this figure, plane patches have also been detected at the border of the
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cubicle. The reason for this is illustrated in figure 5.8. If there is a big difference in depth
between two adjoining objects and the 3D points of a plane patch distribute among this
two objects, there is a big spread of the point cloud in two orthogonal directions. In figure
5.8 this two directions are visualized by the red arrows. Because of the fact that there is
nearly no spread in the third orthogonal direction, the principal components of the point
cloud fulfill the criteria of a plane (equation 5.13).

Figure 5.8: Point distributions on depth edges

To solve this problem, the intersection points of the sight rays and the estimated plane
are calculated by equation 5.6. The average distance between the 3D measurement points
and the calculated intersection points is then determined. If the objects surface is a plane
and continuously in depth, the intersection points are near by the 3D points, as can be
seen in the left part of figure 5.9. In the case of figure 5.8, the recognized plane patch does
not match the objects surface and thus the 3D measurement points are far away from the
intersection points (see figure 5.9, right).
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Figure 5.9: Intersection point of sight rays with detected planes

The following condition must be satisfied to assume the plane patch as an approxima-
tion of the objects surface:

1

n

n−1X
j=0

(‖Pintersection,j − Pmeasurement,j‖) <= t. (5.14)

The described detection of planes that do not exist could be eliminated successfully by
applying this threshold. As can be seen in Figure 6.2, only plane patches are detected
on surfaces, which really are an approximation of a plane. These patches are marked as
PLANE.

Linking adjoining planar sub sets by region growing:

When all plane patches have been checked for their plane characteristics, the plane patch
with the smallest value c2,1 (see equation 5.13) is used as seed point for region growing.
Region growing [1] is an image segmentation method that adds neighboring pixels of a
region to it, if they are fullfilling a certain condition.

Figure 5.11 visualizes the proceeding of region growing.

1. Create an empty FIFO structure, mark all patches as NOT TOUCHED and set the
plane identification number to 1.

2. Choose the seed patch and add it to the FIFO
The seed patch is the plane patch with the smallest c2,1 (see equation 5.13) among all
patches that are marked as PLANE. Mark the seed patch as TOUCHED.

3. Initialize the plane equation of the growing plane G.
The plane equation of the growing plane G is the plane equation of the seed patch.
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Figure 5.10: Region growing: FIFO principle

Figure 5.11: Region growing: processing order of neighboring plane patches

4. Take a patch from the FIFO
This patch is now the current patch C.

5. Check neighbors of C
Check adjoining patches of the 8-neighborhood of C, if they are marked as PLANE
and NOT TOUCHED and fit to G. For this purpose check the neighbors in the order
shown in figure 5.10. If a neighboring patch fits to the growing plane G, mark it as
TOUCHED, add it to the FIFO and assign the current plane identification number to
it.
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A plane patch P fits to the growing plane G, if the following two conditions are
fulfilled:

• The angle between the normals of G and P is below a threshold.

αP,G = acos

�
~nG · ~nP
‖~nG‖ · ‖~nP ‖

�
≤ αthreshold (5.15)

• The distance dP,G of the gravity center ~mP of the plane patch to G is below a
threshold.

dP,G = ~nG · (~mP − α~nG) ≤ dthreshold (5.16)

where α denotes the distance between origin an plane G (see equation 5.4) and
~mP is calculated by the n points pi that form the patch

~mP =
1

n

nX
i=1

pi

6. Update plane equation of G
The new parameters of the growing plane G are calculated by multiple regression
(described in section 5.3.1) or by PCA (described in section 5.3.2). As described in
section 5.3.3,PCA is suggested. All points that are assigned to G in the current step
of the region growing are considered in the calculation of the plane parameters.

7. If the FIFO is not empty, continue with step 4. If the FIFO is empty, add a new
plane to plane list and all patches belonging to it. Increment the plane identification
number. Search new seed point and start with step 2 until no patches are available
any more, that are marked as NOT TOUCHED and as PLANE.

Figure 5.12 shows a 3D visualization of a scene and the recognized planes. The RGB
image of the scene can be seen in 5.12(a). The non-plane points of the scene are plotted
white, while points belonging to planes are red. The estimated plane is plotted yellow. As
can be seen from view 2 and view 3, the calculated planes are a good approximation of its
generating points.
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(a) Scene (b) View 1

(c) View 2 (d) View 3

Figure 5.12: 3D visualization of detected planes
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6 Visual feature extraction on the textures of
the planes

In section 5 it was demonstrated, how planes can be segmented out of a depth map. Three
conditions must be fulfilled, if the pose of one frame to the previous frame should be
calculated by using just planes:

1. It must be known, which plane of frame i corresponds to which plane of frame i-1

2. At least three pairs of corresponding planes must be found

3. All of this three planes must have a different orientation to each other

If condition two is not fulfilled, there remain invariances in the coordinate transform
as can be seen in figure 5.2 and figure 6.1. If just one corresponding pair of planes has
been found in two successive frames, there remain two invariances in translation and one
in rotation around the plane normal to find a coordinate transform which brings this two
planes together. If two plane pairs with different orientations have been found, there still
remains a translation invariance along the direction of the intersection line. Just with three
or more plane pairs, a unique transform can be found, that transforms the planes of one
frame into the planes of the next frame.

Figure 6.1: Transform invariances of intersecting planes

In indoor environments, planes are mostly all parallel or perpendicular to each other.
For example a table plate is parallel to the flour as well as the surface of a cubicle is parallel
to the wall behind it. Just in corners of a room can be found three planes with different
orientation, for example two walls and the flour.

Due to the fact, that most planes in common indoor scenes are parallel, and thus are not
sufficient to estimate a pose, visual features of the plane textures are also used in this work.

41



6 Visual feature extraction on the textures of the planes

Using a TOF camera, this features are available in 3D space and not only as 2D projections.
Planes of two successive frames can be associated, if visual features of their textures can
be matched. In section 7 it is shown, how this features are used to calculate parts of the
rotation and the translation. So it is possible to calculate the full pose with just one plane.

6.1 Extraction of the boundaries of detected planes

The feature extractor finds visual features in the 2D projection of the 3D scene. This can
be the amplitude image of the TOF camera or the image of the RGB camera. Because the
matching of the found features for successive frames should work if the camera is moved
along its optical axis, the feature descriptors have to be scale invariant as the features can
have different sizes. Only the projections of the plane textures are considered in the search
for features. Thus it is important to know, which parts of an image belong to a plane and
if the found feature is completely in such a part of the image.

In the region growing described in section 5.4.2, a plane identification number is as-
signed only to the center positions of the plane patches. Every plane patch has a size. So
it is not sufficient to calculate the boundaries of the pixel sets with the same plane identifi-
cation number because this would not take the size of the plane patches into account.

To calculate a planes contour in consideration of the size of plane patches, the center
positions of its plane patches are drawn into a black image. This image is then dilated by
an structure element of the size of a plane patch. This causes all pixels to be white, that
have been used to calculate the equation of this plane in the region growing.

Then the contour is found by contour growing: The most upper right pixel is chosen
from the white pixels and marked as contour pixel. The next contour pixel is found by
searching its 8-neighborhood in the order shown in figure 5.11. The first white pixel that
has been found is the next contour pixel. This is repeated until the first contour pixel is
reached again.

6.2 Transform of plane equations and contours

A RGB webcam was additionally mounted beside the TOF camera. Thus the TOF camera
can be used to find planes in the image, while the image of the RGB camera is used to find
visual features on this planes. The alternative to the RGB webcam would be the amplitude
image of the TOF camera, which is not as suitable because of its low resolution.

The following steps are performed after the plane recognition to obtain the plane con-
tours for the RGB image:

1. Find the plane contours in the depth map.
Plane boundaries are extracted from the depth map as described in section 6.1. The
boundary is then stored in the data structure Contour2D. It contains all contour
points.

2. Transform the 2D contours to 3D contour points.
Each contour point is transformed to its 3D representation in the TOF coordinate
system TOF . Section 4.5 describes how to perform this transformation. The intrinsic

42



6 Visual feature extraction on the textures of the planes

calibration of the time of flight camera has to be known. The points are stored in the
data structure Contour3D.

3. Transform the 3D contour points into the RGB camera coordinate system CAM .
The contour points are transformed from the TOF coordinate system to the coordi-
nate system of the RGB camera. The registration TOFTCAM is used, which has been
determined during the calibration (see section 4.4.5).

4. Projection of the 3D contour points into the RGB image.
The 3D contour points in the RGB camera coordinate system are projected to the
RGB image. This is done by multiplying the points with the camera matrix of the
RGB camera. The perspectivic division (see equations 4.11 and 4.12) yields the 2D
points of the plane contours, which have originally been detected in the depth image.

The left image of figure 6.2 shows plane contours, which have been determined from
the depth map. The right image shows the RGB image and the contours, that have been
transformed to it.

Figure 6.2: Transform of plane contours from AMP to CAM

In this work, planes are represented by equation 5.3. The transform of planes from the
coordinate system TOF of the TOF camera to the coordinate systemCAM of the RGB cam-
era is separated into two steps. First, the normal vector of the plane in the TOF coordinate
system is rotated by the rotation matrix of CAMTTOF , CAMRTOF

CAM~n =CAM RTOF ·TOF ~n. (6.1)

Second, the fixed point in TOF coordinates TOF ~r1 is first rotated by CAMRTOF and then
translated by CAM tTOF . This results in a new α in equation 5.3

CAM~α =
1

‖CAM~n‖

CAM

~n ·CAM RTOF ·TOF ~r1 +CAM tTOF . (6.2)
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6.3 Visual feature extraction and description

Visual features are used for two purposes in this work:

1. To assign planes of frame i-1 to the corresponding planes of frame i.

2. To determine the translation of the pose change from frame i-1 to frame i.

For both purposes it is important, that the features are contained completely in the plane
regions. To ensure this, the features radius must be known. The minimal distance of the
features position to the contour must then be higher than the features radius.

SIFT and SURF are two popular feature extraction and description techniques. Both are
implemented in OpenCV. They differ primarily in the processing speed and the invariance
to rotations along and away from the optical axis. In the following, a short compendium
of the working principles and the characteristics of this two techniques is given. Then both
techniques are compared regarding their attributes which are important to this work. For
a detailed description of the techniques, it is suggested to read the original papers for SIFT
[21] and SURF [6].

Both techniques work in two steps. Features are detected in the first step. In the second,
these features are described by a vector, which is used for later matchings.

6.3.1 SIFT

SIFT [21] is the abbreviation for Scale Invariant Feature Transform. To achieve scale invari-
ance, features are detected in scale space. Scale space is an image pyramid of successive
blurred images. In SIFT, scale space are difference-of-gaussian images with increasing ker-
nel sizes. An difference-of-gaussian image D is created by two slightly different blurred
versions L of an image I:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= K(x, y, σ, k) ∗ I(x, y). (6.3)

As can be seen from equation 6.3, instead of blurring image I two times with different gauss
kernels G and subtracting the results, image I can also be convolved once by the kernel K.
Depending on the scale level of the scale pyramid, this kernel can have a considerable
size. Thus the convolution process is time consuming, as for a kernel size of n × n, n2

many floating point operations and additional n additions must be performed to calculate
one pixel value of the result image.

Potential feature positions are found by searching local maxima in the 3D scale space.
The Hessian matrix is used to determine the curvature of the feature and if it is considered
as edge, it is rejected.

To achieve invariance for rotations along the optical axis, an orientation histogram of the
gradient orientations around the features position is formed. The highest bins declare the
features orientations, which are used to rectify the feature to norm orientation for its later
representation.
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The SIFT feature descriptor is build by sampling gradient orientations around the fea-
tures position. A grid of 4 × 4 sampling regions is defined by the features orientation
and scale, which have been computed in the previous steps. For every sampling region, a
histogram is filled by the gradient orientations inside this region. Practically, the best re-
sults have been achieved with histograms of eight bins. So the description vector contains
4 ∗ 4 ∗ 8 = 128 elements.

Matching of two feature sets is then performed by searching for each vector in one set,
the vector with the smallest euclidean distance in the other set.

6.3.2 SURF

The idea behind SURF is approximately the same as behind SIFT. First, a scale space is
created. Instead of blurring the image with gaussian kernels, SURF once calculates an
integral image and then uses box filters. Box filters can be applied very fast and with
speed independent of its filter size, as it needs just three additions to calculate the sum
of the intensities over a rectangular box, with the use of an integral image. One more
difference to SIFT in scale space representation is, that scale space layers are blob response
maps for blobs with different scale, while SIFT uses difference-of-gaussian images. A blob
response map is created by calculation of the determinant of the Hessian matrix for every
pixel position. The Hessian matrix is usually formed by the results of convolving the image
with derivatives of the gaussian kernel. This derivatives are approximated by box filters,
which can be calculated very fast. Feature positions are local maxima in the blob response
scale space. In contrast to SURF, SIFT calculates the determinant of the Hessian matrix just
for local maximum positions in the DOG scale space.

To achieve orientation invariance, SURF calculates a main rotation for every feature.
This is done by calculating the sum of the x- and y-gradients around the feature position.
This gradients are determined by Haar filters, which can also be calculated very fast due
to the use of an integral image.

The feature descriptor is then build up by sampling image gradients in a grid of 4×4 sub-
regions around the image position. Every subregion is sampled at 5× 5 sample positions.
In contrast to SIFT, which is filling a gradient histogram per subregion, SURF accumulates
the x-gradients, the y-gradients, the absolute values of the x-gradients and the absolute
values of the y-gradients. This results in a feature vector of 4*4*4 = 64 dimensions. There
is also a version of SURF available, that constructs feature vectors of 128 dimensions. In
this version, positive and negative values of x- and y- gradients are considered separately.

6.3.3 Comparison of SIFT and SURF

From the design of the algorithms SIFT and SURF it is clear, that SURF is much faster,
because it uses integral images and approximates the very time consuming filtering with
gauss blurring filters and its derivates by box filters. Also the gradient information for
orientation assignment or feature description is generated in the original image by fast
haar filters.

For this work, it was important to find the weaknesses of each algorithm and the best
tradeoff between the good results of slow feature extraction techniques and higher frame
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rates that can be reached by using fast techniques. High frame rates cause smaller pose
changes for the same movement of the TOF camera.

The following comparison relies on contemporary literature. SIFT is compared with
SURF in respect to repeatability and number of matches for scale changes, rotation and
view point changes. Also processing times are reflected as well as the amount of correct
matches.

Some of this invariances are very important for this work. Scale change is produced
by moving the camera along its optical axis. Rotation originates from rotating the camera
along its optical axis, while affine transformations are caused by a rotation away from the
optical axis. Effects on image blur or illumination changes are of secondary importance
and thus not compared.

1. Processing time
In [5] SIFT and SURF are directly compared with its implementations in OpenCV. For
508 image pairs, features have been detected, described and matched. In average,
SIFT needs 13 times as long as SURF per image pair.

2. Scale changes
[20] shows, that SIFT and SURF perform approximately equal for scale changes. In
general, SIFT finds a few more correspondences than SURF.

3. Image rotation along the optical axis
The most crucial weakness of SURF against SIFT is its behavior to image rotations
along the optical axis. This weakness results from the approximations of continuous
gaussian kernels with boxes. A box filter is anisotrop and therefore not applicable
for rotations. [20] points out, that also SIFT looses up to 40 percent repeatability
for rotations between 5° and 85°. SURF behaves like SIFT for the first 10°, than its
repeatability decreases to 10 percent (see [20]).

4. Image rotation away from the optical axis
Both, SIFT and SURF are not invariant to view point changes as shown in [20]. Both
behave similar on view point changes. If the same scene content is seen by just a
difference in angle of 10°, both SIFT and SURF loose approximately 50 percent of its
repeatability. 30° view angle change causes SIFT to have approximately 20 percent
repeatability and SURF 10 percent left. No matches are found by both descriptors
with an view angle change of 50°.

5. Number of matches
[30] shows, that SIFT generally finds significantly more matches. On the other hand,
the ratio of correct to total matches is better with SURF (79 percent) than with SIFT
(67 percent).

The very important weakness of SURF is its bad behavior to image rotations along the
optical axis, but its advantage is its speed. As SURF needs less time for detection, descrip-
tion and matching, the frame rate is significant higher than with SIFT. This causes less pose
changes between the captures of successive frames and thus compensates the weakness of
SURF.

This led to the decision to use SURF.
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6.3.4 Selection of relevant key points

As described in section 6.1, just the features, which lie completely on a plane are considered
for pose calculation.

To realize this, the contour of the boundary of each plane is determined. Then visual fea-
tures are extracted in the complete image. For each feature position it is checked, whether
it lies inside a contour of a plane and the minimal distance to this contour is calculated. If
the feature is inside a contour and the minimal distance is higher than the features radius,
this feature is considered further while all other features are discarded.

Figure 6.3 illustrates the result of feature detection on the amplitude image (up-left) and
the RGB webcam image (down-left). The SURF parameters have been the same for both
feature detections. As can be seen in this figure, the number of found features is significant
higher for the webcam image. 6.3 up-right and down-right show the features, that remain,
because they lie completely on a plane.

Figure 6.3: Discarding of features outside of planes

6.4 Calculation of 3D coordinates of the feature points

There are two possible ways to determine the 3D positions of the SURF features. One
method is to calculate the 3D position from the depth map as described in section 4.5. The
accuracy of this 3D positions accords to the measurement accuracy of the TOF camera.

The second and better way is to first determine the 3D positions as described in section
4.5 and then to project this positions orthogonally onto the estimated planes. The planes
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are calculated by a large set of points which causes averaging. Thus, the projection of
points onto this planes is a refinement.

48



7 Pose estimation

This section describes how feature point correspondences are found between successive
frames and how this correspondences are used to calculate the pose change between this
frames.

7.1 Descriptor matching

OpenCV provides functionality to match feature vectors with FLANN. Muja and Lowe
developed FLANN [25] (Fast Library for Approximate Nearest Neighbors) to match large
sets of high dimensional vectors. FLANN uses either a hierarchical k-means tree or multi-
ple randomized kd-trees to match these two sets. It depends on the desired precision and
the dataset, which of these data structures are chosen.

The drawback of FLANN is, that this trees have to be build first, before the matching
can be performed. If a data set is used very often, FLANN causes a huge acceleration of
the matching processes, as the tree must be build once in the beginning and can be used
again for every matching. In this work, the feature descriptors of frame i-1 and frame i
are matched. With the capture of frame i+1, the feature descriptors of frame i-1 are not
required any more. As FLANN builds a complex data structure for every frame, which
is used just a few times for matching, this method is in this context not time saving, but
time consuming. Also normally there are not more than 200 key points per image, which
is much too less for a profitable use of FLANN.

As there are just a few key points per image and the dimension of the feature vectors is
just 64, a naive nearest neighbor (NNN) search was implemented. For a given vector, the
dataset is searched for the vectors v1 and v2 with the smallest d1 and the second smallest
d2 euclidean distance. If d1 < τthreshold · d2, the given vector is considered distinctive and
the vector v1 is the matching. τthreshold was set to 0.6.

The consumption of processing time of FLANN and the naive nearest neighbor match-
ing have been compared in this work. Four pairs of feature descriptor sets have been
matched in the test. In average, FLANN found 34.8 and the native nearest neighbor search
35.8 correspondences while FLANN needed 53.6 ms and the NNN 1.5 ms. This led to the
use of a native nearest neighbor search.

7.2 Using 3D positions of the features to estimate the pose change

The 3D positions of the 2D feature points are directly computable by their depth map
values and the equations 4.14 and 4.15. The matching of the 2D plane texture features
between successive frames can thus be used to get two sets of corresponding 3D points.
Section 4.4.1 describes, how the appropriate coordinate transformation can be calculated
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by this set of 3D point correspondences. It is suggested to use Horns quaternion method
instead of the least square method, as it gives a orthonormal rotation matrix.

At least four point correspondences must be available to calculate the pose change with
Horns method. As can be seen from the tests in section 4.4.1, Horns method does not
provide good results for few point correspondences. At least 50 point correspondences
should be used to calculate the transform. The plane regions of the amplitude images
of the Time-Of-Flight camera do not give enough points for the method of horn to give
accurate results.

7.3 Using feature correspondences and the plane normals to
estimate the pose change

Another method to calculate the pose change between two frames is to use plane normals
to calculate the rotation R. Planes are calculated from normally some hundreds of points
and thus provide an averaging. The idea is, to bring the normals of related planes together
for each feature point correspondence. After that, a rotation along the plane normal must
be done, to bring the feature positions together. These two steps determine the rotation.
They are followed by the calculation of the translation by the centroids of the two point
sets. The following steps are performed to estimate the pose change:

1. Project the feature positions on their planes:
Project all 3D feature points pi of the current frame and all 3D feature points qi of the
last frame orthogonally onto their planes. This gives the new 3D feature positions p′i
and q′i.

2. Calculate the centroids of the feature positions:
Calculate the centroids cp and cq of the points p′i and q′i.

3. Calculate the centroids of the feature positions on each plane:
For every plane of the current and the last frame, calculate the centroidsmlast,j ,mcurrent,j

of all feature points on it.

4. Discard features, that are alone on a plane or too near together:
Discard all feature points that are near to the centroid of the feature points of their
related plane. Discard also the correspondences with the related feature point of the
other frame: If ‖p′i −mcurrent,j‖ < threshold, p′i and q′i are discarded. If ‖q′i −mlast,j‖ <
threshold, p′i and q′i are discarded. This is done, because if the feature point is near
or equal to the centroid of the planes features, all features of this plane are too near
together to calculate the correction along the plane normal described in step 5b.

5. Calculate the rotation Ri for every correspondence (pi, qi):
For every feature point correspondence (pi, qi):

a) Rotate the normal vector ~nlast of the last frame to the normal vector ~ncurrent of
the current frame.

50



7 Pose estimation

• Rotation angle: The rotation angle αi is the angle between the vectors ~nlast
and ~ncurrent.

αi = acos

� 〈~nlast, ~ncurrent〉
‖~nlast‖ ‖~ncurrent‖

�
.

• Rotation direction: The direction of the rotation vector is orthogonal to ~nlast
and ~ncurrent in such a way, that ~nlast is rotated to ~ncurrent via the right-hand
rule.

~d1,i =
~nlast × ~ncurrent
‖~nlast × ~ncurrent‖

• Rotation vector: The rotation vector ~r1 has the length α and the direction
~d1.

~r1,i = αi
~d1,i = acos

� 〈~nlast, ~ncurrent〉
‖~nlast‖ ‖~ncurrent‖

�
~nlast × ~ncurrent
‖~nlast × ~ncurrent‖

• Calculate the rotation matrix R1,i from the rotation vector r1,i. The conver-
sion of a rotation matrix to a rotation vector or vice versa is described in
[10].

b) Rotate around ~ncurrent, to bring pi and qi together.
In this step, the vector ~v = R1(qi − mlast,j) is rotated around ~ncurrent, to be
congruent with the vector ~w = pi −mcurrent,j .

• Rotation angle: The rotation angle βi is the angle between the vector ~v and
~w.

βi = acos

� 〈~v, ~w〉
‖~v‖ ‖~w‖

�
.

• Rotation direction: The rotation direction is

~d2,i =
~ncurrent
‖~ncurrent‖

.

• Rotation vector: The resulting rotation vector is

~r2,i = βi~d2,i = acos

� 〈~v, ~w〉
‖~v‖ ‖~w‖

�
~ncurrent
‖~ncurrent‖

• Calculate the rotation matrix R2,i from the rotation vector r2,i.

c) Calculate the rotation matrix for this feature correspondence by

Ri = R2,iR1,i.

Calculate the rotation vector ri from the rotation matrix Ri.

6. Calculate the rotation R:
The rotation vectors ri must be very similar, because the represent the same rotation.
All rotation vectors are averaged to get the rotation vector r. The rotation matrix R
is then calculated from the rotation vector r.
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7 Pose estimation

7. Calculate the translation t:
The translation is calculated by the centroids of the point sets:

t = cp −Rcq

7.4 Removing outliers

Feature point correspondences can be wrong, especially in situations of view point changes.
If all found correspondences are included to the calculation of the pose change, this would
lead to bad results. Thus the wrong correspondences must be found and discarded, before
the pose change is determined.

Even as the SURF feature descriptors are distinctive, wrong matches are possible. For
example if there are similar structures more than once in the images. If the wrong matches
are included into the pose change calculation, the estimated pose change will be wrong.
Thus it is necessary to find out, which feature point correspondences are correct, that is
they are inliers, and which correspondences are wrong, so called outliers.

Random Sample Consensus [13] (RANSAC) is an algorithm, that identifies outliers from
a set of measurements, that comply with a model. The input parameters of RANSAC are:

• The minimum probability p, of finding the set of inliers.

• The number n of measurements, that is necessary to calculate the model.

• The ratio ε of the number of outliers to the number of all measurements.

• The threshold t of the distance between a measurement and the model, that declares
a measurement as outlier.

RANSAC works as follows:

1. Calculate the number k of samples:
From the input parameters, it is determined, how many samples are chosen from the
measurement set. A sample consists of n randomly chosen points, where n denotes
the minimum number of measurements that is necessary to calculate the model. The
number of samples is independent of the number of measurements and is calculated
by

k =
log(1− p)

log(1− (1− ε)n)
.

2. Calculate the model for every sample.

3. For each model determine the number of measurements, that support the model:
A measurement, that supports the model has a distance less than t to the model.

4. Choose the sample with with the most supporting measurements.

5. Mark outliers:
Mark all measurements that do not support that sample, that is their distance to the
model is greater than t, as outliers.
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In this work, the model is the estimated pose change and the measurements are the
feature point correspondences. The number n of measurements, that is needed to calculate
the model, depends on the method that is used to calculate the pose change. If the 3D
positions of the feature points are used directly to estimate the pose change (as described in
section 7.2), four feature point correspondences are needed. If the pose change is calculated
using plane normals as described in section 7.3, only two feature point correspondences
of the same plane are needed. One feature point correspondence would not be enough to
calculate the rotation around ~ncurrent (see step 5b of the algorithm described in section 7.3).

Table 7.4 lists the required number k of samples for a probability p=99.0% and the two
described methods for the pose change determination.

method n
ε

10% 20% 30% 40% 50% 60% 70% 80% 90%
with plane normals 2 3 5 7 11 17 27 49 113 459

3D points only 4 5 9 17 34 72 178 567 2876 46050

Table 7.1: Iteration numbers of RANSAC for pose estimation

The maximum ratio ε of the number of outliers to the number of measurements was set
to 0.5, which is a pessimistic guess. As can be seen, the method that uses plane normals
to calculate the pose change needs significant less samples than the method that uses 3D
point correspondences. So this method was chosen as model estimation for the RANSAC
algorithm.

As just two correspondences are used instead of all correspondences, the algorithm de-
scribed in section 7.3 was adapted: In step 4, all feature correspondences are discarded
except the two features on the same plane, that are used as samples.

Figure 7.1 shows two successive frames with the found feature point correspondences.
As the camera did not move between these frames, many correspondences have been
found and the most of them are inliers. The left part of the figure shows the amplitude
images and the right part the images of the webcam. 22 point correspondences have been
found in the amplitude images and 57 in the webcam images. RANSAC found two out-
liers, which have been drawn blue.

To generate two successive frames with a high ratio of outlier correspondences, the pose
was changed in all six degrees of freedom. Figure 7.2 shows these correspondences. As
was shown in section 6.3.2, SURF is not robust to large view point changes. This causes
nearly the half of the point correspondences to be outliers (painted in blue). These have
been identified successfully with the use of RANSAC.

After the outliers have been found, the pose can be determined from all inliers by either
one of the two methods described in the previous section. The method, that uses plane
normals is used in this work, because the planes provide an averaging of many points.
Thus this method is more robust to noise.
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Figure 7.1: RANSAC: discarding of wrong correspondences
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Figure 7.2: RANSAC: discarding many outlying correspondences
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8 Evaluation

8.1 Evaluation with the ART measurement system

The method, how to evaluate the accuracy of the estimated pose change, was specified at
the beginning of the work: It was intended to use a system to track a rigid body of the
company ART for the ground truth. This system gives the absolute pose of a rigid body
consisting of infra red light reflecting balls in the ART world coordinate system.

The pose change is determined as the transform of the TOF coordinate system of frame
i-1 to the TOF coordinate system of frame i: TOFi−1TTOFi. Thus the pose changes of the
rigid body do not interest, but the pose changes of the TOF camera coordinate systems.
For this reason the pose of the TOF coordinate system in body coordinates BODY TTOF

(which has been determined during the calibration process as described in section 4.4.5)
is transformed by ARTTBODY to determine the pose of the TOF coordinate system in ART
world coordinates:

ARTTTOF =ART TBODY ·BODY TTOF . (8.1)

The pose change in TOF coordinates between two frames can then be calculated as the
transform between the poses ARTTTOF of the two frames:

TOFi−1TTOFi = (ARTTTOFi−1)−1 ·ART TTOFi (8.2)

Some test series have been produced, where the pose change has been estimated by
the algorithm developed in this work and the ART poses have been read and saved for
every frame. The pose changes in TOF coordinates have then be calculated using the ART
poses as described before. For every frame, the pose change TOFi−1TTOFi has then be
inverted and its 3D points transformed by this inverse pose change. For each frame, the
so generated points have then be added to a point cloud, that contains the so produced
points of the previous frames. This point cloud has been visualized with VTK. Figure 8.2
shows the scene and figure 8.3 shows the accumulated point cloud for three frames.

If the described method for the generation of the ground truth poses would work accu-
rately, the 3D point cloud of the scene would grow with every frame in such a way, that
the parts of the scene, that are visible in both frames overlap completely. As can be seen
in figure 8.3, the table plate is not overlapping completely, because there is a difference in
the angles of the scenes. The so produced 3D scenes are growing with every frame and
reproduce the movement of the TOF camera, but a small error is visible for every frame.

For comparison, the same growing 3D scene was produced with the pose changes cal-
culated by the algorithm that was developed in this work. The 3D scene for the first three
frames is shown in figure 8.1. This figure shows, that the ART measures of the TOF camera
poses could not be used as ground truth, as the developed algorithm gives better results.

As the angle measurement of the rigid body with the ART system is very precise, the
measure of the pose of the rigid body cannot be the reason for the bad accuracy of the
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Figure 8.1: Scene for a rough test of the pose change measure with the rigid body

Figure 8.2: Pose change in the TOF coordinates estimated with the rigid body

described ground truth method. It is assumed to be caused by an imprecise determination
of the registration between the coordinate system of the rigid body and the coordinate
system of the TOF camera. This registration was described in section 4.4.5 and depends
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Figure 8.3: Pose change in the TOF coordinates estimated with the proposed algorithm

on three steps: First, the registration of a chessboard pattern in ART world coordinates,
second the registration of the rigid body in ART world coordinates and third the pose
estimation of the TOF camera to the chessboard pattern.

The accuracy of the first two steps can be supposed high, because the ART measurement
system has a high accuracy. By contrast the accuracy of the estimation of the cameras pose
to the chessboard pattern depends mainly on the following parameters: The resolution
of the amplitude image, the size of the chessboard pattern in the image, the accuracy of
the intrinsic camera parameters and the accuracy of the chessboard corner detection. As
the amplitude images of the TOF-camera have very low resolution, a chessboard pattern
with only 5x4 corners was used. The corner detection was performed by OpenCV and did
not provide good results, as can be seen in figure 4.4. This is explicable by the low signal
to noise ratio of the amplitude images. An imprecise measure of the chessboards pose in
camera coordinates yields an inaccurate registration of the coordinate system of the rigid
body to the coordinate system of the TOF camera.

The accuracy of this registration could not be improved, so the evaluation had to be
divided into two parts. The rotation angle can be evaluated with the ART system, because
the rotation angle of the rigid body has to be the same as the rotation angle of the estimated
pose change. Due to the fact, that the translation depends on the previously calculated
rotation, the measurement of the translation accuracy can be done only for movements
without rotation. For this reason, the camera attachment was mounted to a electronically
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(a) Scene 1 for rotation evaluation (b) Scene 2 for rotation evaluation

Figure 8.4: Evaluation of the rotation angle

controllable linear actuator. In this way, pure translation movements with given distances
could be performed.

8.2 Test method and test scenarios

8.2.1 Rotation

The pose change of the TOF camera was on the one hand calculated with the ART system
as described in the previous section and on the other hand it was determined by the algo-
rithm developed in this work. Both rotation matrices have been transformed to rotation
vectors. For rotation evaluation, the lengths of the rotation vectors are compared.

Two test scenarios have been used. One with a single table plate (figure 8.4(a)) and one
with a shelf (figure 8.4(b)). For the first test, the camera was mounted to a tripod while the
second test was performed free-hand. Together 25 frames have been captured. The ART
system measured rotations of up to 6.9 degree between these frames. The average frame-
to-frame angle error of the rotation with the camera attachment mounted on a tripod was
0.64 degree and for free-hand movements it was 0.71 degree. The maximum angle error
was 1.48 degree.

8.2.2 Translation

As the estimated rotation is containing errors and this errors are directly affecting the trans-
lation, it was necessary to prevent rotations in the evaluation of the translation. For this
reason, the camera attachment was mounted to an electronically controllable linear actua-
tor. The translation distances for the test are 10 cm and 20 cm. As the used linear actuator
is very precise, it was considered as ground truth. The test setup is shown in figure 8.6(a).

Fourteen tests have been carried out with different scenes (that can be seen in figure 8.6).
The camera attachment was mounted in different ways, shown in figure 8.5, to perform
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(a) Mainly motion in Z-direction (b) Mainly motion in X-direction

(c) Mainly motion in X-and Z-direction

Figure 8.5: Mounting of the camera attachment for translation evaluation
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(a) Scene 1 for translation evaluation (b) Scene 2 for translation evaluation

(c) Scene 3 for translation evaluation (d) Scene 4 for translation evaluation

(e) Scene 5 for translation evaluation

Figure 8.6: Evaluation of the translation distance
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movements in mainly x-direction (fig. 8.5(b)), z-direction (fig. 8.5(a)) and x-z-direction
(fig. 8.5(c)).

123 pose change estimations have been tested for translations of 10 cm. The overall
average frame-to-frame error was 1.49 cm, which is 14.9% of the translation distance, and
the maximum error 6.76 cm. The best results have been achieved with movements in Z-
direction. The average error was 0.14 cm for translations in this direction.

For translations of 20 cm, 51 pose changes have been tested. An overall average frame-
to-frame error of 2.24 cm was measured, which equates to 11.2% of the translation distance.
The maximum error was 14.0 cm. Like for translations of 10 cm, the best result could be
achieved with movements in Z-direction. The mean error of this movements amounts to 2
mm, which is 1% of the translation distance.

Discussion of the results

The tests have shown, that the accuracy of translations in X-direction is relatively low,
compared to translations in Z-direction. Both, rotation and translation depend directly on
the quality of the 2D feature point positions. For example, if a feature position is detected
with an error of one pixel in u-direction, the 3D position of this feature, that is calculated
from the depth map, would have an error of more than 1cm, if the 3D feature is 2.5 m away
from the camera. This is calculated by

∆X =
∆u · Z
kuf

, (8.3)

where ∆u = 1 and kuf is determined with the intrinsic camera calibration (see section
4.3) and is approximately 250 pixel for the TOF camera and the RGB webcam. Figure 8.7
illustrates an example of SURF feature positions that are containing drift errors in u- and
v-direction. The relative positions of the features f1 and f2 of the first frame and f ′1 and
f ′2 of the second frame, that are illustrated in figure 8.7(a), are not the same in this two
frames. This leads to the determination of errored 3D feature positions and finally to bad
results in the estimation of rotation and translation. As the SURF feature positions can
have drifts in u- and v-direction (u and v are the pixel coordinates of the features), it can
be assumed, that the pose estimation achieves also relatively low accuracy for translations
in Y-direction.

Better results could be obtained for translations along the Z-direction. This is due to the
fact, that the detected planes are an averaging of its generating points and the 3D feature
points are orthogonally projected on this planes (see section 7.3). The orthogonal projection
of the 3D features onto the planes eliminates the noise of the depth determination of the
TOF camera, because the detected planes in the tests have been almost parallel to the image
sensor. Also drift errors in the 3D feature positions do not matter, as these errors affect
just the X- and Y- components of the 3D features after the projection on the detected plane.
Thus the Z-values of the 3D feature points are very precise which results in a high accuracy
for translations along the optical axis of the camera.

8.2.3 Processing time

The evaluation of processing time was performed on the two scenes that are shown in
figure 8.4. They have been chosen, because large areas of the first scene are planes and
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(a) SURF feature points (b) corresponding feature points

Figure 8.7: Error of the positions of SURF features

many features could be matched while the second contains just small planes with less
features.

The complete processing time for frame-to-frame registration of the first scene was 0.44s
with 43 correct feature correspondences. For the second scene just 0.29s are needed, with
4 detected correct feature correspondences.

The test was performed on a Intel Core2 Duo CPU with 3.0 GHz and 2GB RAM.
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Two sample applications have been implemented. They both use the pose estimate of the
proposed algorithm.

9.1 3D map generation

3D map generation of the environment is illustrated in figure 9.1. The sensor movement is
inverted to align the point cloud of each new frame to the already build 3D map. Figures
9.1(a) and 9.1(b) show the RGB image of the first and the last frame.

Especially indoor environments are suitable for mapping with this algorithm, because
planes can be seen from nearly every point of view (for example the ground, walls, table
plates or the ceiling). The proposed algorithm estimates all six degrees of freedom of the
pose change and thus complete indoor environments, can be mapped.

9.2 Augmentation of a cube

Placing virtual objects into a scene that is seen by a camera is one of the central issues of
augmented reality. If an object should stay on a fixed position in this scene or should move
relative to it while the camera is moving, the motion of the camera has to be estimated.
Using the proposed algorithm for this task brings an additional advantage: Objects are
often placed on planes, be it table plates, be it the ground or be it other planar objects. This
can be done easily because the plane equations are known by the algorithm.

The sample application first detects and visualizes the planes. The user can then place a
virtual 3D cube directly on the planar surface of the scene object by clicking on the desired
position in the image.

The application lets the cube stay in a fix relative pose to the scene, independently of the
motion of the camera, as can be seen in figure 9.2.
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(a) RGB image of frame 1 (b) RGB image of frame 10 (c) Frame 1

(d) Frame 2 (e) Frame 3 (f) Frame 4

(g) Frame 5 (h) Frame 6 (i) Frame 7

(j) Frame 8 (k) Frame 9 (l) Frame 10

Figure 9.1: Map building as application
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(a) Scene (b) Frame 1

(c) Frame 2 (d) Frame 3 (e) Frame 4

(f) Frame 5 (g) Frame 6 (h) Frame 7

Figure 9.2: Augmented reality as application: augmentation of a cube
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10 Conclusion and outlook

This work demonstrates, that geometric 3D features can be combined successfully with 2D
visual features. A multimodal system is presented, that combines a time of flight camera
with an RGB webcam. Planes are recognized in the 3D point cloud and the RGB camera is
used for tracking features on the texture of the planes. The pose is estimated by combining
the normal vectors of the planes with the 3D point coordinates of the visual features. A
comparison with the state of the art algorithms described in section 2.1 shows, that this
algorithm outperforms comparable methods. It is faster than algorithms that process data
offline while it is more accurate than algorithms that estimate poses online. With 2 to 3
frames per second it is suitable for online pose estimation.

To demonstrate this, two applications have been build which use the pose estimate of
the proposed algorithm: 3D map generation in runtime and the augmentation of objects.

TOF sensors are too expensive for private use and thus are applied just in the field of
industry or research. Nevertheless this technology is still very new and the devices will
probably get less expensive in the future. Very recently, novel cheap 3D range cameras
are conquering the market. One such sensor is the Kinect of the companies Microsoft and
PrimeSense that is available since November 2010. Its working principle is light coding [3]
and consist of a fixed attachment of a camera and a device that illuminates the scene with
a known pattern.

The depth map of light coding sensors contains gaps, that occur from light rays that are
not visible to the camera because they are occluded by objects. Due to this shadows it is
not straightforward to apply algorithms, that have been developed for TOF cameras, to
light coding sensors. Anyway, the proposed algorithm should be applicable also to light
coding cameras because shadow regions do not contain planes and thus have no influence
to the pose estimation.
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