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Diplomarbeit in Informatik

Active Vision for Interactive Spaces

Aktives Sehen in Interaktiven Räumen
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Abstract

Active Vision goes beyond plain sensing technology and includes strategies for observa-
tion. Rather than just processing snapshots, the observer and sensor continually interact
to purposefully analyze visual sensory data and answer specific questions posted by the
observer. Subject of this thesis is the exploitation of the Active Vision paradigm in in-
teractive spaces. A particular example for such a space is the eXperience Induction Ma-
chine (XIM). The human accessible mixed reality space is run at the Institut Universitari
de l’Audiovisual (IUA) in Barcelona to enable research applications in the field of mixed
reality using biologically inspired models of sensor and effector systems. In this environ-
ment, a major challenge lies in the tracking of people by a multi modal tracking system,
fusing the input of multiple sensors and maintaining a model of the space in real time.

The specific Active Vision task examined in this thesis is the use of four wall-mounted,
movable pan and tilt cameras (gazers) to gain additional information about a person lo-
cated at a position signalized by the tracking system. This additional acquired information
would be helpful, especially if tracking data can not be unambiguously assigned to a spe-
cific object contained in the model. Since this deployment of the gazers presupposes an
adequate calibration of the individual devices, this thesis emphasizes different calibration
techniques and evaluates their strengths and weaknesses. I will introduce an innovative
approach that estimates a gazer’s pose by finding an optimal fit of the desired parameters
to a set of priorly collected correspondences between tracking positions and gazer angles.
In order to keep the calibration as independent as possible of any secondary modality, the
gazer’s pose is computed only from a standardized global tracking input and the gazer’s
own image scanned by a classifier to detect objects. For verification of this calibration tech-
nique and for comparison of the results to those of a state of the art method, a marker based
pose estimation was implemented and evaluated. A bundle adjustment thereby serves to
globally optimize the poses of the gazers, taking all involved parameters and error sources
into consideration. The evaluation of the different calibration techniques allows to draw
a conclusion on the accuracy that can be achieved in adjusting the gazers to look at any
position in the space. A successfully calibrated system will serve reliable image data for
further processing, allowing the assignment of unique attributes such as hue, color or size
to the focused object. As an example, I will consider the generation of hue histograms
over a specific region of interest. Several distance measures for histogram comparison will
be introduced, to see whether a hue histogram carries enough information to distinguish
between persons in the space.
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Zusammenfassung

Anstatt sich ausschließlich auf die Verarbeitung statischer Bilder zu beschränken, umfasst
das Prinzip der Active Vision auch den aktiven Einsatz visueller Sensoren zur Unter-
suchung bestimmter Ziele. Beobachter und Sensoren tauschen sich dabei stetig untere-
inander aus, um spezifischere Informationen generieren zu können. Ziel dieser Arbeit ist
die Nutzung dieses Ansatzes in interaktiven Räumen. Als Anwendungsfall wird die eXpe-
rience Induction Machine (XIM) betrachtet, die am Institut Universitari de l’Audiovisual
(IUA) in Barcelona betrieben wird. In diesem begehbaren interaktiven Raum sollen die
Möglichkeiten der Mixed Reality auf der Basis biologisch inspirierter Modelle erforscht
werden. Eine wesentliche Herausforderung liegt dabei im Tracking, der genauen Posi-
tionsbestimmung einzelner Personen im Raum. Ein multi modales Tracking System wird
eingesetzt, um die Informationen der einzelnen Sensoren zu verarbeiten und ein Modell
des Raums in Echtzeit zu pflegen.

Im Rahmen dieser Arbeit sollen vier schwenkbare Kameras, die Gazer, benutzt wer-
den um zusätzliche Informationen über bestimmte Personen in der XIM zu gewinnen.
Diese Informationen könnten insbesondere dann hilfreich sein, wenn zweifelhafte Sen-
sordaten keinem Objekt im Modell eindeutig zugeordnet werden können. Grundvoraus-
setzung für den Einsatz der Gazer zu diesem Zweck, ist eine genaue Kalibrierung der
einzelnen Geräte. Schwerpunkt dieser Arbeit sind deshalb die Umsetzung und Auswer-
tung verschiedener Kalibrierungstechniken. Es wird ein neuer Ansatz vorgestellt, bei
dem die extrinsischen Parameter eines Gazers als optimal passende Konfiguration für
einen Satz zusammengehörender Paare von Zielpositionen und Gazerausrichtungen ge-
funden werden. Um die Kalibrierung dabei so weit wie möglich unabhängig von weit-
eren Modalitäten zu halten, basiert diese nur auf einem globalen Positionssignal und dem
eigenen Bild des jeweiligen Gazers. Zur Bestätigung dieses Ansatzes und zum Vergleich
der Ergebnisse mit denen einer anerkannten Methode, wurde eine konventionelle Mark-
erkalibrierung implementiert und ausgewertet. In einem Bundle Adjustement werden
dabei alle involvierten Parameter und Fehlerquellen berücksichtigt. Auswertung und Ver-
gleich der verschiedenen Ansätze lassen einen Rückschluss auf die mögliche Genauigkeit
zu, die bei einer Ausrichtung der Gazer auf bestimmte Stellen im Raum erzielt werden
kann. Ein erfolgreich kalibriertes System erlaubt die Gewinnung zuverlässiger Bilder für
die weitere Verarbeitung und den Vergleich verschiedener Personen im Raum anhand
bestimmter Attribute. So lassen sich zum Beispiel Histogramme bestimmter Bildbere-
iche erzeugen und vergleichen. Mehrere Abstandsmetriken zum Vergleich zweier His-
togramme werden vorgestellt und ausgewertet, um Aufschluss darüber zu geben ob die
Informationen ausreichen, um zwei Personen im Raum zu vergleichen.
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Overview

Before starting with the main content, I would like to give a short overview over the con-
text of this diploma thesis and explain its goals.

The eXperience Induction Machine

The eXperience Induction Machine (XIM) is a human accessible mixed reality space run
at the Institut Universitari de l’Audiovisual (IUA) in Barcelona to enable research applica-
tions in the field of mixed reality using biologically inspired models of sensor and effector
systems. To interact with its visitors, the space is equipped with 72 light emitting floor
tiles, that also serve as sensors. Their weight information complements the visual data
provided by a infrared camera installed in the ceiling in order to track objects in the room,
as well as the data from three triangularly arranged microphones. Inside the space, the
visitor is surrounded by projection screens, exposing him to interactive content. Eight
movable theater lights can be used for light effects and indication of certain spots, while
four wall mounted movable pan-tilt cameras (gazers) may be used to gaze at certain spots
and provide an online image.

In this environment, a major challenge lies in the tracking of people in the space. A
multi-modal tracking system (MMT) is used to fuse the input of multiple sensors and
maintain a model of the space in real time. In its present configuration, with the overhead
camera and the pressure sensors in the floor deployed, the MMT encounters difficulties
in tracking multiple objects, especially when these move close to each other. Measures
to improve the performance include the dynamic filtering of the respective data streams,
as well as more sophisticated ways of data fusion. Another approach would be to add
a further modality to the setup to provide complementary information that allows the
creation of a distinctive model.

Objective of this project is the use of the four gazers to gain additional information about
certain entities in the space and provide it to the MMT as additional input. On request the
gazers shall be set to look at a desired position and extract additional information, that
may be assigned to or compared with an object in question. The acquired data could be
helpful, especially if tracking data can not be unambiguously assigned to a specific object
contained in the model.

A detailed description of the XIM infrastructure, the tracking system deployed and the
specific problem addressed in this project will be given in chapter 1.

Problem Statement

On request the gazers shall look at a defined spot to extract the asked information. In order
to do so, the most appropriate gazer needs to be chosen and then set to look in the right
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direction. The adequate view direction of the specific gazer can thereby be expressed by
two degrees of freedom, the pan and the tilt angle. The pan angles describes the gazers ro-
tation around its main axis, while the tilt angle defines the nod of the camera head. These
angles can easily be trigonometrically computed if, apart from the tracking data defining
the position in question, the gazer’s extrinsic parameters are known. The extrinsic para-
meters of the gazers are defined by its position and orientation in three dimensional space,
when both the pan and the tilt angle are set to zero. While various approaches exist to
find these extrinsic parameters, in a prior calibration scenario as well as by a dynamic
learning process, this thesis introduces an innovative approach. To keep the calibration
as independent as possible of any other means apart from the tracking system, the extrin-
sic parameters are computed from a set of correspondences between tracking positions
and respective gazer angles gained in a calibration scenario. Rather than estimating the
position of the gazer in relation to some predefined coordinate system, this setup yields
the position in correspondence to the coordinate frame spanned by the tracking system.
Keeping in mind that the tracking data is given in exactly this coordinate frame, this is of
an enormous advantage. In order to judge on the performance of the calibration and the
accuracy of the poses, the results are compared to those of a state of the art marker based
calibration method.

Classifier Based Pose Estimation

The extrinsic gazer parameters are computed by finding an optimal fit to an arbitrary set
of correspondences between tracking positions and the respective gazer angles. This set
of correspondences defines a system of non-linear equations, for which an optimal so-
lution can be found using a Levenberg Marquard Optimizer. To get the required corre-
spondences, an initial calibration scenario is necessary to find the right gazer angles for
a number of tracking positions. To get this data the room is scanned with the respective
gazer looking for an unmoved person, whereby it follows a search path varying in both
rotations. The lightning conditions are kept optimal, to allow the detection of the person
in the gazer image by a classifier. The gazer can thereby be adjusted to look straight at
the person, whose position is simultaneously tracked by the overhead infrared tracking
system of the XIM. Once the gazer is adjusted yielding an image with the person in the
center, its angles and the respective tracking position are recorded. The whole process is
repeated for different positions in the room.

A sufficient number of correspondences found by the calibration method described
above allow the optimization of the desired camera parameters to provide an input for the
computational model to determine needed gazer angles online. This optimization is done
by a non-linear Levenberg Marquard Optimizer, optimizing position (x, y, z) and orienta-
tion of the gazer (yaw, pitch) from a minimum of four correspondences. The optimization
was tested for various sets of correspondences to determine a minimal (sufficient) number
of pairs required to guarantee satisfying results.

Chapter 2 introduces this innovative approach of extrinsic pose estimation and discusses
it’s performance and results.
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The Control Experiment

For verification of the results from the calibration and for comparison to a state of the art
calibration method, a control experiment was run, implementing a marker based calibra-
tion. An interactive marker equipped with infrared LEDs was placed in the room, allowing
the pose estimation of both the gazer and the infrared overhead tracking camera relative
to the marker. In combination these poses allow the estimation of the gazer position and
orientation relative to the overhead tracking system, which serves as reference coordinate
system for the classifier calibration.

The pose of the gazer in relation to the marker was computed using the Ubitrack frame-
work, a powerful framework for ubiquitous tracking applications develop at the Chair for
Computer Aided Medical Procedures and Augmented Reality (CampAR) of TU München.
To estimate the pose, the intrinsic camera parameters and distortion coefficients of the spe-
cific gazer need to be known. These where determined using the chessboard calibration
pattern also implemented in the Ubitrack framework. To allow the estimation of the pose
between the marker and the infrared tracking camera installed in the ceiling of the XIM,
the marker was equipped with infrared LEDs at five points. After an intrinsic calibration
analogous to the one done for the gazers, the pose of the infrared camera relative to the
marker could be computed from its images showing the position of the LEDs. To com-
pensate for errors in the marker detection the pose estimation was done for ten different
marker positions. The results where then averaged, yielding the estimated position of the
gazer in the infrared coordinate system. In a more sophisticated approach, a bundle ad-
justment implemented in the Ubitrack framework was modified to globally optimize all
involved parameters. This optimization method comprises the measurements of both pose
estimations, between gazer and marker as well as between overhead camera and marker,
and tries to find an optimal fit for all involved parameters.

The results of the control experiments and a comparison to the classifier approach are
discussed in detail in chapter 3 of this project.

Attribute Extraction

Using the parameters determined, the gazer pan and tilt angles can be computed online for
any given tracking position. A simple protocol for communication with the multi modal
tracking system was defined. In a sample application, a saliency map is created to trigger
an adequate gazer to look at the point of interest, once a tracked object stands by itself and
is not moving. A region of interest is selected and extracted from the gazer image in re-
spect of the distance between gazer and object. This image region will now serve as input
for further processing. A first approach of gaining unique information from this region
of interest is the creation of a hue histogram with an arbitrary number of bins. In a test
scenario, such a histogram was generated for various images taken from all gazers look-
ing at distinguishable persons standing at different positions in the room. The gazer was
priorly set to look at the respective position indicated by the overhead tracking system as
described above. To determine whether a hue histogram contains enough information to
clearly differentiate between the persons, different mathematical approaches of histogram
comparison where tested and evaluated.

The description of this experiments and a discussion about its results can be found in
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chapter 4.

This thesis finishes in chapter 5 with a recap of the results and the insights gained within
the course of the project. Advantages and disadvantages of the different calibration ap-
proaches are discussed and an outlook on further work to be done is given.
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1. Introduction

In this chapter I will give a description of the context of this thesis and derive the concrete
problem statement. After an introduction to the eXperience Induction Machine and the
multi modal tracking deployed, my approach of gaining complementary information by
use of the gazers will be elucidated in detail. This will lead us to the importance of an
accurate camera calibration, an aspect that will be the main subject of this thesis. I will
present the different approaches of pose estimation that will be discussed in the following
chapters and provide a guideline through the project.

1.1. Environmental context

1.1.1. the eXperience Induction Machine

Introduction

The eXperience Induction Machine (XIM) is a human accessible mixed reality space run
by the research group for Synthetic Perceptive, Emotive and Cognitive Systems (SPECS)
at the Institut Universitari de l’Audiovisual (IUA) in Barcelona. The room, equipped with
a wide range of sensors and effectors, is designed as a general purpose infrastructure to
investigate human-artifact interaction and to conduct experiments in mixed reality. XIM
is an abstraction and further development of its predecessor, the installation ”Ada - the in-
telligent space”, that was build for the Swiss national exhibition Expo02, a fair that hosted
over 560.000 visitors over a period of six month. The neuromorphic design and function-
ality of Ada is described in [27]. Specific research questions within the XIM environment
include how a spatial enclosure can affect and interact with its visitors, how humans can
act, exist and behave in both physical and virtual spaces, the construction of socially capa-
ble and believable synthetic characters and the development of a framework for interactive
narratives [12]. While such an installation can also be implemented as a pure input/output
device, the conceptual design of the space as an autonomous entity is one of the key fea-
tures of XIM. It thereby sets itself off against other mixed reality spaces such as the Al-
losphere at UCSB, the Intelligent House at MIT, the Nanohouse at UTS and the Sentient
Lab run by the Faculty of Architecture at the University of Sydney [12].

Infrastructure

XIM in its present configuration is a square room with a 5.5 by 5.5 meter surface and a
height of 4 meters. All major instruments are mounted in a rig constructed from a standard
truss system. The design of this prototype space is modular in both physical and techno-
logical aspects, so that it can easily be expanded to a larger interactive space planned to
be deployed as a permanent exhibition at the communication campus of UPF 22@BCN.

Active Vision for Interactive Spaces 5



1. Introduction

Figure 1.1.: The eXperience Induction Machine

Figure 1.1 shows a scheme of the room in its present state. It is currently equipped with
the following devices:

• Two cameras at the top of the rig provide a ”bird’s eye perspective”, that serves as
input for the multi modal tracking system. One of the cameras is thereby equipped
with a standard infrared filter to deliver infrared images to the system. A major
infrared source light is used to enlighten the space with infrared rays.

• Three microphones are attached to the center of the rig and might be used as auditory
input source for visitor localization and to recognize specific sounds.

• Eight steerable theater lights (Martin MAC250, Arhus, Denmark), furthermore re-
ferred to as ”LightFingers”, are attached to the top boundary of the rig for light ef-
fects from all sides.

• Four steerable color cameras (”gazers”), mechanical constructions adapted from the
Martin MAC250 theater lights and equipped with camera blocks from Sony to re-
place the light bulbs. The gazers are mounted in the corners of the space at head-
height to get images of the visitors from all directions and angles.

• A total of 16 speakers with the corresponding sound equipment (MIDI sampler,
matrix mixer, amplifiers) provide spatialized sound, while a PA system is used to
present soundscapes.

6 Active Vision for Interactive Spaces



1.1. Environmental context

Figure 1.2.: Simplified XIM connectivity diagram. Image adapted from [12]

• Six video projectors are used to display visual content on the white screens that sur-
round the space.

• A custom construction of 72 hexagonal shaped interactive tiles [25] constitute the
floor of the space. The tiles are used as sensors as well as effectors. Equipped with
pressure sensors they can provide weight information of the visitors. At the same
time, each floor tile incorporates individually controllable RGB neon tubes, which
permits the display of patterns and light effects.

Currently XIM is controlled by more than 16 computers, implementing the different
subsystems such as sonification, the tracking system or the virtual environment. Figure
1.2 shows a simplified overview over the system architecture. The development of the
hardware and software infrastructure was thereby based on the existence of two represen-
tations of the XIM, a real and a virtual. This design is emphasized by the aim to create a
persistent virtual community (PVC), that will be described in detail later in this chapter.
To allow the permanent existence of the persistent virtual community despite its transient
and indirect coupling to the physical XIM, the implementation of the system underlies two
principles: Real and virtual XIM are considered the same, and the cognitive component of
XIM is decoupled from its physical and virtual representations [11]. An emphasis is placed
on the first maxim, the functional equivalence. In the virtual counterpart of the XIM ef-
fectors have to have the same functional effect on visitors and not necessarily be a faithful
representation of the physical device. This functionality is considered crucial for creating a

Active Vision for Interactive Spaces 7



1. Introduction

coherent interaction in the mixed reality environment. The second maxim implies that any
event occurring in the real or virtual space is indistinguishable for XIM’s cognitive system.
In this context, XIM becomes a gateway to a larger virtual environment, the PVC.

The design philosophy of the XIM infrastructure is to reduce complexity in order to
cope with these rather complex tasks. Therefore the former system design of Ada was
modified, to fulfill requirements such as full scalability or easy communication between
the autonomous components. Each of them is assigned with a restricted, well defined
task. The communication interfaces are kept thin, i.e. as few commands as possible are
transmitted via UDP sockets rather than relying on remote procedure calls (RPC) as it was
the case for Ada.

A XIM application

A major application developed in the XIM environment is the Persistent Virtual Commu-
nity (PVC), which is one of the main goals of the PRESENCCIA project. PRESENCCIA is
an integrated project funded under the European Sixth Framework Program, Future and
Emerging Technologies (FET), which is tackling the phenomenon of subjective immersion
in virtual worlds from a number of different angles [12]. Within the PRESENCCIA project,
the PVC serves as a platform to conduct experiments on presence, in particular social pres-
ence in mixed reality. The PVC makes use of all aspects of XIM as a mixed reality platform,
where entities of different degrees of virtuality can meet and interact. This includes real
visitors physically present in the installation, avatars as alter egos of remote visitors and
fully synthetic characters controlled by neurobiologically grounded models of perception
and behavior.

The mixed reality world of the PVC consists of the Garden, the Cave and the Avatar
Heaven (Figure 1.3). The Garden of the PVC is a model ecosystem, which changes its de-
velopment and state depending on the interaction with and among its visitors [61]. The
Clubhouse is a building in this environment and houses the virtual XIM. The virtual ver-
sion of the XIM is a direct mirror of the physical installation, any events and output from
the physical installation are represented in its virtual counterpart and vice versa. This
means e.g. that an avatar crossing the virtual XIM will also be represented in the physical
installation. Conceptually the physical installation is embedded into the virtual world.

Access to the PVC is given via three portals: Visitors can enter the virtual world physi-
cally through the XIM, or virtually either by way of a Cave Automatic Virtual Environment
(CAVE) or via the internet from a PC (Figure 1.3). In future the mixed reality installation
of the PVC is meant to be open to the general public and will thereby provide a show-
case for the key technologies developed in the PRESENCCIA project. In this content, XIM
fulfills a double role: On the one hand, the XIM is an interface to the virtual world and
hence allows visitors physically present in the room to interact with avatars and synthetic
characters. On the other hand, the room has a ”ghost in the shell” [12], meaning that it
is an autonomous, sentient entity which is engaging in interactions with its visitors and
is actively monitoring and modulating their behavior. This design is emphasized by the
aim to use XIM to study collective and social presence where groups of visitors share the
same frame of reference. While the CAVE can be used by a single user to access the PVC,
XIM is an effective approach to allow multiple users to access the space simultaneously.
Bernadet [12] describes two major facets of social presence that can be explored in this con-
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Figure 1.3.: Layout of the access to the Persistent Virtual Community. Image adapted from
[12]

text. Firstly the facet of the perception of the presence of another entity in an immersive
context, which depends on the credibility of the entity the visitor is interacting with. In
the case of XIM as an entity within the PVC, the credibility of the space is affected by its
potential to act and be perceived as a sentient entity and deploy believable characters. The
credibility of the synthetic characters representing a user in the CAVE depends on its va-
lidity as an authentic antromorphic entity. This could be i.e. the preservation of presence
when the synthetic characters change their form of representation. The second facet of so-
cial presence covers the collective immersion experienced in a group, opposed to being a
single individual in a CAVE. For this purpose the XIM offers a unique platform, since the
size of the room permits the hosting of mid-sized groups of visitors.

1.1.2. Multi modal tracking in the XIM

Mixed reality applications like the XIM enable interactions between real, synthetic and
virtual characters of diverse nature and quality depending on the technologies available. A
major challenge in achieving this interactivity lies in the accurate tracking of the physically
present persons or objects in the space. Many interaction scenarios, like interactive games
or virtual societies, demand precise information about the position of all entities involved.
Also within the context of the research intended to be done in the XIM, the exploration
of social presence, accurate tracking is considered a necessity. From the perspective of
a real person in a mixed reality space, a sense of presence is generated from the feeling
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that he/she exists within the space as a separate entity. The experience of individualism
can be enhanced if other existing entities of the virtual world react on ones presence [33,
17]. Subjective personal presence thereby gives a measurement why and to what extend
a person feels he/she is in a virtual world [33]. Social presence refers to the extend to
which other beings, real or synthetic also exist in the virtual world and in how far they
react to a person in the space [33]. It derives from conversing with other humans and
the interaction with synthetic entities in the environment. If a person feels he/she is being
recognized by someone or something, it is easier for himself/herself to believe that he/she
is actually there [17]. Analogously, environmental presence refers to the extend to which
the environment itself appears to know that there is an human entity present and can
therefore react on its presence.

All of these notions described above are feasible only if information about the position
of each individual human visitor of the space is available at any given time, making real
time tracking indispensable. Often, as in the case of XIM, single modal person tracking in
mixed reality spaces is very difficult as each of the different sensors might have high er-
rors [7]. Therefore tracking in the XIM is realized by a multi modal tracking system (MMT)
that can revert on the input of numerous sensors, currently an infrared camera mounted
to the ceiling for visual tracking and weight information from each individual floor tile.
It seems obvious that, if handled right, additional sensor information can compensate for
weaknesses of other modalities and contribute to a more stable and accurate tracking.
Therefore one possible approach to enhance the tracking performance of the MMT lies in
the use of the individually controllable pan-tilt cameras, the gazers, to provide comple-
mentary information. The exploitation of such selective attentional mechanisms is the main
motivation for this project and will be discussed in the following sections.

The image data from the infrared overhead camera is currently being processed by an
adaption of the 3D tracking system AnTS, that was originally developed for behavioral
analysis of flying insects and robots [10]. To determine objects in the image, a priorly cap-
tured background image is subtracted from the current camera image. The resulting image
is then processed by means of simple thresholding, noise reduction and centroid compu-
tation to yield the center of all objects that can be silhouetted against the floor. Figure 1.4
shows the captured background (1) and the image at the different stages of the process-

Figure 1.4.: The image processing pipeline of the 3D tracking system AnTS. The back-
ground image (1) is subtracted from the current camera image (2) to reveal all
objects that set themselves off from the floor (3). (4) shows the image after
processing, whereby each ellipse indicates the boundaries of an object.
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ing pipeline (2,3,4). The coordinates of the objects are then transferred to the MMT, where
they serve as major input source, supplemented by the input data from the floor tiles. Each
floor tile is equipped with three pressure sensors at opposing corners. The gain of each of
theses sensors is constantly written into a shared memory, where from it is extracted by
a floor client and forwarded to MMT along with the position of the tile and sensor that
caused the output.

As a neuroscientific institute the SPECS group bases their approach for solving data
association and fusion tasks on brain mechanisms. The association of different sensory
cues with external objects or events, their registration, processing and the subsequent gen-
eration of motor commands are critical for the survival of animals. Neurophysiological
research suggests that the superior colliculus (SC) is one of the primary areas for sensory
data association and appropriate motor action generation for orienting response toward
the source of stimulation [51]. It has been shown that the SC possesses sensory maps
for individual sensors, from which motor maps for motor action generation are formed.
Bayes’ rules have been successfully used to model multi-sensory fusion as exhibited by
the SC [4]. Further high-level modulation of sensory information could possibly be a key
aspect in sensor data processing using limited resources [51]. Based on these considera-
tions, a top-down modulation of bottom-up sensory information has been developed for
integrating and deploying the different sensors in the XIM based on Bayesian inference.
A first version of this tracking framework is in use, featuring dynamical recruitment of
sensors and effectors to enhance tracking and resolve conflicting data. Figure 1.5 shows
the concept of top-down modulation of bottom-up sensory information as it is realized for
the MMT of the XIM.

1.2. Objective

As described in the previous section, single modal person tracking is in general fragmen-
tary and inefficient, as any sensor has errors and might fail in certain situations. Along
with other means, as dynamic filtering of the tracking data, the allocation of additional in-
formation might be useful to correct inaccuracies and enhance the tracking performance.
This information can be of different nature and either be constantly provided to the track-
ing system (bottom-up) or requested if needed (top-down). As shown in Figure 1.5 the
multi modal tracking system of the XIM implements both bottom-up and top-down sen-
sory information processing. The results of the fusion of all available tracking data, for
instance from the overhead visual tracking or the sensory information from the floor, are
thereby used to update the world model but also to actively deploy certain sensors to
deliver additional and more precise information if needed.

Objective of this project is the use of the four wall mounted pan-tilt cameras (gazers) to
gain complementary information about entities in the space and thereby assist the tracking
system. This approach is motivated by weaknesses of the existing solution if more than
one person is present in the room. Especially if two or more objects move close to each
other, difficulties occur in distinguishing between them and assigning ambiguous track-
ing data to a certain entity. To solve these ambiguities, a detailed model of the world with a
list of all entities currently present in the room shall be maintained. The list can constantly
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Figure 1.5.: Top-down modulation of bottom-up sensory information as implemented
in the MMT. The individual sensors deliver data to the data fuser. The data
fusion process is modulated by the input from the world-model. The result of
the data fusion is then used to update the world-model and also to actively
deploy sensors and effectors. Image adapted from [39]

be updated with attributes about each single entity. These may be for instance color infor-
mation or physical appearance, but also more sophisticated measures are thinkable. The
gazers might be used to constantly look at persons in the space and thus ”learn” about
their features to provide these attributes to the tracking system (bottom-up), but also be
triggered by the system if there is uncertain data that can not be unambiguously assigned.
In this case an appropriate gazer shall be chosen to look at the spot where the tracking
data in question came from and return a variety of attributes to compare the object that
emmited the signal to those in the list of existing objects. As a side effect, the active de-
ployment of sensors and effectors will make human participants in the space feel that the
space knows where he/she is and that it tries to get to know him/her better. Such display
of attention allocation may considerably contribute to an enhanced feeling of social pres-
ence as described in chapter 1.1.2.

We will see that the most important premise for a successful deployment of the gazers
is an accurate extrinsic calibration. In order to be adjusted to look at a specific spot in the
space, the position and orientation of each gazer need to be known. The correctness of all
further processing will be strongly dependent of these parameters. Main subject of this
thesis will therefore be the pose estimation of the individual gazers and the performance
in computing the respective angles that may be achieved with the individual solutions.
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1.3. Design issues and definitions

1.3.1. General design issues

In order to adjust the gazers in space, we need to know their poses. The attribute extrac-
tion system shall be provided with these poses as an input, without further limitations on
how they were estimated. Nevertheless, this estimation is crucial for the correctness of
the adjustment. In the course of this project, I will introduce two essentially different ap-
proaches of pose estimation and evaluate their performance. Both of them, however, will
be implemented as standalone applications and yield the desired parameters as an output
according to a predefined syntax. As the accuracy of a later adjustment depends mainly
on the choice of the pose parameters, I will but a strong emphasis on the implementation
and comparison of the different approaches.

1.3.2. Attribute extraction

It was agreed that the final attribute extraction system shall be designed as a pure pull-
application, meaning it should only perform action if triggered by the data fuser. A real-
ization as a push- and pull-application would also be possible, whereby the system would
constantly try to gain information and pass it to the data fuser if idle. This would make
the whole application much more complex, since it would have to choose points of interest
by itself and therefore would need to be aware of the whole world model and all tracking
data. Only so it could decide where a person stands motionless and by itself, making it
possible to deliver reliable information. It is therefore more reasonable to leave these allo-
cation tasks to the data fuser. The task to be performed by the system in first instance is
therefore quite simple. The application will be triggered by the data fuser software with
the tracking position specifying the point of interest and the id of the most appropriate
gazer being passed according to a specified protocol. On execution, the respective gazer
has to orient itself to look at even this spot and extract the requested attribute from its
camera image. This attribute will then be returned to data fuser for further handling.

1.3.3. The gazers

The gazers are individually steerable color cameras, mechanical constructions adapted
from the Martin MAC250 theater lights that are also in use as LightFingers in the XIM.
The light bulbs have been replaced with Sony CCD color camera blocks with a resolu-
tion of 768 x 576 pixel (PAL) and a 40x zoom ratio (10x optical and 4x digital). The four
gazers are mounted to the rig on head height in the four corners of the XIM (1.6, left) to
provide an optimal view on every spot in the space. Connected in series along with the
eight LightFingers, they can be individually addressed by an unique ID via the industry
standard DMX protocol. In the XIM infrastructure, a server (furthermore referred to as
GazerLFServer) is constantly running to parse incoming UDP packets and forward the ap-
propriate commands to the respective devices via DMX. For the gazers these commands
can be limited to the setting of the absolute orientation, more precisely the pan and the tilt
angle. The pan angle defines the gazer’s rotation around its main axis while the tilt angle
specifies the nod of the device’s head (1.6, right). The zoom can not be controlled via the
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Figure 1.6.: Gazers in the XIM. The individually controllable pan and tilt cameras, the
”gazers” (right figure), are mounted to the rig on head height in the four cor-
ners of the XIM (left figure).

DMX protocol but has to be set separately via the Visca protocol.

In the course of this project I will refer to the individual gazers with their DMX IDs:
Gazer 25, gazer 300, gazer 352 and gazer 365. The locations of the individual devices in
the XIM are shown in Figure 1.6.

1.3.4. Angle definitions

The pan and tilt angles necessary for a gazer to look at a specific position in the space
can be computed trigonometrically. The computational model for these angles is shown
in figure 1.7. Necessary for the computation are, along with the tracking data of the spot
in question, the gazer’s position and orientation in 3D space. The orientation is thereby
defined by two angles, furthermore referred to as yaw and pitch. The yaw angle specifies
the gazer’s offset in rotation around the z-axis of the reference coordinate system as its pan
value is set to zero. Analogous the pitch angle specifies the offset in rotation around the
x-y-plane as the tilt is set to zero. Assuming a correct tracking position T, the accuracy of
the computation and therefore the correctness of the resulting image is strongly dependent
of these parameters, more precisely the 3D pose of the gazer’s base. The estimation of this
pose for an arbitrary gazer will be one of the key aspects discussed in this project. While it
suggests itself to define the XIM floor as the reference coordinate system and measure the
position of the gazers straight forward, this would yield an unprecise pose. In addition
the tracking coordinate system is spanned by the overhead infrared camera. Given the
floor as reference this would add another coordinate transformation between the floor and
the overhead camera to the computation. To avoid this inconvenience, it is more apparent
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Figure 1.7.: The model for the computation of the pan and tilt angles for a gazer to look
at a specific position T. Mandatory are, along with the tracking data T, the
gazer’s position C and orientation in 3D space, furthermore referred to as yaw
and pitch.

to take the coordinate system of the overhead infrared camera as the reference coordinate
system. This project introduces an innovative approach of estimating a camera’s extrinsic
pose from a set of correspondences between tracking data and gazer angles determined
for a gazer to look at exactly the position indicated by the tracking data. This has the
advantage of returning the gazer-poses already in the tracking coordinate system, while
being independent of any other modalities other than the tracking system.

XIM vs. euclidean rotation

Note that in the following all specific pan, tilt, yaw and pitch angles are listed in terms of
the gazers individual rotation scheme. A gazer’s complete rotation around its main axis is
split into 170 parts. The pan thus ranges from 1 to 170 degrees in XIM rotation. For the tilt,
angles from 1 to 318 can be set. To translate from euclidean to XIM rotation and reverse, I
thus use the following formulas:

panxim = pandeg ·
170
360

(1.1)

tiltxim = tiltdeg ·
318
360

(1.2)

It is possible to set angles in the the ranges stated above with a step size of 0.1 degree.
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1.4. Overview over approaches

Based on the considerations from the previous section, this project will be structured as
follows:

• Introduction of a novel approach of estimating the extrinsic pose of a gazer from a
set of tracking data and gazer angle correspondences. The right angles are deter-
mined in a calibration scenario, whereby the spaces is scanned for a range of pan
and tilt angles while a classifier is applied to the gazer’s image to detect a person
standing at a known position in the room. The person’s position is tracked online by
the overhead infrared tracking system. Once adjusted right, a fitting correspondence
of angles and tracking position is found. From a variety of these correspondences
the gazer’s extrinsic parameters can be estimated by setting up a system of equa-
tions and optimizing the desired parameters with a non-linear Levenberg Marquard
Optimizer. This approach will be discussed in detail in chapter 2.

• For verification of the results of the classifier approach, a control experiment was run
implementing a state of the art marker based pose estimation. Therefore an inter-
active marker equipped with infrared LEDs at five points was placed in the room.
The poses of both the gazer and the infrared camera relative to the marker were es-
timated. In combination they yield the position of the specific gazer relative to the
overhead camera. To compensate for errors in the estimation, a bundle adjustment
serves to globally optimize the pose in all constraints. The results of the control ex-
periment and the comparison of the results to those of the classifier approach are
discussed in chapter 3.

• Given the results of the pose estimation as an input, the pan and tilt angles for each
gazer to look at a specific spot in the room can be computed online. The compu-
tation was tested for a number of tracking poses. As a first experiment, hue his-
tograms were generated from the images returned and different algebraic measures
of histogram comparison were tested. I further introduce a sample application that
creates a saliency map from the incoming tracking data to determine a person stand-
ing by itself and does not move. An appropriate gazer is then chosen to look at this
person and generate the hue histogram. The results of the experiments on attribute
extraction and histogram comparison are discussed in chapter 4.

1.5. Related work

There is a broad band of literature available about Active Vision and Camera Calibration.
Also for the particular task of self calibration of active sensors, several approaches can be
found. These works however are mostly based on the exploitation of specific landmarks,
image sequences or particular camera motions, rather than on a secondary positioning sig-
nal as it is the case for this thesis. Nevertheless I would like to present a choice of related
work, that deals with similar problems as my thesis.
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A nice overview over Active Vision is given by Andrew Blake and Alan Yullie [14].
Their book Active Vision explores important themes emerging from the active vision para-
digm. The individual contributions look at tracking, the control of vision heads, geometric
and task planning and architectures and applications. Covered are traditional works in
computer vision, as e.g geometric modeling, but also new areas such as control theory or
dynamic modeling.

The early work of Yiannis Aloimonos [3] (who first introduced the term Active Vision)
focuses more on the field of active perception, which calls for studying perception coupled
with action. It addresses the technical problems related to the design and analysis of in-
telligent systems possessing perception such as the existing biological organisms and the
”seeing” machines of the future.

Song De Ma [50] presents a self calibration technique for active vision systems. The hand
eye geometry as well as the intrinsic parameters of a camera are calibrated directly using
the images of the environment. The method exploits the flexibility of the active vision sys-
tem, and bases the camera calibration on a sequence of specially designed motion.

An example of active tracking and pose estimation in an interactive room is given by
Darrel et al. [23]. Demonstrated is real-time face tracking and pose estimation in an un-
constrained office environment. Previously implemented vision routines are used to de-
termine the spatial location of a user’s head and guide an active camera to obtain pitted
images of a face. The pose estimation problem is thereby solved in an eigenspace frame-
work, indexed over both pose and world location.

For robust location and pose estimation of an active vision sensor, a further approach
is presented by Wang et al. [58]. The calibration technique is valid for a camera system
that can acquire omnidirectional panoramic information of the environment and proposes
the calculation of panoramic edge histograms. The location and pose of the sensor is then
estimated by matching the edge histograms of the images obtained at the present location
with those obtained beforehand at reference points.

Two examples of appearance based active object recognition are given by Borotschnig
et al. [15] and by Selinger and Nelson [46]. In both works ambiguities in object detection
are solved by repositioning the camera to capture additional views. While Borotschnig et
al. focus on the appearance-based object representation, Selinger and Nelson discuss the
errors and limitations of multi-view performance enhancement.

Zhang et al. [60] present a Joint System for Person Tracking and Face Detection. A noval
vision system detects and tracks faces, using the input from multiple calibrated cameras.
Calibration is not subject of their work, but many related issues such as classifier based
object detection or color comparison are addressed.

A method for determining affine and metric calibration of a camera with unchanging
internal parameters is described by Armstrong et al. [5]. It is shown that from planar mo-
tion, the affine calibration can be recovered uniquely and the metric calibration up two a
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two fold ambiguity. This approach is also taken up by the co-authors of this work, Richard
Hartley and Andrew Zisserman, in their book Multiple View Geometry in Computer Vision
[32], which is an excellent reference for all Computer Vision and Camera Calibration inter-
ests.
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In this chapter I will present a new approach of estimating a gazer’s pose as the optimal
parameter configuration to a set of correspondences between positions in space and gazer
adjustments. Setup and implementation of the individual components will be explained
in detail. Furthermore, the performance of this calibration technique will be evaluated in
a test scenario.

2.1. Introduction

The four individually steerable color cameras mounted to the rig in the four corners of the
XIM, the gazers, shall be used to win complementary information about certain entities
in the space. On command they therefore need to be set to look at the desired spot and
extract a image, which serves as input for further processing. Each gazer’s view direction
can be expressed by two degrees of freedom, the pan and the tilt angle. These angles can
be computed trigonometrically if, along with the coordinates of the position to be looked
at, the extrinsic parameters of the gazer’s base are known. A gazer’s extrinsic parameters
are defined by its position and orientation in 3D space. If we assume the gazer’s base to be
sufficiently horizontally adjusted, there are five parameters that we need to know for each
gazer. The model for the computation of the pan and tilt angles for a gazer with known
extrinsic parameters and an arbitrary input position is described in section 2.4.1.

In principle a gazer’s extrinsic parameters are not known for an arbitrary setup. Since
the correctness of the computation of the pan and tilt angles is strongly dependent of their
accuracy, an appropriate finding of these parameters is crucial for all further progress. A
gazer’s extrinsic parameters are also referred to as its pose in 3D space. Since we can neglect
the third rotation, this pose consists in our case of five degrees of freedom: the position (x,
y, z) and the orientation (yaw, pitch). Figure 2.1 sketches a gazer’s pose and the difference
between yaw, pitch, pan and tilt. The specific task of determining the pose is called pose
estimation or also extrinsic calibration.

This project introduces an innovative approach of estimating a gazer’s pose. Gener-
ally the pose estimation problem can be solved in different ways, depending on the in-
formation available about the image sensor and a choice of methodology. Two classes of
methodologies can be distinguished:

• Analytic or geometric methods. Given that the image sensor (camera) is calibrated,
the mapping from 3D points in the scene to 2D points in the image is known. If also
the geometry of the object is known, the projected image of the object is a well-known
function of the object’s pose. Once a set of control points on the object, typically
corners or other feature points, has been identified it is possible to solve the pose
transformation from a set of equations which relate the 3D coordinates of the points
with their 2D image coordinates.
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Figure 2.1.: The pose of a gazer. Position (x, y, z) and orientation (yaw, pitch) are defined
in relation to the reference coordinate system (a). Yaw and pitch thereby refer
to the orientation as the pan and tilt angles are set to zero. The pan describes
the gazer’s internal rotation around its z-axis (b), while the tilt angle describes
the internal rotation around the x-axis and thereby the nod of the camera head
(c).
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• Learning based methods. These methods use an artificial, learning-based system
which learns the mapping from 2D image features to pose transformations. There-
fore a sufficiently large set of images of the object in different poses hast to be pre-
sented to the system during a learning phase. Once the learning phase is completed,
the system should be able to present an estimate of the object’s pose given an image
of the object.

I tackle the pose estimation problem for the gazers by a noval approach that, although
geometrically funded, implements a calibration scenario in which continuously valid cor-
respondences between tracking positions and pan and tilt angles are determined. The pose
is then computed as the optimal fit to this model. As an input will serve next to the online
camera image of the gazer to be calibrated only the live data from the XIM infrared track-
ing system. This has two major advantages: The usual method of estimating a camera’s
pose, a marker based analytic approach, returns the pose in relation to the coordinate sys-
tem, spanning the marker used for calibration. In this case, the transformation between the
reference and the marker coordinate systems remains unknown and has to be estimated
separately. This leads us to the question, how to define the reference coordinate system.
Since all tracking data is always returned relative to the overhead infrared camera, it seems
appropriate to take the overhead camera as reference. If we base our pose estimation on
the input from even this overhead camera, we profit from the fact of estimating the gazer’s
pose already in the right coordinate system without having to apply further transforma-
tions. As a second advantage, not having to recall on any other modalities but the tracking
makes the calibration independent and reproduceable, no matter in what content. We can
assume that tracking data will always be available. The only other entity necessary is an
object that can be tracked by the overhead camera and also be detected in the gazer image.
Since the whole tracking architecture is developed for people tracking, it is reasonable to
use a person also for calibration. I propose the use of a Haar Classifier to decide if and
where a person can be found in the gazer’s image.

2.2. Concept

We will introduce a computational model that allows the computation of the pan and tilt
angles corresponding to a tracking position for any gazer if its pose is known. The con-
cept of this calibration approach is to estimate the pose by searching an optimal fit of the
extrinsic parameters to a set of equations set up by known valid correspondences between
tracking positions and pan and tilt angles. Therefore this set of correspondences need to
be determined in a prior calibration scenario. Figure 2.2 shows a conceptual overview of
the setup and the corresponding spatial relationships. In principle, the calibration process
can be structured as follows:

1. A person steps to a position Ti in the space and is thereby tracked by the XIM tracking
system.

2. The gazer scans the room rotating around both axes.

• The gazer’s current camera image is grabbed.
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Figure 2.2.: Conceptual setup for the classifier approach to estimate the extrinsic pose of
a gazer.

• A classifier tries to determine whether the person can be found in the image and
if so, where in the image.

• The successive pan and tilt angles are calculated:
– If a person was detected the gazer is tried to be aligned so that the person

is right in the center of the image.
– Otherwise the gazer continues on its predefined path.

• The gazer’s orientation is set to the new angles.
• This step is being repeated until the gazer is adjusted to look straight at the

person.

3. The gazer’s pan and tilt angles are recorded along with the current tracking position
Ti as a correspondence.

4. Steps 1 to 3 are repeated iteratively until an adequate number of correspondences
has been found.

5. A system of non-linear equations is set up from the correspondences and the opti-
mal fit of the extrinsic parameters to this system is determined using a Levenberg-
Marquard Optimizer.

2.3. Theoretical background

Key hallmark of this approach is the optimization of the pose parameters to serve as an
optimal fit to a set of correspondences between target positions and gazer angles, that has
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been determined in a prior calibration scenario. In this section, I will provide the theoreti-
cal background to the two major aspects of this concept: The gain of the correspondences
and the optimization of the parameters. The collection of the correspondences requires
the detection of a person in the gazer image, which should be solved by use of a classi-
fier trained on human upper bodies. For parameter optimization, I propose the use of the
Levenberg-Marquardt Algorithm, which allows to solve the system of non-linear equa-
tions made up by the individual correspondences.

2.3.1. Classifier based object detection

While trying to detect the person in the space through the gazer image, a decision has to be
made if the person exists in the current image and if so, where it can be located. Object de-
tection, in particular the detection of human bodies or body parts, is an important element
of various computer vision areas, such as image retrieval, shot detection, video surveil-
lance, etc. The goal is to find an object of a pre-defined class in a static image or video
frame. Sometimes this task can be accomplished by extracting certain image features, such
as edges, color regions, textures or contours and then trying to find configurations or com-
binations of these features specific to the object in question by some heuristics [16]. For
complex objects, such as human body parts, it is hard to find features and heuristics that
can handle the huge variety of instances of the object. The shape of a human body may
vary strongly and be exposed to different lightning conditions and shadows. For such
objects, a statistical model (classifier) may be trained instead and then used to detect the
objects [16].

In a statistical, model-based training multiple samples are declared ”positive” or ”neg-
ative”, depending on whether an instance of the object in question is contained. Together
positive and negative samples make a training set. During training, different features are
extracted from the training samples to select distinctive features usable to classify the ob-
ject. This information is summed up into a row of statistical model parameters. Even when
already applied to detect an object, this model can be still be adjusted if the trained classi-
fier does not detect an object or mistakenly detects the object (false alarms) by adding the
corresponding positive or negative samples to the training set.

OpenCV’s Haar Classifier

The OpenCV computer vision library features such a statistical approach for object detec-
tion, an approach originally developed by Viola and Jones [56] and extended by Lienhard
[37, 36]. Haar-like features, in their computation similar to the coefficients in Haar wavelet
transforms, and a cascade of boosted tree classifiers are used as a statistical model. While
in [56] this method is tuned and tested for face detection, a classifier for an arbitrary object
class can be trained and used in exactly the same way. Since we want to adjust the gaz-
ers to focus on the chest of the person in question, we will use a classifier trained on the
upper body of a human. For this specific case, OpenCV provides a precasted cascade that
was trained on an MIT pedestrian data set used in experiments on identifying persons in
images from surveillance cameras.
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Figure 2.3.: Extended set of Haar-like features. Image adapted from [37]

The classifier is trained on images of fixed size and detection is done by sliding a search
window of that size through the image, checking whether the image region bears the de-
sired features to identify the object. The classifier is scalable to detect objects of different
size. Fundamental to the whole approach are Haar-like features and a large set of very
simple ”weak” classifiers that use a single feature to classify the image region as body or
non-body [16]. Each of these features is thereby described by a template specifying the
shape of the feature, its coordinate relative to the search window origin and its size (scale
factor). Lienhard [37, 36] proposes the use of 14 templates as shown in Figure 2.3, each
consisting of two or three joined ”black” and ”white” rectangles. The Haar feature’s value
is calculated as a weighted sum of two components: The pixel sum over the black rectangle
and the sum over the whole feature area. The weights of these two components are of op-
posite signs and for normalization, their absolute values are inversely proportional to the
areas. As an example, the black feature 3(a) in Figure 2.3 has weightblack = −9∗weightwhole.

Other versions of classifiers use hundreds of features that require the direct computation
of pixel sums over multiple small rectangles, making the detection very slow. Viola [56]
introduces an elegant method to compute the sums very fast. Therefore first an integral
image Summed Area Table (SAT) is computed over the whole image I where

SAT (X, Y ) =
X

x<X,y<Y

I(x, y) (2.1)

The pixel sum over a rectangle r = {(x, y) , x0 ≤ x < x0 + w, y0 ≤ y < y0 + h} can then be
computed using SAT by using just the corners of the rectangle of size :

RecSum(r) = SAT (x0+w, y0+h)−SAT (x0+w, y0)−SAT (x0, y0+h)+SAT (x0, y0) (2.2)

This equation is valid for up-right rectangles. For rotated rectangles a separate ”rotated”
integral image must be used.

The computed feature value xi = weighti,black∗RecSum(ri,0)+weighti,whole∗RecSum(ri,1)
is then used as input to a simple decision tree
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Figure 2.4.: Object detection cascade of classifiers where rejection can happen at every
stage. Image adapted from [16]

fi =

(
+1, if xi ≥ ti

−1, if xi < ti
(2.3)

For an arbitrary feature i and a threshold ti assigned to this feature, such a weak classifier
thus gives response on whether the feature was detected in the image (1) or not (-1). A
weak classifier is not able to detect complex structures such as faces or bodies. It rather
reacts to some simple feature in the image that may relate to the object in question. Feature
3(a) in Figure 2.3 for example would, if centered on the eye of a person and scaled, most
likely give a large response.

Weak and Boosted Classifiers

For detection of complex structures a boosted classifier has to be build iteratively as a weighted
sum of weak classifiers as introduced by Freund and Schapire [29]:

F = sign (c1f1 + c2f2 + . . . + cnfn) (2.4)

On each iteration, a new weak classifier fi is trained and added to the sum. If fi gives a
small error on the training set, a large coefficient ci is assigned to it. The weight of all the
training samples is then updated, so that on the next iteration the role of those samples
that are misclassified by the already built F are emphasized. It is proven in [7] that if fi

is even slightly more selective than just a random guess, an arbitrarily high hit rate (<1)
and an arbitrarily small false alarm rate (>0) can be achieved for F, if the number of weak
classifiers in the sum is large enough. In practice however, that would require a very
large training set as well as a very large number of weak classifiers, resulting in a slow
processing speed. To avoid this, Viola [56] suggests building several weak classifiers with
constantly increasing complexity and chaining them with the simpler classifiers going first.
During detection, the current search window is analyzed subsequently by each of them
and each of them may reject it or pass it on to the next one. This way, the candidate is only

Active Vision for Interactive Spaces 25



2. The Classifier Approach

accepted if all of the classifiers pass it on and each of them may sort it out (Figure 2.4). In
experiments, about 70-80% of the canidates where rejected within the first two stages that
used the simplest features (about ten weak classifier each), so that this technique speeds up
the detection greatly [16]. Also, improvements on performance can be made by choosing
the desired hit-rate and false-alarm-rate at every stage.

2.3.2. Levenberg-Marquardt optimization

The estimation of a gazer’s pose from a set of correspondences can be reduced to the min-
imization of some well defined cost function that returns a residual to the model for a
specific set of parameters. I propose the use of a Levenberg-Marquard Optimizer to solve
this problem. The Levenberg-Marquardt Algorithm (LMA) provides a numerical solution
to the problem of minimizing a function, generally non-linear, over a space of parameters
of the functions. It works very well in practice and has become the standard of non-linear
least square routines that strongly relate to the minimization problem [28].

The Levenberg-Marquardt (LMA) method is a variation on Newton iteration, which
is one of the most common iterative parameter minimization methods. The Newton it-
eration, as a general idea, provides a way of finding the zeros of a function of a single
variable. Designed to provide faster convergence and regularization in the case of over-
parameterized problems, the LM method may be seen as a hybrid between Newton iter-
ation and a gradient descent method [32]. It is more robust than for example the Gauss-
Newton algorithm (GNA), meaning in many cases it finds a solution even if it starts very
far off the final minimum. As a trade off, for well-behaved functions and reasonable start-
ing parameters, the LMA tends to be a bit slower.

Main application of the LMA is the least square curve fitting problem: Given a set of
empirical data pairs (x̂i, ŷi) the parameter vector ~p of the model curve f (x̂|~p) shall be opti-
mized so that the sum of the squares of the deviations

C (~p) =
nX

i=1

[ŷi − f (x̂i | ~p)]2 (2.5)

becomes minimal.

The algorithm starts from an initial guess for the parameter vector ~p that has to be pro-
vided by the user. In most cases a uniformed standard guess like ~p T = {1, 1, . . . , 1} will
work fine. During runtime, the parameter vector ~p is replaced by a new estimate ~p + ~q
in each iteration step. To determine ~q, the functions fi (~p + ~q) are approximated by their
linearizations

f (~p + ~q) ≈ f (~p) + J~q (2.6)

where J is the Jacobian of f at ~p.
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At a minimum of the sum of squares C, the gradient of C with respect to ~q is zero.
Differentiating the square of the right hand side of the above equation 2.6 and setting it to
zero leads to: �

JT J
�
~q = JT [ŷ − f (x̂|~p)] (2.7)

from which ~q can be obtained by inverting JT J . The key characteristic of the LMA is the
replacement of this equation by a ”damped” version�

JT J + λI
�
~q = JT [ŷ − f (x̂|~p)] , (2.8)

with I being the Identity Matrix. This damped version allows the dynamic adaption of the
increment ~q to the estimated parameter vector ~p as

~q =
�
JT J + λI

�−1
JT [ŷ − f (x̂|~p)] . (2.9)

λ is adjusted after each iteration. If C decreases rapidly, a smaller value can be chosen for
λ and the iteration is essentially the same as Gauss-Newton iteration. If the iteration gives
insufficient reduction in the residual, λ can be increased, whereby the parameter increment
approaches that given by gradient descent. Thus, the LM Algorithm moves seamlessly be-
tween Gauss-Newton iteration, which will cause rapid convergence in the neighborhood
of the solution, and a gradient descent approach, which will guarantee a decrease in the
cost function when the going is difficult [32]. The algorithm aborts if either the calculated
step length ~q or the reduction in the sum of squares from the previous iteration fall below
predefined limits. The last parameter vector ~p is then considered the solution.

2.3.3. The Jacobian matrix

As described above, the LMA replaces the parameter vector ~p in each iterative step by a
new estimate (~p + ~q) that is determined by approximating the functions fi (~p + ~q) by their
linearizations f (~p + ~q) ≈ f (~p) + J~q. We therefore need to provide the Jacobian matrix J ,
that contains all first order partial derivatives of the vector valued function f .

Suppose F : Rn → Rm is a function from Euclidean n-space to Euclidean m-space. Such
a function is given by m real-valued component functions f1 (x1, . . . , xn) , . . . , fm (x1, . . . , xn).
The partial derivatives of all these functions (if they exist) can be organized in a m-by-n
matrix, the Jacobian matrix F :

JF (x1, . . . , xn) =

2664
∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fm

∂x1
· · · ∂fm

∂xn

3775 (2.10)

2.4. The Computational Model

In the previous section I have provided the theoretical background for the classifier based
pose estimation. The computational model derived in this section, gives the mathematical
foundation for the specific problem of estimating the poses of the gazers in the XIM.
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Figure 2.5.: Computational model for the pan angle. The angle α can be computed
trigonometrically. The pan angle can then be determined by subtracting α and
the yaw of the gazer from the full euclidean unit circle.

2.4.1. Computation of the pan and tilt angles

If the position and orientation of the specific gazer’s base are known, the necessary rota-
tional angles to turn the gazer to look into a certain direction can easily be computed. We
define a computational model, that will later be used as basis for the online computation
of these angles for incoming tracking positions. In our calibration scenario we can use
the same model for estimating the gazer’s pose from a number of known correspondences
between tracking positions and the respective gazer angles to look at this position. The
computational model for the pan angle is drawn in figure 2.5 while figure 2.6 sketches
how to compute the tilt angle.

To determine the pan angle we can first compute an angle α from the gazer’s planar
position Cx,y and the target position Tx,y that expresses the target position in polar coordi-
nates. To get α in the interval [0, 2π] we have to distinguish five cases depending on how
gazer and target relate to each other. Let x = Cx − Tx and y = Cy − Ty be the position of
the gazer relative to the target in cartesian coordinates, then
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Figure 2.6.: Computational model for the tilt angle. The angle β can be computed trigono-
metrically. The tilt angle can then be determined by subtracting β and the pitch
of the gazer from half the unit circle.

α =

8>>>>><>>>>>:

arctan y
x if x > 0, y ≥ 0

arctan y
x + 2π if x > 0, y < 0

arctan y
x + π if x < 0

π/2 if x = 0, y > 0
3π/2 if x = 0, y < 0

(2.11)

In a later computation of α we can recall on the bivariate function of the arc tangent atan2
featured in C++, which considers all of the above cases internally. It allows us to compute
the correct values for α for any given x and y. Knowing α, we can now compute the pan
angle as

pan = 360− α ∗ 360
π

− yaw (2.12)

or, assuming the availability of the function atan2

pan = f (Tx,y) = 360− yaw − atan2
�

Cy − Ty

Cx − Ty

�
∗ 360

π
(2.13)

The appropriate tilt angle can be computed similarly:

a = Tx,yCx,y =
q

(Cx − Tx)2 + (Cy − Ty)
2 (2.14)
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β = arctan
�

a

Cz

�
∗ 360

π
(2.15)

tilt = 180− β − pitch (2.16)

tilt = g (Tx,y) = 180− arctan

�È
(Cx − Tx)2 + (Cy − Ty)

2

Cz

�
∗ 360

π
− pitch (2.17)

2.4.2. Cost functions used for optimization

Equations 2.13 and 2.17 define the basis not only for the later computation of the pan and
tilt angles for incoming tracking positions, but also for the estimation of the gazer poses
from a set of made measurements. To provide a measure of accuracy for an arbitrary pose
to a number of measurement, we need a cost function for the pan and the tilt angle each.
For a measurement vector ~m of size n containing corresponding pairs of target positions T̂i

and angles ˆpani and ˆtilti these cost functions for a pose vector ~p = {Cx, Cy, Cz, yaw, pitch}
are defined as

Cpan (~p) =
nX

i=1

�
ˆpani − f

�
~p|T̂i

��2
(2.18)

Ctilt (~p) =
nX

i=1

�
ˆtilti − g

�
~p|T̂i

��2
(2.19)

To determine a configuration of pose parameters that gives best results for any target posi-
tion we therefore first need to collect an adequate number of corresponding pairs between
tracking positions (Tx,y) and internal gazer angles (yaw, pitch). The problem of finding the
gazer’s pose is then reduced to the problem of finding the optimal fit of these parameters
so that the cost functions specified above become minimal. I will tackle this problem using
a non-linear Levenberg Marquard Optimizer as described in section 2.3.2.

2.4.3. The Jacobian matrices

During optimization the LMA needs to call up the Jacobian matrices of the functions
f
�
~p|T̂i

�
and g

�
~p|T̂i

�
in each iterative step. These matrices contain the partial derivatives

of each fi and gi at the individual entries of ~p = {Cx, Cy, Cz, yaw, pitch} and are made up
according to the matrix form introduced in section 2.3.3 as

Jf =

2664
−1

(Cy−Ty,1)+(Cx−Tx,1)2/(Cy−Ty,1)
1

(Cx−Tx,1)+(Cy−Ty,1)2/(Cx−Tx,1)
0 −1 0

...
...

...
...

...
−1

(Cy−Ty,n)+(Cx−Tx,n)2/(Cy−Ty,n)
1

(Cx−Tx,n)+(Cy−Ty,n)2/(Cx−Tx,n)
0 −1 0

3775 (2.20)

Jg =

266664
0 0 −

√
(Cx−Tx,1)2+(Cy−Ty,1)2

(Cx−Tx,1)2+(Cy−Ty,1)2+Cz
2 0 −1

...
...

...
...

...

0 0 −
√

(Cx−Tx,n)2+(Cy−Ty,n)2

(Cx−Tx,n)2+(Cy−Ty,n)2+Cz
2 0 −1

377775 (2.21)
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Figure 2.7.: Significance of the estimated gazer height. The measured tilt angles, and thus
the estimated height of the gazer Cz , relate to the person’s upper body height
h.

2.4.4. Estimated height vs. real height

I propose the use of a classifier to find the correspondences between tracking positions and
gazer angles. In my particular case, the classifier searches for the upper body of a person in
the image. Found correspondences thus relate a pair of angles to a 3D position (Tx, Ty, h),
where h is the height of the upper body of the person doing the calibration. Consequently,
the position of the gazer is estimated relative to his height, wherefore I cannot talk of
a ”full” calibration. The real height of the gazer in the room would be the sum of the
estimated height Cx and the person’s upper body height h (Figure 2.7). If I would consider
this real height in the computation of the tilt angles, the result would cause the gazer to
look at the position (Tx, Ty, 0). Rather than looking on the floor of the XIM, the gazers shall
later be adjusted to look at approximately the same height as in calibration. I will therefore
maintain the ”false” representation of the gazers height nevertheless. Still the reader has
to be aware that, when I talk of the gazers pose as estimated by the classifier approach, the
z-value does not refer to the gazer’s real height.

2.5. Implementation

2.5.1. Environmental constraints

The development of the software that is used for the extrinsic calibration of the gazers
faces some environmental constraints. Core of the application is the constant grabbing of
images from the camera while the gazer rotates around its z-axis and modifies its tilt to
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scan the room for the calibration object. Once the program managed to adjust the gazer so
that it looks straight at the object, the object’s position has to be cached and recorded along
with value of the angles. Therefore interfaces are required to communicate with:

• The GazerLFServer that parses the gazer commands and passes them on to the ap-
propriate device in the DMX chain. The communication between the GazerLFServer
and the gazers is one sided, more specific it can only send commands and does not
receive any feedback on their execution. It can not recall any information from the
devices. This make it necessary to keep track of the currently set gazer angles on ap-
plication side. Further we have to make sure that the gazer angles are not modified
while the progressing of the image is still in progress, to avoid associating an image
- and therefore a possible detection - with the wrong angles. The communication
with the GazerLFServer is realized via a UDP connection, wherefore we have to
integrate a UDP client into our application.

• The framegrabber to constantly update the current camera image from the gazer. All
video input from the gazers goes directly to the local machine. We will access it using
the BTTV Framegrabber that is based on the standard Video4Linux device.

• The tracking system to be aware of the current tracking data at all times. A UDP
server is running on application side, constantly receiving the newest tracking infor-
mation available.

To decide whether the calibration object, in our case a person, can be found in the im-
age a classifier is used on the camera image. A classifier describes a statistical model that
has been priorly trained. Applied to the image, it searches for a cascade - a set of features
identifying the seeked object - and gives us an answer on whether an object with the spe-
cific features was found in the image. The classifier implements a search window that is
shifted over the image, which gives us also feedback on where in the image the object was
detected.

Since this classifier works best if the target object sets itself clearly off all background
and if there is no light invariation, the calibration scenario should be run under optimal
conditions. For best results, no background is projected onto the screen in the XIM. To
provide a constant, ambient light we only use the ceiling area light source and turn off all
spotlights. To avoid ambiguities and to guarantee that a found gazer configuration can be
clearly assigned to a defined tracking position, only one single person may be present in
the room during calibration. Further, it has to be assured that the tracking is not disturbed
by any other object or modality, for instance light spots on the floor.

2.5.2. System overview

Figure 2.8 gives an overview of the structural design of the system implementing the clas-
sifier approach. The core of the application is a class called Calibrator that tries to find
the correspondences between target positions and the respective gazer adjustments. In an
infinite loop the Calibrator iteratively modifies the adjustment of the gazer while try-
ing to identify the searched person in the camera image. It thereby switches between three
states as shown in figure 2.9. Initially the application resides in a Seek state in which the
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Figure 2.8.: Overview of the system design for the classifier approach. The core of the ap-
plication is a Calibrator class that seeks the correspondences. Once enough
correspondences have been found, the extrinsic gazer parameters are opti-
mized by a Levenberg-Marquard Optimizer.

gazer is rotated to follow a predefined search path. Pan and tilt angles are modified to scan
the room in all dimensions. If a person is detected in the image, the application changes to
an Align state, in which the successive angles are calculated dynamically trying to adjust
the gazer so that the person can be found right in the center of the image. A statement
on where in the image the person is located can be made based on the return value from
the classifier used for detection. If it was possible to adjust the gazer properly, the appli-
cation switches to Found state and the currently set values for pan and tilt of the gazer are
recorded along with the current tracking data. If no proper adjustment is possible within a
certain number of steps or if the person can not be identified any more while in Align state,
the application returns to Seek state and continues turning the gazer along the predefined
path. After a successful adjustment the system is reset to Seek state.

Found correspondences between angles and positions are deposited in a Corresponde
nce class. Once an adequate number has been found, a system of non-linear equations
can be set up according to the computational model specified in section 2.4.1. The class
AngleFromPose administrates this system and implements a function evaluateCF to
evaluate the cost function that returns a measure of accuracy to the found measurements
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Figure 2.9.: State chart for the Calibrator. In the Seek state the gazer is iteratively rotated
around both axes while the classifier scans the camera image to detect the per-
son. If a person was detected the application switches to the Align state and
tries to adjust the gazer so that the person is located right in the center of the
image.

for an arbitrary pose. The cost functions used are stated above in section 2.4.2 as formulas
2.18 and 2.19. To minimize these cost functions and thus find a set of pose parameters
that provides an optimal fit to the made measurements, a non-linear Levenberg-Marquard
Optimizer is used.

The application returns the estimated pose of an arbitrary gazer. For handling, all com-
ponents are wrapped up in a Graphical User Interface (GUI). It allows the user to choose
which gazer to calibrate and set certain arguments, such as DMX ID, video port or the
search range to be covered. The GUI further keeps account of the already collected corre-
spondences and lets the user make modifications on the input passed to the optimizer, in
specific the initial parameters or the size of the measurement vector to be used as a subset
of the available measurements. Gazers can be added or removed to create a user defined
setup that can be saved and loaded at a further point in time. The poses of fully calibrated
devices can be exported to a XML file to serve as input for the online computation.

The system has been developed in C++ under Linux. The image processing parts are
based on Intel’s Open Source Computer Vision Library (OpenCV), a powerful multi-platform
and open source image processing library [1]. For linear algebra operations the Template
Numerical Toolkit (TNT) created by the U.S. National Institute of Standards and Technol-
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ogy was used along with the software library JAMA that is based on TNT [2].

2.5.3. Classifier based object detection in the XIM

In section 2.3.1 I introduced the concept of classifier based object detection and the Haar
Classifier included in OpenCV. I use this implementation included in OpenCV for detect-
ing persons in the gazer images. Provided are low-level and high-level APIs for object
detection. A low-level API allows the user to check an individual location within the im-
age by a classifier cascade to see whether it contains the object or not. Helper functions
calculate integral images and scale the cascade to different sizes by scaling the coordinates
of all rectangles of Haar-like features. The higher-level function cvDetectObjects wraps up
all this functionality. Arguments that have to be passed are a pointer on the image, the
cascade, a factor by which the cascade is scaled after each pass, the minimum number of
neighboring rectangles that have to be found and the initial search window size. Further
a flag can be set to use a Canny edge detector prior to detection to reduce the number of
false alarms. We use this function on the current camera image on each iteration of the
main loop to decide whether the person carrying out the calibrating can be seen in the
gazer image. As described above, the Upper Body Cascade available in OpenCV is used and
we start with a 60 x 80 pixel search window size that is scale by a factor of 1.2 after each
pass.

Figure 2.10 shows examples of the usage of the classifier to detect the person in the cal-
ibration scenario. With properly chosen arguments it was possible to reduce the number
of false alarms to a minimum. Problems occurred, when dark structures like other gazers,
parts of the rig or the door appeared in the background (image (d)). Reducing the num-
ber of false detections, by choosing a larger minimum size for the rectangle and a higher
number of features that have to be found, results also in a higher rate of false rejects. Thus
persons standing at large distance to the gazer or persons not setting themselves clearly
off the background (images (b) and (c)) were not detected. But since a false alarm would
result in a false correspondence and a messed up pose estimation, the false rejection has
to be declared less problematic than the false accept. It is therefore advisable to chose
rather defensive parameters. Further, optimal results were achieved when all beamers
where turned off and there was no light disturbance from the floor or the LightFingers.
Under these constraints, the classifier proved to deliver reasonable and satisfying results
in person detection.

2.5.4. Parameter optimization

The Calibrator class yields a set of corresponding pairs between measured tracking po-
sitions T̂i and measured gazer angles ˆpani and ˆtilti. A Levenberg-Marquard Optimizer is
used to optimize the parameter vector ~p = {Cx, Cy, Cz, yaw, pitch} so that the cost func-
tions 2.18 and 2.19 become minimal for this set of measurements. The cost functions and
the Jacobian matrices needed by the optimizer are packed up in the class AngleFromPose
and provided to the LMA for constant call up.
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Figure 2.10.: OpenCV’s Haar-Classifier used for object detection in gazer images. A col-
ored circle indicates a detection and surrounds the persons upper body. The
classifier yielded one detection for images (a) and (b), whereby the person in
the background of image (b) was not detected. For image (c) the classifier
failed to detect the person (false reject), while image (d) shows an example of
a false alarm, where a structure in the background was falsely declared to be
an upper body. Images (e) and (f) have been taken after the gazer has already
been adjusted correctly to feature the person centered in the image.
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Figure 2.11.: Convergence of the Levenberg-Marquard Optimizer. The algorithm was
tested for input measurement vectors of different size and proved to con-
verge toward a final parameter vector within few steps. Thereafter the Sum of
Squared Differences changed only slightly before the algorithm terminated.

Figure 2.12.: Steps necessary for the LMA to reach convergence for measurement sets
of different size. After an average of 6.25 steps, the variation in the Sum of
Squared Differences was below a limit of 0.1 in each step.
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To evaluate the performance of the Levenberg-Marquardt Optimizer and see whether it
provides a suitable solution for the pose estimation problem, the algorithm was tested in
two respects: How does the size of the measurement vector influence the convergence, and
how important is the choice of the initial parameters for the performance. At this point, I
evaluate only the optimization of the planar parameters, the gazer’s x and y position and
its yaw. The cost function recalled by the optimizer therefore is the one in formula 2.18.
Optimization of the height and the pitch is done analogously and can be considered easier,
since it involves one parameter less.

In order to investigate the first aspect, 75 correspondences where recorded. The algo-
rithm was run on subsets of this measurement vector with sizes of 10, 25, 50 and 75 cor-
respondences, whereby the subset was chosen randomly from the measurements and the
initial estimate was set to the same values for all trials. Independent of the input vector’s
size, the algorithm converged toward a final parameter vector within few steps before only
changing the parameters slightly and finally terminating (Figure 2.11). After an average
number of 6.25 steps, the change in the Sum of Squared Differences in each step was below
a tolerance level of 0.1 (Figure 2.12).

As a second experiment, the optimization was tested for a fixed measurement vector
of 50 correspondences. Different starting parameters where provided, some close to the
true values and some far off. The resulting parameter vector thereby turned out to be
the same, independent of the initial values. Even though the number of iterations before
termination varied, the LMA stabilized quickly each time. Figure 2.13 shows how the pla-
nar coordinates of the gazer changed within the optimization process for different starting
parameters and finally converged toward a well-defined point. The number of iterations
needed to do so is shown in Figure 2.14.

Obviously these test don’t allow us to judge on the correctness of the resulting parameter
vector, which is strongly dependent not only of the size of the measurement vector but
also of the accuracy of the individual correspondences. Regarding the performance of the
Levenberg-Marquard Optimizer, the algorithm has proven to be a stable and reasonable
tool that provides a well-defined solution, even if we don’t provide a good initial estimate.

2.6. Performance

In the previous sections we introduced a new approach of estimating the extrinsic pose of
movable pan-tilt cameras. In order to judge on the performance of this calibration tech-
nique, we have to keep our original aim in mind: For any well-defined position in the
space, a gazer’s orientation shall be computed as precise as possible. Recalling on our
computational model, we know that the gazer’s pose is crucial for this computation. This
brings up two questions:

• First, is this approach a reasonable way of estimating a gazer’s pose regarding us-
ability.

• Second, are the results of the pose estimation accurate enough to guarantee satisfying
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Figure 2.13.: Optimization path of the gazer position. Different starting parameters
where provided to the LMA as an input. Independent of their choice, the
algorithm terminated with a well-defined output (marked as the red square).

Figure 2.14.: Convergence of the LMA for different starting parameters. Regardless of
the initial values, the different parameters (shown here is the x value) quickly
approached their final value.
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results in the computation of the gazer orientation so that we can assume the point
of interest to be centered in the image.

Concerning the first question, the individual components of the system, i.e. the classifier
to find the correspondences and the optimizer to estimate the pose from even these, have
to be evaluated. To see whether the calibration yields satisfactory results, a test scenario
was run for each gazer, that will be described later in this section.

2.6.1. Finding the correspondences

In general the Haar-Classifier proved to be a suitable approach for detecting the person in
the gazer image. Still problems arise in some situations.

• If the person stands far away from the respective gazer, in specific very close to the
projection screens opposing the gazer’s position, he/she is often not recognized in
the image. This problem can be confronted by making the minimum search win-
dow size smaller, so that also smaller objects in the background are recognized. This
would on the other hand result in a higher number of false alarms, since smaller ar-
eas like shades, irregularities or small objects like the other gazers would falsely be
declared to be an object. It is thus not advisable to do so, since it is crucial for the
calibration not to have any false alarms.

• Some entities in the room cause confusion and are sometimes falsely declared to be a
person. Especially the other gazers are often detected due to their shape. So far this
problem could be avoided by declaring the search range so that the gazers are not
seen. Also, a single false detection is not critical, as long as the gazer is not aligned
to look at the falsely detected object and a correspondence is recorded.

• One wall of the XIM is made up by a semi-transparent mirror to allow the observa-
tion of the visitors in the space from outside. During calibration, this mirror causes
difficulties. A person in front of the mirror is often not detected, since contours and
mirror image blur. Also false detections are possible, if a reflection is declared to be a
person. For optimal results it is thus necessary to cover the mirror during calibration
with a white sheet.

• Large black areas, such as the transitions between the projection screens and the door,
sometimes yield false alarms. This happens especially if the minimum search win-
dow size and the minimum number of neighboring features that have to be detected
are kept low. Raising them avoids the problem but may cause false rejects of valid
objects (persons).

For application in the XIM, it has been possible to choose the settings (search range, min-
imum search window size, ...) so that no false correspondences were recorded. It was
thereby advantageous to do the calibration under optimal conditions, that is with all beam-
ers turned off, no lighting disturbance from the floor or the LightFingers and a steady
ambient light. In a fixed, unaltered context the classifier therefore is a reasonable tool to
detect a person as a calibration object in the gazer image. In mobile applications though,
there could be problems due to inoptimal and unexpected conditions that would have to
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be solved individually by adaption of the respective settings or the environmental condi-
tions.

2.6.2. Correctness of the correspondences

The classifier returns a list of corresponding pairs between tracking positions and gazer
angles. When estimating the gazer’s pose from these correspondences, we hypothesize
these correspondences to be correct. The quality of the pose estimation thus is strongly
dependent of the correctness of the found correspondences. On the one hand, each track-
ing position must be uniquely assigned to the right angles. On the other hand, the values
contained in each correspondence have to be an accurate measure, for the angles as well
as for the tracking positions. We can expect the first premise to be fulfilled, if the classifier
works correctly as described above and only one person is present in the room during cal-
ibration. Furthermore, a correspondence is only recorded by the classifier, if the gazer was
aligned so that the center of the detected person lies within a square of 10 x 10 pixel in the
very center of the image. If aligned, the person can therefore always be considered to be
in the center of the image with an error εclassifier <

√
52 + 52 pixel.

Of more consequence is the inaccuracy of the tracking data. We estimate the pose of a
gazer in a cartesian coordinate system and assume the tracking positions to be given in
exactly this coordinate system. Subject to perspective and radial distortion in the over-
head camera image this assumption is clearly not true. Using the distortion coefficient
determined by the intrinsic calibration of the overhead camera’s lens the image can be
undistorted in sense of radial distortion up to a certain error. The perspective distortion
on the other hand remains and turns out to be one of the major flaws in this calibration
approach. When determining a person’s position from the overhead image, the image
processing of the tracking software AnTS segments the visible human body from the im-
age and computes the center of the segmented silhouette. If this person stands close to the
center of projection, the camera thereby gets a view from the top. Persons toward the edge
of the image and their silhouette are perspectively distorted. The center of the silhouette
and thus the returned tracking position is shifted away from the ”true” position the fur-
ther a person moves away from the center. The perspective distortion and the perspective
error are illustrated in Figure 2.15.

Considering the perspective distortion, the question comes up in how far the correctness
of our computation is affected. On the one hand, the error that arises seems severe. On the
other hand, we have to keep in mind that we intend to compute angles corresponding to
tracking positions that are afflicted with the same error. The optimizer tries to match the
pose parameters, so that the angles are computed as good as possible for any position in
the space. Even though the resulting pose may be wrong in terms of geometric interpre-
tation, it may be the set of parameters to get the best result for any given input. At this
point we can only draw a conclusion on the accuracy that can be achieved with the pose
estimated by the classifier approach. To see whether better results can be achieved with a
conventional marker based pose estimation, a control experiment was run. Its setup and
the comparison of the results from both calibration techniques are described in chapter 3.
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Figure 2.15.: Perspective distortion in the overhead tracking image. (a) shows the silhou-
ettes as segmented by the overhead tracking software. As seen in image (b),
their centers vary from the positions defined true (the persons positions on
the ground floor, marked red in the image). This perspective error ε increases
as the person moves further away from the center of projection (c).

2.6.3. A test scenario

The estimated poses serve as basis for the computation of the pan and tilt angles that
have to be set for each specific gazer to look at a certain position. To make a judgment
on the quality of the estimated poses, we thus have to give a measure of accuracy for the
angles computed based on the estimations. In a simple test scenario, the computation
was therefore tested based on poses estimated by the classifier approach. To evaluate the
accuracy of the results, the gazers were set to look at persons standing at different positions
in the space. For a perfect computation, the person should then be featured in the very
center of the gazer image.

The gazers were calibrated from a set of 50 measurements for each gazer. Table 2.1 shows
the results of the estimations. In the course of the experiment, the computation was then
tested for 50 different positions for each gazer. A person stepped to an arbitrary spot in
the room and his/her position was determined by the tracking system. The pan and tilt
angles corresponding to this tracking position were computed and passed to the gazer to

Gazer ID 25 300 352 365
X 261.1 -300.2 -335.1 284.3
Y -251.9 276.5 -277.9 284.6
Z 11.4 10.3 22.5 20.2
Y awxim 50.8 39.8 44.3 39.9
Y awdeg 107.6 84.2 93.8 84.5
Pitchxim 29.9 29.0 25.7 29.8
Pitchdeg 33.8 32.8 29.1 33.7

Table 2.1.: Estimated Poses for the four gazers.
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Figure 2.16.: Deviation in the image after automatic gazer adjustment. The gazer’s ori-
entation was computed from the position of the person seen in the image as
signalized by the tracking system. ∆x and ∆y give a measure of accuracy of
the computation. In the perfect case, the person would have to be featured in
the very center of the image.

set its orientation. To determine where in the image the person could be found and thus
calculate the deviation from the center of the image, the Haar-Classifier that was also used
for calibration was applied to the image. Figure 2.16 shows an example of the deviation in
x and y direction between the image center and the center of the detected person.

Evaluation of the results

An evaluation of the results of this experiment shows, that the average absolute deviation
for the different gazers ranges from approximately 12 to 18 pixels in x-direction, and 7 to
16 pixels in y-direction. The exact averages for each individual device are listed in table
2.2 and plotted in figure 2.17. The fact that all averages lie within the same range shows,
that the classifier approach performed consistently for all gazers and that there has been
no significant failure. At first sight, a deviation of 12 to 18 pixels seems passable as a
foundation for further image processing. Looking at the evaluations of the experiment for
the individual gazers on the other hand (figures 2.18, 2.19, 2.20 and 2.21), we see that for
some tracking positions the deviation has been enormous. While in some cases a perfect
adjustment was achieved, the maximum deviations go up to 64 pixel in x-direction and
68 pixel in y-direction. Even though the maximum deviation was comparably ”low” for
gazer 365, such outliers occurred for all gazers. Interestingly, the deviation in y-direction
was always symmetric (except for gazer 300), as the gazer always aimed either to high or
to low. The deviations in x-direction on the other hand are widespread in both directions.
This shows, that the optimizer truly seeked the pose that fits best for all positions in the
space. Still, significant deviations remain for the individual adjustments.
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Gazer ID 25 300 352 365
�|∆x| 15.8 18.0 15.8 11.9
min|∆x| 1.0 1.0 0.0 0.0
max|∆x| 57.0 61.0 64.0 47.0
�|∆y| 12.8 7.5 15.7 16.2
min|∆y| 0.0 0.0 1.0 0.0
max|∆y| 22.0 56.0 68.0 38.0

Table 2.2.: Average absolute deviations in the images after automatic gazer adjustment.

Figure 2.17.: Average absolute deviations in the images after automatic gazer adjust-
ment.
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Figure 2.18.: Accuracy of gazer 25 in the test scenario.

Figure 2.19.: Accuracy of gazer 300 in the test scenario.
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Figure 2.20.: Accuracy of gazer 352 in the test scenario.

Figure 2.21.: Accuracy of gazer 365 in the test scenario.

46 Active Vision for Interactive Spaces



2.7. Discussion

2.7. Discussion

In this chapter I have introduced a new technique of estimating a gazer’s pose. The cali-
bration is based on the collection of valid correspondences between tracking positions and
the respective gazer angles. The pose is then determined as the optimal set of parameters
to all of these correspondences. Even though the results of this calibration do not represent
the true pose of the gazers in a geometric sense, this approach proved to be a suitable way
of determining the set of parameters needed to compute the angles corresponding to any
position in the XIM. Main advantage of the approach is the independence of any other
modality. The gazers learn their position automatically only from their own image and
a global tracking signal. In general, the technique could thus be applied to any movable
camera in any given context without having to rely on any other entity.

Limitations occur through the classifier that is used to detect a person in the gazer im-
age during calibration. Under certain environmental constraints, the person can non be
detected or is falsely classified. Especially these false alarms can significantly affect the
performance of the calibration, since also false correspondences are taking into consid-
eration by the optimizer. To avoid these complications, optimal conditions have to be
provided throughout the calibration scenario. Possible outliers have to be detected and
ruled out by adapting the classifier. Thinkable is also a more robust implementation of
the Levenberg-Marquard Optimizer that recognizes false correspondences and disregards
them during optimization.

In the particular case of the XIM, the tracking signal is subject to severe perspective dis-
tortion. Under the constraint of malicious tracking data, the classifier approach delivered
reasonable results. By optimizing the parameters to fit for all correspondences, errors in
the tracking data were compensated. Naturally, the more correspondences are provided as
an input, the more representable is the resulting pose. In my experiments, 50 pairs proved
to be a reasonable basis. The tracking positions should thereby cover all areas of the space
equally.

A test scenario showed that decent results in accuracy can be achieved based on the
poses estimated in the classifier. After adjusting the gazers to look at specific positions in
the space, an average deviation of about 14 pixels could be determined in the gazer images.
This seems to be a reasonable basis for further processing. Still there were significant
outliers, where the gazer was adjusted way off the target. The question arises, if better
results can be achieved if the poses are estimated by a conventional method. I will tackle
this question in the following chapter by implementing a state of the art marker based pose
estimation.
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3.1. Introduction

In the previous chapter I introduced a new approach to estimate the position and orien-
tation of a gazer from a set of correspondences between pan and tilt angles and tracking
positions. Knowing these parameters, referred to as the extrinsics or also the pose of a cam-
era, one can compute the orientation that has to be set for a gazer to look at an arbitrary
spot in the space. While it has been shown that the approach introduced constitutes a good
way of estimating a gazer’s pose in sense of usability, the question remains if better results
can be achieved by a conventional technique of pose estimation. For verification of the
results from the classifier calibration and for comparison to a state of the art calibration
technique a control experiment was run, implementing a marker based pose estimation.
The implementation and findings of this experiment will be elaborated in this chapter.

3.2. Setup

Aim of the control experiment is the verification of the parameters obtained by the classi-
fier approach. To make a comparison of the results possible, the gazers’ poses thus have
to be estimated in the same coordinate frame as in the classifier approach. This coordinate
frame is spanned by the overhead infrared camera. The pose estimation technique that
will be presented in the following is based on the finding of a mapping between a set of
3D world points and the 2D image coordinates of their projection onto the screen. There-
fore a marker pattern with known geometry is placed in the space. A number of points
that can be unambiguously related to fiducial points of the marker in 3D space must then
be identified in the camera image. This makes it possible to compute the mapping from
world (marker) to image coordinates from a set of equations that relate the 3D world coor-
dinates of the found fiducial points with their 2D image coordinates. If the internal camera
matrix is known, the camera rotation and translation can be decomposed from this map-
ping.

As described above, this pose estimation technique is based on the mapping from marker
to image coordinates and thus estimates the camera’s position and orientation relative to
the marker coordinate frame. To get the pose of a gazer in the coordinate frame of the
overhead tracking camera we therefore have to estimate two coordinate transformations:
The one between the marker and the gazer and the one between the marker and the over-
head tracking camera. Combined these two transformations give the relationship between
the overhead camera and the gazer coordinate system and thereby the desired pose. The
setup of the control experiment and the spatial relationships between the entities involved
are sketched in figure 3.1. In the Spatial Relationship Graph on the right hand side of the
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Figure 3.1.: Setup for the control experiment. The transformation TOH→G between the
overhead camera and the gazer is estimated by concatenating the transforma-
tions between overhead camera and marker and between gazer and marker.

figure the partial coordinate transformations are denoted by TOH→M and TG→M . Together
they yield the transformation

TOH→G = TG→M
−1TOH→G (3.1)

that encapsulates the rotation and translation of the gazer’s coordinate system relative to
the overhead camera’s coordinate system and thus the desired pose.

In the following I will briefly describe how to derive a camera’s pose from a homography
that relates 2D marker to image coordinates and explain how this technique was applied
to solve the pose estimation problem for the gazers in the XIM.

3.3. Pose Estimation

The recovery of 3D-geometric information from 2D images is a fundamental problem in
computer vision. To automatically compute a rigid-body transformation, the pose, from a
single view, it is necessary to match 3D model features with visible 2D image features. The
choice of an appropriate model, the identification of the object in the image and the numer-
ical computation of the pose from the correspondences between model and image points
have been subject to intensive study. Various approaches exist to solve the correspondence
problem by identifying feature points in different configurations: Collinear [31], coplanar
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[55] or scattered in 3D [54]. Proposed have also been some pose and displacement algo-
rithms from lines [19, 38, 41, 8], spheres [47] or cylinders [48]. To estimate the pose from
the determined correspondences, generally two methods of computation can be distin-
guished: Algebraic algorithms that provide a numerical solution to the system of linear
equations set up from the correspondences and iterative algorithms that start from an ini-
tial guess and dynamically optimize the pose by minimizing an appropriate cost function.
The numerical solution is easy to implement but often subject to numerical instabilities
and noise. Furthermore, numerical solutions like the Direct Linear Transformation (DLT)
only minimize the algebraic error but disregard the geometric error. Iterative methods on
the other hands minimize the geometric error and are numerically more stable, but their
result depends on the initial guess and the algorithm may not converge correctly. It is thus
advisable to use a hybrid algorithm that numerically computes an initial guess and then
refines it through non-linear optimization.

3.3.1. Pose estimation from the image of a planar marker

The minimum number of point-to-point correspondences needed to estimate the pose de-
pends on the prior knowledge we have about the arrangement of the feature points in the
model. In the most general case, if the points are scattered in 3D, the projection matrix P
we have to determine is a 3 x 4 matrix with 12 entries, and (ignoring scale) 11 degrees of
freedom. Since each point correspondence leads to two linear independent equations, a
minimum of 6 correspondences is necessary [32]. If all points lie in a plane, as it is the case
for our marker, the projection is equivalent to a homography between two planes that can
be expressed by a 3 x 3 matrix. This matrix can be numerically derived from 8 independent
equations and therefore a minimum of 4 point correspondences.

Generally, the identification of the internal camera configuration, the intrinsic camera
parameters, is needed to achieve the pose. This process is named camera calibration and
can be done in a preliminary step or it can be achieved in some situations simultaneously
with the pose [52].

Homography between two planes

Given a set of points xi on the marker plane and a set of corresponding points x′i in the
image plane we need to find a projective transformation H that maps each point xi to x′i.
This interdependency is drawn in figure 3.2 The problem is therefore to compute a 3 x 3
matrix H such that x′i = Hxi for each i. A common way to solve this problem is by Direct
Linear Transformation (DLT). The algorithm is described in detail in [32] and will only be
sketched roughly here.

The equation x′i = Hxi may be expressed in terms of the vector cross product as x′i ×
Hxi = 0. This form enables a simple linear solution, where each point correspondence
gives rise to two independent equations in the entries of H . Given a set of four such point
correspondences, we obtain a set of equations Ah = 0, where A is the matrix of equation
coefficients from each correspondence and h is the vector of unknown entries of H . We
seek a non-zero solution, since the obvious solution h = 0 is of no interest. If we use the two
independent equations delivered by each of the four correspondences, A has dimension
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Figure 3.2.: Homography between marker and image plane. From a minimum of four
point to point correspondences {xi, x

′
i} a projective transformation H can be

computed that maps each point xi on the marker plane to its projection x′i on
the image plane. This relationship can be expressed as x′i = Hxi. Image adapted
from [32]

8 x 9 and is of rank 8 and thus has a 1-dimensional null-space which provides a solution
for h. The equation can be solved by Singular Value Decomposition (SVD), whereby the
unit singular vector corresponding to the smallest singular value is the solution h. Such a
solution can only be determined up to a non-zero scale factor. However, H is in general
only determined up to scale, so the solution h gives the required H . The DLT algorithm
minimizes the norm ‖Ah‖ and thereby the algebraic error vector εi that is associated with
the point correspondences xi ↔ x′i and the homography H .

Retrieving the pose

If the internal camera configuration of the camera, the intrinsic matrix K, is known, the
extrinsic parameters can be retrieved from the projection matrix P . Under the constraint
that all model points are coplanar, this is also possible for the 2D homography H . Let’s
assume we computed the homography H mapping points on the planar marker to points
on the image plane as described above, so that

x′ = Hx (3.2)264kx′

ky′

k

375 =

264h11 h12 h13

h21 h22 h23

h31 h32 h33

375
264x
y
1

375 (3.3)

We further can define a projective transformation P that projects an arbitrary point in space
onto the image plane. For homogeneous coordinates this projection is expressed by a 3 x 4
matrix. If a point X lies on the marker we can define its z-coordinate to be zero. X is then
projected onto the image plane as

52 Active Vision for Interactive Spaces



3.3. Pose Estimation

x′ = PX

= K [R t]
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x
y
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37775

= K [R1R2 t]
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(3.4)

with K being the intrinsic matrix, R a 3 x 3 rotation matrix defining the orientation of the
camera coordinate system and t the translation between the camera center and the world
coordinate origin. Ri denotes the i-th column of the matrix R. This leads us to

H ∝ K [R1R2 t] (3.5)

where from R1,R2 and t can be retrieved by Singular Value Decomposition from the matrix
G = K−1H . G is defined up to a scale factor and since all axes of the camera coordinate
system have to be orthogonal R3 = R1 ×R3.

This solution gives a very coarse approximation of the camera’s pose and is usually
refined with a non-linear optimization method, such as Gauss-Newton or Levenberg-
Marquardt.

3.3.2. Pose estimation between infrared tracking system and marker

As described above, when wanting to determine the spatial relationship between over-
head camera and gazer, we need to estimate the poses of both the overhead camera and
the gazer relative to the marker used as reference. These partial pose estimations are de-
rived from the mapping between the marker in the 3D world and its projection onto the
respective 2D image plane. While the marker is obviously visible in the gazer image, we
have to face the problem that the overhead camera is equipped with an infrared filter and
thus only infrared light can be seen on its image plane. To estimate the pose of the over-
head camera in relation to the marker, we therefore have to find a way of making the
marker visible to an infrared camera. Furthermore, to guarantee a well-defined reference,
a single marker should be used for both pose estimations.

To provide a marker both visible to visual and infrared cameras an interactive marker
was used. This interactive marker is the adaption of a regular visual marker augmented
with infrared light sources. In specific, five infrared LEDs (Siemens LD271) were installed
at well defined spots of the marker (Figure 3.3). In the image of the overhead camera these
LEDs and thus the respective vertices of the marker can be clearly extinguished. To get the
exact image coordinates, the image is therefore processed with simple thresholding and
feature detection as shown in figure 3.4. In my application I use OpenCV library functions
for image processing and the OpenCV based blob extraction library cvBlobsLib to identify
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Figure 3.3.: The interactive marker used for the control experiment. Five infrared light
emitting LEDs were installed at well defined vertices of the marker to make
them visible to the infrared overhead camera. To avoid artifacts due to diffu-
sion, the LEDs were covered with semi-transparent hemispheres.

Figure 3.4.: Processing of the infrared camera image. The infrared LEDs attached to the
marker can be clearly extinguished in the image of the infrared camera (a).
By simple thresholding (b) and region detection the marker vertices can be
identified (c).
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Figure 3.5.: Spatial Relationship Graph and Dataflow Network for the Marker Tracking.

the individual regions in the image. Returned is a list of points that indicate the centers of
the detected ”blobs”. We can relate this points on the image plane to the coordinates of the
LEDs in the marker coordinate frame and compute the pose of the infrared camera from
these relationships as described above in section 3.3.

3.3.3. Pose estimation between gazer and marker

So far we’ve determined the pose transformation between the marker and the overhead
infrared camera. In order to estimate the pose of a gazer in the overhead camera coordinate
frame, we still need to find out how this gazer and the marker relate to each other. The
identification of a marker in a camera image and the estimation of its pose is a common
problem in the context of marker based real time tracking. Challenges thereby lie in the
identification and segmentation of a marker with defined pattern in the image, the defini-
tion of valid correspondences between points on the marker and the image plane, and the
numerical computation of the pose. For estimating the pose between marker and gazer in
the XIM I could recall on the marker tracking implemented in the Ubitrack library [26].

The Ubitrack library has been developed at the Chair for Computer Aided Medical Pro-
cedures and Augmented Reality (CAMP-AR). It has been designed to provide a frame-
work for the automatic and dynamic fusing of widespread and heterogeneous tracking
sensors. Such a hybrid tracking has become a premise in large scale, ubiquitous Aug-
mented Reality applications. The implementation of Ubitrack is based on the formal model
of Spatial Relationship Graphs (SRG). In these graphs nodes represent objects or coordi-
nate frames and edges spatial relationships, in specific tracked or known transformations
between these objects. All algorithms used for tracking and calibration can be mapped to
particular patterns in such a graph, so called Spatial Relationship Patterns. By looking for
such patterns in an SRG, the Ubitrack middleware can, given the description of a tracking
setup, create data flow networks to fulfill a client’s request [44]. One of these patterns,
the Marker Tracker pattern, fits exactly the problem of estimating the pose transformation
between a camera and a marker. From the SRG introduced in figure 3.1 to sketch the over-
all setup of our control experiment we can segment the relevant part (Figure 3.5, left) and
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Figure 3.6.: Debug image of the gazer during pose estimation using the Ubitrack.

derive the respective Dataflow Network (Figure 3.5, right). The Marker Tracker requires as
an input, besides the image from the framegrabber, the intrinsic matrix that defines the
internal camera configuration of the camera. For the gazers, the intrinsic matrices have
been determined in a prior calibration scenario as described in section 3.3.4, as well as a
4-vector specifying the distortion coefficients. Intrinsic matrix and distortion coefficients
also allow the undistortion of the gazer image in an Undistort pattern before passing it
on to the Marker Tracker. As an output the Marker Tracker delivers the 6D-pose, that gives
an estimate to the rotation and translation of the marker in relation to the gazer’s coordi-
nate frame. A debug image is rendered and displayed to show if the marker was detected
correctly (Figure 3.6).

3.3.4. Intrinsic Calibration

In order to estimate a camera’s pose from the image of a marker, the camera’s intrinsic
parameters need to be known. These parameters are:

• The focal length f , that is the distance between the camera lens and the image plane,

• the location of the image center px,y in pixel coordinates (the principal point),

• the efective pixel size mx,y and

• the radial distortion coefficient of the lens.

For a general CCD camera these parameters constitute the intrinsic matrix
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Figure 3.7.: Intrinsic camera calibration using the Ubitrack chessboard calibration pat-
tern.

K =

264αx px

αy py

1

375 (3.6)

where αx = fmx and αy = fmy represent the focal length of the camera in terms of pixel
dimensions in the x and y direction respectively. Within the projection matrix P = K [R|t],
K maps a point in the camera coordinate frame onto the image plane.

The internal camera configuration can be determined from different properties in the
image. I will however not cover this subject in this thesis and refer to [32] for further
reading. For the specific task of calibrating the gazer cameras in the XIM, the Ubitrack
library was used. Ubitrack features a chessboard calibration, where the calibration routine
is supplied with a number of images of a planar chessboard pattern with known geometry
(Figure 3.7). The corners of the individual squares are identified in the image and related to
the world coordinates of the chessboard to compute the intrinsic matrix and the distortion
coefficients.

3.4. Implementation and results

A marker based pose estimation is subject to a number of different error sources. Besides
numerical errors in the computation, the pose estimation is effected by measurement er-
rors in the image plane as well as on the marker. Furthermore, errors in the pose estimation
can be related to the topology of the individual fiducials on the marker. Research on this
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issues ranges from the design of the optimal tracking probe [57] to different approaches
of predicting the accuracy in pose estimation for marker based tracking [24, 40, 9]. The
combination of numerical errors, jitter, tracker bias and probe deformations makes marker
tracking inaccurate by nature. Experiments have shown, that the correctness of a pose es-
timation is thereby effected by the distance to the marker, the size of the marker, but also
the slant angle of the camera [43]. As a matter of fact, markers with a slant angle of zero to
the camera, that is perpendicular to the camera normal, can have errors up to 15 degrees,
which is greater than for any other view angle. As markers do not face the camera, the er-
ror decreases, with 45 degree camera tilt seeming to be optimal. In my setup, the accuracy
of the pose estimation is severely affected by this error, as the overhead infrared camera
looks almost straight onto the marker (at least, if the marker is placed on the floor).

To compensate for errors in the marker based pose estimation, the control experiment
was run ten times for each gazer with different marker positions. The pose transformations
of both the overhead camera and the respective gazer were computed for each marker po-
sitions. To combine the individual transformations and determine an optimal estimate for
the gazer’s pose, two different approaches have been implemented and will be compared
in the following:

• For each marker position i the gazer’s pose in the overhead camera’s coordinate
frame is directly computed as TOH→G = TG→M

−1TOH→G. The final pose is the de-
termined as an average of all ten results.

• In a Bundle Adjustment the pose of the gazer is globally optimized by the minimiza-
tion of a cost function that involves all parameters from both partial pose estimations
and the measurements of all ten marker positions.

3.4.1. Direct computation

In homogeneous form a camera’s pose is written as

T =
�

R ~t
~0T 1

�
(3.7)

where R is the 3 x 3 rotation matrix and ~t the 3-vector denoting the translation of the cam-
era center. If all transformations are given in such homogeneous form, their composition
may be written in terms of matrix multiplication. The matrix T = T2T1 for example, first
carries out the transformation T1 and then the transformation T2. In the case of my control
experiment, I have determined the poses of the overhead camera TOH→M and TG→M . In
particular, TOH→M describes the position and orientation of the marker coordinate frame
in overhead camera coordinates and TG→M analogously the pose of the marker in relation
to the gazer. Consequently, the inverse transformation TG→M

−1 specifies the gazer’s pose
in marker coordinates and

TOH→G = TG→M
−1TOH→M (3.8)
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Figure 3.8.: Model for the retrieval of the yaw and pitch angles from the rotation matrix.

the gazer’s pose in overhead camera coordinates. This relationship is also visualized in
the Spatial Relationship Graph in Figure 3.1.

In order to enable a composition of the individual transformations in terms of matrix
multiplication, all measured poses TOH→M, i and TG→M, i are converted to homogeneous
matrix form as in equation 3.7. To receive an average of all measurements, we sum up the
individual products TG→M, 1...10 and divide the resulting matrix element wise by ten. The
average pose estimate for the respective gazer is then

Tavg =

 
10X
i=1

TOH→M, i

!
./10 =

�
Ravg ~tavg

~0T 1

�
(3.9)

where from ~tavg can be adopted as the position of the gazer. Ravg denotes the average
orientation of the gazer in the experimental setup.

Retrieval of yaw and pitch from a rotation matrix

In order to extract the yaw and pitch angles of the gazer from the rotation matrix, we have
to consider that the gazer was set to a specific pan and tilt configuration for the duration
of the experiments. The found orientation encapsulated in the matrix Ravg thus specifies
the orientation in space for these specific angles. Since the gazer configuration is known, it
is easy to retrieve the desired angles. Note that the z-axis of the gazer coordinate frame is
equivalent to the view direction of the gazer (Figure 3.8, left). Within the rotation matrix R,
the z-axis is specified by the third column vector, furthermore referred to as ~gz . The angle

β = ~gz × ~ez (3.10)
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Gazer ID 25 300 352 365
X 228.7 -230.9 -247.9 252.7
Y -249.7 240.4 -226.1 244.7
Z (340 - 162.5) (340 - 148.5) (340 - 187.1) (340 - 160.9)
Y awxim 43.8 38.6 42.3 42.9
Y awdeg 92.6 81.7 89.5 90.8
Pitchxim 29.2 28.5 27.4 30.5
Pitchdeg 33.0 32.2 31.0 34.5

Table 3.1.: Estimated poses for the four gazers by averaging the results of the marker
based pose estimation.

between ~gz and the z-axis of the euclidean coordinate frame is the the sum of pitch and tilt.
Rotating ~gz into the euclidean x-y-plane by an angle β′ = β − 90◦, we can compute the
angle α from the resulting vector ~g′z as

α = ~g′z × ~ex (3.11)

where α is the sum of yaw and pan. With known angles pan and tilt for the done measure-
ments, were can retrieve the yaw and pitch of the specific gazer from the rotation matrix R.

The results of the pose estimation by averaging the results of the poses measured for
ten different markers are shown in table 3.1 and illustrated in figures 3.10 and 3.11. In
table 3.1 the poses are thereby listed in terms of XIM coordinates. This includes a further
rotation of 180◦ around the x-axis of the overhead camera’s coordinate system, since the
XIM coordinate system, though spanned by the overhead camera, lies in the floor of the
XIM. As a consequence, the z-value of the gazer’s pose is approximated by subtracting the
z-value of the computed pose from the estimated height of the infrared camera.

3.4.2. Bundle adjustment

So far I have tried to minimize the error in the marker based pose estimation by simply
averaging the measurements made for ten different marker positions. This intuitive ap-
proach certainly yields a better result than just estimating the pose from one single marker
position, but still it remains a very primitive approximation sensitive to the errors that
arise from the individual measurements. A more sophisticated approach would be to esti-
mate the gazer’s pose globally from measurements made for different marker positions in
regard of all involved parameters. One technique to do so is the so called bundle adjustment.

Bundle adjustment is the problem of refining a visual reconstruction to pro-
duce jointly optimal 3D structure and viewing parameter (camera pose and/or
calibration) estimates.

In this definition of Triggs et al. [53] optimal means that the parameter estimates are found
by minimizing some cost function that quantifies the model fitting error, and jointly that
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the solution is simultaneously optimal with respect to both structure (marker) and cam-
era variations. The name refers to the ”bundles” of light rays leaving each 3D feature
and converging on each camera center, which are ”adjusted” optimally with both feature
and camera positions. Thereby all of the structure and camera parameters are adjusted
”in one bundle” [53]. In general, bundle adjustment can be seen as a large, sparse geo-
metric parameter estimation problem. The parameters regarded in the optimization go
beyond the pure camera pose and include also the 3D feature coordinates (or, in our case,
the transformations between the individual coordinates) and eventually the camera’s in-
trinsic calibration. It can be applied to many similar estimation problems in vision, pho-
togrammetry, industrial metrology, surveying and geodesy. The adaption to the particular
problem is largely a matter of choosing a numerical optimization scheme that exploits the
problem structure and sparsity. There is a wide range of literature on the choice of the op-
timization scheme and the formulation of an appropriate cost function. Classically bundle
adjustments are formulated as non-linear least squares problems [18, 30, 49, 20, 21, 6, 59].
Modern systems on the other hand are often developed for general robust cost functions,
rather than restricting attention to traditional non-linear squares [53].

When estimating the pose of the gazers in the XIM, we have to presume noisy measure-
ments in the images and numerical instabilities. A global optimization by use of a bundle
adjustment might contribute essentially to better estimation results. For the specific case,
I base my derivation on the formal description of the bundle adjustment given by Hartley
and Zisserman [32]. We have to consider a situation in which a set of 3D points Xj (the
vertices on the marker) is viewed by a set of cameras with matrices P i. Denote by xi

j the
coordinates of the j-th point as seen by the i-th camera. We then wish to solve the follow-
ing optimization problem: Given the set of image coordinates xi

j find the set of camera
matrices P i and the points Xj such that P iXj = xi

j . If the image measurements are noisy,
this equation of course will not be satisfied exactly. In this case we seek the Maximum
Likelihood (ML) solution assuming that the measurement noise is Gaussian. In particular,
we wish to estimate projection matrices P̂ i and 3D points X̂j which project exactly to the
image points x̂i

j . Also, we want to minimize the image distance between the reprojected
points and the detected (measured) image points xi

j for every view, i.e.

min
P̂ i,X̂j

X
ij

d
�
P̂ iX̂j , x

i
j

�2
(3.12)

where d (x, y) is the geometric image distance between the homogeneous points x and y.

To implement the bundle adjustment for the control experiment we have to parame-
terize the problem and set up a cost function according to equation 3.12 that involves
minimizing the reprojection error. The estimation shall be carried out for two cameras P̂ 1

and P̂ 2, the overhead camera and the respective gazer, for which the intrinsic parameters
are know. The 3D points X̂j are constituted by the marker vertices at the different marker
positions. For ten marker positions we thus get a total of 5 x 10 points, where from five at
a time lie in a fixed coordinate frame. The problem is therefore not to optimize the indi-
vidual points, but rather the transformations between the maker positions. In order to do
so we define the coordinate frame of the first marker as reference and a transformation M̂k
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Figure 3.9.: Spatial Relationship Graph for the bundle adjustment.
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to this reference for each successive marker. These transformation will be included in the
optimization. With M̂1 defined as the identity matrix, we get a projection

P̂ i
k = Ki · T̂ i · M̂k (3.13)

for each camera i and each marker position k that maps a point from the marker onto
the image plane. Ki denotes the intrinsic matrix of the camera i that is considered to be
known. The optimization problem can then be formulated as the minimization of the sum
of squares

min
T̂ i,M̂k

X
ijk

d
�
P̂ i

kX̂j , x
i
jk

�2
. (3.14)

The task is now to find an optimal fit to the parameter vector ~p = (T1 · · ·TiM1 · · ·Mk)
T

so that the upper equation becomes minimal. This can be solved by use of any non-linear
optimizer. In this particular case, I propose the use of the Levenberg-Marquard Algorithm
(LMA) to determine the optimal set of parameters. I therefore set up a system of equations
fl (~p|Xj) that relates each 3D point Xj with its 2D images xi

l for each camera i and each
marker transformation Mk. For our setup we thus get a system of l = 2 · k · j equations:

x1
j = K1T1M1Xj

x1
2j = K1T1M2Xj

...

x1
kj = K1T1MkXj

x2
j = K2T2M1Xj

x2
2j = K2T2M2Xj

...

x2
kj = K2T2MkXj

(3.15)

As described in chapter 2.3.2, the LMA is an iterative procedure that in each step replaces
the parameter vector ~p by a new estimate ~p + ~q. To determine ~q, each individual function
f (~p + ~q) is approximated by its linearizations f (~p + ~q) = f (~p)+J~q, where J is the Jacobian
of f at ~p. We therefore have to compose the Jacobian matrix J that contains all the partial
derivatives and provide it to the LMA. J is thereby sparsely populated and made up by
the scheme
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J =

T1 T2 M1 M2 · · · M3

x1
1 • •

x1
2 • •
...

...
. . .

x1
kj • •

x2
1 • •

x2
2 • •
...

...
. . .

x2
kj • •

(3.16)

where a bullet denotes the respective partial derivative of xi
l and all other entries are zero.

The sparsity of the Jacobian matrix can be exploited significantly by the implementation
of the bundle adjustment to save computational cost.

Bundle Adjustment results

The bundle adjustment was run for the poses measured as described in section 3.3. The
overhead camera is defined to be the first camera and the gazer the second, with T 1 con-
sequently being the pose of the overhead camera and T 2 the one of the gazer. Since the
implementation of the algorithm in the Ubitrack uses the first marker as the reference co-
ordinate system, the estimates of these poses, T̂ 1 and T̂ 2, are returned in relation to even
this first marker. The estimated pose of the gazer in relation to the overhead camera is
therefore given by

Tbundleadjustment =
�
T̂ 1
�−1

T̂ 2. (3.17)

The position and orientation of the gazer can be retrieved from this pose as described
above in section 3.4.1. The results of the estimation with use of the bundle adjustment are
listed in table 3.2 and illustrated in figures 3.10 and 3.11. Interestingly, for three of the gaz-
ers the results vary only slightly from the ones determined by averaging the results of the
individual measurements. Only for the gazer with the ID 25, a significantly different pose
was estimated. The decisive question remains, in how far the different estimation result
contribute to a better performance in adjusting the gazers to look at a specific spot in the
XIM. To find out, which of them yields the best results, the computation of angles based
on the different pose estimations will be compared in the following section.

Robust Bundle Adjustment

When looking at the poses estimated by the bundle adjustment, we see that all of them
vary only slightly from the ones estimated directly. Only exception is the gazer with ID
25, for which a significantly different pose has been estimated. Investigating the output
of the Levenberg Marquardt Algorithm used by the bundle adjustment showed, that a
severe residual error remained, also after optimization. While the LMA converged with
a residual error of about four pixels (SSD) for the other gazers, an error of more than 130
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Gazer ID 25
w/ Outliers

25 300 352 365

X 185.7 227.0 -226.4 -243.7 255.7
Y -226.7 -250.2 239.4 -226.9 259.8
Z (340 - 100.3) (340 - 161.8) (340 - 141.8) (340 - 184.6) (340 - 183)
Y awxim 39.7 43.6 38.4 42.6 42.7
Y awdeg 84.0 92.3 81.7 93.8 84.5
Pitchxim 41.2 30.0 29.3 28.2 27.5
Pitchdeg 46.6 33.9 33.2 31.9 39.0

Table 3.2.: Estimated poses for the four gazers using the bundle adjustment.

pixels remained for gazer 25. This high residual is caused by outliers, specific markers or
features that carry a high geometric error. As the LMA tries to find an optimal fit to the
parameter vector and thereby considers all markers, the final output is severely affected by
such outliers. To avoid these complications, a robust implementation of the LMA identifies
outliers and disregards them. In the specific case, one such outlier could be identified.
Excluding this marker from the optimization resulted in a way lower residual and thus
a more significant pose. In the following evaluation, both poses estimated for gazer 25
using the bundle adjustment will be considered, the malicious one with the outliers and
the ”enhanced” one with the ouliers removed.
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Figure 3.10.: Estimated poses of the first two gazers (IDs 25 and 300).
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Figure 3.11.: Estimated poses of the second two gazers (IDs 352 and 365).
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3.5. Comparison of the different approaches

”Only what gets measured gets done!”

Main objective of this project is the use of the four gazers to gain additional information
about certain entities in the XIM. On command a gazer therefore needs to look at a certain
position in the space. The internal rotation that needs to be set for the gazer to look at
this position can be computed if the gazers position and orientation in space, its pose, are
known. Consequently, the correctness of the the adjustment is strongly dependent of the
correctness of this pose.

In the previous I have introduced three different approaches of estimating a gazers pose.
An optimization based on known correspondences gained in a classifier-based calibration
scenario, and two implementations of a pose estimation by use of a marker pattern. We
have seen approaches that vary strongly and are subject to different sources of error.

• In the classifier approach a set of correspondences between positions in the space,
as provided by the tracking system, and gazer adjustments is determined in a cali-
bration scenario. A non-linear optimizer is then used to find the optimal pose para-
meters. Optimal means that the angles computed for each of the tracking positions
based on the pose differ as low as possible from the measured angles. The correct-
ness of the determined pose is affected by a number of errors, particularly severe
inaccuracies in the tracking data due to perspective distortion. As a consequence,
the result seems to be way of the ”real” pose, at least in a geometric sense. Still it
may serve as an input to compute the angles corresponding to any specific spot in
the space as precise as possible.

• The marker based posed estimation on the other hand determines the position and
orientation of the gazer in relation to the tracking camera by seeking an optimal
estimate of the spatial relationship between these two entities. As a marker based
pose estimation is exposed to various error sources, I have presented two attempts
to compensate for these errors: A rather intuitive approach of averaging the results
of several individual pose estimations, and a global optimization by use of a bundle
adjustment.

In order to judge on the quality of the results from the different approaches, we have to
go beyond the correctness of the pose in a geometric sense. The decisive question remains:
Which of the determined poses serves best to compute the most precise gazer adjustment
for any arbitrary position in the space. I will therefore evaluate the results of the calibra-
tions in two senses:

1. In chapter 2.6.3 I have given a measure of accuracy to the computation based on the
pose determined in the classifier approach, by evaluating the deviation in the gazer
image after the gazer has been adjusted as computed. We now want to find out, if
better results would have been achieved in this test scenario, if the pose estimated
by one of the marker based approaches would have been used.

2. The perspective distortion of the tracking camera has been made out as one of the
main error sources in the classifier approach. We can try to minimize this error by
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Figure 3.12.: Computation of the shift between two images Iα and Iβ .

tracking a flat marker for which the position relative to the XIM tracking camera can
be measured without perspective distortion. In this case, which of the determined
poses will lead us to the best results?

In the following I will describe two experiments that have been conducted to provide an
answer to these questions. I thereby confine to comparing the pan angles, since the exact
height of the gazers (relative to the upper body of the person from the classifier approach)
is not known from the marker based pose estimations. A reliable conclusion about the
quality of the tilt computation is thus not possible and will be disregarded at this point.

3.5.1. Comparison based on a tracked person

Based on the experiment described in chapter 2.6.3 to evaluate the performance of the
classifier, we want to see if better result could have been achieved if either one of the poses
determined in the marker based pose estimations would have been used as a basis of
computation. In the classifier experiment, a measure of accuracy was seeked by analyzing
the gazer images taken after the gazer was adjusted to look at 50 positions in the space. The
positions were provided by the tracking system to indicate the standpoints of a person at
various spots throughout the space. After each respective adjustment, the person should
be seen in the center of the image. The classifier was applied to the image to detect the true
position in image coordinates and see how much this position deviates from the image
center.

To provide the same measure for the two other poses, and thus make the different so-
lutions comparable, the experiment would have to be conducted in the very same way.
At time of evaluation this was not possible, since there was no further access to the XIM.
It is therefore only possible to give a hypothetical solution: If different poses would have
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Figure 3.13.: Average absolute deviations in x-direction for the different calibrations of
the gazers.

been used, how far would the resulting image have been shifted? As a consequence, how
would this have changed the deviation?

Let Iα be the image of a specific gazer with a pan of α (considering the tilt to be fixed),
and Iβ the image of the same gazer with a pan of β. We then need to know, where to find
the image center (in particular, the principal point) of Iβ in Iα. Denote as pα the principal
point of Iα and as p′β the imaginary principal point of Iβ in Iα (Figure 3.12). Since the
intrinsic camera configuration of each gazer is known, we can compute the distance in
pixel between pα and p′β from the focal length f as

δx = tan (β − α) · f. (3.18)

If we presume e.g. a focal length of 458.6 (as it is the case for gazer 25), an additional ro-
tation of 1° would result in a δx of approximately 8 pixel. Note that this computation is
strictly hypothetical, as we presume a linear shift. This obviously is not true, but for small
angles equation 3.18 gives an adequate approximation to the true shift.

In chapter 2.6.3, for each gazer I have examined the images of 50 adjustments (pan, tilt)i

to find the deviations ∆x and ∆y between the person in the image and the image center. If
(x, y) defines the image coordinates of the detected person and c the image center, we can
compute the hypothetic deviation ∆x′ for an additional rotation γ relative to the respective
adjustment as
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∆x′ = x− cx + tan (γ) · f. (3.19)

Based on the poses determined in the marker based approaches, the hypothetical devia-
tions ∆xm (for the direct computation) and ∆xba (for the bundle adjustment) have been
computed according to formula 3.19. The results for each individual image are drawn in
figures 3.14, 3.15, 3.16 and 3.17. Figure 3.13 opposes the average absolute deviations for
the different calibrations as listed in table 3.3.

Gazer 25 Direct
computation

Bundle
Adjustment
w/ Outliers

Bundle
Adjustment

Classifier

� |∆x| 95.7 210.8 101.4 15.8
min |∆x| 12.9 57.0 17.4 1.0
max |∆x| 254.3 553.4 264.7 57.0

Gazer 300 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 57.1 62.8 18.0
min |∆x| 3.4 0.1 1.0
max |∆x| 171.9 188.2 61.0

Gazer 352 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 36.1 36.4 15.8
min |∆x| 0.4 1.2 0.0
max |∆x| 94.4 86.3 64.0

Gazer 365 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 52.9 57.1 12.0
min |∆x| 4.9 0.1 0.0
max |∆x| 128.5 125.4 47.0

Table 3.3.: Average, minimum and maximum deviations in the person tracking experi-
ment under the different calibrations.

In this experiment, the pose estimated in the classifier approach yields the best results.
With average deviations of around 15 pixel, the computation was clearly more accurate
than the one based on the marker estimated poses. The average deviations for the direct
computation vary from 36 to 95 pixel, likewise for the robust bundle adjustment. Really
bad results have been achieved by the unrobust calibration of gazer 25, that has been sub-
ject to outliers. In this case, the deviation averaged 210 pixel. At first sight, the fact that

Active Vision for Interactive Spaces 71



3. Control experiment

Figure 3.14.: Accuracy of gazer 25 in the person tracking experiment under the different
calibrations.

Figure 3.15.: Accuracy of gazer 300 in the person tracking experiment under the different
calibrations.
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Figure 3.16.: Accuracy of gazer 352 in the person tracking experiment under the different
calibrations.

Figure 3.17.: Accuracy of gazer 365 in the person tracking experiment under the different
calibrations.
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Figure 3.18.: Setup for the comparison on basis of a reprojected marker. We want to
determine the deviation between marker and image center (left). The pose of
the marker as computed from the overhead camera image (right) yields the
exact position of the marker in the space.

the classifier approach yields better results seems odd. At least in a geometric sense, the
poses estimated in the marker based approaches seem more meaningful. One has to keep
in mind though, that the coordinates of the person in the XIM as indicated by the tracking
system are afflicted with the same perspective error as the classifier based pose estimation.
Under the condition, that the tracking positions are not geometrically correct, the pose
estimated by the classifier serves to compute the best possible solution. A geometrically
correct pose on the other hand would require geometrically correct tracking positions to
generate a valid output. This leads us to the question, how the performance of the indi-
vidual poses would be if the tracking positions were not subject to perspective distortion.
We tackle this question in a second experiment, described in the following section.

3.5.2. Comparison based on a reprojected marker

In this second experiment we assume that there is no perspective distortion in the track-
ing data. In this case, the deviations resulting from the marker based pose estimations
should converge to a minimum. To simulate distortion free tracking data, markers were
placed at different positions in the room. The poses of these markes in relation to the over-
head camera and therefore the center of the tracking coordinate frame were estimated as
described in section 3.3. The translational part of these poses indicates the geometrically
correct position of each marker in the room.

As above, the gazer adjustment corresponding to each of these positions was computed
on basis of the poses estimated by the classifier approach, the direct marker computation
and the bundle adjustment. As a measure of accuracy, we consider the distance between
the reprojection of the marker and the image center in the respective gazer image (Figure
3.18). Also in this experiment, we can only evaluate the correctness of the computed pan
angles. For each of the gazers, ten different positions were evaluated. Since this eval-
uation had to be done offline, once again I can only provide a hypothetical solution. I
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Figure 3.19.: Average absolute deviations of the marker from the image center for the
different calibrations of the gazers.

thereby recall on images that were recorded for each gazer at different pan angles prior to
my departure from Barcelona. For each gazer there are image sets available of ten different
marker position. For each set, the space was thereby scanned in pan direction and images
were recorded for every second degree. These images now serve as an input for the eval-
uation of the different approaches. For a computed pan angle pani we examine the image
corresponding to the closest available pan angle pan′i. The additional deviation that has to
be considered can then be computed as stated in equation 3.18.

Figures 3.20, 3.21, 3.22 and 3.23 illustrate the determined deviations under the different
configurations for each gazer. The average absolute deviations are compared in figure 3.19
and listed in table 3.4. Looking at the results we see, that this time the geometrically correct
poses yield a much better performance. Except for gazer 365 (and the ”malicious” version
of gazer 25), clearly better results were achieved with the poses estimated by the marker
calibration. The average deviations range from 5.7 to 21.9 pixel for the direct marker com-
putation and 5.4 to 14.0 pixel for the bundle adjustment. In contrast, the average devia-
tions for the classifier approach range up to 51 pixel. High deviations resulted also from
the pose estimated by the bundle adjustment for gazer 25, without removing the outlier.
Significant is also, that the variations are much lower for the marker based approaches. For
gazer 352 for example, the deviations ranged only from 1.0 to 7.7 pixels. One can also see
a symmetric deviation to one side for the marker based approaches, while the deviations
for the classifier approach spread into both directions. This can be related to the fact, that
the classifier estimated the pose based on distorted tracking data and tried to average the
error to find an optimal fit for all positions. The deviation in the marker based approaches
on the other hand results from a geometric error in the marker tracking and thus affects all
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angle computations symmetrically. A more robust marker tracking could help to estimate
a gazer’s pose more accurately and reduce this error.

Gazer 25 Direct
computation

Bundle
Adjustment
w/ Outliers

Bundle
Adjustment

Classifier

� |∆x| 12.8 53.1 13.8 51.1
min |∆x| 7.2 23.1 3.6 33.15
max |∆x| 17.0 83.8 23.1 68.0

Gazer 300 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 11.1 6.8 18.8
min |∆x| 5.4 1.0 7.2
max |∆x| 16.6 12.0 43.6

Gazer 352 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 5.7 5.4 23.7
min |∆x| 0.7 1.0 4.2
max |∆x| 8.7 7.7 54.6

Gazer 365 Direct
computation

Bundle
Adjustment

Classifier

� |∆x| 21.9 14.0 12.7
min |∆x| 12.5 0.1 0.9
max |∆x| 56.2 44.6 30.1

Table 3.4.: Average, minimum and maximum deviations in the marker reprojection ex-
periment under the different calibrations.
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Figure 3.20.: Accuracy of gazer 25 in the marker reprojection experiment under the dif-
ferent configurations.

Figure 3.21.: Accuracy of gazer 300 in the marker reprojection experiment under the dif-
ferent configurations.
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Figure 3.22.: Accuracy of gazer 352 in the marker reprojection experiment under the dif-
ferent configurations.

Figure 3.23.: Accuracy of gazer 365 in the marker reprojection experiment under the dif-
ferent configurations.
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3.6. Discussion

In this chapter I have presented the implementation and results of a marker based pose es-
timation for the gazers in the XIM. Estimated were both the poses of the overhead infrared
camera and the gazers relative to a marker pattern placed in the XIM. Being aware of both
these coordinate transformations, we can give a precise estimate of the true position of
the gazers in the space. To compensate for numerical instabilities and geometric errors in
the marker detection, the estimation was done for several marker positions and a bundle
adjustment was used to globally optimize the individual poses.

Motivation for this control experiment was to see, if geometrically correct poses as es-
timated by a state of the marker calibration, will produce more accurate results in the
computation of gazer adjustments then the poses estimated in the classifier approach. To
judge on the quality of the individual solutions, the poses were tested under two con-
ditions: Once for tracking data that was afflicted with the same perspective error as the
one used for the calibration in the classifier approach, and once for geometrically correct
tracking data. The experiments, though carried out on a hypothetical basis, gave a clear
indication. The poses estimated by the classifier represent the set of parameters that serves
best to compute the angle corresponding to any position in the space, if this position is
corrupt in sense of perspective distortion. A geometrically correct pose, in this case leads
to significantly wrong results and high deviations of the target in the gazer image. If we
would presume a faultless tracking on the other hand, clearly better results can be achieved
with a true pose as estimated by a maker calibration.

Consequently, under the presumption that the tracking data is not geometrically repre-
sentable, the classifier approach is the better way of estimating the gazer poses. On the
other hand, if the tracking would not be subject to perspective distortion, it could be of
great advantage to estimate the poses precisely, e.g. by a marker based pose estimation
as presented in this chapter. In this case, the bundle adjustment proved to be nice way of
taking multiple marker positions into consideration and estimating the pose globally in
respect of all involved error sources. It showed though, that a robust implementation of
the bundle adjustment is a must. Single outliers, that arise from geometric errors in the
marker tracking, have to be recognized and discarded. Otherwise the performance may
suffer severely.

Active Vision for Interactive Spaces 79



3. Control experiment

80 Active Vision for Interactive Spaces
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In the course of this thesis I have presented various approaches to estimate a gazer’s pose.
Knowing this pose, we can set the gazer to look at a specific position in the space. We want
to make use of this capability to gain additional information about certain entities present
in the XIM. This chapter will describe, how such an attribute extraction could look like
and how it could be integrated into the existing software infrastructure. As an example
for information that can be gained from an image, I introduce the possibility of generating
a hue histogram over a certain image region. Several ways of comparing such histograms
will be presented, to decide if the same person can be seen in various images.

4.1. Integration

4.1.1. Objective

Objective of the attribute extraction is to assist the multi modal tracking system (MMT).
The MMT fuses the input of multiple sensors to track persons in the XIM and maintain
a model of the space in real time. Difficulties occur, when incoming tracking data can-
not be unambiguously assigned to a specific object contained in the model. To solve these
ambiguities, all entities currently present in the model should be labeled with a set of char-
acteristic attributes. This list can constantly be updated with attributes about each single
entity and thus make them distinguishable. The gazers can be used to constantly look at
persons in the room and learn about their features. Moreover, in case of doubt, they can
be used to look at an object that caused confusing tracking data. In regard of certain at-
tributes, the object in question can then be compared to the ones in the model.

In the previous chapters I have compared different methods of estimating the pose of the
gazers, which is necessary to adjust the gazer correctly when ordered to look at a certain
spot. In this chapter, I presume that the poses are known and that I can adjust the gazers
to look at any spot at any time. The task is now to design a system that interacts with the
MMT and delivers reliable information about persons at specific positions. As described
above, the gazers shall be used for two purposes. If idle, they shall independently collect
information about the individual persons in the room and pass this information on to the
MMT. Beyond, if requested, they shall look at specific persons and extract attributes that al-
low to identify him/her in the model. This leads us to the questions, what concept should
be chosen for the implementation and which responsibilities should be transferred to the
”Attribute Extractor”. One could either implement a pure pull-application, that only acts
on incoming position information and delivers attributes that relate to even this position.
Possible would also be to design a push-pull-application, that delivers specified information
if requested and tries to collect data independently if idle. When thinking about the proper
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Figure 4.1.: Interaction between data fuser and attribute extractor.

solution, we have to consider the information that would have to be provided to the At-
tribute Extractor in order to fulfill its task. The gazers should only extract information
about a person that

a) stands by himself/herself,

b) is not occluded and

c) does not move.

In order to choose points of interest by itself and deliver reliable information, that can
be doubtlessly associated with a specific position and consequently a tracked person, the
Attribute Extractor would have to be constantly aware of the entire world model. This
stands in contrast to the overall design of the multi modal tracking system of the XIM. As
described in chapter 1.1.2, the world model is maintained by the data fuser. Even though
this data fuser also processes bottom-up sensory information, as e.g from the overhead
camera or the floor, these sources require no additional knowledge about the world model.
Selective attentional mechanisms on the other hand need to be provided with such knowl-
edge and should be triggered by the data fuser. We therefore agreed to keep the Attribute
Extractor as simple as possible and perform action only if requested. The basic interaction
between the data fuser and the attribute extractor is drawn in Figure 4.1: The data fuser
maintains a saliency map, that identifies points of interest from the tracking data and cogni-
tive information about specific entities that require further information. If such a saliency
point has been made out, the attribute extractor is triggered with the coordinates of the
point of interest and the id of a gazer that has free line of sight. The gained information is
then returned to the data fuser for further processing.

4.1.2. Saliency maps

As described in the previous section, the data fuser needs to choose points of interest and
command the attribute extractor to gain additional information about the person standing
at this point. It thereby has to take several aspects into consideration. If information about
a person standing at a specific point is requested, it has to be made sure that this person
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Figure 4.2.: Creation of a salience map from a set of input sources.

stands alone and does not move. Also, a gazer has to be chosen that has free line of sight
onto the target. As one way to realize this decision tasks, we introduce so called saliency
maps, topographically arranged maps representing visual saliencies of a corresponding vi-
sual scene [34, 22]. Saliency maps are subject of neuroscientific research in perception to
handle the problem of information overload. As peripheral sensors generate afferent sig-
nals more or less continuously, it would be computationally costly to process all the incom-
ing information all the time. It is therefore important to make decisions which part of the
available information should be selected for further processing and which part should be
discarded. Furthermore, the selected stimuli need to be prioritized, with the most relevant
being processed first and the less important ones later, leading to a sequential treatment of
the visual scene. This selection and ordering process is referred to as selective attention [35].

We adapt the concept of saliency maps to process all information available and neces-
sary to point out saliency points representing an object that fulfills all the requirements
for further examination. Separate maps can be created for all individual sources of infor-
mation and then be merged to one single map, where a salient point respects all decisive

Figure 4.3.: A saliency map generated by the neural network simulator IQR.
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Figure 4.4.: Conical representation of the HSV color space (left) and an image along with
its h, s and v components (right).

criterias. This concept is illustrated in Figure 4.2. An object point is only taken over into
the saliency map if it occurs at the same spot and separately in all maps. Tracking data
(red) can be tacken into consideration over a period of time to decide if the object moves or
stands still. Another map can be used to point out objects that need to be examined further
(green). While a saliency map could in general be generated in different ways, the merging
of the various sensory clues in the XIM is realized by the neural network simulator IQR
[13]. Figure 4.3 shows an example for the visual output of the saliency map generated by
IQR.

4.2. Hue extraction

So far I have presented, how the Attribute Extractor should interact with the tracking sys-
tem of the XIM. Given a specific position in the space and the ID of a gazer that has free
line of sight onto this position, this gazer should be adjusted correctly and extract certain
attributes that allow a unique identification of the person in question. There are various
possible attributes that could be used to characterize a person, such as color or height, but
also more sophisticates measures that relate certain distinctive features to each other are
thinkable. The proper choice of such attributes is not subject of this thesis, but we will
consider hue histograms as one possible attribute that could be extracted from the image
of a person.

4.2.1. The HSV color space

HSV (Hue, Saturation, Value) is one possible representation of points in an RGB color
space, which attempts to describe color relationships more accurately, while remaining
computationally simple. Colors in HSV spectrum can be described as points in a conic,
whose central axis ranges from black at the bottom to white at the top. The angle around
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Figure 4.5.: Particular image regions are compared to see whether two images feature the
same person.

the axis corresponds to the hue, the distance from the axis to the saturation and the distance
along the axis to the value of a point. Conceptually, HSV can be seen as an inverted cone
of colors, with black at the bottom and fully saturated colors around a circle at the top
(Figure 4.4). HSV is thereby a simple transformation of the RGB color spectrum, wherefore
each triplet (h, s, v) can be related to a particular color of red, green and blue primaries. In
order to compare two color regions, we choose the HSV representation rather then the RGB
representation, because a particular hue value represents a color tone in all its saturations
and brightnesses, and thus makes it more invariant to lighting conditions.

4.2.2. Histogram comparison

Given two gazer images, we want to check whether they feature the same person. One
attribute that would allow a such a comparison, is the color of the person’s garment. Since
we expect the gazer to be adjusted to look straight at the person’s upper body, we can
choose a particular region of the image that clips a representative part of his/her torso
(Figure 4.5). Naturally, this image region can only be related to the person, if the gazer
has been adjusted accurately and the person is really featured in the center of the image.
A proper calibration of the gazers is therefore indispensable for the later comparison of
objects from the gazer images.

In order to compare the two image regions, we focus on the hue channel of the HSV
color space and generate hue histograms for the different samples. Pixels with a similar
hue value are therefore grouped into bins, disregarding their saturation or brightness. This
makes it possible to compare the images in regard of their hue distribution, while all flexi-
ble characteristics of a certain hue value are taken into consideration. Figure 4.6 shows an
example of such histograms for two image regions with ten bins each. In order to give a
measure of similarity to this image regions, we introduce a few distance metrics that allow
the comparison of color histograms.

Distance measures for histogram comparison

The following metrics can be used for the comparison of two histograms at a time. Their
choice and systematization follows [45]. In equations 4.1 to 4.6 H and K are the two his-
tograms to be compared. The individual bins are denoted hi and ki.
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Figure 4.6.: Hue histograms for two image regions.

The Minkowski-Distance of Order (MINr) is the generalized metric distance and often
used for the comparison of color images:

dLr (H,K) =

 X
i

|hi − ki|r
! 1

r

(4.1)

Special cases are the City Block Distance (r=1) and the Euclidean Distance (r=2).

The Histogram Intersection (HI) compares the common area of two histograms. It is sen-
sitive to partial accordance of two histograms, but vulnerable to light variations.

d∩ (H,K) = 1−
P

i min (hi, ki)P
i ki

(4.2)

Founded in statistics is the Chi-Square Distance (χ2) to give a measure of similarity to two
probabiliy distributions:

dχ2 (H,K) =
X

i

(hi −mi)
2

mi
, with mi =

hi + ki

2
(4.3)

A further distance measure, that has also been introduced in the context of color based ob-
ject tracking in multi-camera environments [42], is the Bhattacharya Distance (BD). Similar
to the histogram intersection, it gives a measure of similarity for the common area of two
histograms:

dB (H,K) =
X

i

È
hi · ki (4.4)
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The Kullback-Leibler- (KLD) and Jeffrey-Divergence (JD) derive from information theory.
They resemble the computation of an entropy for a distribution. While the Kullback-
Leibler-Divergence is no symmetric distance measure, symmetry is given for the Jeffrey-
Divergence wich is also more stable to noise:

dKL (H,K) =
X

i

hi · log
hi

ki
(4.5)

dJ (H,K) =
X

i

�
hi · log

hi

mi
+ ki · log

ki

mi

�
, with mi =

hi + ki

2
(4.6)

All of these metrics compare the histograms on a element wise basis. There are others
metrics that work comprehensive, e.g. based on cumulative histograms (Kolmogorov-
Smirnov-Distance) or under respect of neighboring elements (Quadratic Distance).

4.3. Experiments and Results

In order to see if a hue histogram carries enough information to distinguish between per-
sons in the XIM, the different distance measures introduced in the previous chapter were
applied to hue histograms generated from gazer images. In chapter 2.6.3 the gazers were
adjusted to look at different persons in the XIM. I used the images from this experiment as
an input. The region of interests to be compared were automatically segmented to show
a part of the respective person’s shirt. This allows us not only to see which metric serves
best to compare the histograms, but also if the gazers were adjusted sufficiently to allow a
computation.

We compare a total of 160 images to a model, whereby half of them feature a person with
the same t-shirt color and the other half persons wearing different colors. As a result we get
a vector with 160 elements for each metric, that is made up by the individual distances for
each image to the model. Compared were histograms with ten bins each. Figure 4.7 shows
the frequency distributions of the computed distances for each of the introduced metrics:
City Block and Euclidean Distance, Histogram Intersection, χ2-distance, Bhattacharya Dis-
tance and Kullback-Leibler- and Jeffrey-Divergence. The results of the comparison of two
image regions showing the same t-shirt color are draw as a blue curve (positive samples),
the ones of the comparison of different t-shirts as a red curve (negative samples). One can
see that the distributions overlap in all cases. It is thus not possible to define a simple
threshold that allows a definite decision on whether two images show the same person.
To draw a qualitative conclusion about the goodness of the individual metrics, one can ex-
amine the respective overlap. It is appropriate to use the intersection of the two frequency
distributions as a threshold. The distance measure dλ associated with this intersection oc-
curs with the same frequency when comparing images of the same shirt color and images
of different shirt color. We then get a false acceptance rate (FAR) as the number of negative
samples that are falsely declared to be equal, if d(H,K) ≤ dλ. The false rejection rate (FRR)
on the other hand states the amount of positive samples for which a distance greater than
dλ was computed. A different choice of the threshold dλ would yield a different FAR and
FRR. In general, if one of the error rates decreases, the other one increases, as long as the
distributions overlap.
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Figure 4.7.: Frequency distributions of the similarity measures with the different met-
rics.
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Figure 4.8.: FAR and FRR for the comparison of 160 samples.

The FAR and FRR for the comparison experiment are shown in Figure 4.8. The lowest
FRR was achieved with the Jeffrey Divergence, for which not a single positive sample
was falsely rejected. Also the χ2-Distance yielded a low FRR, with 2.5 % positive samples
declared negative. The smallest FAR resulted from the Euclidean Distance metric with 13
% falsely accepted negative samples. It had however a significantly higher FRR than the
other metrics. All FRRs lie below a limit of 10 %, while the FARs vary strongly for the
different metrics. Inadequate proved to be the Bhattacharya Distance and the Kullback-
Leibler Divergence, with FARs of above 60 %. FAR and FRR are expeced values for the
errors in the comparision of two histograms, if the decision is made based on a simple
threshold. In the context of the shirt-comparision, this means that from a set of samples
those are declared to be the same as a model, if they have a lower distance measure than
dT . The FRR is the expected value of those samples with the same color as the model, but
rejected nevertheless. The FAR on the other hand, is the expected value that a different
shirt is falsely declared to be the same as the model.

Even though this has only been a first experiment, it has been shown that a comparison
of two image regions based on their hue histograms is possible. By choice of the right
metric, false accepts could be reduced to 13 % and false rejects always ranged below 10
%. One would have to see, if better results could be achieved if a different number of
bins would be used or the threshold would be adapted. Significant is, that these result
were achieved with images taken by the gazers after automatic adjustment as described in
this thesis. The image regions that were compared were choosen automatically from these
images without manual intervention. The gazers, calibrated by the classifier approach,
thereby provided suitable images for the comparison of two persons in the XIM.
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In the beginning of this thesis we have introduced the mixed reality space XIM and the
multi modal tracking system deployed to keep track of its visitors. Main objective of this
project has been the use of four movable pan and tilt cameras, the gazers, to assist the
tracking system by gaining complementary information about certain entities in case of
unambiguities. The gazers therefore need to be set to look at specific positions in the
room as indicated by the tracking system. This is only possible, if each gazer’s position
and orientation in space, its pose, is known. The accurate estimation of this poses must
therefore be declared indispensable for a successful deployment of the gazers. Within the
course of this thesis we have presented two different ways of estimating a gazer’s pose
and evaluated which one serves best for application in the XIM. In this context, best not
only refers to the most usable approach, but also to the one which yields better results in
computing the angles corresponding to any arbitrary position in the space.

5.1. Validity of the different approaches

In order to estimate the poses of the gazers in the XIM, two essentially different approaches
have been introduced. On the one hand, the pose was estimated as the optimal fit to a set
of valid correspondences between tracking positions and gazer adjustments. On the other
hand, a state of the art marker based pose estimation was used to determine the desired
parameters. Both approaches showed strengths and weaknesses, depending on different
constraints.

First I introduced an innovative approach of optimizing the pose to serve as an optimal
fit to a set of tracking data and gazer angle correspondences. The correspondences were
thereby determined in a prior calibration scenario, in which the space was scanned with
the gazers for a person standing at tracked positions. To detect the person in the gazer im-
age, I proposed the use of a classifier trained on human upper bodies. Main motivation for
this approach was the complete independence of any other modality other than a global
tracking signal and the gazer’s own functionality. The performance of the calibration does
not depend on any coordinate transformations and yields the pose in the coordinate frame
of the tracking signal received as an input. This is of an enormous advantage, since in-
formation requests are given in even this coordinate frame later on. Furthermore, there
are no limitations on the tracking source and basically any positioning input can be used.
The application thus becomes mobile and reproduceable in any context. Limitations occur
through the classifier used for person detection. Under certain environmental constraints
the person can not be detected or is falsely classified. These false alarms would however
significantly affect the quality of the pose estimation, since all found correspondences are
considered by the optimizer. For application in the XIM it was possible to fine tune the
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classifier so that there were no false detections, but in different environments problems
may arise and would have to be solved accordingly.

In the particular case of the XIM, the tracking signal is subject to severe perspective dis-
tortion. The resulting poses are therefore wrong in a geometrical sense, as they do not
mirror the gazers real positions and orientation in space. Nevertheless the optimizer finds
the set of parameters, that serves best to compute the angle corresponding to any arbitrary
position as pointed out by the tracking signal. This proved to be another major advantage,
as the tracking data coming in for online angle computation can be expected to be afflicted
with the same error.

In a first test scenario, the poses estimated by the classifier approach were used to com-
pute the angles corresponding to 50 target positions. In the perfect case, these angles
should adjust the gazer to look straight at the respective target position. For this exper-
iment, average deviations of 12 to 17 pixels were measured in the resulting images. This
seems to be a reasonable basis for further processing. Still there were some positions for
which the computation yielded tremendous deviations.

In order to see whether better result can be achieved with a state of the art calibration
technique that determines the poses geometrically correct, a control experiment was run,
implementing a marker based pose estimation. In order to permit a comparison of the
results, the poses of the gazers thereby had to be estimated relative to the same coordinate
frame as in the classifier approach. This premise made the setup of this calibration rather
circuitous, since two individual poses had two be estimated and concatenated to yield the
desired coordinate transformation: The pose of the gazer relative to the marker and the
pose of the overhead infrared camera relative to the marker. The latter estimation required
the application of an interactive marker equipped with infrared LEDs, so that it could be
seen by the infrared camera. To compensate for numerical instabilities and geometric er-
rors in the marker detection, the estimation was done for several marker positions and a
bundle adjustment was used to globally optimize the poses of the individual gazers, tak-
ing all involved parameters and error sources into consideration.

In order to judge on the quality of the individual solutions, the poses were tested and
compared under two conditions: Once for tracking data that was afflicted with the same
perspective error as the one used for calibration in the classifier approach, and once for
geometrically correct tracking data. The experiments were carried out offline and thus
only allowed a hypothetical solution. Nevertheless, the evaluation gave a clear indication.
The poses estimated by the classifier approach represent the set of parameters that serves
best to compute the angles corresponding to any position in the space, if this position is
corrupt in sense of perspective distortion. A geometrically correct pose in this case leads to
significantly wrong results and high deviations in the gazer image. If we would presume
a faultless tracking on the other hand, clearly better results can be achieved with a true
pose as estimated by a marker calibration. An experiment with a reprojected marker, for
which the position in the room could be tracked free of any distortion, showed, that the
deviations in the final gazer image can be reduced to a minimum.
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Recapitulating, one can draw a conclusion on the goodness of the individual approaches.
Presuming that the tracking data is not geometrically representable, as it is the case for the
current tracking in the XIM, the classifier approach is the better way of estimating the gazer
poses. If, however, the tracking would not be subject to perspective distortion, it could be
a great advantage to estimate the poses precisely. One method to do so, a marker based
pose estimation, has been introduced in this thesis. The bundle adjustment thereby proved
to be a fancy way of taking multiple marker positions into consideration and estimating
the pose globally in respect of all involved error sources.

In regard of the main objective of this thesis, the comparison of different persons in the
space by means of specific attributes, I have presented the approach of extracting and com-
paring hue histograms generated from the gazer images. In an experiment with multiple
persons wearing shirts of different color, diverse distance measures for histogram compar-
ision were tested out. The images were thereby taken by the gazers after automatic adjust-
ment, based on poses estimated in the classifier approach. By choice of the right metric, it
was possible to reduce the rate of image pairs falsely declared to feature the same person
to 13 %. At the same time, less then 10 % of matching pairs were falsely rejected. This rates
can surely be reduced, by modification of the histogram comparison as well as by a more
accurate calibration. Nevertheless, this experiment was a first proof, that the comparison
of two persons in the XIM by use of the gazers is possible.

5.2. Areas for further research

On the way to a successful calibration of the gazers, the most dominant error source proved
to be the perspective distortion of the XIM tracking. It has been shown, that the deviation
in the gazer images after an adjustment can be reduced to a minimum, if tracking positions
and gazer poses are geometrically justly. Best results could thus be achieved, if one would
guarantee an undistorted tracking signal. The challenge would then be to estimate the
gazer poses as precise as possible. In general, the marker calibration proved to be a valid
approach to do so. Still there is room for improvement in various issues. A larger marker
pattern and different arrangements of the marker relative to the individual cameras might
help to reduce the measurement errors. A particular problem with the setup of the marker
estimation in this thesis has been the disadvantageous slant angle of the overhead camera
relative to the marker, as the camera looked almost straight onto the pattern. Ideally, both
cameras should look at the marker from a 45◦ angle.

The separate estimation of the individual pose transformation and their concatenation
give rise to an increased number of errors. The bundle adjustment is a good way to esti-
mate the final pose in the right coordinate frame in respect of all error sources, numerical
as well as geometric ones. Problems occurred however through outliers, single markers
that carry a high geometric error. A more robust implementation of the bundle adjustment
must therefore recognize these outliers during optimization and discard them. Rather
than reading priorly made measurement data, the bundle adjustment could also be imple-
mented to do the optimization online while a marker is moved to different positions in the
space.
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This thesis has been realized under the presumption, that no qualitative statement about
the tracking signal can be made. The gazer poses should be estimated from any arbitrary
positioning signal. One can thus not rely on the geometrical correctness of the tracking
signal, nor give an approximation of the error that has to be considered. Under this con-
dition, a promising way of estimating the gazer poses was introduced with the classifier
approach. A major drawback of this technique were the weaknesses of the classifier in
detecting the person in the gazer image. So far, all experiments have been conducted in
the same context (the XIM) and under optimal conditions. It was thereby possible to avoid
problems by adapting hard- and software setup accordingly. In order to assure applicabil-
ity in other environments as well, the classifier has to be made more stable and ubiquitous.
It could e.g. be advantageous to train the classifier cascade manually over a large set of
images taken by the gazers, rather than calling back on the predefined Upper Body Cas-
cade included in OpenCV. Other measures that could be considered include an automatic
detection of clearly unfeasible correspondences. This way outliers could be disregarded
from the very beginning. In order to draw a representable conclusion on the universal us-
ability of the classifier approach, more experiments have to be conducted under different
conditions.

Within this thesis, a strong emphasis was put on the calibration of the gazers. Regarding
the original motivation of using the gazers to distinguish between persons in the space, a
first approach of winning meaningful attributes from the gazer images has been presented.
It has been shown, that hue histograms provide a good foundation for the comparison of
two image regions in respect of their color distribution. Still the experiments and results
described in this thesis can only be seen as a first hint on the goodness of the technique. All
samples were compared to one single model. The drawn conclusions can thus not be con-
sidered universally valid. A more meaningful evaluation would have to be done, whereby
all samples are compared among each other. Also, it has to be evaluated if better results
could be achieved if the individual histograms would be divided into a different number
of bins. Additional preprocessing of the images, such as histogram normalization, might
also help to improve the comparison results.

With the hue histograms, only one possible attribute information that may be gained by
the gazers has been considered so far. There is a number of other possible attributes, that
could be assigned to an object in the model and thus make it distinguishable. One could
for example use the gazers to gain further attributes that describe the physical appearance
of a person, such as height, girth or remarkable features. A variety of such attributes would
allow the generation of a detailed model of any person in the XIM, making him or her a
unique individual in the world model. In this concern, future research has to be done on
choosing and exploiting appropriate attributes and building symbolical models.
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A. List of Abbreviations

General Context

AnTS The visual tracking system deployed in the XIM

SRG Spatial Relationship Graph

PVC The Persistent Virtual Community

MMT The multi modal tracking system

SPECS Laboratory for Synthetic Perceptive, Emotive and Cognitive Systems

XIM The eXperience Induction Machine

Pose Estimation & Parameter Optimization

DLT Direct Linear Transformation

GNA The Gauss-Newton Algorithm

LMA The Levenberg-Marquardt Algorithm

SAT Summed Area Table

SSD Sum of Squared Differences

SVD Singular Value Decomposition

Histogram Comparison

BA Bhattacharya Distance

FAR False Acceptance Rate

FRR False Rejection Rate

HI Histogram Intersection

HSV The Hue Saturation Value Color Space

JD Jeffrey Divergence

KLD Kullback-Leibler Divergence

MIN Minkowski Distance of Order
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A. List of Abbreviations

Implementation & Technology

CCD Charge-Coupled Device

DMX Direct Multiplex Protocol

GUI Graphical User Interface

IR Infrared

LED Light Emitting Diode

OpenCV Intel’s Open Source Computer Vision Library

TNT Template Numerical Toolkit
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