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Abstract

One of the main applications for computers in medicine is to digitally merge patient data
that originates from different sources. For our 2D-3D Registration problem, this means find-
ing the right spatial alignment of a three-dimensional Computed Tomography (CT) data set
and one or two X-Ray images from the same patient. An automatic algorithm has to create a
digitally reconstructed radiograph (DRR) for a specific orientation in the CT data set, com-
pare the result with the X-Ray image, alter the position and orientation of the DRR and repeat
the process until the optimal alignment is reached. A key issue is to assess the alignment of
these two images in every step. I present a comprehensive examination of all intensity-based
similarity measures known in literature, and use them with a number of different optimiza-
tion algorithms.
We developed a prototypic application for both manual and automatic registration. The per-
formance is evaluated for different data sets, and validation is done using marker-based
ground truth information. The results show that we are able to do very precise and fully
automatic registration within a couple of minutes. We propose to use this technique to find
the correct patient position on the treatment couch for radiation therapy. This would replace
the common, often very inconvenient immobilization methods.





Zusammenfassung

Eine der wichtigsten Anwendungen für Computer in der Medizin ist, Patientendaten von
verschieden Quellen miteinander zu verschmelzen. Bei 2D-3D Registrierung möchte man
die richtige räumliche Ausrichtung für einen dreidimensionalen CT-Datensatz und ein oder
zwei Röntgenbilder vom selben Patienten finden. Ein entsprechender Algorithmus muß von
einer bestimmten Ausrichtung in den CT-Daten aus ein rekonstruiertes Röntgenbild berech-
nen, es mit dem realen Röntgenbild vergleichen und entsprechend die Position und Orientie-
rung des rekonstruierten Bildes ändern. Der ganze Vorgang wird wiederholt, bis die richtige
Angleichung gefunden wurde. Ein Hauptproblem dabei, ist die Ähnlichkeit der zwei Bilder
zu beurteilen. Ich habe eingehend alle bekannten intensitätsbasierten Ähnlichkeitsmaße un-
tersucht, und zusammen mit verschiedenen Optimierungsalgorithmen angewandt.
Wir haben einen Prototypen für sowohl manuelle als auch automatische Registrierung ent-
wickelt. Die Leistung für verschiedene Datensätze wird untersucht, und die Ergebnisse mit
marker-basierter ”Ground Truth”-Information validiert. Die Ergebnisse zeigen, daß wir in
der Lage sind, hochgenaue und vollautomatische Registrierung in wenigen Minuten durch-
zuführen. Wir schlagen vor, diese Technik für das Finden der richtigen Position des Patienten
auf dem Behandlungstisch für Strahlbehandlung zu verwenden. Das würde die üblichen, oft
sehr lästigen Fixiermethoden ersetzen.
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1 Introduction

1.1 Motivation

The use of computers in medicine is growing rapidly every year. The progress in computer
technology, especially in terms of speed and data capacity, enables the development of
applications that would not have been possible some years ago. The history of digital image
processing is now many decades old. Much younger than this area is processing of image
data with three or more dimensions. A full medical Computed Tomography (CT) data set,
for instance, can be many hundreds of Megabyes large (say 800 slices of 512 x 512 images
with 16 bit pixels equals to 400 MB). Only in recent years it has been possible to work with
and display volumetric data of these dimensions interactively. Right now it even becomes
feasible to deal with four-dimensional data (any volumetric data created at different times).

Acquiring medical images always imposes specific costs, efforts and sometimes a bur-
den for the patients. This includes two-dimensional imaging like X-Ray or Angiography,
and three-dimensional imaging like Computed Tomography (CT), Magnetic Resonance To-
mography (MRT) and PET (Positron Emission Tomography). Therefore it has always been
desired to get the most out of every patient data set. A very important way of doing so is
to combine the information that is available from different data sets. This is an area where
computers are used very extensively today. A lot of effort is always put on how to use
three-dimensional data sets under any circumstances. Especially CT and MRT scanners have
become a common instrument for daily clinical practice. As they acquire volumetric data,
they provide a huge amount of valuable information about the patient, making them in-
dispensable these days. This has even increased with the visualization technology that is
now available. The scans are often preprocessed and segmented into 3D objects, displayed
subsequently to address the full spatial perception of physicians (see figure 1.1).

1.2 Overview about Registration

In order to use patient data that originates from different devices, or has been taken at differ-
ent times, it is necessary to bring them into spatial alignment. This process is referred to as
Registration. Maintz and Viergever [25] provide a well-accepted classification of registration
problems according to nine criteria, which I would like to summarize shortly.

Dimensionality The first distinction is the number of dimensions that the images to be
registered have. CT, MRT and PET are three-dimensional or volumetric modalities, where
the information is looked at as either a stack of two-dimensional images (slices) or directly

1



1 Introduction

Figure 1.1: Slices from a CT scanner and reconstruction, from [9]

as volumetric elements in space (voxels), arranged in a rectangular grid. On the other hand,
X-Ray, fluoroscopy and ultrasound images are two-dimensional.
A classical registration task is the fusion of CT and MR data (a so-called 3D-3D registration).
This problem has been solved adequately today, and many semi- or fully-automatic applica-
tions are available. Today’s computers even enable 3D-3D registration using the full amount
of information in the volumes to derive the correct alignment, still in reasonable run-time.
A further challenge is to fuse the data after the correct transformation is found. Various
recent volume visualization methods can be used. However, transforming one volume in
order to perform the found mapping usually imposes some interpolation of it, which may
introduce errors or visible artifacts.
Still much more challenging today is 2D-3D registration, denoting the alignment of a
volumetric data set with some projective image. A common representative of this class is
registration of preoperative CT data with intraoperative X-Ray images. Most applications
are in image-guided surgery or patient positioning in radiotherapy. Our problem is of this
nature.

Nature of registration basis The information used for achieving spatial alignment can
be extrinsic, i.e. foreign objects like fiducial markers are introduced into the image space
(and therefore the patient), or intrinsic. In the latter case landmarks can be defined based
on the patient’s anatomy and used for the alignment. In any of these cases, corresponding
points in both images are available, which simplifies the registration very much. Consider-

2



1.2 Overview about Registration

ing two sets of points in 3D to be registered, the solution is very easy. First, the centers of
the two point sets are computed and one set is translated accordingly. Then this point set is
rotated iteratively until the sum of the squared distances between the corresponding point
pairs is minimal. For this latter step, even a closed solution exists, termed the ”Orthogonal
Procrustes Problem”. At least three points in each set are needed (not placed on a line), but
usually more are defined for averaging out errors.
Those errors arise mainly if the defined or detected coordinates of the used points are slightly
wrong. The best results can be achieved by screwing markers onto the patient’s bones. The
high registration accuracy then comes with a high invasiveness, though. On the other hand,
a skilled professional can use anatomical features in the images to define points, which is
susceptible to errors, too.
Another class of intrinsic registration methods that involves no further objects is based on
segmentation. The user selects, points, curves or surfaces in both images which a computer
algorithm tries to align. Those methods always require user interaction for selecting those
objects. Automatic segmentation of medical data is barely possible today and is subject to
intensive research.
Finally, another class of algorithms is in use today that needs neither auxiliary objects nor
user interaction, the voxel property based or intensity-based registration algorithms. They try
to find the right alignment by assessing the image similarity based on the raw image data,
i.e. the pixel or voxel intensities. This becomes tricky especially when different modalities
are involved, as it is not sufficient to just take the sum of the squared intensity differences
of the respective pixels/voxels then. Many sophisticated similarity measures have been de-
veloped today, which I present in chapter 3. Especially intensity-based 3D-3D registration
works very well today, enabling fully automatic fusion of tomographic data. There are in-
teresting other approaches that merge the above aspects. Bansal et al. [33] use a combined
segmentation and registration, performed alternatingly.

Nature of transformation If a rigid-body transformation is applied to one of the images,
its size and shape remains unchanged, only the position and orientation changes. A rigid
transformation in 3D therefore has three translational and three rotational degrees of
freedom. See section 5.1 for various parameterizations. If scaling and shearing is added,
we obtain an affine transformation with 12 degrees of freedom. At last, many applications
want to align images whose internal shapes and structures are changed, resulting in the use
of deformable registration. This may end up with an unlimited number of parameters, and
many different deformation models can be used to represent the transformation.

Further distinctions are made in the following categories: The type of Interaction tells if
the registration is conducted interactive, semi-automatic or automatic. The Optimization
Procedure can either be some dedicated optimization algorithm or a closed-form solution,
allowing the parameters to be computed directly (equations exist mainly for point-based
registration). Further characteristics are the Modalities involved in the registration, and the
imaged Subject (e.g. a patient, model or atlas) and Object (e.g. a specific part of a patient’s
body).

3



1 Introduction

1.3 Intensity-Based 2D-3D Registration

Figure 1.2: Iterative scheme of 2D-3D registration

For this kind of registration, one of the images is a two-dimensional X-Ray image, and
therefore a projection of the physical space. Each point in the radiograph corresponds to a
line integral of the X-Ray attenuation along the ray from the X-Ray source to the detector.
The other image is a three-dimensional CT data set, where each voxel represents the X-Ray
attenuation within a certain region in space. Thus X-Ray images can be ”simulated” by in-
tegrating lines cast through the CT volume, resulting in a Digitally Reconstructed Radiograph
(DRR). Registration is achieved by finding the right position and orientation with respect to
the CT data, so that a DRR computed at this pose matches perfectly with the X-Ray image.
This requires knowledge about the geometry of the X-Ray imaging device, so that the DRR
can be generated using a correspondent (perspective) projection. The DRR is to be matched
with the real X-Ray image by applying a rigid transformation. This means that we are look-
ing for a translation in space (expressed by three parameters x, y and z), and a rotation in
space (usually expressed with three parameters as well, e.g. θx, θy, θz). There are reasons for
using deformable models in order to compensate e.g. for soft tissue movement. Due to the
high number of parameters searched for with at the same time relatively sparse information
available, this task would be even more challenging. I consider the effect of soft tissue move-
ment negligible for now. This is justified in the majority of cases, when the images comprise
enough bony (and therefore rigid) structures. The algorithm works as following (illustrated
by figure 1.2):

1. The user feeds the system with a CT data set, a X-Ray image, the intrinsic parameters of
the X-Ray imager and an initial starting estimate for the rigid transformation defining
where the DRR is to be generated. Additional parameters for the DRR generation may
be provided, e.g. in connection with the transfer function.

2. Using the perspective projection extracted from the intrinsic parameters of the X-Ray
sensor and the current value of the rigid transformation, a DRR image is computed
from the CT data.

4



1.4 The Radiation Therapy Application

(a) Accuray Cyberknife (b) Siemens Primus

Figure 1.3: Cyberknife Stereotactic Radiosurgery System and Siemens Primus LINAC

3. The alignment of this DRR and the X-Ray image is assessed by any similarity measure.
For an intensity-based registration, this measure operates directly on the image data
and returns a single number, telling how well the images are matching (see chapter 3).

4. This number is used as cost function value for an optimization algorithm, which alters
the rigid transformation in order to achieve better alignment. It tries to find a transfor-
mation where the DRR has the maximum similarity with the X-Ray image. This results
in a search for a global optimum in a six-dimensional parameter space, as we are deal-
ing with both position and orientation in 3D (see section 5.1 for how to parameterize
the transformation). Steps 2-4 are repeated until the optimizer decides based on some
abortion criteria, that the best pose has been found.

1.4 The Radiation Therapy Application

Radiation Therapy (more precise: External Beam Radiation Therapy) is the controlled use of
high-energy X-Ray radiation for cancer treatment. A linear accellerator (LINAC) delivers a
specific dose of radiation to the patient’s target tissue. This destroys the cancer cells ability
to reproduce themselves, causing the body to get rid of them. Sophisticated treatment
planning has to be done in advance in order to make sure that the right area is treated with
the right amount of radiation, and that the surrounding tissue is not significantly affected.
For the treatment planning, a CT scan is the most important source of information. The
radiation oncologyst analyzes the CT data set and segments the target area, for instance a
tumor. Knowing the exact spatial location of the tumor in the CT coordinates, the patient
has to be positioned precisely with respect to the treatment spot of the linear accelerator, so
that only the tumor tissue is affected by the full radiation exposure. Various immobilization
techniques are used to assure that the patient is and stays in place during the treatment [3].
Usually the linear accelerator is being rotated around one axis during the treatment. This
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1 Introduction

Figure 1.4: Schematic view of the Primus accelerator

makes sure that only the target site in the patient’s body always gets the full radiation, and
the surrounding tissue is only affected by a non-critical dose. A X-Ray detector normally is
integrated in the accelerator arrangement.
The CyberKnife Stereotactic Radiosurgery System (Accuray Inc.) is a ultra-compact linear
accelerator mounted on a robot with many degrees of freedom (figure 1.3(a)). Using this
device, there is even more flexibility to repeatedly change the orientation of the treatment
ray, sparing sensible parts of the body from getting any radiation at all. Two separate
orthogonal X-Ray source and detector couples are statically attached to the device. Many
different registration approaches have been used with this machine, e.g. [38, 37]. To a big
extent, fiducial markers implanted into the patient’s body are used for a stable registration.
David A. LaRose [24] applies markerless 2D-3D registration on a head phantom using the
integrated imaging sensors in the Cyberknife. This is the only equivalent approach that I
am aware of to evaluate this kind of registration for patient positioning in Radiotherapy.

For our experiments, we could use a Siemens Primus linear accelerator at the University
of Pennsylvania (UPenn) Hospital in Philadelphia (figure 1.3(b)). The gantry (accelerator
source) can be rotated around one axis, in a way that one spot in the treatment room is
always in focus of the ray. This is called the Isocenter of the accelerator. Lasers are affixed
to all walls and the ceiling in the room, crosscutting in the Isocenter. Therefore skin markers
on the patient, aligned with the lasers may be used as a non-invasive way to reposition the
patient, in case multiple treatments are desired. Naturally, the precision of the skin markers
is very poor, though.

6



1.4 The Radiation Therapy Application

The patient is placed on the treatment bench, which can be translated in all spatial dimen-
sions and one rotational axis, so that the target site corresponds with the Isocenter (figure
1.4). The machine can use its X-Ray source in another low-energy mode in order to create
portal images of the area located around the treatment center. Those pre-treatment images
can be helpful for the proper alignment of the patient as well.

The patient has to be placed on the bench so that its position and orientation is known
with respect to the coordinate system of the linear accelerator. This requires first of all
that the patient is attached to the bench in a stable and defined way. Often molded forms
previously customized for the specific part of the patient’s body are used. Those can be used
at the same time for retrieving the relative position of the target area. Another very common
tool is the Stereotactic Frame, mainly used for neurosurgery. It consists of a light-weight frame
which is tightly attached to the patient’s skull at four spots (figure 1.5). Reference markers
on the frame are visible both in CT and X-Ray images, enabling very accurate tracking of
the patient position. Furthermore an additional arc for surgeon’s tools can be mounted
on the frame (see right picture), which allows retrieving the tool’s coordinates by reading
the angles from the arc. However some discomfort is caused by wearing the very firmly
attached frame from imaging to surgery or treatment, and it may be hampering for certain
operations [13]. As the frame has to be attached during the whole procedure, it prohibits the
scheduling of multiple treatments, which has be shown to be often beneficial for the curation.

Figure 1.5: Stereotactic Frame

The primary goal of our project RTReg is now to achieve correct placement of the patient,
solely based on the information from the existing CT data set and one or more portal im-
ages done by the linear accelerator. No additional markers or other devices attached to the
patient should be used. Our registration should be fully automatic, i.e. the user just pro-
vides an initial estimate of the current patient position and launches the computation. No
segmentation of both CT or portal data should be required. Therefore we use the raw infor-
mation provided in the CT and portal images for our registration. This results in a so-called
intensity-based (often denoted as ”voxel-property based”, too) 2D-3D registration algorithm.

7



1 Introduction

1.5 Outline of this thesis

In the following three chapters I point out the three main issues for solving our registration
problem. First, I cover the basics and existing techniques for creating Digitally Reconstructed
Radiographs (chapter 2). Then I theoretically introduce all known intensity-based similar-
ity measures in chapter 3, used for comparing a DRR with a portal image. In chapter 4 I
treat different optimization algorithms that are suited for our registration. Eventually, the
whole combination of the previously explained techniques in order to obtain a good regis-
tration algorithm is described in chapter 5. This includes details like the parameterization of
the registration transformation, speedup using 2D transformations and Region of Interests.
Some more technical details about the implementation in our RTReg application are listed
in 6. Chapter 7 presents the results of our experiments with simulated, phantom and even
clinical data. This leads to the conclusion and outlook on further work (8).

8



2 Digitally Reconstructed Radiographs

We align the CT dataset with one or more portal images by generating an artificial X-Ray
image out of the CT voxel data. This image is called Digitally Reconstructed Radiograph, DRR.
Our goal is that this image should look exactly like the portal image. In order to achieve this,
we should first understand how real X-Ray images are generated (section 2.1). The different
volume rendering techniques are introduced in section 2.2. Finally I present some details on
using volume rendering methods specifically for DRR generation in 2.3.

2.1 Theoretical Background

The intensity value of each pixel of an X-Ray images represents the attenuation of the X-Rays
coming from the source to the respective position on the detector. The basic formula is∫

ray

µ(x)ds = ln
Nin

Nout
(2.1)

where µ(x) is the linear attenuation coefficient at a given point in space, Nin the incident
photon count and Nout the number of photons hitting the detector. However, this is only an
approximation, as the X-Ray source is not monochromatic, but consists out of a characteristic
energy spectrum. Therefore we have to use∫

ray

∫
µ(x,E)dEds = ln

Nin

Nout
(2.2)

µ(x,E) being the attenuation for a given point in space and a specific X-Ray photon energy.
Under simplifying assumptions you can now interpret the voxel intensities that a CT ma-
chine produces as the attenuation at an effective energy, i.e. the monochromatic energy that
would give the same attenuation as the energy spectrum that is in fact present. The integer
numbers usually saved in CT volumes are either

CT =
µ

µwater
· 1000 (2.3)

resulting in the range [0 . . . 4000], that can be represented with unsigned 12 bit, or

H =
µ− µwater

µwater
· 1000 (2.4)

which provide values between [−1000 . . . 3000] (Hounsfield units). Both formats are usually
saved as 16 bit integers.
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2 Digitally Reconstructed Radiographs

Coming back to our task of generating a DRR, we encounter the problem that the CT
and the X-Ray images are taken at different energies, and therefore the CT voxel intensities
can not be used directly for assembling a line integral value. A very simple approach is to
scale the original CT voxel intensities with the different effective attenuation of water before
summing up the DRR rays.

CT ′ = CT
µwater

µ′water

(2.5)

This is only a very simple improvement, though, as energy dependent attenuation changes
differently for different kinds of materials. Therefore a better (but more costly) way to
correct for different energies is to segment the CT data for instance in metal, bone and
tissue, and use different linear scalings, respectively. This involves a manual interaction for
segmenting the volume, however.

No matter what method is used for correcting the different energies, the X-Ray image
and DRR will always be different. It is important to keep in mind that we are dealing with
different modalities. This sets further constraints on our similarity measure, as it should be
able to cope with structures that are present in one image, but not the other. Thus a lot of
effort is put in selecting apted similarity measures addressing this problem (chapter 3).

2.2 Volume Rendering Techniques

Generation of DRR images is one specific application of volume visualization. Volume ren-
dering techniques can be divided in two main categories: indirect and direct rendering meth-
ods. Indirect methods first perform some preprocessing of the volumetric data in order
to obtain reduced structures that are easier to visualize. Very often volume segmentation is
conducted, resulting in a three-dimensional shape that can be displayed easily using surface-
rendering techniques. Hence most of the computational effort is spent on this segmentation,
whereas the rendering is done very efficiently by just drawing polygons.
Direct methods operate directly on the volumetric data and therefore need to process much
more information for rendering. As this is very time-consuming, many sophisticated algo-
rithms have been developed to speed up direct volume rendering. The most important of
them are briefly described in the following subsections. For DRR generation, only direct
methods are apted, as the full voxel information is needed in order to simulate the physical
effect of X-Ray attenuation. Every voxel in the volume contributes to the image. The respec-
tive voxel intensity values are usually mapped using a transfer function in order to get the
desired visualization effects. A nice overview to different volume rendering techniques, fo-
cusing mainly on recent hardware-accelerated methods, is given in the thesis of Rezk-Salama
[35]. Engel and Ertel [6] provide a survey to the latest developments of volume rendering
methods on consumer graphics hardware.

2.2.1 Ray Casting

The most straight-forward approach for DRR generation is to directly implement equation
2.1. For each pixel a ray is back-projected into the volume. As the volume is available as
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2.2 Volume Rendering Techniques

discrete voxel values placed in a regular grid, a sum of all voxels that the ray intersects with
is computed. In addition the voxel values are mapped using a specific transfer function in
order to achieve a resulting pixel value similar to the X-Ray attenuation along the whole
ray. This corresponds to the common Ray Casting technique widely used in volume visu-
alization. The resulting images are of very good quality, as no simplifications are involved.
However, a major drawback is the high computation time.

2.2.2 Shear-Warp Factorization

slices in sheared
object space
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volume slices

image plane

projection center

warp

Figure 2.1: Basic operation of the shear-warp algorithm

This algorithm transforms the volume to an intermediate coordinate system called the
”sheared object space”. In this space all viewing rays are parallel to the third coordinate axis.
This involves shearing, scaling and resampling the volume slices. Those slices are composed
together in front-to-back order resulting in an intermediate 2D image. The final step is to
”warp” this image in order to transform it to the original image space (figure 2.1). See [22, 23]
for further details. The rendering is very efficient, as the voxels in the intermediate slices
correspond with the scanlines of the final image, and can be composed immediately. On the
other hand this algorithm produces artifacts under certain circumstances, and therefore may
be problematic if used for accurate registration. However, there are registration applications
successfully using this rendering method [47].

2.2.3 Precomputing a Transgraph

This approach uses a data structure which stores gray level values of a big number of DRR
rays in a efficient data structure [24]. These ray values are precomputed in a number of
different viewing directions around the initial estimate. Rendering of a DRR is therefore
reduced to just select the corresponding pixel intensities for the current pose. Precomputing
takes about 5 minutes in [21], and generally can be done using any known volume rendering
technique. The faster the selected rendering method is and the more time is available, the
bigger is the fraction of the parameter space that can be precomputed.
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2 Digitally Reconstructed Radiographs

2.2.4 GPU Rendering with 2D Textures

Using more advanced graphics hardware, each volume slice can be loaded into the texture
memory of the computer’s graphics card. The GPU then rapidly renders the final image
by drawing semitransparent planes with the respective textures. As a preprocessing step,
additional slices are generated from the volume in different orientations. The set of slices
which has the orientation closest to the current point of view is selected for rendering. If the
angle between slice orientation and point of view is too high, however, artifacts similar to
the results of Shear-Warping will be present.

2.2.5 GPU Rendering with 3D Textures

Figure 2.2: Volume Rendering using 3D Textures

Recent consumer graphics cards support an extension called ” 3D Texture”. A whole vol-
ume can be stored in the texture memory. The user can provide a set of 3D texture coordi-
nates, causing the GPU to generate a 2D texture interpolated on a plane in the 3D volume.
For volume rendering, a set of these 2D planes is being drawn with a specified transparency,
equivalent to the 2D Texture algorithm. The difference is, that the 2D planes are constructed
on-the-fly out of the volume, and therefore can be oriented perpendicular to the viewing
direction at any time, resulting in an image without artifacts (figure 2.2). See [24] for de-
tails. We decided to implement this algorithm for NVidia GeForce graphics cards, using the
OpenGL library.

2.3 DRR Rendering

To create realistic DRRs, first of all the geometry of the original X-Ray imaging device has
to be known. This is always a perspective projection, based on the pinhole camera model.
It is therefore important that the used volume rendering algorithm supports the use of a
perspective camera. However, many efficient implementations presume that a parallel ge-
ometry is sufficient. In order to support perspectiveness, the programming effort can rise a
lot, especially if no loss in speed is desired.
Another requirement is that the largest possible precision is used to assemble the DRRs.
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2.3 DRR Rendering

Figure 2.3: Transfer function for DRR rendering

This is not a matter of course, as most interactive volume visualization methods work on 8
bit voxels. However, the underlying CT data for DRR generation is saved with 16 bits per
voxel (see section 2.1). In order to obtain the best quality, this precision has to be kept during
computation of the reconstruction.
The transfer function of a volume rendering method usually maps the voxel values to spe-
cific channel values for red, green, blue and alpha (opacity). For the DRR case only a linear
gray value mapping is needed, which has to satisfy equation 2.5. Thus it is fine to use a
single ramp in the transfer function and to parameterize it with three values, window, level
and transparency (figure 2.3).
We implemented an apted volume rendering algorithm specifically designed for DRR ren-
dering, which fulfilled the above requirements. See section 6.2 for details.
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3 Intensity-Based Similarity Measures

As we are searching for the best alignment of two images by transforming one onto the
other, it is a very crucial issue to assess how similar two images actully are. The two main
classes of similarity measures are feature-based and intensity-based.

Feature-based measures do some processing with the images first in order to obtain
significant information, which can be used to judge the similarity. This can be the position of
significant landmarks, or the parametrization of certain shapes within the images, which are
obtained by segmentation. However, this processing usually needs some user interaction,
which is often not desirable.

On the contrary, intensity-based measures use the full raw image information. A similarity
measure is derived using all intensity values in the two images. However, one may consider
introducing a region of interest in order to omit non relevant image parts. Working with
this kind of measure is often referred to as voxel property based registration, too. The main
advantage is that registration can be executed right after image acquisition and definition
of an initial pose. No further user input is needed for instance for selecting landmarks or
setting the parameters for a segmentation. This is the kind of similarity measurement that
we are going to use. Figure 3.1 shows an overview about the three classes of measures that
will be covered in the following chapters.

Figure 3.1: Classification of image similarity measures
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3 Intensity-Based Similarity Measures

Figure 3.2: Difference image from a DRR and X-Ray image, green=positive, red=negative

3.1 Measures using only Image Intensities

This class of similarity measures compares the intensity values of both images pair-wise
at the same pixel positions. Subsequently one single value is composed out of it with a
certain scheme. An advantage of this kind of measure is that it can be used not only with
twodimensional images, but with any kind of data in arbitrary dimensions, as no spatial
information is considered.

3.1.1 Sum of Intensity Differences

One very simple similarity measure is the sum of squared differences (SSD) between two
images:

SSD =
1
N

∑
(x,y∈T )

(I1(x, y)− I2(x, y))2 (3.1)

T is the overlap domain (eventually combined with a region of interest) of the images, N
is the number of pixels in T . It can be shown that SSD is the optimum measure when two
images only differ by Gaussian noise. Therefore this measure is mostly used in registration
applications where two images from the same modality are used, otherwise this constraint
is not realistic. Besides simplicity, another reason to use this measure may be that specific
optimization algorithms can be used, that can minimize sum-of-squares expressions very
efficiently (see section 4.1). Due to its simplicity, this measure is especially used for intra-
modality registration [13].
A problem with SSD is that a small number of pixels with very large intensity differences can
alter the similarity value very much. This may be the case when certain shapes are present
in one image, but not in the other. This effect can be reduced by using the sum of absolute
difference, SAD instead of SSD [13]:

SAD =
1
N

∑
(x,y∈T )

|I1(x, y)− I2(x, y)| (3.2)
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Figure 3.3: Different weighting functions for summing up differences

Generalizing, one can rewrite this kind of similarity measure like

1
N

∑
(x,y∈T )

f(d)

, where d = I1(x, y) − I2(x, y). By choosing the function f(d) appropriately, one can adopt
the similarity measure to behave in different ways.

I suggest to consider a f(d) = σ2/(σ2 + d2) form of the addend. This would normalize
the measure to the interval [0 . . . 1] and limit the influence of occasional huge differences
between the intensities:

1−
∑

(x,y∈T )

σ2

σ2 + (I1(x, y)− I2(x, y))2
=

∑
(x,y∈T )

(I1(x, y)− I2(x, y))2

σ2 + (I1(x, y)− I2(x, y))2
(3.3)

The resulting measure is the most sensible to changes when the gradient of f(d) is maximal.
Therefore

f ′′(d) = 0⇒ d = ± σ√
3

Generalizing, the function f(d) may be defined anyhow, as long as it satisfies the con-
straints for a robust estimator. Robust estimators [16] are widely used e.g. in computer vision
and machine learning. They are basically a tool for statistical problems, where the underly-
ing assumptions are inexact, and do especially have outliers. Robust functions thus have to
be insensitive to those outliers, just as e.g. equation 3.3 is.
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3.1.2 Correlation

Linear correlation is used everywhere in mathematical and computer science problems,
when the relation between two data sets have to be assessed in a fast and simple way. In
our case, we want to quantize the linear dependency of the pixel values in one image to
the other. This measure is called Normalized Cross Correlation (NCC), often referred to as
Correlation Coefficient as well:

NCC =
1

σ1σ2

1
n

∑
(x,y∈T )

(
I1(x, y)− I1

)
·
(
I2(x, y)− I2

)
=

∑
(x,y∈T )

(
I1(x, y)− I1

)
·
(
I2(x, y)− I2

)√∑
(x,y∈T )(I1(x, y)− I1)2 ·

√∑
(x,y∈T )(I2(x, y)− I2)2

(3.4)

I1 and I2 are the mean intensity values in the images I1 and I2, respectively. The denomina-
tor is the product of the standard deviations in the two images.
If the one image is linearly dependent on the other one, e.g. ∀(x, y) ∈ T : I2(x, y) =
aI1(x, y) + b, a value of one would be achieved (and −1 accordingly, if a is negative). That
means for practical use, that both different contrast and brightness values in the images
should not affect the similarity measure (except for differences due to rounded intensity val-
ues), which is very desirable.
If the measure is computed according to equation 3.4, the image data has to be read twice,
once for calculating the mean intensities, and once for completing the summation. This can
be avoided by expanding the formula:

NCC =
∑

I1(x, y)I2(x, y)− nI1I2√∑
I1(x, y)2 − nI1

2 ·
√∑

I2(x, y)2 − nI2
2

(3.5)

The result includes more arithmetic operations, however the images have to be read only
once. Besides, as usually only one of the images is changing during registration (let’s assume
I1), some of the sums have to be computed only once, I2 and

∑
I2(x, y)2. On the other hand,

this form of cross correlation is more subject to numerical problems (see Numerical Recipes
[32], section 14.1).
If one normalizes the constant image to have a mean value of zero and variance of one (which
is a linear mapping and thus does not change the measure value), the computation becomes
very simple:

Ĩ2(x, y) = (I2(x, y)− I2)/σ2

NCC =
1

σ1n

∑
I1(x, y)I2(x, y) (3.6)

Depending on the magnitude of the image data and the time constraints, one may choose
one of the presented formulas. For our registration problem, the correlation is computed on
two-dimensional images, resulting in almost no loss of time at all. Hence we do not have to
consider any speed issues and use the first equation 3.4.

One problem of this measure could be that if parts of the image are directly and inversely
related to each other, they may be compensated in the measure. This may be especially
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significant if different modalities are used for the registration, as different tissue types may
have different intensity ranges then, and there would be a change that some of them are
related in the opposite way. If this shows to be a relevant problem, one can modify the
measure in order to sum up over the absolute values of the linear correlation:

NCC ′ =
1

σ1σ2

∑
(x,y∈T )

∣∣(I1(x, y)− I1

)
·
(
I2(x, y)− I2

)∣∣
Normalized Cross Correlation has been used for various registration problems. In 3D-

3D registration it is mainly limited to images of the same modality, however there are ap-
proaches using NCC on image data transformed to fourier-space [13]. It is being used and
evaluated for 2D-3D registration [30, 15, 34] and slice-to-volume registration [8] as well.

3.2 Measures using Spatial Information

This class of measures still evaluates the data pixelwise, but in addition some kind of neigh-
borhood information is involved at every position. This can be done by adding all differ-
ences within a certain radius (Pattern Intensity), or by calculating gradient images for further
examination.

3.2.1 Pattern Intensity

This measure [30, 15] directly assesses the content of a difference image, Idiff = I1 − sI2. If
the images are perfectly aligned, the difference image should contain the fewest amount of
patterns, or be constant in the optimum case. Pattern Intensity now sums up over differences
between neighbored pixels in Idiff .

PIr,σ(s) =
1
|T |

∑
x,y∈T

∑
v,w

σ2

σ2 + (Idiff (x, y)− Idiff (v, w))2
(3.7)

where (v, w) ∈ T and (x − v)2 + (y − w)2 < r2. Good working parameters are r = 3 and
σ = 10 [30], the latter selecting the values in the difference image where the measure is the
most sensitive (see section 3.1.1). The scaling factor s for creation of the difference image
should be chosen so that the difference image has the least contrast. Note that a constant
shift between the image intensities does not affect the similarity measure, as it only assesses
differences in the difference image.

3.2.2 Gradient Correlation

By using horizontal and vertical Sobel templates, four gradient images dI1/dx, dI1/dy,
dI2/dx and dI2/dy are created (figure 3.4). Then Normalized Cross Correlation (equation
3.4) is calculated of these horizontal and vertical gradient images, respectively. The final
value of the measure is the average of the two NCCs [30].
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Figure 3.4: Horizontal and vertical gradient images of a DRR image

If we now assume a case where this measure reaches the maximal value (namely 1 or −1),
the gradient images have to be linearly dependent:

∂I2(x, y)
∂x

= ah
∂I1(x, y)

∂x
+ bh

∂I2(x, y)
∂y

= av
∂I1(x, y)

∂y
+ bv

ah, bh and av, bv are constants for the horizontal and vertical gradient images, respectively.
Integrating gives the following constraints:

I2(x, y) = ahI1(x, y) + bhx + ch + fh(y)
I2(x, y) = avI1(x, y) + bvy + cv + fv(x)

Here fh(y) and fv(x) are arbitrary functions. As can easily be seen, the postulated depen-
dency between the images is now much looser compared to the original Cross Correlation.

3.2.3 Gradient Difference

This measure, proposed in [30] evaluates two difference images IdiffH and IdiffV which are
calculated from gradient images (section 3.2.2). The same 1/(1 + x2) structure as pattern
intensity (section 3.2.1) is applied.

GD(s) =
∑

x,y∈T

Ah

Ah + (IdiffH(x, y))2
+
∑

x,y∈T

Av

Av + (IdiffV (x, y))2
(3.8)

IdiffH(x, y) =
dI1

dx
− s

dI2

dx
, IdiffV (x, y) =

dI1

dy
− s

dI2

dy

Ah and Av are constants which work well if they are set to the variance of the respective
reference image [30].
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3.2.4 Sum of Local Normalized Correlation

This measure has been introduced in [24] as an extension of the Normalized Cross Corre-
lation measure. If the intensities in the one image are distorted in terms of slight global
changes, the constraint of a linear relationship between the intensities might not hold any-
more. A solution is to calculate the correlation values of many small image parts and to take
the average of them.

SLNC =
1
|Q|

∑
p∈Q

NCC(I1, I2, P (p)) (3.9)

Q is a set of points in the image, and P (p) defines a neighborhood around a specific point
p, in which the correlation is calculated. A square of size 5 by 5 to 12 by 12 pixels makes
probably sense. The set Q may for instance be defined as a grid of pixels, so that the squares
are adjacent. Another option is to take more pixels into account, so that the squares are
overlapping. On the extremum every pixel is considered, and the correlation around its
neighborhood calculated. This is compuationally costly, but an efficient implementation
with recursive filters is possible.
A problem arises if some of the neighborhood areas are constant, as the NCC value is un-
defined then. For the fixed image it is fine to omit the values for this specific regions, as
they are the same during the whole registration process. If the moving image has constant
regions, however, the measure might get unstable with this approach, as certain region win-
dows would sometimes be considered, somtimes not. In [24] a small amount of Gaussian
noise is added to the DRR to solve this problem.
In my opinion, though, it is sufficient to omit those image regions, even if their number is
not constant. To support this, let’s consider a workaround that increases one arbitrary image
pixel in the respective constant image region. Let x be the set of pixels considered in the
moving image, y the pixels in the fixed image, k is the position where the respecive x image
value is increased by 1. The normalized correlation for this region can then be developed:∑

(xi − x)(yi − y)√∑
(xi − x)2

√∑
(yi − y)2

=

yk − y√∑
(yi − y)2

=

yk − y√
n− 1σx

The expectation of this correlation is zero, as E(yk − y) = 0. Therefore it is justified to omit
those undefined correlation windows.

Another improvement can be made by not just taking the average of the region correla-
tions, but weighting them with the respective variance of the region in one of the images [24].
This makes sure that for instance the correlation of windows containing bony structures are
better emphasized than low contrast windows containing e.g. tissue. The measure is then
called Variance-Weighted Sum of Local Normalized Correlation. Furthermore this measure has
the effect that structures that are only present in one image, can be efficiently ignored. By us-
ing weighting with the variance of the first image, for instance, the high variance at certain
structures in the second image (which are considered to be disturbing) are being ignored.
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3 Intensity-Based Similarity Measures

Therefore this measure is especially apted for applications, where objects are present in one
of the images that should be ignored in the registration.

3.3 Histogram Based Measures

Figure 3.5: Joint and individual histograms for a DRR and a X-Ray image

Those measures overlap with what is often termed Information Theoretic Measures. Here,
successful registration means to maximize the amount of shared information in the two im-
ages, or two minimize the amount of information present in a difference image. In order
to automate this idea, some measure of information is needed as prerequisite. The most
commonly used one is the Shannon entropy

H = −
∑

a

p(a) · log p(a) (3.10)

, where p(a) denotes a discrete probability distribution. Another entropy concept apted for
registration has been introduced in [46], the Cumulative Residual Entropy. If the amount
of information in an image is to be assessed, the image pixel intensity is treated as random
variable. p(a) is then the probability that any pixel in the image has the intensity a. It is
being summed up over all possible intensities, e.g. [0 . . . 255] for 8 bit images. Therefore
the distribution can be composed by creating a histogram (counting the occurrences of
every possible intensity value) and dividing by the number of pixels in the image. Similar
to that, a joint probability distribution is created by counting the occurrences of every
pair of intensities in two images (at the same pixel position, respectively), resulting in a
two-dimensional histogram. Figure 3.5 shows a joint histogram and the respective two
individual histograms. Once those distributions are computed, every further processing is
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done on them, without considering any of the original image data.

To mention is, that the measures from section 3.1 can be rewritten in order to be com-
puted based on histogram information, too. The Sum of Squared Differences and Normal-
ized Cross Correlation can be computed as follows:

SSD =
∑
a,b

p(a, b)(a− b)2

NCC =

∑
a,b p(a, b)(a−ma)(b−mb)√∑

a p(a)(a−ma)2
√∑

b p(b)(b−mb)2

ma =
∑

a

a p(a), mb =
∑

b

b p(b)

However, this is not the original idea of those measures, and the respective calculation is
more costly. It is only important to bear in mind that the information base is in fact the same,
namely image intensity information.

3.3.1 Entropy of the difference image

In this case the entropy of a difference image Idiff = I1 − sI2 like in 3.2.1 is examined [30].
If the two images are matching perfectly, the difference image should be empty (i.e. have
constant intensity values), which results in an entropy of zero.

3.3.2 Mutual Information

For measuring the amount of combined information in two images, the joint entropy is used:

H(I1, I2) =
∑
a,b

p(a, b) · log p(a, b)

it is being summed up over the intensity range of both images. The intensity probabili-
ties p(a, b), also called probability distribution function (PDF) can be visualized as a two-
dimensional joint histogram. Every value of p(a, b) tells the occurrence of the intensity a in
the first and intensity b in the second image at the same positions, respectively. If I1 and
I2 are totally unrelated, the joint entropy will be the sum of the entropies of the individual
images. The more similar the images are, the lower the joint entropy is (if the images are the
same, it equals the entropy of the images, H(I1, I2) = H(I1) = H(I2)). Mutual Information
now combines the entropy calculations of the individual images and the combination:

MI = H(I1) + H(I2)−H(I1, I2) =
∑
a,b

p(a, b) · log
p(a, b)

p1(a)p2(b)
(3.11)

The range of this measure is now [0,Hmax], where Hmax is the maximum entropy that is
possible. It can be achieved by assuming equal distribution of all intensity values in the
image, i.e. a constant histogram:

Hmax = −
∑

a

1
n
· log

1
n

= log n
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n is the number of histogram entries, e.g. 256. It is desirable to normalize the mutual infor-
mation measure to have a value between 0 and 1. This can be done easily [13]:

MI ′ =
2MI

H(I1) + H(I2)
= 2− 2H(I1, I2)

H(I1) + H(I2)
(3.12)

An alternative normalization scheme is to use the ratio between the individual entropies
and the joint entropy. This has been shown to be more invariant to changes in the overlap-
ping area of the images [40, 39], but nevertheless is only a rewriting of the first normalized
equation:

MI ′′ =
H(I1) + H(I2)

H(I1, I2)
=

1
MI ′ − 2

(3.13)

Some important features of normalized mutual information (equation 3.12):

• The result is zero if one or both of the images are constant.

• The result is one if both images are identical or the pixel values in one image are only
scaled and shifted with respect to the pixel values in the other image. However, this is
only valid if no rounding errors occur and no intensities get lost on the bounds. This
implicates that the entropies of both images are still the same.

• Varying the size of the histograms and the joint probability distribution has an impor-
tant affect on the MI value. I calculated normalized MI for two 256x256 16 bit images,
which consist to one part of a constant ratio of common random noise, and to the other
part of a certain percentage (which is displayed on the axis) of independent random
noise. This calculation is done for all histogram sizes from 4 bit to 12 bit. The re-
sults can be seen in figure 3.6. It seems to be desirable to adapt the histogram size to
different image resolution and registration accuracy. If we deal with coarse images,
using high histogram resolution could end up in wrong local maxima, as pairs of exact
intensities in the images are not relevant then. On the other hand, if high-resolution
images are used and the registration estimation is already very close to the optimum,
full histogram resolution results in a very sharp rise to a value of one.

A very important property of Mutual Information is, that it assumes no functional
dependency between the images at all, only statistical dependence between the intensities.
Due to this fact this measure is very popular in registration problems where different
modalities are involved. A very comprehensive work about Mutual Information and its
information-theoretic background can be found in [45]. The proposed stochastic maximiza-
tion procedure and experimental results are also summarized in [44]. Mutual Information
has become the most popular similarity measure for inter-modality registration problems, a
nice survey is available by Pluim, Maintz and Viergever [31].

One drawback of Mutual Information that is criticized sometimes, is that it does not con-
sider any spatial information. In recent years some ideas have come up that would com-
pute Mutual Information not just on intensity values, but on vectors incorporating inten-
sity and one to three spatial parameters, for instance the pixel location in the images. The
consequence is that the entropies of multi-dimensional probability distributions have to be
computed. Those distributions, and especially the respective joint probability distribution,
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Figure 3.6: Normalized MI on images with different noise levels and histogram sizes

usually cannot be saved in an array anymore. Thus the problem is generalized to estimat-
ing the necessary entropies (overview in [2]), discarding any explicit form of the underlying
probability distributions. For instance, some immediate storage of the ”probability vectors”
(incorporating discrete intensity information) in lists can be done, and the entropy calcula-
tion is carried out with some minimal spanning tree algorithm on those vectors [14]. Other
strategies to estimate multi-dimensional entropies can be found in [27]. Theoretically, those
multi-dimensional MI approaches are very promising, but are up to now doomed to fail due
to the enormous computation effort.

3.3.3 Correlation Ratio

This is an alternative approach of an information theory based similarity measure, intro-
duced by Roche et al. [18]. It can be seen as a measure of how well one image explains
the other. Therefore the image intensities are treated as random variables and a functional
dependency between the images is assumed. A very important characteristic of correlation
ratio is, that it is not symetric. One has to decide in advance which image should be the
model, and therefore is used as a base for the estimation of the second image. The basic
equation is:

η(I2|I1) =
V ar (E(I2|I1))

V ar(I2)
(3.14)

In this case the variables I1 and I2 stand for random variables of the image intensities, re-
spectively. Assuming that I2 is totally independent of I1, the expectation E(I2|I1) = E(I2)
is constant and thus its variance is zero. On the other hand, assuming full functional depen-
dence, every value of I2 can be predicted given knowledge of I1 and therefore E(I2|I1) = I2,
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3 Intensity-Based Similarity Measures

resulting in a similarity measure value of 1. Computing the actual value is done with

η(I2|I1) = 1− Ea [V ar(I2|I1 = a)]
V ar(I2)

= 1− 1
σ2

∑
a

σ2
ap1(a)

σ2 =

(∑
b

b2 p2(b)

)
−
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b

b p2(b)

)2

σ2
a =

(
1

p1(a)
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b

b2 p(a, b)

)
−

(
1
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∑
b

b p(a, b)

)2

Correlation Ratio originates as an extension of Correlation Coefficient (termed Normalized
Cross Correlation in my work, section 3.1.2), now assessing functional dependence instead of
just linear one. When using this measure with images of the same modality, the behavior of
Correlation Ratio and Correlation Coefficient is indeed very similar, as I was able to confirm
in corresponding similarity measure plots (chapter 7).
In contrast to Mutual Information, the Correlation Ratio is not based on entropies, but on
the variance of a image random variable that is conditioned with the random variable of
another image. The main advantage of this is that proximity information in the intensity
space is considered, whereby the entropy and joint entropy calculations only assess pairs of
intensity ranges. The authors claim [18] that this primarily results in better robustness at
lower image resolutions.

3.3.4 Probability Distribution Estimation

The probability distributions used for MI and CR can be approximated using only a specific
number of random sample pixels from the images. This is especially beneficial for regis-
tration applications, as a DRR computation can be accelerated notably by just computing
specific pixels in the image.
The Parzen Window method approximates a probability distribution using a fixed number of
samples. The assumption is that each sample point ai contributes to the overall distribution
with a Gaussian density distribution centered at the sample value [43]:

p(a) ≈ 1
n

n∑
i=1

G(a− ai) (3.15)

, n being the number of available samples and G(x) an apted Gaussian distribution centered
at the origin. Using a two-dimensional Gaussian kernel allows to use the same scheme for
the joint probability distribution. Viola and Wells developed equations using this estimation
for calculating image entropies, Mutual Information and its derivatives efficiently [44, 45].
Sparse Sampling is a similar approach, assembling the necessary histograms by inserting the
intensity values into the histogram, however using only some random samples and a big
histogram bin size. Zöllei et al [48] build the histograms from 100-150 samples using 32
intensity bins.
Any similarity measure based on these estimations will be noisy due to the use of random
samples. This can be taken care of by using stochastic optimization algorithms like stochastic
gradient descent, overcoming at the same time problems with local optima (see chapter 4).
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3.4 Suggested Class Hierarchy

Figure 3.7: Class hierarchy proposal for similarity measures

3.4 Suggested Class Hierarchy

For use in our specific application, I implemented all introduced similarity measures in one
single class (see section 6.3), in order to enable rapid computation of multiple measures at
the same time. Besides, there were plans to integrate the measures into a library currently
under development by Siemens Corporate Research, the Fusion Toolkit (FTK). As being part
of a library, the measures should be as generic as possible, so that for instance the data type
being used, or even the dimensionality, may be chosen by the user. I developed a class hier-
archy that meets those requirements (figure 3.7). The top class should provide the interface
to set the images to be compared and some general options. The various subclasses specify
details for each kind of measures.
By now, the image class used in the FTK library is templated both with the data type and the
number of dimensions. This allows to implement all measures only once, whatever dimen-
sionality the images have (2- 3- or 4-dimensional). The iterator concept is used extensively,
therefore allowing the measures to scan the image data without any case distinctions. For
the subcategory of spatial measures, some customized neighborhood iterators are neces-
sary. For Pattern Intensity a circular (or spherical) one, and for the gradient based measures
one who can compose gradient information in arbitrary dimensions. The subclass for his-
togram based measures constructs individual and joint histograms, needed by Mutual Infor-
mation and Correlation Ratio. The additional subclass for entropy based measures provides
a scheme of attaching any desired entropy estimator. This might be Sparse Histogramming,
Parzen Windowing or even multi-dimensional approaches.
Furthermore, the FTK image class will provide a mechanism to attach transformation and
interpolation class instances for transparently returning transformed pixels using the same
access method. Therefore any kind of registration can be implemented easily using those
classes.
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4 Optimization Algorithms

In this chapter I will present some optimization algorithms that are apted to solve the prob-
lem of finding the best rigid transformation for aligning a projected image with a reference
image. This optimization problem thus has six degrees of freedom. Beforehand, I provide
an overview about non-linear optimization in general.

4.1 Overview

Every optimization algorithm’s goal is to find the parameter vector x that minimizes
(or maximizes) the value of a cost function F (x). Therefore the algorithm searches the
parameter space with a specific scheme iteratively. It terminates once some abortion criteria
has been satisfied, for instance if the change in the cost function value is below a limit
(functional tolerance) or the search distances in the parameter space drop below a given
value (parameter tolerance). Optimization schemes have always been developed with the
aim of getting along with as few cost function evaluations as possible, therefore taking rare
samples of the cost function value and using a nifty strategy to decide where to set the
next try in the parameter space. This is especially crucial in our application, as the cost
function is a similarity measure which assesses the difference between a DRR and the X-Ray
image. Calculating this measure comprises generating a new DRR, and though is very
computationally expensive. Besides, this similarity between two images is naturally highly
non-linear, and we can not make use of any parameter constraints that ease the registration
problem (unless we use the approximations introduced in section 5.2). Therefore the class
of optimization problem that we have to solve is unconstrained non-linear optimization.

A main difference between optimization algorithms is if they make use of the cost func-
tion’s derivatives. The gradient vector can be used as base for determining the next steps,
as done in the Gradient Descent algorithm or Conjugate Gradient methods. There are appli-
cations where the cost function gradient can be calculated much faster than the function
value itself, boosting the optimization time accordingly. Some registration approaches use
derivative approximations, especially when Mutual Information is used as similarity mea-
sure [48, 44, 45, 49]. These methods are based on estimating the underlying image entropies
by using just some samples of the image pixels. As our DRR generation is 3D-texture-based
and instantly renders the whole image, I do not consider those approaches. For the Gradient
Descent optimizer, I compute the gradient vector by fully evaluating the cost function at dis-
placed positions in each degree of freedom, which limits the performance of this algorithm.
Another important set of methods can be used if the cost function is a sum of squares of
nonlinear functions

F (x) =
1
2

m∑
i=1

fi(x)2 =
1
2
||f(x)||22 (4.1)
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4 Optimization Algorithms

This type of function often occurs if a model is to be fitted to data, where x is a parameter
vector for the model function and the individual fi(x) express the distance from a specific
part of the model to a data element. Both the gradient vector and the Hessian matrix of 4.1
have a special structure, allowing adapted optimization algorithms like Gauss-Newton and
Levenberg-Marquardt to be used [11]. Out of the similarity measures that we use, only Sum of
Squared Differences (SSD) has this scheme (equation 3.1), at the same time being the most
simple measure. Hence we do not consider using special algorithms for sums of squares
cost functions. However there is existing work using those methods [19].
Especially in engineering problems, where the objective function sometimes can be
tremendously difficult to compute, optimization schemes are used that approximate the
cost function, the so-called Surrogate Methods [41]. This is usually done using a specific
interpolation method to simulate the cost function at desired positions. A lot of effort can
be spend there, as the more knowledge about the underlying problem is used, the better the
approximated values will be. [5] uses a surrogate based method for registration of CT with
C-Arm fluoroscopy images.

For many optimization problems a danger exists of getting trapped in local optima
of the cost function. One possible solution is to repeatedly start the optimization from
different starting points in the parameter space, eventually choosing the best result as
optimum. Another workaround comprises adding noise to the cost function value, either
on purpose, or as byproduct of an accelerated cost function estimation [45]. This results
in a stochastic optimization approach. Another widely used technique to overcome local
optimas are Simulated Annealing methods, which sometimes take steps in bad directions
with decreasing probability. That ”bouncing around” in the parameter space reflects the
movement of molecules when matter is in the transition from fluid to solid state. This
method was not applied much to registration problems, though.
One problematic aspect with optimization for registration purposes is, that sometimes
the correct alignment is found at a local optimum, and the global cost function optimum
denotes some wrong registration. For instance, Mutual Information can reach a maximum
if the structures in the two images do not overlap at all. In our application the starting pose
is always close enough to the correct registration to avoid problems with broadly placed
local optima. But on the other hand it is possible that the image similarity has different
optimas scattered in a small area around the correct registration pose. This effect would
be supported e.g. by interpolation artifacts, considering small changes in the DRR pose.
Fortunately it turned out that both our DRR generation and some appropriate similarity
measures work in a way that the resulting cost function is very smooth (see diagrams in
section xx). Hence we do not have to address the local optima problems in our specific
application.

Optimization comprises that a cost function is either to be maximized or minimized. For
registration tasks, the cost function is the similarity of the two images to be registered. As
most of the considered similarity measures increase in proportion to the image alignment,
we want to maximize them. Therefore I will stick to the option of maximizing the cost func-
tion in the rest of this chapter. As far as similarity measures are used that reach a minimum
at correct alignment (e.g. Sum of Squared Differences), I negate them in order to use them as
cost function.
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4.2 Best Neighbor Search
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Figure 4.1: Best Neighbor Optimization run

4.2 Best Neighbor Search

This is one of the simplest optimization algorithms, often referred to as Hill-Climbing, too. In
every iteration, the position in each degree of freedom is altered a specific step size in both
directions and new values of the cost function at this positions are calculated. After having
evaluated all 2n neighbors (with n being the number of dimensions, or degrees of freedom)
the one that improves the cost function value most is chosen and set as the base position for
the next iteration.
If none of the neighbors achieves a better value than the current, either a downscaling of
the step size is executed, or the algorithm terminates, assuming to have found an optimal
position. Applied to our registration problem where the parameter space has 6 dimensions
(see section 5.1), the cost function value at 12 different locations is evaluated in every itera-
tion. For successive iterations with a constant step size, one of the evaluations occurs at an
already known position (the step ”back”) and can be omitted.
This algorithm basically compares the progress of the cost function in the different unit direc-
tions in the parameter space. Therefore it works the better, the more similar the cost function
behaves in each direction. This requires that the parameterization of our rigid transforma-
tion is selected accordingly, see section 5.1.4 for details. The starting position for the next
iteration is always a spot in the parameter space which has already been evaluated, and
turned out to be the best known position. This trust nothing that you don’t see attitude seems
to be beneficial especially in our application, where the cost function is highly non-linear
and sometimes wrinkly. Other methods that use a scheme to predict an unknown position
in each iteration might perform worse. I used the Best Neighbor Search extensively for our
registration, and it indeed performed very stable, despite being so simple (see the results in
chapter 7). It is used in various other registration applications, e.g. [38, 37].
As the neighborhood in all degrees of freedom is evaluated in each iteration, one could
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think about using steps combined of multiple DOFs that have the most significant ascent of
the cost function. This would alter the algorithm towards the Gradient Descent method (sec-
tion 4.3), but one the other hand have the property of setting steps into unknown locations
in the parameter space. I did some sample optimization runs with the algorithm changed
accordingly, which turned out to be slightly slower. There are researchers using this scheme
successfully though, e.g. [30].
A similar algorithm often mentioned in literature is the Downhill Simplex method [32]. A
simplex is a minimal geometric shape, consisting of N + 1 corners in N-dimensional space.
A starting simplex is defined, the cost function is evaluated at the corners, and depending on
the results the shape of the simplex is changed. This method is mostly known for its simple
and elegant implementation, but is not supposed to be extraordinary efficient.
Integrated into the whole context of methods for solving unconstrained optimization prob-
lems, this kind of algorithm is referred to as Pattern Search Algorithms. These methods have
in common, that they use a search pattern which is independent of the cost function in or-
der to evaluate the cost function at specific points in the parameter space. According to the
results, the position, orientation and size of that pattern is altered successively in each iter-
ation. Torczon [42] provides a general discussion of Pattern Search algorithms, including a
theory of the convergence behavior. Besides the Best Neighbor and Simplex methods, this
category contains for instance the Hooke-Jeeves pattern search method, which has also been
applied to rigid 2D-3D [5] and deformable 3D-3D [4] registration projects at my university.

4.3 Gradient Descent Method

A very common way to find a maximum is to step successively in the direction of the func-
tion gradient.

xnew ← λ
df(x)
dx

The factor λ is a constant known as the learning rate. It is positive if we are seeking for a
maximum, and negative otherwise. Unfortunately the success of the optimization depends
very much on the right choice of λ. If it is too big, steps are taken too far and may skip
the optimal position repeatedly. However, if it is set too small, the algorithm may get stuck
before the optimum, as the step size depends both on λ and the absolute size of the function
gradient.
There are some different approaches to use an adaptive learning rate. I used an additional
factor, resulting in

xnew ← λ
ln(|df(x)

dx |+ 1)

|df(x)
dx |

df(x)
dx

. This limits the step size if the absolute size of the gradient is very high, which is often the
case at the beginning of the optimization run. Which adaptive schemes and values are best
for the optimization, depends on the specific registration problem and the cost function,
and can only be determined empirically. A realistic approach would probably be to use a
previously defined list of λ and adaptive parameters, defined for each similarity measure
and even for each type of images to be registered. This algorithm is for instance used in [17].
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Figure 4.2: Powell-Brent Optimization run

An extension of this algorithm conducts line maximizations along the direction of the gra-
dient, resulting in the Steepest Descent method. This does not rely on the empirical definition
of a learning rate anymore. Every new iteration then starts from a maximum on the direction
of the previous gradient, thus the component of the new gradient in that old direction will
always be zero. This means that all iterative steps are perpendicular to each other, which is
not very efficient. This problem leaded to the development of more sophisticated algorithms
involving multiple old directions, the Conjugate Gradient methods. However, the effort nec-
essary to implement one of those algorithms was in no relation to the expected performance,
as we do not have efficient gradient calculation in our application.

4.4 Powell’s Direction Set Method
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Figure 4.3: Powell direction set method in two dimensions

This algorithm starts at a given position in the parameter space, and minimizes the cost
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function successively along certain directions. Therefore the problem is split up in two parts:
Finding the best directions in n-dimensional space, and doing efficient line minimization on
a new cost function with only one parameter. The latter problem can be solved very well
with an algorithm called Brent Line Minimization. It uses both parabolic interpolation and
golden section search, choosing dynamically in each step which method is more appropri-
ate. It is described very detailed in [32], other methods for bracketing a minimum and root
finding can be found in [26].
The other problem is now to find directions in the parameter space, so that a line minimiza-
tion along one of them does not spoil the minimizations done along the former directions.
Therefore, the different directions should be capable of being optimized independently. The
crucial task is now to determine the best directions.
According to Powell’s scheme, the first set of directions are the individual degrees of free-
dom themselves. After n line minimizations, the first direction is replaced with the vector
that leads from the last to the current estimate, all other directions are shifted (see figure 4.3).
This makes sure that the first line minimization of each new iteration is done along the way
that the parameters improve most. From the old directions, the one where the biggest move
happened on the previous line minimizations, gets ”fired”. It is most likely to be contained
in the newly selected direction anyway, therefore the directions are kept as independent as
possible.
The most obvious advantage of this method is that it does not need gradient information.
This results in a highly reduced number of cost function evaluations, compared with gradi-
ent based methods. The only settings that need to be defined affect the line minimizer, like
termination constraints. At this point it would probably make sense to use an adaptive strat-
egy. The tolerance of the Brent line minimization could be set very high for the first Powell
iteration (involving n line minimizations), and successively refined.

4.5 Multiresolution Strategy

Many optimization problems can be accelerated by starting with fast but coarse estimates of
the cost function, refining it later and eventually using a fully precise yet slow evaluation.
This especially applies to our registration problems, as the DRR image resolution signifi-
cantly affects the performance. Often a hierarchy of sampled images at different resolutions
is used for registration. The first optimization is carried out with the most rough images,
terminating early due to respective abortion criteria. It is restarted at the resulting pose with
the subsequently more precise images, this time with smaller tolerance values for abortion.
The optimization is iteratively rerun until the finest resolution is in use.
It is important to note that a change in the image resolution significantly affects the similarity
measure and accordingly the cost function. Therefore it is essential that the optimization is
really restarted when proceeding to a higher level on the multiresolution pyramid. A very
beneficial side-effect of using low-resolution images first is that the similarity measure usu-
ally is much smoother, and may even have less local optima compared to the full precision
images. Therefore it is often not just desired to use a multiresolution strategy in order to
speed up the registration, but a definite requirement to overcome problems with local op-
tima.
It is not always necessary to implement multiresolution optimization by using different im-
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age resolutions. In our case it is also possible to use less of the volume information in order
to increase the speed of the DRR generation. Specifically, we use less 3D texture slices in
order to obtain coarse DRRs (see chapter 6), but keep the full image resolution for not losing
some of the important structural information in the X-Ray image. Similar approaches are
to intentionally blur the images (see e.g. [38]) to avoid local optima. This is then termed a
multi-scale strategy rather than a multi-resolution one.
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5 Registration

In the last chapters I covered the three essential issues that need to be taken care of in order
to build up a 2D-3D registration - namely DRR generation, similarity measures and opti-
mization algorithms. However, there are some details that have to be considered in order to
connect everything and make the system running, which I will present in the following.

5.1 Nature of the Transformation

We are looking for a rigid transformation in space, that describes the way from the patient’s
body to a world coordinate system. In our application, it is adequate to use the isocenter of
the linear accelerator as center of the world coordinate system. This makes it most easy to
describe the 3D placement of the linear accelerator with respect to a treatment location in the
patient’s body. The axis orientation is set according to medical standards, x pointing to the
patient’s left arm, y pointing down and z pointing towards the patient’s head.

The rigid transformation that we consider, places the center of the CT volume somewhere
in the world coordinate system. However, that is not the transformation that we want to
modify with our registration algorithm directly, as the sensibility of transformation parame-
ters would depend very much on the initial position. For instance, if the volume is misplaced
with respect to the isocenter, a rotation around the x axis would at the same time result in a
significant translation along the y and z axes. Therefore we use the following scheme for the
registration:

Tcurr = T−1
centerTpTcenterTworld (5.1)

Basically we place the volume somewhere in the world coordinate system using Tworld,
and then apply another transformation Tp which sets it to the current estimate. However,
we want any rotation in Tp to be centered around the volume center, which is counted in
with Tcenter. Tworld is the initial estimate for the registration, and is set manually by the user.
Once the registration starts, only Tp is modified, starting with the identity transformation,
Tp = I4. There are now several ways to describe this rigid transformation in 3D.

5.1.1 Euler Angles

The most straight-forward representation is a six parameter vector [tx, ty, tz, θx, θy, θz]T . The
transformation consists of consecutive rotations around the three coordinate axes, given by
the angles θx, θy and θz , and a successive translation along those axes, described by tx, ty
and tz . This parameterization is known as Euler Angles. It is minimal in the sense that
the transformation is described with only six parameters, representing the six degrees of
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Figure 5.1: Scheme of the treatment room

freedom.
The conversion of this description to the common 4x4 matrix representation, most widely
used in computer graphics, works as following:

Tp = T (tx, ty, tz) ·Rz(θz) ·Ry(θy) ·Rx(θx)

=


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1




cz −sz 0 0
sz cz 0 0
0 0 1 0
0 0 0 1




cy 0 sy 0
0 1 0 0
−sy 0 cy 0
0 0 0 1




1 0 0 0
0 cx −sx 0
0 sx cx 0
0 0 0 1



=


cycz (sxsycz − cxsz) (cxsycz + sxsz) tx
cysz (sxsysz + cxcz) (cxsysz − sxcz) ty
−sy sxcy cxcy tz
0 0 0 1

 (5.2)

sx = sin(θx), cx = cos(θx), sy = sin(θy), cy = cos(θy), sz = sin(θz), cz = cos(θz)

The books [7] and [10] provide detailed introductions to homogenous coordinates, which
I assume to be known here. The only disadvantage of this parameterization is that it shows
singularities at some specific angles. To show this, we calculate the derivatives of a rigid
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transformation with respect to the rotational parameters: x′

y′

z′

 = Tp

 x
y
z

⇒
∂

∂θx

 x′

y′

z′

 =

 (cxsycz + sxsz)y + (−sxsycz + cxsz)z
(cxsysz − sxcz)y + (−sxsysz − cxcz)z

cxcyy − sxcyz

 (5.3)

∂

∂θy

 x′

y′

z′

 =

 −syczx + sxcyczy + cxcyczz
−syszx + sxcyszy + cxcyszz
−cyx− sxsyy − cxsyz

 (5.4)

∂

∂θz

 x′

y′

z′

 =

 −cyszx− (sxsysz + cxcz)y − (cxsysz − sxcz)z
cyczx + (sxsycz − cxsz)y + (cxsycz + sxsz)z

0

 (5.5)

If we now specify the angles θx and θy accordingly, some of the derivatives become iden-
tical:

θx = π
2 , θy = −π

2 ⇒

∂
∂θx

 x′

y′

z′

 = ∂
∂θz

 x′

y′

z′

 =

 szy + czz
−czy + szz

0

 (5.6)

Thus the three rotations are not independent of each other anymore - the angles θx and
θz rotate around the same axis. However, in the architecture of our system we will never be
using a patient-to-world transformation that includes those critical angles, as we are using a
rigid transformation Tp relative to the starting estimate (equation 5.1).

5.1.2 Unit Quaternion

Representing 3D transformations with quaternions is very common in computer graphics
and robotics. A rigid transformation can be described as a vector [tx, ty, tz, qx, qy, qz, qw]T ,
which combines three translational parameters and the four elements of a quaternion, de-
noting a rotation in space.
Quaternions are defined in the form Q = iqx + jqy + kqz + qw = [(qx, qy, qz), qw], where i, j,
and k have the following properties:

i2 = −1, j2 = −1, k2 = −1,

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j (5.7)

All basic arithmetic operations can be derived from the properties in equation 5.7, the be-
havior is consistent with the one of complex numbers, as quaternions can be seen as an
extension of them. Refer to [1] for a more detailed introduction to quaternions and their use
in 3D computer applications. Here I will just present the very convenient way of describing
a rotation in 3D with them.
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For this to work, the quaternion has to be normalized, i.e. q′2x + q′2y + q′2z + q′2w = 1. This can
be achieved easily by dividing by the size of the original quaternion

q′x = qx

|Q| , q
′
y = qy

|Q| , q
′
z = qz

|Q| , q
′
w = qw

|Q| (5.8)

|Q| =
√

q2
x + q2

y + q2
z + q2

w

. If this is valid, the vector (q′x, q′y, q
′
z) represents the axis of rotation, and the angle θ is

denoted indirectly by θ = 2 cos−1(q′w). The respective rotation matrix is

R(qx, qy, qz, qw) =


1− 2q′2y − 2q′2z 2q′xq′y − 2q′wq′z 2q′xq′z + 2q′wq′y 0
2q′xq′y + 2q′wq′z 1− 2q′2x − 2q′2z 2q′yq

′
z − 2q′wq′x 0

2q′xq′z − 2q′wq′y 2q′yq
′
z + 2q′wq′x 1− 2q′2x − 2q′2y 0

0 0 0 1

 (5.9)

. As this only valid for unit quaternions, the normalization in equation 5.8 should be
carried out for every set of parameters implicitly. We can therefore use the original scaled
quaternion Q = [(qx, qy, qz), qw] as rotational parameters. However, this results in having
seven parameters for the optimization - one more as degrees of freedom. In my opinion,
this imposes an unnecessary burden for the optimization algorithm and is the reason for not
using this parameterization.

5.1.3 Rotation Axis Representation

Another way of representing the rigid transformation, avoiding both singularities and over-
parameterization, is to describe the orientation with a 3-vector (rx, ry, rz). This vector defines
a rotation axis in space, similar to the quaternion usage above. However, in this case the size
of the vector indicates the rotation angle [36]. The translational part of the transformation
is denoted as a 3-vector (tx, ty, tz), as usual. This results in a transformation description
that is both minimal in terms of the number of parameters, and has no singularities. A
disadvantage is, however, that it is not very comprehensible for users, as the amount of
rotation is encapsulated in all three values of the rotation vector.

5.1.4 Parameter Scaling

Decided to use the six-value representation including the three translational displacements
and three rotation angles, there is still the issue how to use those parameters for the respec-
tive cost function. For any optimizer to work best, changing each of those parameters should
have a comparable affect on the cost function value. This implies that altering any parame-
ter value should change the similarity of the two images in the same order of magnitude. In
the first place we need to introduce an appropriate mapping between the translational and
rotational parameters. To derive this mapping, we use the corners of the bounding box of
the volume used in the registration. We then claim that translating the box a specific amount
should displace those corners equally than if we rotate the box around the center about the
same amount. Making the simplification of using a cube with edge width d around the origin
and considering only one corner point p, the mapping can be derived as follows:
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tx = ∆p

θxs = ∆p = θxd

√
3

2

s = d

√
3

2

tx is a translation in millimeters, θx a rotation in radiant, ∆p is the displacement of the
point p and s is the mapping between translational and rotational values we are looking
for. As we would like to have a mapping which is convenient to use, I propose to describe
translations in millimeters and rotations in degrees. This corresponds to a scaling of s = 180

π .
Therefore the width of the respective bounding box satisfying the former constraints is d =
360
π
√

3
≈ 66mm.

This size is a bit smaller than the image regions that we are focusing for registration, but
still lies in the same order of magnitude. Given this and some similarity measure plots
that indicate comparable behavior for both altering the pose in millimeters and degrees (see
Appendix) justify the use of this mapping.

5.2 Use of 2D Transformations

Searching a six-dimensional parameter space is very inefficient. If there is any way to re-
duce the number of parameters used in the optimization, we definitely should have a look
at it. If we define our rigid transformation with respect to the DRR image, i.e. the camera
points towards the y-axis and the image plane is perpendicular to it, two of the rotational
parameters are out-of-plane, namely the rotation around the x- and z-axes. Altering those
rotations significantly changes the content of the DRR image, as the respective projection is
re-oriented in the CT volume. The remaining four parameters can now be considered as 2D
image transformation operators. Rotation around the y-axis results in rotation around the
image center, the x and z translations shift the image center accordingly, and the y transla-
tion scales the image content.
This can lead to various strategies. If the optimization is now performed on the six param-
eters defined like above, a new DRR has to be generated only if one of the two out-of-plane
rotations is being altered. Otherwise, the desired pose change can be satisfied with a very
cheap 2D image transformation, namely to translate, rotate or scale the existing DRR image.
Using for instance the best neighbor optimizer, where the different parameters are altered
separately, would result in reducing the number of necessary DRR generations to one third,
as changes in only two out of six degrees of freedoms cause a new DRR! Another option
would be to run the optimization using only the two out-of-plane rotations. For each iter-
ation, one could perform an additional optimization on the remaining parameters in very
little time.
Unfortunately, there are some problems with this approach. First of all, replacing the men-
tioned four parameters with 2D transformations is only mathematically correct for parallel
projections. As we have to use a perspective camera model in order to achieve realistic
radiograph reconstructions, using those 2D operations introduces some errors. Especially
displacing the DRR center too much towards the edge would result in a significantly wrong
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perspective. On the other hand is the perspectiveness of the X-Ray imaging device not really
immense. With our calibration data of the Primus linear accelerator, we obtained a field of
view (FOV) for the imaging device of just 12 degrees (see section 7.1). In my opinion, this
justifies the approach of using the 2D transformations, making it nevertheless desireable to
have some estimation on the resulting errors.
From the fact that the fast 2D operations are only approximations follows at the same time,
that it is not easy to express the relationship between the respective parameters of the 2D
and 3D movement correctly. The rigid transformation in 3D has to be approximated by a
combination of out-of-plane rotations and a 2D transformation:

P image
world Tworld

CT = T2D(x, y, s, α)P image
world T3D(β, γ) (5.10)

One approach by Sarrut and Clippe [34] uses optimization of a least squares term, denot-
ing the distances of random points projected both by the 3D transformation and the desired
combination of 3D rotations and 2D transformations:

argmin(x, y, s, α, β, γ)
∑
x∈H

(
P image

world Tworld
CT x− T2D(x, y, s, α)P image

world T3D(β, γ)x
)

(5.11)

During optimization, they determine the respective T2D and T3D parameters for the
current rigid pose Tworld

CT in every iteration by minimizing equation 5.11 with a Powell op-
timizer. The similarity measure then compares the X-Ray image with a DRR precomputed
for the angles β and γ and transformed accordingly. The disadvantage of this scheme is the
least-squares optimization of the parameters that has to be done in every iteration of the
whole registration process.
I suggest to directly optimize on the parameters x, y, s, α, β and γ. The result still can be
backtransformed to the parameters of a single rigid transformation, using equation 5.11 or
a similar scheme. Unfortunately we ran out of time to evaluate this approach.
Interpolation artifacts may be a problem as well, as we apply 2D transformations on existing
DRR images. Translation in x and y can still be conducted in multiples of whole pixels,
but this is not possible for scaling and rotation. Using the common simililarity measures
for comparing scaled or rotated images therefore involves some interpolation of the DRR,
possibly affecting the stability of the measure.

translation x translation y scaling rotation

Figure 5.2: Structures for assessing alignment in specific 2D transformations
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5.3 Region of Interest

I developed a scheme of rapidly comparing two images with respect to 2D transforma-
tions on one of them, that I would like to introduce shortly. Basically it works by applying
a similarity measure not directly on the image pixels, but on whole columns, rows, rings
and rays defined on the images (figure 5.2). The sums of all pixels in each of those structure
elements are used as intensity values for the similarity measure. According to the transfor-
mation, the corresponding structure elements or its neighbors are used in the measure. As
there are not many intensities available at all, and they each consist of many averaged pixels,
the measure should not be too sophisticated. I used the Sum of Squared Differences (SSD).
The advantage of those structures is that two parameters at a time are independent from each
other: the x-and y-translation, and the scaling/rotation, respectively. Therefore it is possible
to find the optimum in this four-dimensional search space with few iterations. Even if this
method is not used for supporting the registration, it can be of use for manual registration.
A plot of the measure with respect to those 2D transformations, generated in negligible time,
indicates directions in the parameter space where the alignment is improving.

5.3 Region of Interest

Depending on the imager for the reference image and other constraints, the need for defin-
ing a region of interest may arise. This means that not all image pixels are considered for
computation of the similarity measure (and, if applicable for the DRR computation, too).

5.3.1 Image Borders

In my computer simulations using the skull CT data, there is usually a significant black bor-
der around the actual X-ray image or DRR of the skull. The question arises if it makes sense
to omit the respective black image pixels in the similarity measure computation. Otherwise
the registration results may be better than in a realistic environment, where the images usu-
ally have no border (as they focus on a certain spot within a CT data set & the patient). The
following results show plots of the similarity between the usual skull DRR and reference
images, while the DRR is being shifted along the X axis. Different schemes to omit black
pixels are applied.

• Ignoring all pixels with a zero intensity in at least one of the images does not work very
well. The size of the considered region heavily depends on the displacement between
the two images. The larger the distance between the object in the two images, the
smaller the region used in the computation. This makes it possible that an optimization
bails out, as the similarity measure even increases with rising distance (topmost line in
the diagram).

• A more evident approach is to use all pixels where the reference image provides in-
formation. This imposes that the ROI does not change once the reference image is
defined.

• Going further, one could only omit those pixels where both image intensities are zero.
Even more image information than in the latter scheme is used, therefore the similarity
measure curve is more steep.
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Figure 5.3: Similarity measure plot, with various schemes to omit black image regions ap-
plied

• Using the full image content, at last, makes the measure even more stable. This is very
obvious, as all the differences between black and informative regions contribute to the
joint histogram.

Another 2D-3D registration project (using CT and C-Arm fluoroscopy) currently done at
my university [5] uses a threshold value in order to determine a binary mask on the DRR
image, updated with each new iteration. This binary mask is expanded with a dilation
operator of a selected size, e.g. 5 pixels, and defines the region of interest for the similarity
measure computation. This seems to be a good compromise of the strategies listed above.

5.3.2 Collimator Settings

If the X-Ray images are taken as a byproduct of a patient treatment with a linear accelerator,
a collimator may be in use. Depending on its settings, specific parts of the images acquired
by the detector will be empty. Of course one should exclude those image regions from the
similarity assessment. To support any collimator architecture, e.g. grid-based collimators,
it is most universal to use a pixel-wise definition of the image regions, most easily imple-
mented with a bit mask.

5.3.3 Content Based Mask

Another option is to use only parts of the images that seem to contain relevant information.
This can on the one hand be done by manually selecting image features [37]. However, in
our application we want to avoid too much interactivity by the user. On the other hand,
a mask can be automatically created using for instance image gradient information, so that
only image regions that actually contain a certain amount of information, are being consid-
ered [21]. A similar technique is already involved by using the Variance-Weighted Sum of Local
Normalized Correlation measure, as it considers the variance of a rectangular region around
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5.3 Region of Interest

each pixel for determining the influence on the whole value.
For the patient positioning application, some kind of segmentation might be needed any-
way. In order to reduce the influence of soft tissue structures on the registration, a simple
threshold-based segmentation is usually able to shrink the volume content to only bony
structures. This has at the same time the advantage that the DRR rendering is sped up.
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6 Implementation

6.1 User Interface

Our software should provide a convenient user interface both for manual and automatic
registration. We have a multiple-view architecture. The user loads a CT volume out of the
patient database. This corresponds to the document, only one can be loaded at a time. On
the right side of the screen is a dialog bar, where most of the settings for user interaction and
registration can be adjusted. With some menu points, the other views can be loaded, which
are summarized below.

• Global View: A threedimensional visualization of the treatment room arrangement. The
volume is being displayed (VRT technique, transfer function adjustable), with the vol-
ume center initially located on the isocenter of the linear accellerator. The patient couch
and one or two cones symbolizing the source-detector path for the X-Ray accquisition
are visualized, too. The sources, i.e. the cone tips are placed on a circle around the
isocenter, reflecting the possible gauntry setting (0 − 360◦) of the linear accellerator.
The user can use the mouse to either navigate through this view (Move Scene mode),
or to change the 3D pose of the volume (Move Data mode), resulting in a different pose
for the DRR generation.

• DRR View: Displays the DRR in an OpenGL window. The rendering result is stored in
a 8 bit texture, which in turn is displayed on this view. Therefore the size of this view
does not have to correspond with the actual DRR size, as the texture is being stretched
automatically for the display. For stereo registration, the two DRRs are displayed side
by side, or alternatingly on the same place, if 3D shutter glasses are used. The user may
adjust the window, level and transparency settings for the DRR computation with the
mouse by clicking and dragging in this view.

• Reference View: Contains the fixed image(s). The user can either just create a view with
a copy of the currently displayed DRR for synthetic experiments, or load images from
a file. Like in the DRR view, window and level adjustement is done with the mouse. If
images are to be loaded from a file, the user can choose between files in DICOM format
or raw image files without header information. In the latter case, the usual resolution
of 1024x1024 is assumed. Loading raw image data is especially useful if the X-Ray
images are modified e.g. with Matlab, what we had to do for the image rectification
(see section 7.1).

• Registration View: This view displays the values of all activated image similarity mea-
sures, together with a diagram of their trend. If Mutual Information or Correlation
Ratio is in use, the two histograms and the joint probability distribution is displayed,
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6 Implementation

Figure 6.1: Screenshot of the RTReg Application

too. Furthermore a scaled difference image is shown. All this information is very help-
ful as assistance for manual registration.

6.2 Our DRR algorithm

As the focus of our application is both on interactive and automatic registration, our DRR
algorithm should in the first place be able to generate full-size DRRs for visual display in
realtime. Therefore we did not consider sparse sampling approaches as used in [49]. Other
possible means to create more efficient DRRs would be Shear-Warp Factorization (which is
an approximation and therefore produces some artifacts, that make it less apted for precise
registration), and using a Transgraph data structure, as done in [24]. Refer to section 2.2 for
further details on those techniques.
We compute the DRRs with a hardware-accelerated algorithm, based on [24]. The volume
slices are stored in the texture memory of a NVidia GeForce FX graphics card, and combined
using its Texture3D extension. So far the algorithm can handle volume sizes up to 256 x 256 x
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256 voxels. The voxels are stored with 16 bit precision. For the accumulation, a window and
level setting is applied on the texture slices. The ”drawing” of the transparenc Texture3D
slices still takes place with 16 bit values, the outcome then is saved with a precision of 8 bit.
Furthermore, the transparency of the individual slices to be combined may be adjusted.
The actual rendering result is not directly drawn into the OpenGL context, but into another 8
bit texture. This has two advantages. First, the resulting image can be displayed very easily,
OpenGL taking care automatically of scaling the texture onto the specific window. Future
work could use this feature to draw the texture with any translation, scaling and rotation,
interpolating the image pixels in literally no time, as this is done by the GPU. Therefore
speedups with 2D transformations as described in section 5.2 could be implemented very
easily. Secondly, the image can be retrieved rapidly out of the texture buffer for further pro-
cessing (in our case similarity measure computation).
With this algorithm we are able to produce high quality DRRs that look very similar to
regular X-Ray or portal images. Using a relatively small window size (about 900) and trans-
parency (0.01) we achieve the best results. See e.g. figure A.3 in the Appendix.

6.3 The Class SimilarityMeasures

6.3.1 Overview

For the Radiation Therapy application it is very preferable to calculate multiple measures
at the same time, in order to allow extensive validation & combination of different mea-
sures. As several calculations are needed for more than one measure at the same time, I
implemented one class that is able to calculate all measures discussed in chapter 3 at the
same time. Different measures may be enabled/disabled by setting correspondent flags.
This makes sure that the computation is as fast as possible, and that the image information
is scanned as few times as possible. Following an overview of the sequence, assuming all
measures are enabled.

• First pass through the image data:

– Intensities are summed up for the mean and variance used in NCC

– Absolute and squared intensity differences are summed up for SAD, SSD

– For Pattern Intensity a difference image is created.

– For Mutual Information and Correlation Ratio the joint histogram and the image
histograms are build.

– For Gradient Correlation and Gradient Difference the four required gradient im-
ages are calculated.

• Second pass through the images, if Normalized Cross Correlation is enabled. Given
the mean values, the variances and the correlation are calculated.

• For Pattern Intensity another pass through the difference images is executed.

• Out of the histograms and the joint histogram the MI and CR values are computed.
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• For Gradient Correlation, two further scans through the gradient images are needed
(similar to NCC). As Gradient Difference works best with a σ parameter based on the
gradient variance, GC is also calculated in this case.

• For Gradient Difference, the sum over the gradient difference image is computed.

I implemented the main calculation method according to this workflow. The class is tem-
plated with the image data type, therefore the user can choose between 8, 16 or 32 bit im-
ages, signed or unsigned. Furthermore for each image a minimum value and the number of
bits used is stated, enabling different kinds of images to be measured. The class internally
substracts the minimum value and shifts one of the images accordingly, so that equivalent
values are compared.

6.3.2 Algorithmic Aspects

Entropy calculation The calculation of the image entropies and the joint entropies is sim-
ilar, basically it is a sum over intensities:

for (int i = 0; i < size; i++) {
double p = (double)hist[i] / size;
if (p > 0.0) entropy -= p * log(p);

}

If certain intensities do not occur, we can ignore the addend, because of limp→0 p · log p = 0

Speedup of Pattern Intensity Pattern Intensity runs through every pixel in the difference
image and sums up with a σ2/(σ2 + diff2) scheme over all differences within a circular
neighborhood. Already for a radius r = 3 (see section 3.2.1) the constraint (x−v)2+(y−w)2 <
r2 results in 28 considered neighbors per pixel. If we look at this closer, we can see that every
pair-wise pixel difference is considered twice, each time one of the pixels being the center of
the neighborhood kernel. This allows us to omit half of the calculations. While scanning the
image from top to bottom and from left to right, at each pixel position I consider only the
differences to the neighbored pixels to the right and to the bottom, as illustrated by figure
6.2.

This basically results in the following algorithm for calculating Pattern Intensity:

pi = 0; sum = 0;
for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {
for (int yy = y; yy <= y + radius; yy++) {

for (int xx = x - radius; xx <= x + radius; xx++) {
if ((xx >= 0) && (xx < width) && (yy < height)
&& ((yy > y) || ((yy == y) && (xx > x)))
&& ((x-xx)*(x-xx)+(y-yy)*(y-yy) <= radius*radius)) {

double d = diff[y, x] - diff[yy, xx];
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Figure 6.2: Kernel for computation of neighborhood differences for Pattern Intensity

pi += sigma / (sigma + d*d);
sum++;

}
}

}
}

}
pi /= sum;

Stereo Case Our application supports registration of biplanar X-Ray images with known
geometry between the images (The linear accelerator just acquires portal images from differ-
ent gantry angles). The most elegant way to compute the similarity measures on now each
two DRR and X-Ray images, respectively, is to treat them as one image. Therefore we append
the images horizontally, which is the way we display them in our application anyway (see
screenshot, figure 6.1). It that case the gradient- and neighborhood-based measures have to
omit some columns in the middle of the combined image, where the two individual X-Ray
images are connected. For instance, the 3x3 Sobel filter matrix applied exactly on that border
would produce gradient information that we surely do not want to use in our registration. It
is the same issue with the Pattern Intensity kernel and the window for the Local Normalized
Correlation Measures. Therefore I inserted a SetStereo(bool flag) method which sets
a flag indicating if we are using stereo images. In that case, some additional source code
lines prevent the use of the respective middle columns.

Region of Interest In order to have the maximum flexibility for the definition of a region
of interest (ROI) in the images to be registered, I implemented a binary mask denoting every
pixel as included or not included in the similarity measure computation. Again, some adap-
tions had to be made for all measures that use spatial information.
By the time that the user defines a mask, a binary eroded mask is generated for the gradient
based measures. A pixel is included in that mask if the pixel and its 8 neighbors are included
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in the original mask, making sure that the 3x3 Sobel matrix for the gradient image genera-
tion is always defined.
A similar mask is computed for the Local Normalized Correlation measures. Here, a pixel is
included if at least a specific number of pixels from the respective LNC window is included
in the mask. To claim that the whole window should be in the mask is too rigorous, in my
opinion. There are possible applications where the Region of Interest would exclude many
small structures like calibration markers, placed close to each other. In that case a much
larger part of the images would be neglected in the measure computation, as the respective
LNC windows would not fit in between those structures. Using the adapted mask for LNC
computation, the number of used pixels in each window can vary. Therefore I weigh each
correlation value with the number of considered pixels in the respective window.
For Pattern Intensity the adaption is easier. There is no need to create a special mask to make
sure that the circular PI kernel is always defined. As every addend of the PI formula (equa-
tion 3.7) is equivalent, we just have to check if the respective two pixels to be compared are
included in the mask, and keep track of the total number of addends in order to eventually
divide by it.

6.4 Speed Issues

To know what execution time is feasible for our registration problem, I measured the com-
putation time of the DRR generation at different volume resolutions and downsampling
rates. The CT data set used is a Rando R© head phantom (see figure 7.4 in the next chapter).
The machine was a 2.4GHz Pentium IV, with a NVidia GeForce FX 5600 (256MB) graphics
card.

1x 2x 4x 8x
256x256x287 340ms 200ms 130ms 95ms
128x128x143 130ms 95ms 78ms 68ms
128x128x71 123 ms 91 ms 75ms 67ms

The overhead caused by the calculation of various similarity measures is listed in the
following table.

measure MI4 MI8 CR4 CR8 NCC GC GD PI
time 2.5ms 10.3ms 2.5ms 8.6ms 2.5ms 9.4ms 13ms 101ms

The additional time for displaying the histograms, joint histogram and difference bitmap
is about 6.5ms per frame.
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7.1 Camera Calibration

As mentioned earlier, the calibration of the X-Ray imaging device has to be known precisely
in order to perform a reasonable registration. Therefore the intrinsic camera parameters,
reflecting the image source-detector arrangement have to be computed. If they can not be
retrieved solely based on technical specifications available for the device, some camera cali-
bration is needed. The result of this procedure is the knowledge of the correct mapping of
any 3D points in space onto the 2D image plane of the imager, or in other words the pixel
coordinates in the resulting image. For X-Ray devices it is always a perspective projection,
which can be expressed in homogenous coordinates with a 3x4 matrix:

 λu
λv
λ

 =

 ku 0 u0 0
0 kv v0 0
0 0 1 0




x
y
z
1

 (7.1)

The book of Faugeras [7] provides a very comprehensive covering of modeling and
calibrating projective cameras.

(a) Calibration phantom before acquiring image (b) X-ray with points for rectification

Figure 7.1: Calibration phantom used for camera calibration

We used a Siemens calibration phantom with many radioopaque metal markers, visible
both on CT scans and X-Ray images, figure 7.1(a). We obtained a CT scan of it, and a set
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of 3D marker positions that had been segmented automatically. We then acquired portal
images of the phantom from various gantry angles. We used the Siemens Primus linear
accellerator in use in UPenn Hospital. At this specific device, the original X-Ray detector has
been removed and replaced by a digital solid detector manufacured by another company.
This detector has been mounted by welding it on the accelerator frame, resulting in a not
very stable construction (visible in figure 7.1(a)). Therefore we had to correct for the tilt of
the detector, which is supposed to be different at different gauntry angles. In order to achieve
this, we used an acrylic glass tray with a marker pattern and inserted it right under the X-
Ray source, so that the pattern appeared on the acquired images. After taking all the needed
images with our phantom, we corrected each of the images, so that the outer markers of the
tray were positioned exactly in the middle of the respective edges of the images, using a
homographic projection according to [29]. Figure 7.1(b) shows one of the images taken with
the linear accelerator. The image is rectified so that the green points, originating from the
acrylic glass tray, become the edge centers (red points). We conduct this rectification with
every acquired image, and therefore calculated the perspective projection with respect to the
rectified images. Using many 2D and 3D marker positions from the calibration phantom, we
calculated the 3x4 projection matrix P image

world which maps any point from the isocenter-based
world coordinate system to the respective pixel position on the rectified X-Ray images.

7.2 Obtaining Ground Truth

(a) Phantom on the treatment couch (b) Closeup of used metal markers

Figure 7.2: Rando phantom and marker used for ground truth computation

When assessing the quality of a registration algorithm, it is very essential to have some
data where the correct alignment is known within a certain precision. This is usually
achieved by attaching fiducial markers to the imaged objects and registering those mark-
ers to the corresponding data sets. Often tools like a stereotactic frame are used, too. Of
course it is most desirable to have clinical data of real patients with ground truth informa-
tion. This is very hard to achieve, though. Moreover, obtaining the correct alignment with a
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higher precision often comes with higher invasiveness, too.
We were able to compute ground truth information using our UPenn phantom data. We
attached many small metal ball markers (figure 7.2) to the surface of the phantom. These
markers can be seen both in the CT and X-Ray images taken of the phantom.
Noting ~xi the pixel position of marker i in the image, and ~yi the position of marker i in the
CT coordinate system, we can state

∀i : ~xi = P image
world Tworld

CT ~yi (7.2)

Now we are looking for the rigid transformation Tworld
CT that satisfies this equation. We pa-

rameterize it in the same way than in our application, using the Euler angles representation.
We then want to minimize the RMS distance between the CT marker positions projected
using equation 7.2, and the respective positions in the X-Ray image.

n∑
i=1

|~xi − P image
world T (tx, ty, tz, θx, θy, θz) ~yi|2 (7.3)

We achieved this minimization using the Levenberg-Marquardt Optimizer in Matlab. We
used n = 4 points for the ground truth estimation. The final RMS error after optimizer
convergence was [ask Ali], predicting an overall TRE error of the Ground Truth pose of
about x mm.

7.3 Expressing Alignment Errors

In order to assess the registration error while having ground truth information, it makes
sense to use an error transformation Terror [49]. This is the transformation that has to be
applied in order to take the final registration pose to the ground truth pose:

TGT = Terror · Tresult ⇒ Terror = TGT · T−1
result (7.4)

If this transformation is expressed in Euler angles (ex, ey, ez, eα, eβ, eγ), the displacement er-
ror in the different degrees of freedom is denoted as millimeters and degrees, respectively.
This is most useful when we need a distinction between translational and rotational degrees
of freedom. One single error value can be computed from this representation e.g. as RMS

sum,
√

e2
x + e2

y + e2
z + e2

α + e2
β + e2

γ . However this is not correct in terms of a physical equa-
tion, as it should not be summed up over millimeters and degrees at the same time.
The other common ways to express registration errors are Target Registration Error and Fidu-
cial Registration Error [13]. The former one just tells the (euclidian) distance in space between
an important point in the fixed image, and the corresponding point in the registered image.
This point usually is of medical relevance, like the center of the target area for a radiation
treatment, or the center of an important object in the patient’s body. The latter expresses
the distance between multiple points in the images. But these points are chosen now rather
because of their locatability than any clinical relevance. They may just be the positions of a
set of markers implanted in the patient’s body, or attached to a phantom. They may also be
positions of marker points in a stereotactic frame encaging the imaged object. Then the error
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Figure 7.3: Affect of bias, precision and outliers on the accuracy of an algorithm

is usually expressed as RMS value of the distances of the individual points.

TRE = T (p)− q

FRE =
N∑

i=1

|T (pi)− qi|2

T is the transformation found by the registration, p the significant point in the moving
image, q the point in the fixed image. For FRE, pi and qi are respective sets of points. If
the images even lack any markers, then FRE can be computed using some bounding points
surrounding the used 3D dataset. In our case we can use the 8 corners of the bounding box
of the CT volume.
As I still want to distinguish between the different parameters of the transformation, I will
stick to using the RMS value of the individual components of the error transformation
Terror, as explained above.

Another important property of the registration result is the certainty of resulting at the
same pose, if started from different initial estimates. This, often termed as precision of the
registration, can be expressed well with the standard deviation σ of the error from many
registration runs, launched from different initial estimates. In combination with the abso-
lute error (i.e. bias), it can tell us what kind of accuracy our algorithm delivers. Figure 7.3
illustrates it in two dimensions. No matter what combination of bias and precision may be
the case, it can be furthermore ruined by outliers (right drawing). Therefore it might make
sense to mention outliers separately, successively discarding them for statistics.
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7.4 Experiments

As a lot of evaluations of mainly the performance of the different similarity measures will be
done in the next sections, table 7.1 shows a list of the abbreviations used for easier reference
of those measures.

MIx Mutual Information with histogram bit size x
CRx Correlation Ratio with histogram bit size x
NCC Normalized Cross Correlation (also known as Correlation Coefficient)
GC Gradient Correlation
GD Gradient Difference
PI Pattern Intensity
LNC Sum of Local Normalized Correlation (sometimes denoted SLNC)
VWC Variance-Weighted Sum of Local Normalized Correlation

Table 7.1: Abbreviations used for the similarity measures

The subsequent experiments all follow the same scheme. For any pair of CT and (real or re-
constructed) X-Ray image, an initial estimate is defined. This is either the ground truth pose,
if available, or some manually found pose with good alignment. Then many registrations
are executed from starting poses randomly displaced around the initial estimate. For every
random pose to start from, I run a separate optimization with each similarity measure. This
both enables me to study the quality of the resulting alignment (bias) for each measure, and
the certainty (precision) of finding this pose with many different tries, including the number
of isolated wrong results (outliers). With a runtime of one to four minutes, it takes some
time to acquire a reasonable amount of information. Usually I launched new experiments
on Friday afternoon on my work computer, and stopped them on Monday morning.

7.4.1 Computer Simulations with Head Phantom (#1)

In this kind of experiment the image pairs to be registered are created by the computer. This
provides basic, but nevertheless important information about the behavior of the registration
algorithm. The resulting accuracy may be seen as an upper limit to registration with clinical
data. This is because this synthetic problems are usually easier to solve than if using real
data. In my case I simulate the X-Ray image with a DRR image from our CT dataset.

I am using a Rando R© head phantom for this set of experiments. I load the volume with
resolution 256x256x143. The X-Ray image is simulated with a copy of the DRR at this pose
(see figure 7.4). The volume is now randomly displaced up to 20 mm or degrees in each DOF,
and the Best Neighbor optimizer is run to find the correct alignment again (initial stepsize
8 mm/degrees). For each displacement the optimization is run 8 times repeatedly with all
different similarity measures. Knowing the exact pose of the reference image (as it is actually
a DRR) the success of the registration can be assessed with a ground truth value.

Diagram 7.5(a) shows the RMS values of each the translational and rotational components
of the error transformation, 7.5(b) the errors in each degree of freedom for two specific mea-
sures, Mutual Information and Local Normalized Correlation. In the latter case the errors
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Setting Value
data set Rando Head Phantom
used volume size 256 x 256 x 143
voxel spacing 1.88mm x 1.88mm x 3.0mm
start pose unchanged in isocenter
DRR window/level/transp. 4096 / 2048 / 0.1
Field of View 15◦

displacement up to ±20mm/±20◦

optimizer Best Neighbor
initial stepsize 8mm/8◦

max. downscaling 0.001

Figure 7.4: DRR image and settings of experiment #1

are averaged with a RMS term as well. The errors are in general very small, as expected. The
largest component is in the y direction, which is basically the zoom of the DRR. The different
behavior for specific pose parameters will become more clear in the successive evaluations,
especially experiment #3. For this results, the errors are in general to small to make as-
sumptions about the dependency between resulting pose, degrees of freedom and similarity
measures. The only conclusion that I would like to point out for this experiment is about the
number of outliers. Mutual Information and Correlation Ratio always find the right pose,
whereas NCC and the neighborhood-based measures have some wrong results. I define a
resulting pose as outlier, if the RMS value of the error transformation is larger than two.
Therefore the convergence range of the first measures is higher. This can be traced back to
the fact that the gradients in the used image are small and located very close to each other.
As especially the gradient-based measures are assessing the alignment of those gradient
structures, they become instable once the respective edges are too far apart. These measures
should perform better when more coarse structures are present, so that the intensity gra-
dients are more spread over the whole image. I did some quick evaluations with the DRR
window/level setting altered to 4096/0, resulting in an image with brighter, more smooth
structures. In that case all measures performed more or less equivalently.

Now the registration is performed with an additional second image. It is perpendicular
to the first one (gantry angle 90◦), and the geometry between the two images is known, due
to the known device dimensions of the linear accelerator. Expectedly, the stability increases
enourmously (figure 7.6). Registration errors are always below 0.1mm / 0.1◦. The number
of outliers decreased as well, only GC and VWC have one wrong result.

An additional test was done with a single image again, but using the Powell-Brent opti-
mizer. The resulting accuracy was comparable to the previous run with the Best Neighbor
optimizer, however the number of outliers for the neighborhood-based measures increased.
Furthermore the absolute values of those outliers is higher, sometimes bailing out and reach-
ing totally absurd values. This is probably due to the behavior of the Brent line minimizer,
which estimates the next position on the current line based on a couple of previous evalua-
tions, and is sensitive to disturbances in the parameter space.
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Figure 7.5: RMS errors and outliers for experiment #1, mono image
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Figure 7.6: RMS errors and outliers for experiment #1, stereo image
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7.4.2 Experiments with not corresponding phantom data (#2)

The following experiments are done with a Rando body phantom, that we were allowed
to use in collaboration with UPENN Hospital, Philadelphia. Before our second visit there
(Aug. 3rd 2003), we had only a CT data set of the phantom without any markers and some
X-Ray images of the same phantom. However, the latter images were done with something
attached to the phantom that should simulate a female breast (visible in figure 7.2(a)). Note
that the lobe of the lung in the upper left part of the X-Ray image is brighter than in the
DRR (figure A.3). I used this fact as a chance to find out how well the registration works
for partly different image content. For this combination of X-Ray and CT data, we do not
have ground truth values. Therefore the focus on this set of optimizations is to assess the
stability of the different measures, i.e. how regular the same registration pose is achieved
from different starting estimates. Furthermore visual verification is done in order to make
sure that corresponding structures in the images are correctly registered.
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Figure 7.7: Experiment #2 with Stereo image, 0◦ and 90◦

Figure 7.7 shows the results for registration from 33 randomly distributed initial estimates,
conducted for each measure respectively. Mutual Information with 8 Bit histogram size
seems to be the most stable measure, followed by Gradient Difference. However, they dis-
agree on a final pose in the parameter space. Overlaying the pictures shows that the GD
results are better aligned. Normalized Cross Correlation yields better results than expected,
as the constraint of a linear dependency between those images is definitely not appropriate.
However, looking closer at the results we can see that this measure ”snaps” to one of two
preferred orientations (see Appendix, figure A.4(c), two clusters are visible in the diagrams).
The gradient-based measures finish around the same location (figure A.4(b), A.4(d)), though
with different σ values. Unfortunately, the Local Normalized Correlation measures were not
yet implemented at the time of this experiment. According to their properties (see section
3.2.4) they are supposed to give relatively good results when applied to not corresponding
image data (especially the variance weighted method).
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7.4.3 Experiment with corresponding phantom data (#3 - #6)

This is a set of experiments with ground-truth based data. X-Ray images and CT data were
obtained with both markers and the one breast attached to the phantom.

Experiment #3, Mono

The registration was run starting from 33 different randomly displaced points around
a preliminary ground truth pose, and with all different measures each. The mean dis-
tances from the resulting poses to the ground truth pose was e.g. for the LNC measure
dx = −2.6mm, dy = 12.1mm, dz = −2.8mm, dα = −0.6◦, dβ = −0.1◦, dγ = −0.1◦. There-
fore it is not applicable to express the registration result as distance to the ground truth, as
this ground truth information does not seem to be precise enough. This is supported by the
images showing edges of the X-Ray overlayed on the DRR (figure 7.8). The structures in
the registration result (b) are better aligned than on the preliminary ground truth pose (a).
Consequently, a good indicator of the stability of the registration is again the standard de-
viation σ of the displacement error with respect to the different starting positions. Diagram
7.8(c) shows the σ values with respect to the different measures (averaged over all degrees of
freedom), diagram 7.8(d) displays σ for each degree of freedom in the results achieved with
PI and LNC.

Pattern Intensity (PI) and Sum of Local Normalized Correlation (LNC) are the most
stable measures, leading far ahead. Triggered from any starting pose within a 10mm/10◦

hypercube in the parameter space, they find their way to a final registration pose with
a mean standard deviation of less than 0.5mm/0.5◦ in all DOFs except y. Important to
mention is, that all measures using spatial information (GC, GD, PI, LNC and VWC), agree
very precisely on the same best registration pose. Some of them have more outliers than
others, though (see figures A.6(b) and A.6(d)). Mutual Information, Correlation ratio and
Normalized Cross Correlation again disagree on a registration pose. The clouds of the
resulting pose are unfortunately centered around different points, both for the translational
and the rotational degrees of freedom (figures A.6(a) and A.6(c)).
Independent of the similarity measures, one can see the difference in the sensibility of
the transformation parameters. Generally speaking, precision in out-of plane directions is
always lower than in-plane ones. As for this experiment the detector angle is zero degrees,
and we are therefore looking parallel to the y axis, moving along this direction results in
zooming of the DRR. As the field of view of the source-detector arrangement is only 12
degrees, moving the volume some millimeters in y direction affects the DRR only slightly.
This explains the high deviation in this direction, compared to all others. Concerning the
rotational parameters, it can be seen that the registration is a bit more stable in the β-rotation
than α and γ. Again this is obvious, as β, i.e. rotation around the y axis, is an in-plane
transformation, unlike the others.

Experiment #4, Stereo 0 ◦-12◦

Exactly the same kind of experiment is now conducted as biplanar registration with two
images at 0 and 12◦ gantry angles.
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(a) Ground Truth Pose (b) LNC Registration
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Figure 7.8: Rando Phantom experiments with single image, 0◦

Normalized Cross Correlation and Variance-Weighted Sum of Local Normalized Corre-
lation do not converge most of the time. The rest of the neighborhood information-based
measures behaves very well again (GC, GD, PI and LNC), Pattern Intensity is leading. In
general, the precision increases slighly due to the use of a second, 12 degrees rotated image.
Especially the y direction is now registered better, as it is not a pure out-of-plane translation
in the 12◦ image.

Experiment #5, Stereo 0 ◦-90◦

Using the same settings again, I did 33 runs with stereo images, detector positions 0◦ and 90◦

now. The standard deviation of the initial pose lies within 5 and 7 mm / ◦ for each DOF. Av-
erage computation time was about three minutes. Obviously two perpendicular images are
the richest information base available for 2D-3D registration, as they, if used in conjunction,
contain some three-dimensional information. Thus biplanar registration with two perpen-
dicular images is sometimes referred to as 21/2D-3D registration as well.
Accordingly, the results are very accurate. Even for the measures that turned out to perform
poorly in the previous experiments, the standard deviation is in average below 0.8mm/◦.
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Figure 7.9: Rando Phantom experiments with stereo images, 0◦ and 12◦
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Figure 7.10: Rando Phantom experiments with stereo images, 0◦ and 90◦
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Figure 7.11: Region of interest applied to X-Ray image

The best measures in this case, Gradient Correlation and Local Normalized Correlation,
achieved σ values of always less than 0.25mm/◦. This basically indicates that one final reg-
istration pose is exactly retrieved each time, no matter where the initial estimation was. This
pose, expressed as an error transformation relative to the ground truth estimate, has the
following value:

x = −2.4mm, y = −2.0mm, z = −2.7mm, α = −0.8◦, β = −0.3◦, γ = 0.1◦

This is within the error range of our ground truth estimation, and therefore can be consid-
ered as correct registration. The Variance-Weighted Local Normalized Correlation (VWC)
measure produced only one outlier in this set of registrations (visible in figure A.8). If we
remove it, the mean σ value becomes 0.12, surpassing all other measures.

Experiment #6, Region of Interest

Next, I want to assess the effect of using only parts of the images for the registration. There-
fore I systematically defined three regions of interest and used each of them for a set of
optimizations, just like in the previous sections. The ROIs are defined as squares centered
on the original X-Ray image files, which have a resolution of 1024x1024 (figure 7.11). I used
three sizes, omitting a border of b = 100, 200 and 300 pixels on each side of the square. The
fraction of the number of pixels used for registration is then 65%, 37% and 17%, according to

(w − 2b)2

w2

Figure 7.12 shows the same σ diagrams as usual, though this time the results are denoted
for once the full image content, and each of the ROIs with 100, 200 and 300 pixels border. It is
clearly visible that the stability only decreases rapidly with use of ROIs for the measures that
did not register stable anyway (especially NCC). The measure least sensitive to shrinking the
used image information is Local Normalized Correlation, therefore the detailed σ values are
drawn in figure 7.12(b). The change in the σ values for different degrees of freedom does not
seem to follow any scheme. The assumption that I conclude for the use of ROIs is, that the
results will always be highly dependent on the underlying image structures.
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Figure 7.12: Results for biplanar registration with different region of interests

7.5 Parameter Space Evaluation

To find out more about the behavior and stability of the registration, one can compute and
display similarity measure values while altering the transformation parameters. The best
way to get a feeling about the behavior in the parameter space in general, is to use a good
visualization in order to display the measure values. Unfortunately one can not visualize six
degrees of freedom at the same time in an intuitive way. Therefore I created many plots of
all similarity measures applied on various images, while changing two degrees of freedom.
I would like to present some of the resulting diagrams, as they tell a lot about the properties
of the registration problem for specific data & measures. All colored two-dimensional plots
can be found in the Appendix.

The computations described below are done on the Rando Phantom data set with a single
X-Ray image at 0◦ gantry angle, which is the same configuration as in experiment #3, section
7.4.3. The plots in figure A.1 show all similarity measures with the in-plane translations x
and z altered ±20mm each. Changing the DRR in these degrees of freedom usually results
in the most smooth and independent change of the respective measure. This is therefore the
best way to point out the characteristic behavior of the different similarity measures.
Mutual Information is reasonably smooth and has a significant maximum in the center,
whereas the experiments showed that this does not correspond with the best alignment.
Correlation Ratio and Normalized Cross Correlation both have the same characteristics -
a very smooth and monotonously curved surface, with NCC having a slightly different
bending. I observed a similar shape with any kind of images and pose parameters to be
modified, which can be explained with the common nature of these two measures (see
section 3.3.3). However, the drawback they have in common is that the maximum is not
defined very distinctive, as the gradient is very small in a wide area around it.
Gradient Correlation, Gradient Difference and Pattern Intensity all produce a similar plot
with a very well-defined maximum, yet Gradient Correlation having some wrinkles for
large displacements.
The Local Normalized Correlation measure generates an even sharper peak at the correct
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registration pose. As I already confirmed with experiments, Variance-Weighed Local
Normalized Correlation bails out for larger displacements, in this case rising again in the
negative x axis.

In order to show the dependency between specific pose parameters, I included plots of
other DOF pairs altered, using the LNC measure. They are presented in figure A.2.
Altering the two out-of-plane rotations α and γ simultaneously results in a similar behavior
than altering x and z (see LNC plot in figure A.1). Obviously those parameters are very
independent of each other as well.
In the next plot β and y are altered together. For the used single X-Ray image with 0◦

gantry angle, the y axis is parallel to the viewing direction and thus determines the zoom
into the image. In order to affect the similarity measure significantly, the change in the y
direction has to be much larger than for all other pose parameters (see also experiment #3,
section 7.4.3). I set it to ±100mm for this plot, while β is altered ±20◦. The maximum is
a sharp ridge, exactly parallel to the y axis. This shows first that the β angle has a very
precise optimum, which is no surprise for the in-plane rotation. Secondly, β and y are very
independent of each other as well.
The x and γ parameters have a very high dependency, as the maximum falls off on a ridge
diagonal to the axes. If a majority of the structures contained in the CT data set are in front
or behind the γ axis, a rotation around it has the effect of moving these structures along the
x axis, which explains this dependency.
A similar behavior can be observed for the z and α parameters in the last plot. The ridge
is again diagonal to the axes, being at the same time a bit wrinkly, though. Probably this is
because the spine structures are moved vertically by the y and β parameters, causing some
repeated better alignment at wrong poses.

Concluding for the study of figure A.2, I would like to point out that the behavior of sim-
ilarity measures in the parameter space is always highly dependant on the used images as
well. The effects that I mentioned above are likely to be found to a certain extend in most
other registrations, as they are mainly caused by the general affect that the parameters of a
rigid-body transformation have on a 2D projection image. On the other hand, the under-
lying image data is surely defining a lot of other dependencies & artifacts in the parameter
space. Some of these can cause major trouble for trying to apply an automatic optimization.
Two fellow students at my university were working on a project which involved 2D-3D reg-
istration of CT and fluoroscopy images [12, 20]. They encountered problems as the images
consisted mainly out of spine structures. The vertebrae caused redundancy in a way that
many optima in the parameter space existed, each denoting some alignment of vertebraes in
the DRR and fluoroscopy image. Many other problems like this can be found, depending on
the images that are to be registered.
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8.1 Result

Similarity Measures The experiments in chapter 7 show that it is advisable to use various
similarity measures for a 2D-3D registration problem. The information-theoretic measures
Mutual Information and Correlation Ratio are resistent to local optima in large displace-
ments, and thus have a very large convergence range (section 7.4.1). In addition Mutual
Information seems to perform better when images with partly different content are used
(section 7.4.2). The neighborhood-based measures are able to reach the correct alignment
with the highest precision, once the edges in the respective images are sufficiently close
to each other. Variance-Weighted Sum of Local Normalized Correlation (VWC) creates the
sharpest peak for the optimal alignment of two images, being at the same time the most sen-
sitive if the displacement is too large.
Resulting from those facts, I suggest that a hierarchical approach should be used not only in
terms of e.g. image resolution & smoothing, but also for different similarity measures. For
instance, a registration could start with Mutual Information, switch to some neighborhood-
based measure after a defined time (GC, GD, PI or LNC), and eventually use the VWC mea-
sure. This could assure that both the largest convergence range and the highest registration
accuracy is achieved.

Optimization Algorithms Given the quality of our DRR and X-Ray images, it turned out
that there is no need to use stochastic optimization procedures in order to avoid wrong
results. Both the Best Neighbor and Powell-Brent optimizer proved to work very reliably.
In fact, the registration results of those optimizers were always quite similar, causing me to
discard further evaluations in that direction. Only if the cost function is badly conditioned,
the Powell-Brent method is slightly more sensible in terms of outliers. The Gradient Descent
algorithm has the potential to register very rapidly, however does its behavior and especially
the learning rate depend too much on the underlying images and on the used similarity
measure. Its routinely use would therefore involve some interaction and manual verification
of the correct behavior.

Application Prototype The main contribution of this work is definitely to present a
working application prototype for intensity-based 2D-3D registration using CT and X-Ray
data. The project was targeted towards the use in Radiation Therapy, but we are confident
that it can be applied successfully to any similar registration problem. The RTReg program
is a test platform, featuring the use of 8 different similarity measures and 3 optimization
algorithms. The system can perform synthetic experiments or registration of real data.
Either a single X-Ray image or two images with known geometry between the images can
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be used. The latter case is often referred to as 2.5D − 3D registration, as the biplanar X-Ray
images already contain some spatial information.
The registration accuracy turned out to be extraordinary. For validation, we acquired
ground truth information for a phantom data set with metal markers. Our registration,
using a specific selection of similarity measures, always ended up within the error range of
the Ground Truth pose, except in the out-of-plane translation for mono images. Besides, the
statistical properties of many experiments on the phantom data show that the registration
started from arbitrary locations results at the same pose with submillimeter precision. This
does of course not guarantee that the alignment of the physical structures of a patient within
the CT data will have the same precision. It only predicates that the system is very stable,
as it registers the same data very determined to the same pose. Almost not to mention are
the synthetic experiments, which demonstrate perfect registration (also with sub-millimeter
precision in each DOF) for all used data sets.
The registration is executed in 1-4 minutes, mostly depending on the volume resolution
and the optimization parameters. There are already faster systems available, especially
for applications in realtime like fluoroscopic guidance, but not with our accuracy. The
most time-consuming process in our application is the DRR rendering with a 3D-Texture
algorithm. This rendering however contributes a lot to the achieved registration quality, as
it creates very realistic DRR images without artifacts that come with other faster rendering
techniques. The whole system runs on a high-end consumer PC, which is very inexpensive
compared to for instance a graphics workstation.

With our results, we demonstrated the feasibility of fully automatic 2D-3D registration
procedures in order to solve the patient positioning problem in radiation therapy.

8.2 Problems/Discussion

First of all, our registration works very well with the kind of data that we obtained from the
UPenn hospital. The X-Ray sensing device there was a solid detector, that was added after
installation of the system. Linear accelerators, that obtain portal images by using integrated
image intensifying sensors, produce images of a much poorer quality. On the other hand, it
is foreseeable that solid X-Ray detectors will gain importance in the future. Right now they
are often not considered for purchase due to their high price.
Even if our results are very promising, many things are yet to be evaluated, especially from a
clinical point of view. We do not have information about the registration accuracy on specific
objects of a real patient, like the brain, the spine or the abdomen. For each of those objects, a
certain amount of non-rigidity has to be accounted for, as e.g. tissue or spine vertebrae can
be shifted with respect to the CT and the portal images.

8.3 Future Work

The work on this project is very likely to be carried forward. Both detailed algorithmic
aspects and general application issues can be further examined and improved:
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• The main bottleneck in terms of execution speed is the DRR algorithm, but there is po-
tential for further development. The amazing technological level of consumer graphics
cards is likely to advance rapidly, making even things like 3D texture rendering more
efficient. This involves the possibility to use both larger volume sizes and resolution of
the DRR images for registration. It seems to be reasonable to work with DRR resolu-
tions up to 1024x1024, generated using a full CT volume content consisting for instance
of 512x512 slices - that is the actual size of X-Ray images generated by digital detectors.
Processing of the full amount of information made available by the imaging modalities
thus would be guaranteed.

• It would probably make sense to include some simple segmentation algorithm into the
application. Depending on the imaged object, the used CT data could be reduced e.g.
to bony structures which are more likely to stay rigid between the acquirement of the
CT scan and the portal images. Using some strategy to define a region of interest, both
stability and speed of the registration could be improved (see section 5.3).

• The parameters of the used optimization algorithm and their influence on the registra-
tion performance should be further examined. The Powell-Brent optimizer should be
trimmed to use adaptive termination constraints for the line minimizer (section 4.4) in
order to speed up the computation. The influence of different images on what the best
learning rate for the Gradient Descent optimizer (section 4.3) is, has to be evaluated.
Besides, the already implemented multiresolution strategy (4.5) should be used inten-
sively in test runs.
Furthermore, among the manifold available non-linear optimization algorithms, there
are other potential candidates that would work well in our application. This includes
for instance Surrogate methods or the Hooke-Jeeves Pattern Search algorithm, which are
successfully applied by [5].

• In my opinion it definitely makes sense to study and apply the approximation us-
ing 2D transformations (section 5.2) more. Most importantly, the error introduced by
approximating perspective projections with a parallel one should be assessed. This
would indicate the precision that could be achieved using this simplification, and up
to which level on a multi-resolution strategy it could be used.

• No matter how many portal images from different positions are acquired by the lin-
ear accelerator, the inter-image geometry is always given precisely by the knowledge
about the gantry rotation around the isocenter. Therefore it is possible to use more
than two images at once for the registration. Supposedly it would increase the over-
all precision and stability to use more images. With a whole set of images, this can
furthermore lead to reconstruction approaches like [28]. The radiation exposure of the
patient is probably neglegtible when the linear accelerator is in imaging mode, with
respect to the radiation energies used for the treatment.
This fact could even be used to change the whole treatment procedure. The registra-
tion can be used not only for the initial patient positioning, but to successively correct
for positioning errors during the treatment. The linear accelerator has to rotate the
gantry with defined steps and angles anway, in order to spare healthy tissue from be-
ing strained by the radiation. At each gantry repositioning, a newly acquired portal
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8 Conclusion

image could be used in conjunction with the previous ones to adapt the patient posi-
tion, in order to hit the target spot with the highest possible precision.

• Clinical trials are necessary to proof the claim that this application can be used for sup-
porting or even replacing existing patient positioning methods. Ground Truth based
registration has to be conducted on various target objects in order to make sure that
the overall precision is sufficient for regular clinical use. Among other things, it has
to be studied if the non-rigidity of the specific target area is always neglegtible. This
sometimes depends on the right kind of patient immobilization as well [3].
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A Detailed Experimental Results

On the following pages is a set of interesting diagrams, images and experimental data.

The figures A.1 (spans over two pages) and A.2 contain two-dimensional plots of two
pose parameters against a specific similarity measure. They are explained and interpreted
in section 7.5.

The subsequent pages contain detailed information on the experiments #2 - #6. In A.3
and A.5 the used images and settings for a series of experiments are shown. Figures A.4,
A.6, A.7, A.8, A.9, A.10 and A.11 depict the distribution of the respective final poses in
the parameter space and their standard deviations, they are referenced in the Experiments
section 7.4. Those distributions are split up into the translational (x, y, z) and rotational (α,
β, γ) degrees of freedom. Each two of those plots are drawn for MI, CR, NCC (left plots) and
GC, GD, PI, LNC, VWC (right plots). The initial estimates are displayed on all diagrams as
yellow points.
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Figure A.1: Similarity Measure plot for altering the in-plane translations

Figure A.2: Plots of the LNC measure with different pairs of DOFs altered



(a) DRR images, 0◦ and 90◦

(b) X-Ray images, 0◦ and 90◦

Setting Value
data set Rando Phantom #1
used volume size 256 x 256 x 185
voxel spacing 1.88mm x 1.88mm x 3.0mm
start pose [2.45, 270,−578.5, 0, 0, 0]
DRR window/level/transp. 920 / 2400 / 0.01
Field of View 15◦

Detector Stereo, 0◦ and 90◦

displacement up to ±10mm/±10◦

optimizer Best Neighbor
initial stepsize 8mm/8◦

max. downscaling 0.001

Figure A.3: Settings and used images for experiment #2
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(c) Rotational DOFs, first part of measures
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(d) Rotational DOFs, second part of measures

x y z α β γ mean
MI4 1.1818 0.3878 0.3667 0.3145 0.9566 1.7523 0.8266
MI6 0.9262 0.5585 0.4961 0.3316 0.9259 2.3481 0.9310
MI8 0.5865 0.4350 0.2714 0.3451 0.6499 1.2786 0.5944
CR4 4.6364 3.3421 2.2124 1.3324 2.4035 5.6165 3.2572
CR6 5.9632 4.3600 3.4035 1.5486 5.0085 5.9328 4.3694
CR8 7.3566 2.8715 3.5817 1.3724 4.3677 6.0667 4.2694

NCC 1.3492 1.0023 0.9947 1.2395 1.0167 4.4558 1.6764
GC 4.9412 3.8834 3.0450 4.8561 1.9214 4.3058 3.8255
GD 1.9253 2.3997 0.9600 0.8101 0.6091 1.3721 1.3460

PI 2.1622 1.0269 1.2935 0.8311 1.0053 3.0029 1.5536
(e) Table of standard deviations

Figure A.4: Distribution in parameter space and σ values for experiment #2



(a) 0◦ (b) 6◦

(c) 12◦ (d) 90◦

Setting Value
data set Rando Phantom #2
used volume size 256 x 256 x 216
voxel spacing 1.88 x 1.88 x 3 mm
start pose ground truth
DRR window/level/transp. 900 / 2900 / 0.01
X-Ray window/level 124 / 130
Field of View 12◦

displacement up to ±10mm/±10◦

optimizer Best Neighbor
initial stepsize 8mm/8◦

max. downscaling 0.001

Figure A.5: Settings and used X-Ray images for experiments #3 - #6
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(b) Translational DOFs, second part of measures
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(c) Rotational DOFs, first part of measures
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI4 3.2081 16.8850 3.3212 2.5930 1.1774 3.3992 5.0973
MI6 1.4548 15.9270 2.3985 1.7798 1.1183 1.8413 4.0866
MI8 1.6321 16.8986 2.1787 1.8231 1.2688 1.8517 4.2755
CR4 2.9569 13.6513 2.6940 2.7586 0.9166 3.4300 4.4012
CR6 0.7968 10.1979 1.0982 1.0618 0.6366 1.2080 2.4999
CR8 0.8263 7.6663 0.9281 0.9008 0.4719 1.1653 1.9931

NCC 1.6113 14.6071 1.8968 1.7175 0.8101 2.2125 3.8092
GC 0.9340 8.0687 0.8625 0.8997 0.8832 0.2174 1.9776
GD 0.4790 7.0843 1.1198 1.2229 0.3899 1.0682 1.8940

PI 0.4180 1.4848 0.2949 0.2769 0.1625 0.3610 0.4997
LNC 0.2313 1.7229 0.3535 0.2703 0.2119 0.3358 0.5210

VWC 5.7846 18.8061 4.5100 2.1550 1.2279 2.6524 5.8560
(e) Table of standard deviations

Figure A.6: Experiment #3 (single image)
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(b) Translational DOFs, second part of measures
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI4 1.2665 2.0836 1.5596 1.2872 0.8643 1.7476 1.4681
MI6 0.6034 1.6397 1.6364 1.2686 0.7371 0.8846 1.1283
MI8 0.9907 2.2460 1.9105 1.4809 1.0599 1.1500 1.4730
CR4 1.8030 1.7943 1.3432 1.3151 0.6804 2.2317 1.5280
CR6 0.7932 2.0943 0.7737 0.8670 0.5467 1.1579 1.0388
CR8 0.7141 1.7999 0.6352 0.7187 0.5335 1.0952 0.9161

NCC 14.3676 8.1203 12.0076 5.9504 5.6735 6.7413 8.8101
GC 0.3311 0.7485 0.3274 0.2200 0.1514 0.3333 0.3520
GD 0.4025 1.6057 0.2486 0.1680 0.1436 0.3311 0.4833

PI 0.2958 0.8097 0.2898 0.2142 0.1261 0.3585 0.3490
LNC 0.2531 1.1598 0.2469 0.1815 0.1222 0.2493 0.3688

VWC 11.7310 11.5754 13.7084 7.7952 4.6251 7.3952 9.4717
(e) Table of standard deviations

Figure A.7: Experiment #4 (stereo, 0◦ and 12◦)



−15
−10

−5
0

5
10

−10

−5

0

5

10
−10

−5

0

5

10

xy

z

initial
MI8
CR8
NCC

(a) Translational DOFs, first part of measures

−10

−5

0

5

10

−10

−5

0

5

10
−10

−5

0

5

10

xy

z

initial
GC
GD
PI
LNC
VWC
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI4 0.9077 0.2650 0.3485 0.2874 0.6614 1.0126 0.5804
MI6 1.0263 0.5441 0.6981 0.5151 0.5519 0.9427 0.7130
MI8 0.9344 0.2575 0.5541 0.4388 0.6495 1.0437 0.6463
CR4 1.0038 0.2539 0.4972 0.3529 0.7863 1.2132 0.6846
CR6 1.2906 0.1543 0.3766 0.2589 0.5348 1.4179 0.6722
CR8 1.0958 0.1381 0.3527 0.2992 0.5731 1.3504 0.6349

NCC 0.8738 0.3195 0.5024 0.4196 1.2300 1.0546 0.7333
GC 0.2004 0.0713 0.1041 0.0999 0.0869 0.2282 0.1318
GD 0.2341 0.1814 0.2578 0.1325 0.1354 0.1743 0.1859

PI 0.2373 0.0998 0.1244 0.1213 0.1470 0.2619 0.1653
LNC 0.2097 0.1234 0.2037 0.1378 0.1434 0.1740 0.1653

VWC 0.9451 0.1187 0.1498 0.4369 0.4822 0.6696 0.4671
(e) Table of standard deviations

Figure A.8: Experiment #5 (stereo, 0◦ and 90◦)
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI8 0.8166 0.3089 0.2823 0.3944 0.7879 1.3530 0.6572
CR8 1.0594 0.9564 1.0708 1.1657 1.9190 2.0104 1.3636

NCC 12.6280 1.7623 1.3265 0.9307 3.2584 15.0435 5.8249
GC 0.2668 0.1513 0.3397 0.2482 0.1446 0.2898 0.2401
GD 0.3194 0.3101 0.3806 0.2197 0.1849 0.3347 0.2916

PI 0.2333 0.1863 0.3021 0.1822 0.2454 0.2400 0.2316
LNC 0.2597 0.2459 0.3150 0.2193 0.1876 0.2370 0.2441

VWC 0.7428 1.2658 0.7285 0.5023 0.3571 0.7455 0.7237
(e) Table of standard deviations

Figure A.9: Experiment #6 with ROI border 100
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI8 0.7869 0.4004 0.7691 0.7835 0.4437 0.9381 0.6870
CR8 0.8052 0.2474 0.6632 0.5876 0.5833 0.8018 0.6148

NCC 14.4286 3.8001 3.6434 4.0531 6.8828 17.1891 8.3329
GC 0.6828 0.8791 1.6513 1.0597 0.9716 0.6828 0.9879
GD 0.4628 0.4214 0.6032 0.4303 0.3510 0.4314 0.4500

PI 0.3142 0.4654 0.6210 0.4442 0.3675 0.3707 0.4305
LNC 0.2355 0.3011 0.3391 0.3184 0.1713 0.1718 0.2562

VWC 2.6472 1.9559 3.4020 2.3704 2.6460 3.6048 2.7711
(e) Table of standard deviations

Figure A.10: Experiment #6 with ROI border 200
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(d) Rotational DOFs, second part of measures

σ x y z α β γ mean
MI8 1.6720 0.8514 0.6917 1.0967 1.1878 1.7287 1.2047
CR8 1.2564 0.8942 1.2873 1.1299 1.4755 1.2400 1.2139

NCC 17.2920 7.1832 7.7929 6.0454 8.4362 17.1089 10.6431
GC 2.1226 2.1876 2.6763 1.7287 1.5371 1.0921 1.8907
GD 2.5937 4.1031 1.6863 1.3283 1.9906 2.1853 2.3146

PI 2.6113 6.4527 1.8567 1.3358 2.3156 2.8147 2.8978
LNC 0.3224 0.2705 0.4470 0.3358 0.3036 0.2463 0.3209

VWC 6.3808 2.5137 3.3586 2.6080 3.1576 4.2305 3.7082
(e) Table of standard deviations

Figure A.11: Experiment #6 with ROI border 300



B Glossary

CT. Computed Tomography. A technique for producing 2D and 3D cross-sectional images
of an object such as the human body from flat X-ray images

DOF. Degrees of Freedom

DRR. Digitally Reconstructed Radiograph. Artificial X-Ray image, obtained by using the
voxel information of a CT data set.

DSA. Digital Substraction Angiography

FLE. Fiducial Localization Error. Deviation of the found positions of fiducial points from
the real physical locations. Relevant for point- & feature-based registration algorithms.
See also FRE.

FOV. Field of View. Angular parameter of a perspective view transformation.

FRE. Fiducial Registration Error. Measure of registration success, used with point-based
registration systems. The difference between fiducial points in the two images is ex-
pressed, often as root-mean-square value.

Gold Standard. Any registration system whose accuracy is known to be high,is a gold stan-
dard registration system. Used for developing and validating new registration algo-
rithms.

GPU. Graphics Processing Unit. The processor located on a graphics card, able to rapidly
process 3D vector information for accelerated rendering.

Ground Truth. The known solution to a registration problem, in other words the true trans-
formation, is called Ground Truth. It is very valuable to have experiments where
Ground Truth information is given, however it is often very hard to find this infor-
mation.

LINAC. Linear Accelerator. Device generating high-energy X-Ray radiation that can be fo-
cus on a specific target in order to perform radiation therapy.

Matching. To bring two modalities/images into spatial alignment in order to compare the
modalities/images directly.

MIP. Maximum Intensity Projection, the equivalent to DRRs for MR images

Registration. Process of estimating the parameters for the matching of two modali-
ties/images.

MRA. Magnetic Resonance Angiography
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B Glossary

RMS. Root-Mean-Square, common scheme of taking the average of multiple measured val-
ues.

RMS =

√√√√ n∑
i=1

|xi|2

Stereotactic Frame. A metal ring that is usually attached to a patient’s head and used for
registration purposes.

TRE. Target Registration Error. Measure of registration success, containing the difference of
a clinical relevant point in the images to be registered.
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