Marker Tracker Library

Functional Description

1. Introduction

The purpose of the Marker Tracker Library is to provide functionality for tracking of a simple type of markers.

It exports rather simplified interface - it has the mandatory functions for initialization and finalization. It has a function for getting the proper projection parameters, which represent the view of the camera used by the library (MT_ProjectionParams). The pose estimations for markers are only valid in the context of this projection. The main functionality of the library is hidden in one single function (MT_ProcessFrame) that returns the frame captured as well as a list with all markers found in the frame and their estimated poses. These poses can be directly used in any kind of visualization application for drawing, but, once again, only within the camera projection context.

The library is mainly thought for development with OpenGL, although it is not coupled with it, so it should not be that difficult to be used in any other environment.

The library supports various types of different cameras – at least all types that are supported by cvcam provided by OpenCV library.

The Marker Tracker Library allows a flexible way for managing the camera and the markers to be used. There is special INI file, which can be manually updated by the user.

2. Functionality

2.1. Incremental Tracking

Finding and identifying markers in camera captured frame is the main purpose of this project. Therefore, the first received frame is fully processed and present markers are identified. Bounding boxes of found markers are stored in list, and next frame is processed based on this data. Markers of following frames are searched only in the regions of interest (previously defined by bounding boxes of first found markers), which significantly reduces the process time. Taking into account that during the program runtime additional markers can be introduced to the current scene, some upcoming frames are processed fully in user-defined time periods. After this process new list of regions of interest is introduced, and is used till next full sweep over frame. Time period identifying the full sweep over the upcoming frame can be set up by user in INI-file.

2.2. Fast Camera connection

In order to process the captured picture, first of all the connection to the camera should be established in an appropriate way.

For this purpose we use the CvCam universal cross-platform module. It has some functions associated with Intel’s OpenCV project, which allow reading and controlling video stream, processing its frames and rendering the results, using different kinds of digital video cameras.

For the purpose of the project, we use several functions:

· cvcamGetCamerasCount()- returns the number of the cameras in the system

· cvcamSelectCamera() – selects one camera from a set of cameras

· cvcamSetProperty() - sets some properties of the camera

· cvcamGetProperty() - gets some properties of the camera

· cvcamInit() – makes the settings active which are set with cvcamSetProperty() and initializes the camera

· cvcamExit() – finish working with cvcam

2.3. INI-File input

The library needs plenty of initialization parameters e.g. Camera calibration parameters, marker codes, marker dependencies. In order the user to be able to manage these parameters, there is introduced an .INI file.

Following sections have to be present in the INI file:

· [camera] – contains the type of the camera that has to be connected and its calibration parameters (look 2.4. Camera calibration)

· [markers] – a list of the unique string id-s (names) of the markers that the library should be able to recognize and track.

· [<marker id>] – for each marker listed in [markers] there is a corresponding section [<marker id>], where <marker id> is the unique string id of the marker. In this section there should be the 4 different code values of the marker read counter clockwise. Here should be specified also whether the marker has to be registered at runtime against some other marker, and, if yes, against which one.

2.4. Camera calibration

The library supports wide variety of camera types and models. For tracking of markers, the library needs some intrinsic properties of the camera, like focal length, physical origin on the camera image, distortion parameters of the lens. In order to fetch these parameters a small binary is introduced: calibtool. It reads prepared images of chessboard from different points of view and estimates the intrinsic properties of the cameras. Each time the newly calculated values should be updated under corresponding section in the library’s .INI file.

calibtool uses the camera support provided by cvcam library.

2.5. Library API

The library has three main public functions:

· MT_Init – initializes the library, reads the .INI file, and initializes the camera specified in the .INI file

· MT_ProjectionParams – returns the parameters needed to setup proper projection

· MT_ProcessFrame – This function has to be called in every frame cycle in the main program of the user code. It returns the captured image and a list of all markers that were found and their poses.

· MT_Release – releases all allocated by the library resources.

Additionally the library will export some secondary functionality:

CTree – an OpenGL
class of growing Bonsai tree

2.6. Demo

In order to provide the end user with the example of using the library, the demo project is introduced. Basically, it will display in window the camera video stream, identify present markers, display transparent cubes with solid edges on them, and also write codes on corresponding markers. Additionally, it will be also possible to plant a tree on one of the markers, which can be defined in INI-file.

�We should try to avoid introducing dependencies to other external libraries than OpenCV

