
Technische Universität München
Fakultät für Informatik

c c c cccc ccc ccc ccc
c c cc

Diploma Thesis in Computer Science

Automatic Feature Computation for Endoscopic Image

Classification

Ulrich Friedrich Klank

Technische Universität München
Fakultät für Informatik

c c c cccc ccc ccc ccc
c c cc

Diploma Thesis in Computer Science

Automatic Feature Computation for Endoscopic Image

Classification

Ulrich Friedrich Klank

Advisor: Prof. Nassir Navab

Supervisor: Nicolas Padoy

Date: May 14, 2007

Ich versichere, dass ich diese Diplomarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 21. Mai 2007 Autor

CONTENTS

Contents

I Preface v

Abstract vii

Acknowledgement viii

II Automatic Feature Computation for Endoscopic Image Classification 1

1 Introduction 3

1.1 Motivation . 3

1.2 Classes of endoscopic images . 3

1.3 Automatic Feature Computation . 4

1.4 Image Classification . 5

2 Theoretical Background 7

2.1 Genetic Programming . 7

2.1.1 Fitness function . 7

2.1.2 Selection . 8

2.1.3 Reproduction . 8

2.1.4 Code . 10

2.2 Image features . 10

2.2.1 Color features . 11

2.2.2 Gradient features . 12

2.2.3 Motion features . 13

2.2.4 Texture features . 13

2.2.5 Principal Component Analysis . 15

2.3 Classification . 16

2.3.1 k-Means . 16

i

CONTENTS

2.3.2 Support Vector Machine . 16

2.3.3 Backpropagation Neural Network . 18

2.3.4 Multi-class extension . 21

3 Related Work 23

3.1 Genetic Programming methods . 23

3.1.1 Fitness . 23

3.1.2 Reproduction . 24

3.1.3 Function set comparison . 24

3.2 Genetic Programming with images . 24

3.2.1 Direct approach . 24

3.2.2 Indirect approach . 25

3.3 Features for endoscopic images . 25

3.3.1 Texture based features . 25

3.3.2 Shape based features . 26

3.3.3 PCA as a feature . 26

3.4 Classification . 26

3.4.1 Applications of SVM . 27

3.4.2 Application of NN . 27

3.4.3 Pairwise voting . 27

3.5 Surgical workflow recovery . 28

3.5.1 Analysis of surgical endoscope sequences 28

3.5.2 Movement recognition . 28

3.5.3 Surgery synchronization . 29

4 Method 31

4.1 Virtual machine . 31

4.1.1 Command interface . 31

4.1.2 Memory environment . 32

4.1.3 Input handling . 32

4.2 Programming language . 32

4.2.1 Programs . 32

4.2.2 Operator sets . 33

4.3 Evaluation . 33

4.3.1 Semantic test . 36

ii

CONTENTS

4.3.2 Test runs . 36

4.3.3 Fitness function . 36

4.4 Evolution . 37

4.4.1 Selection . 37

4.4.2 Recombination . 38

4.4.3 Remarks . 40

4.5 Classification . 40

4.5.1 Binary classifiers . 40

4.5.2 Voting based decision . 41

5 Results 43

5.1 Results of the evolution . 43

5.1.1 Comparison of operator sets . 44

5.1.2 Program discussion . 45

5.2 Classification results . 47

5.2.1 2-Class Classification . 47

5.2.2 Multi-class Classification . 47

5.3 Comparison . 50

5.3.1 Fitness function and classifiers . 50

5.3.2 Program and PCA . 53

5.3.3 Program and standard image features 54

5.4 Summary and possible improvements . 58

6 Conclusion 59

III Appendix 61

A Programs 63

A.1 Water filling feature . 63

A.2 A generated program, Gen74-04 . 68

Bibliography 71

List of Figures 76

iii

CONTENTS

iv

Part I

Preface

v

Abstract

This work addresses the recognition of phases in minimally invasive surgeries. These

phases are sequential in time and should be recognized using observations which are ac-

quired automatically. The endoscopic view of the surgeon provides information about the

surgical field. This work focuses on the recognition of surgical phases using image features

computed from these endoscopic images. It is a complex task to select efficient features and

few literature exists about features that discriminate surgical phases in endoscopic views.

In this work, a new Genetic Programming approach is proposed to automate the search

for efficient features. A feature is modeled as a program and those programs are evolved

to improve the recognition rate. For the representation of the programs a programming lan-

guage was defined, specialized on computation of image features. Programs of this program-

ming language are evaluated by executing them on a virtual machine with labeled sample

images as input. Once the programs are evaluated and achieved a so called fitness, the best

programs are selected as parents for a slightly changed and probably improved new gener-

ation of programs.

Finally, the resulting features are compared with several standard image features, to

show their performance in distinguishing between two phases using an image. With a selec-

tion of the best features, a multi-class classifier is built. It is compared with an early approach

which is based on a neural network fed with a set of standard image features.

entia non sunt multiplicanda praeter necessitatem
(entities should not be multiplied beyond necessity)

– William of Ockham, 14th century (Ockham’s razor)

vii

Acknowledgement

I want to thank especially my supervisor Nicolas Padoy for organizing the whole project,
looking up everything and always supporting me. I also want to thank my advisor Profes-
sor Nassir Navab for giving me the chance of accept all wishes and still including me in
his projects. I want to thank Martin Horn for all my hardware issues. I want to thank the
Workflow group for all their ideas. Also I want to thank the Klinikum Rechts der Isar, for al-
lowing us to film the surgeries. A special thank is granted to the Magrit group at the LORIA
in Nancy, France, for integrating me during the final phase of my thesis.

viii

Part II

Automatic Feature Computation for
Endoscopic Image Classification

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Image features are a central element of image processing. They represent properties of an
image. Whenever a problem can be solved using information in an image, adequate features
are one way to extract this information. Images contain a large amount of information, but
not all of it is needed. Here, features are the key to extract the relevant information. But since
only some features are relevant, the features selection has to be adapted to the problem.
This specialization of the feature set can be automated and this work shows an approach to
perform this automatization.

1.1 Motivation

We wanted to reach the following objective: we want to recognize phases in minimally
invasive surgeries. Based on what the surgeon is doing, different phases of a surgery should
be recognized. Most minimally invasive surgeries have a strict scheme of actions for the
surgeons. This will be called the surgical workflow, for more details see section 3.5. The
workflow can be extracted by observing surgeries, for instance in order to provide phase
dependant interfaces to the surgeon. Also other applications like the support of training
systems or data acquisition for such surgeries would benefit from it.

A very useful observing tool in a minimally invasive surgery is the endoscope. The endo-
scope image of a patient shows the visual development during the surgery. Also the action
of a surgeon can often be seen directly. So, we want to recognize a surgical phase in an endo-
scopic image. It can be hardly said what distinguishes the phases, but there are differences in
the images of the phases. These differences should be representable by features. This leads
to the topic of this work, which is the automatic feature computation for endoscopic image
classification. The next three sections give a short introduction of what stands behind the
parts of this title.

1.2 Classes of endoscopic images

As surgery type, this work uses cholecystectomies, which means gallbladder resection.
It is a standard surgery that is frequently performed. The duration of it is about one and a

3

CHAPTER 1. INTRODUCTION

Table 1.1: The surgical phases, that are used as classification labels
Label Phase name Remarks
1 CO2 inflation No endoscope
2 Trocar insertion
3 Dissection phase 1
4 Clipping/ cutting 1
5 Dissection phase 2
6 Clipping/ cutting 2
7 Gallbladder detaching
8 Liver bed coagulation 1
9 Packaging of gallbladder
10 External gb. retraction
11 External cleaning
12 Liver bed coagulation 2
13 Trocar retraction
14 Abdominal suturing Endoscope outside

half hours.

The classes we want to recognize in the endoscopic images are phases of such a surgery.
The phase definition of [Ahmadi, 2003] will be used as ground truth. The different phases are
listed in Table 1.1. Every name describes the main action of the surgeon during this phase. To
illustrate the image material Figure 1.1(a), Figure 1.1(c) and Figure 1.1(e) show endoscopic
images from the second cutting and clipping phase. These images should be separated auto-
matically from images like Figure 1.1(b), Figure 1.1(d) and Figure 1.1(f). These three images
are from the external gallbladder retraction phase. The differences in theses images can be
recognized. An experienced observer can distinguish most of the phases visually.

1.3 Automatic Feature Computation

For endoscopic images in general, there are few features in the literature, for details see
section 2.2 and 3.3. These features are mostly used for pathology detection, while this work
observes the surgeon’s interaction in the minimally invasive surgery. So, there is few infor-
mation about a good features and few about a good feature set.

To solve this lack of knowledge, a Genetic Programming system was implemented.
This system searches for features, that extract the differences between the different surgi-
cal phases. Given a set of labeled images, and some programs implementing basic features,
this Genetic Programming system will evolve new programs, implementing new features.
Their performance to distinguish the phases of the generated features is compared with sev-
eral basic images features that are better fulfilling the needs to distinguish the phases than
earlier programs. See section 5.3.3 for more details. An introduction to Genetic Programming
can be found in section 2.1, related work over Genetic Programming can be found in section
3.2.2 and 3.2.2. The details of the Genetic Programming system will be described in chapter
4.

4

CHAPTER 1. INTRODUCTION

1.4 Image Classification

To estimate the current phase a classifier was built with the generated features. This
classifier consists of two levels. A feature is generated in order to distinguish between two
phases. Therefore a 2-class Support Vector Machine was the choice to build the first level
classifier. See section 2.3 for a discussion of different classifiers. We generated a feature and
a corresponding classifier for every pair of phases, and used their classification results for
the final classification. This final classifier is a voting decision, and will be introduced in sec-
tion 4.5.2. Its results can be seen in section 5.2.2. We compare this approach with a direct
classification using a Neural Network on a combination of image features.

5

CHAPTER 1. INTRODUCTION

(a) An image of the cutting and clipping phase. (b) An image of the bag retraction phase.

(c) An image of the cutting and clipping phase. (d) An image of the bag retraction phase.

(e) An image of the cutting and clipping phase. (f) An image of the bag retraction phase.

Figure 1.1: Several samples of endoscopic images in a gallbladder resection.

6

CHAPTER 2. THEORETICAL BACKGROUND

Chapter 2

Theoretical Background

Since this work unites several techniques from different fields of computer science, this
chapter gives an overview over these techniques. First, Genetic Programming will be pre-
sented, which can be seen as the central part of this work. Image features will be introduced
in the following section. We will also give a definition of how the word "feature" is used in
this work and provide a selection of basic features. The last section discusses some classifi-
cation methods and their problems.

2.1 Genetic Programming

Genetic Programming (GP), following the ideas of [Koza, 1990], is a machine learning
technique. In general, a GP algorithm adapts a program to achieve a defined goal. In Fig-
ure 2.1, the principle of GP can be seen: the process starts with programs and their code. A
so called fitness function performs the evaluation of these programs. After a selection of the
best programs, a reproduction step produces new code for new programs. This loop leads
to an increasing quality of the programs under certain conditions. The three most important
requirements therefore are: a correct fitness function, a good selection strategy and a work-
ing reproduction technique. These are the basic elements of GP, which will be explained in
further detail in the next sections.

2.1.1 Fitness function

The fitness function models all aspects of the goal. This model represent the goals in a
non-discrete way, to allow a smooth approximation towards the goal. Using this model, the
behavior or the results of a program can be evaluated. This evaluation is called the fitness of
this special program. The fitness function is always problem specific, so there is no universal
strategy for the design of it. Naturally, its complexity will increase with the complexity of
the goal. But in most cases a simple fitness function will lead to better results, following to
Ockham’s razor. This is obvious, since a GP system could abuse any side effects in the fitness
function. A common sample is an undefined behavior near singularities of any function.

7

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: The basic components of Genetic Programming

A fitness function often consists of two parts, a static part and a dynamic part. The static
part performs an analysis of the program itself by semantic criteria. The dynamic part ex-
ecutes the program in the target environment. This is obviously the most time consuming
part. So, any fitness function should include as many static tests as possible. Knowing some
fitness criteria before a new generated program is executed for the first time can save time,
especially when the tests are expensive.

However the fitness is calculated, it will serve for the selection.

2.1.2 Selection

One main idea in the evolution theory of Charles Darwin, [Darwin, 1859], is that natural
selection takes place in a world with limited resources. Meaning, only the fittest individuals
of a population will survive. Transferring this to the world of GP, a program will evolve if it is
confronted with selection. The GP algorithm has to decide which programs will be kept and
used as a base for further generations. There are several strategies for selection. Two exam-
ples will be presented here, which are representative for most of the ideas in these strategies.
First, the tournament strategy: The fitness of two programs is compared directly, and only
the one with the higher fitness will survive. Second, the limited population strategy: A pro-
gram can be selected for breeding as long as it is in the population. The programs with the
lowest fitness will be taken out of the population. Figuratively spoken, these programs will
starve. Once some programs are selected, they will be used to build the next generation.

2.1.3 Reproduction

Another main issue in the modern evolution theory is the reproduction. Every individual
has as secondary goal, beyond surviving the selection, to generate offspring. This offspring
should be at least as successful as the parental generation. In order to fulfill this principle

8

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Crossing over as the most important recombination strategy, here a schema of the
biological inspiration: The crossing over of chromosomes.

in GP, the parental programs have to give their abilities to their offspring. But, to challenge
increasing concurrency, the next generation has to be better. This is tried to reach by slightly
changing the next generation of programs using two strategies. The first strategy is the point
mutation. For programs, this can be easily performed by reordering commands, changing
commands, by inserting or removing commands or changing parameters of the program.

More problematic is the combination of two or more parental programs, which is the
second strategy for program adaptation. The standard recombination method is the so called
crossing over. Generally spoken, this strategy combines blocks out of the parental genetic
materials.

Figure 2.2 illustrates the biologic observable crossing over of DNA chromosomes, that
serves as model for the strategy used in GP. The relevant parameters of a crossing over are
the number of crossings and the desired length of a block.

Using crossing over can cause several problems. The syntactic correctness must be
granted. This is normally solved by specifying the programming language adequately, more
on this, see 2.1.4. But the semantic sense of such a combination is a serious matter. To solve
this problems there are many different approaches. Most of these approaches work with an
intermediate representation of the code. This allows easy recombination. The intermediate
representation has to be transformed. This transformation is done in different ways, includ-
ing complex ontogenies, like it was done in [Josh C. Bongard, 2003]. But the easiest way is
to just use a linear representable programming language, that allows recombination without
syntactical problems. This approach does not consider the semantic problems, hoping the
fitness function will filter out all senseless programs.

9

CHAPTER 2. THEORETICAL BACKGROUND

2.1.4 Code

The selected code representation depends first of all on the problem statement. The ques-
tions are, what should be computable with the used programming language and what per-
formance criteria exist. On the other side the recombination and mutation capabilities, that
should be possible, will also limit the selection of the code representation.

In the literature there two basic types of programming languages which are used in GP
and have to be distinguished. Programming languages can be linear or tree based. An ex-
ample for a linear programming language would be an imperative language like c and for a
tree based language a functional language like LISP, which was basically designed for artifi-
cial intelligence applications. The tree based variant is favored by the standard books about
Genetic Programming, [Koza, 1990] and [Banzhaf et al. , 1998].

Normally a custom operator set is provided. On the one side, the number of commands
must be held low, to reduce the combination possibilities. On the other side, the basic capa-
bilities of a programming language have to be preserved. The capabilities of a programming
language can be ordered in theoretical hierarchies based on Chomskys work about gram-
mars. For the GP especially the primitive recursive functions and the µ-recursion are inter-
esting. For a formal definition of these two see [Kleene, 1952]. Normally one of these two
classes of calculability is chosen. This depends on the chosen operator set. The capabilities
of loop and jump operators condition the class.

To speed up the evolution, higher level functions can be inserted as operator. The se-
lection of these functions is task specific. The insertion of a function will precondition the
solution in a direction, that can be against the current interest. High level constructs are in
advantage of low level constructs, that still have to evolve. So, the selection of the operator
set is a delicate task.

2.2 Image features

An image feature consists of information extracted from an image. It describes the prop-
erties of this specific image. This section defines an image feature in a formal way and gives
examples for basic features. We will use several of these examples later on.

Formal definition

To formalize a feature, we will define it as a mapping between an image and an corre-
sponding output:

f : I− > F,

with a dimensionality for I as the product of image height, image width and color depth.
The dimensionality of the feature F is less or equal than the dimensionality of I .

Dim(I) := NI ,

NI = height× width× colordepth,

10

CHAPTER 2. THEORETICAL BACKGROUND

Dim(F) ∈ [1...NI] .

Both dimensionalities refer to a binary vector. Based on this, the number of possible fea-
tures for an image type can be counted. The possible number of different images is:

Nimages = 2NI .

For an image, the number of possible results a feature can calculate is the sum over the
possible bit combination with a length less or equal to the image size:

Nresults =
NI∑
i=1

2i.

This expression is equivalent to
Nresults = 2NI+1.

Using Nimages and Nresults , the number of possible matches can be limited to:

Nfeatures ≈ NNresults
images ,

Nfeatures ≈
(
2NI

)2(NI+1)
.

The result of this calculation is, that there are nearly infinite different features and it would
be problematic to claim to know all relevant or even the most important.

Even so, there are several standard features for image understanding. The next section
will give a short overview, what kind of features are commonly used.

2.2.1 Color features

The most common color based feature is the color histogram. Principally, a color his-
togram counts how often a specific color can be found in an image. A color histogram nor-
mally does not cover the whole used color spectrum. It reduces the depth by accumulating
similar colors. The definition of similarity of colors depends on the used color space. The
most common color space is the additive Red Green Blue (RGB) color space. A similarity
measure defined over geometric error, will measure the color difference depending always
on the intensity. Since color has influence in all three dimension, a similarity measure will al-
ways take the intensity and the color equally into account. The human perception separates
intensities and colors.

To separate the intensities from the colors, the Hue Saturation Value (HSV) color space
can be used. Here the color has an own dimension. So a simple similarity measure will easily
combine similar colors into histogram bins. So, a HSV color histogram preserves similarities
between images, that corresponds more to the human perception. See Figure 2.3 for a sketch
of the three dimension of the HSV color space. The Hue dimension defines the color spec-
trum, the value defines the brightness.

11

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: A schema of how the 3 dimensions of the HSV-Colorspace are connected.

2.2.2 Gradient features

Gradient features are based on the gradient map of an image. Similar to the gradient
are edge extractions, but an edge extraction usually includes several steps besides a simple
gradient filter. We will not discuss the differences in the method, but since the mayor effects
are similar, we will treat them as one category. In Figure 2.4 the effects of edge detection can
be seen.

Gradient histogram

The easiest example for a gradient based feature is the gradient histogram. This feature
just counts the number of edges with a certain strength in a specific direction. But there
are more complex features based on edges. Gradients can be applied with certain preferred
direction. This means that only edges with a perpendicular direction will be detected. There-
fore even for such a simple feature like gradient histograms, there is a great variability.

Water filling feature

A more complex example for a gradient based feature is the water filling feature. Here
shape based statistics are calculated. Or more specific, the water filling algorithm is applied
on a canny edge map. All edge points in this edge map will be marked as filled starting
with any not marked point and marking all of its 4-neighborhood. During this filling, four
statistical values are observed. One of them is the maximal number of pixels in one connected
edge with the corresponding number of forks. A fork exists if the number of connected and
unmarked edge pixels is greater than one. Second, a histogram is created over these numbers
of pixels, containing also the average fork count per bin. The third statistical value is the
maximum fork count with the corresponding number of connected pixels and the forth is

12

CHAPTER 2. THEORETICAL BACKGROUND

(a) An image of the cutting and clipping phase. (b) The edge detection.

Figure 2.4: A sample image and its gradient image

a comparable histogram over these numbers, this time containing the average number of
connected pixels. These features are rotation and scale invariant.

2.2.3 Motion features

The motion is defined as the direction in that the main components in an image move
towards in a second image from a series. One feature to measure it is the Optical Flow,
published by [Horn & Schunck, 1980]. The optical flow can be visualized by so called flow
pattern, see Figure 2.5 for an example. This image show the relative movement of all points
in the image. A direction and a strength defines the movement, these are visualized with the
small lines in the image. Over these information histograms, cluster or maps with a lower
dimension than the image can be used as features.

2.2.4 Texture features

A texture can be defined as the relations of a pixel to the pixels in its neighborhood. A tex-
ture based feature calculation tries to categorize these relations. Those categories of textures
can be used for postprocessing. Possible postprocessing are a clustering and counting of pix-
els with the same value for a histogram. Normally texture features are based on a 8-pixel
neighborhood, here are two examples for such texture features.

Local binary pattern

The LBP is a gray-scale invariant texture measure in the local neighborhood, it is used
by [Wang et al. , 2001]. Figure 2.6 shows the calculation of a basic LBP, based in this case on a
the 8-neighborhood. First, by using a threshold, the neighborhood of a pixel is transformed
into a binary pattern, by replacing them by 1 for a grater value and 0 for a smaller. The
threshold can be based on the value of the pixel. The binary pattern is used to generate a

13

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: A flow pattern.

Figure 2.6: Calculation of a LBP code and its contrast measure

14

CHAPTER 2. THEORETICAL BACKGROUND

code, just reading the zeros and ones of the 8 neighbored pixels in a certain order as a binary
number. The LBP can be used to calculate histograms and to combine intensity values with
their pattern in the neighborhood. The maximal size is 256 for the LBP value multiplied by
the color depth. The LPB can be mapped into smaller histogram sizes, down to 8, without
loosing too much information.

Texture spectrum map

A texture feature similar to the LBP is the texture spectrum map. It also refers to the local
8-neighborhood. It allows only 38 different texture units. The basis of 3 instead of a 2 in the
LBP is caused by the three basic relations two pixels can have: brighter, similar or darker.
So for a region class a representative subset of these 38 different texture types is selected, in
order to segment regions of interest.

2.2.5 Principal Component Analysis

The Principal Component Analysis (PCA) is a more widely used algebraic technique than
an image feature. But with the definition of an image feature in section 2.2, PCA can also be
seen as an image feature. Beyond on images, it also can be applied on features or feature sets
for general dimension reduction.

PCA analyzes a data set using the principal components, see [Bishop, n.d.]. It tries to
generate representing vectors, the eigenvectors, for the data set. Any vector of the data set
can be expressed as a linear combination of eigenvectors. This property can be used to reduce
the dimensions.

The principal components are calculated by decomposing a matrix consisting of a set
of training vectors. The decomposition is done with a singular value decomposition. Any
singular value decomposition decomposes a Matrix I :

Im×n = Um×mΣm×nV ∗
n×n

where Σ contains the singular values, also known as eigenvalues of I . U contains the left
eigenvectors and V the right eigenvectors.

After sorting the eigenvectors by the corresponding eigenvalues, a specific number of
eigenvectors is taken. Here for, only the vectors with the highest corresponding eigenvalues
are chosen. With these eigenvectors, a matrix can be build that transforms a vector from its
own high dimensional space to a lower dimensional space. The own high dimensional space
is the vector length. The low dimensional space is defined by the number of eigenvectors
selected before. The entries of the new low dimensional vector are the coefficients needed to
for the linear combination of the eigenvectors to represent the old vector.

Since a PCA based transformation preserves geometric position properties, the Maha-
lanobis distance can be used to determine distances between the resulting vectors trans-
forming it into the eigenvector space. The Mahalanobis distance is defined as:

k(x, y) =
√

(x− y)T Σ−1 (x− y)

with Σ, the covariance matrix of x’s and y’s distribution.

15

CHAPTER 2. THEORETICAL BACKGROUND

2.3 Classification

This section gives an overview over different classification methods. Classifiers are
mostly trained by a data set. If the classifiers are not trained, they rely on a model, that
is validated by earlier experiences. To validate a classifier, the classification rate for every
class must be evaluated. These rates have to be handled with respect to a priori probabilities
of the classes. Also a cross validation of the data set has to be performed, in order to get a
reliable quality measure. Cross validation means that the data set is divided into different
sets, and complementary combinations of these sets are used for training and testing. This
validation method tries to detect both great problems of classifiers: overfitting and underfit-
ting. Overfitting denotes that too many singularities of the training set are used to classify it.
Underfitting implies that not even the training data can be classified correctly.

The first presented method is the k-means algorithm. This is a simple method and it also
works for very little training sets. The Support Vector Machine(SVM) is a more advanced
approach, which needs larger training sets, but provides higher classifications rates. The
third presented approach is the Backpropagation Neural Network. Which is a theoretical
more powerful method than the SVM, but tends to have application problems. Last, model
based multi-class decisions will be discussed.

2.3.1 k-Means

The k-Means algorithm was first published by [Forgy, 1965] and provides an easy linear
classification method, based on a geometric distance. It tries to separate a data set into k clus-
ters, by assigning every point of the data set to the nearest cluster. By doing this iteratively,
updating every round the centroid of every cluster, and reassigning all points, a stable linear
classification will be reached after several iterations. The algorithm can be started with a ran-
dom initialization, to examine the existence of various clusters. If the existence of different
classes is provided by the data set properties, even the initialization of the whole data set
into one cluster will give a result.

If a training set exists, the convergence of the algorithm can be speeded up. The cen-
troides of the different classes of the training set can be used as initial configuration of the k
clusters.

2.3.2 Support Vector Machine

An advanced classification method is the Support Vector Machine (SVM). See
[Burges, 1998]. The SVM tries to find a hyperplane separating different classes of vectors.
Since it is a maximal margin classifier, this classifier does not only separate the training data,
but it also searches for an optimal separation.

Figure 2.7 illustrates a hyperplane and the corresponding margin. The margin is deter-
mined summing up the distance of every support vector to the hyperplane. The support
vectors are a subset of the training set. A vector is selected as a support vector by its dis-
tance to the borders of its class. The distance measurement takes place in a kernel space. The
vectors are first transformed in the kernel space, and there a algebraic distance is calculated.
Several different standard kernels are available.

16

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.7: An example for a linear support vector machine.

Distance measure in kernel space

The kernel function defines the kernel space. It calculates the distance between two vec-
tors. The easiest way to calculate this distance is the linear kernel. It takes the geometric error
as distance. An example for a non-linear kernel is the RBF kernel. This kernel allows a non-
linear separation of classes with the SVM. A kernel is defined by a distance function, which
returns the distance between two points:

k(x, y) = e

(
− ‖x−y‖2

2σ2

)
, σ > 0

Where k is the distance function, x and y are vectors and σ is the RBF kernel size. Alterna-
tively a polynomial kernel can be used:

k(x, y) = (xy)d, d ∈ IN

The RBF kernel returns values different from zero only inside the area specified by σ and it
has a well defined behavior at the borders of the definition space. This is not given by the
polynomial kernel, which can have unexpected behaviors at the borders.

Training methods

The standard SVM training method assumes the separability of the classes. There are
training methods for complex problems that allow a certain number of wrong classified
training samples, by penalizing them with a negative distance. One of these training meth-
ods is the ν-Support Vector Classification (ν-SVC), published by [Schölkopf et al. , 2000]. An-
other training method for example is the Sequential Minimal Optimization published by
[Platt, 1999].

A crucial part of the training is the regression of the decision boundary depending on the
selected support vectors. The ν-Support Vector Regression (ν-SVR) is part of the correspond-
ing classification and tries to minimize three values: the training error, the model complexity
and a tolerance corridor. The training error is the number of misclassified vectors. The model

17

CHAPTER 2. THEORETICAL BACKGROUND

complexity is the degree of the polynomial function that is used for the regression. The tol-
erance corridor can be imagined as the size of the tube that allows support vectors to be in
the part of the regression or not.

The direct approach minimizes the following function:

e(SV) =
xi∈SV∑

|y − fw(xi)|.

When a tolerance margin is added, the error function will be:

e(SV) =
xi∈SV∑

|y − fw(xi)| − ε,

with f as the decision function in both cases, defined as follows:

fw(x) = (wx) + b,

These two functions are minimized regarding the error e itself and the model complexity
‖w‖. The ν-SVR will minimize additionally the ε. Another parameter ν defines the wished
fraction of the error and the fraction of the SV. The algorithms approximates these two values
to ν, by minimizing ε. This simplifies the training of the SVM, since ν depends less on the
given data as it would depend on with a directly given margin.

Abilities and Problems

The ν-SVC provides a fast and easy-to-use possibility to train SVMs. It only tends to
perform very slowly for bad conditioned data sets. Also the corridor between over- and
underfitting is narrow. Still, it can be seen as one of the best possibilities to classify high
dimensional data sets.

2.3.3 Backpropagation Neural Network

Neural networks are another machine learning approach and can have the same capabil-
ities as a SVM, but there are more parameters to learn. Due to the great number of learned
parameters, their main problem is that the reason for working or not on a special class can
hardly be understood.

Feed forward network

Feed forward networks after [Lenze, 1997] consist of a set of neurons. These are orga-
nized in an input layer, at least one hidden layer and an output layer. More hidden layers
improve the learning capacity, but delay or even hinder a learning effect.

Figure 2.8 shows a scheme of a feed forward network with one hidden layer. Every neu-
ron has an activation function, which defines how the incoming connection changes the
neuron activation, that will be passed to the output. This activation function can be seen as

18

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.8: A scheme for a feed forward network. The input is the vector I with its entries
I1..Ii and the length I . The results are the estimated probabilities for the special class.
s

19

CHAPTER 2. THEORETICAL BACKGROUND

equivalent to the kernel function of the SVM. For the input and output layers is no further
need for an activation function. Most times the identity is used. The hidden layer requires
an activation function. Since it has a simple derivative, the sigmoid function is a common
choice:

fσ(x) =
1

1 + e−(x−σ)

The sigmoid function has a parameter σ, that defines the value for x where the result of
the function is 0.5. Using the activation function, the activation of the hidden layer can be
calculated as followed:

Jj = ftj

 |I|∑
i=1

wi,jIi


Where Jj is the activation of the j-th hidden layer neuron. The input vector is I , and the

i-th entry is Ii. The weights wi,j have to be trained before. How to train a weight is described
in the next section. tj is a parameter for the activation function of a hidden layer neuron
which has to be trained too.

The results are the activation output neurons. These are calculated from the hidden layer
activations as follows:

Ao =
|J |∑
j=1

vj,oJj

The weights woj have to be trained before, too. The activation Ao represents the calculated
probability of the input vector belonging to the class o.

Learning algorithm

The Backpropagation algorithm is a form of supervised learning for a neural network.
It requires enough learning samples that represent a class. Since the Backpropagation algo-
rithm provides a method to learn patterns in the information relatively fast and with a good
stability of already learned facts, it is presented here. During the learning process, several
parameters are adjusted. This depends on the error of the feed forward calculation. The idea
of Backpropagation is to use the error at the output neuron in all the layers to adapt all pa-
rameters. The influence will decrease every layer. The next evaluation of the same input will
result in a smaller error.

The errors at the output neurons are defined as follows:

εo =

{
1−Ao if class of I = o
−1
|O| −Ao otherwise

The weights between the hidden and the output layer are adapted using the formula:

vnew
oj

= vold
o,j + 2δJjεo;

20

CHAPTER 2. THEORETICAL BACKGROUND

δ is an variable with a value below 1 that decides about the learning velocity. The lower the
value of δ is, the more stable results obtained are. The higher it is, the faster is the learning
process. Jj is the activation of the hidden neuron j as described in the section before.

The weights wnew
i,j connecting the input neurons i and the hidden layer neuron j will be

changed according to the following formula:

wnew
i,j = wold

i,j + 2δvinput(i)f ′tj (Jj)εwold
outj ;

with the derivative of the activation function f ′tj (Jj) would be Jj(1 − Jj) in the case of the
sigmoid function. The threshold thiddennew

j
of the hidden neurons is also changed:

thiddennew
j

= told
hiddenj

− 2δf ′tj (Jj)εwold
outj ;

Once all weights updated, the error for the current input will be smaller than before and new
training data can be passed as input, to adapt the weights again.

Abilities and Problems

The backpropagation learning algorithm can only be applied with a high risk of over
fitting. The usage of PCA on the training data can reduce this risk, but PCA weights the
information in a way that can cause problems, like removing the interesting part of the in-
formation. The learning time is high, compared to the SVM times. Anyway, it was shown
that for some cases the classification results are be very good.

2.3.4 Multi-class extension

An approach to solve multi-class decision problems can use several 2-class classifiers.
2-class Classifiers are faster to train, due to a smaller training set size, that is required.
Two simple methods to combine 2-class classifiers to a multi-class classifier are the one
vs all and the pairwise method. The one-vs-all method uses classifiers that are trained on
one class and samples from each other, to decide if a sample is in the specific class or
not. The pairwise method trains classifiers on every pair of class, to decide in which class
a sample is expected with a higher probability. Also [Hsu & Lin, 2000] comes to the so-
lution that for SVM the pairwise method performs better than the one versus all, while
[Rifkin & Klautau, 2004] in a more general context come to the conclusion that one vs all
performs as good as any other technique. More sophisticated techniques, like proposed by
[Dietterich & Bakiri, 1996, Allwein et al. , 2000], need an error model for the classified data,
which we did not have for the generated features.

21

CHAPTER 2. THEORETICAL BACKGROUND

22

CHAPTER 3. RELATED WORK

Chapter 3

Related Work

This chapter leads through the literature that is in some aspects related to this work. First,
we present methods, systems and several application of Genetic Programming. Then, a list
of applications based on image features is given, all applied on endoscopic images. As next
point, techniques for feature selection will be explained. The last section presents works over
surgical workflow and related topics.

3.1 Genetic Programming methods

Genetic programming is a very time consuming technique, since very large search
spaces have to be explored. Also the evaluation of quality and correctness is not al-
ways easy. So, there are several methods in this area to improve the performance.
[Johnson, 2002] run through a static analysis before execution and [Motsinger et al. , 2006,
McConaghy & Gielen, 2006, Thomason & Soule, 2006] propose improvements to the repro-
duction. [Wang & Soule, 2004] provides a method for comparison of different function sets.

3.1.1 Fitness

To improve semantic tests, [Johnson, 2002] derives static analyzes over programs auto-
matically, to supervise constraints on variables before an execution can be done. The work
proposes static analysis of a program, in order to find out the general abilities of this pro-
gram. Or namely:

• relationships of the values of variables and their extreme values

• references information that is crucial for the solution or not

• complexity information

• performance information

The work postulates that the optimal case for Genetic Programming would consist in a pure
static fitness analysis, for time and failure safety reasons.

23

CHAPTER 3. RELATED WORK

3.1.2 Reproduction

An area where a lot of specialization can be done is the reproduction. Improvements
of the reproduction can increase the probability that newly combined programs are cor-
rect and useful. Several crossing over strategies are discussed in [Motsinger et al. , 2006]
and a new technique is presented. This work uses a Neural Network design pattern as
programming language. Another technique to supervise new programs was defined by
[McConaghy & Gielen, 2006]. They use a a canonical form for programs. This form makes it
possible to correct logical errors in the parametrization of commands. Since the parametriza-
tion can be random, this is a very useful method for the generation of new programs.
[Thomason & Soule, 2006] proposes redundant genes for a higher robustness of the evolu-
tion. Their results show, that evolution exerts pressure on the individuals of a population
towards robustness of their genom.

3.1.3 Function set comparison

[Wang & Soule, 2004] runs tests over different operator sets, and shows that the optimal
operator set can be searched in limited function spaces by comparison of the evolution speed.
He uses this fact, to divide the operator set into functionality groups. The final result of
the work is, that only one operator of such a functionality group is needed for the optimal
operator set.

3.2 Genetic Programming with images

Genetic Programming (GP) has a large area of applications. This section will focus on
applications in the area of image understanding. We will look at two different ways to
use GP. First, directly accessing the images and second using the images indirectly by a
fixed feature set, which is extracted from the image. The first serves more for segmenta-
tion of the image or object recognition, like in [Szymanski et al. , 2002, Perkins et al. , 2000,
Ghosh & Mitchell, 2006]. The second method is often applied only on regions of images, and
mostly serves for classification, like in [Zhang et al. , 2003, Nandi et al. , 2006].

3.2.1 Direct approach

An approach can be called direct, when the created program has direct access to an im-
age. Based a set of image operators, a generated program tries to calculate the results.

An example for such a GP environment is the Genetic imagery exploitation software
(short GENIE) of the Los Alamos Laboratories, published in [Perkins et al. , 2000]. The GE-
NIE software tries to assemble an algorithm based on basic image operators. The generated
programs can be used for segmentation of an image in regions. GENIE uses a linear pro-
gramming language. An application example can be found in [Szymanski et al. , 2002]. Here
a segmentation of satellite images is performed. Another application example of GENIE in
the medical field is published in [Ghosh & Mitchell, 2006]. Herein the goal of segmenting a
prostate in CT images is reached with the Genetic Programming abilities of GENIE.

24

CHAPTER 3. RELATED WORK

3.2.2 Indirect approach

The indirect approach combines lower level arithmetic operators and fixed image fea-
tures. The image is only accessed by a fixed number of features, and only the results of these
features are given as input to the program.

Such an approach is used by [Zhang et al. , 2003]. In this work uses just parts of images
as input for a program. Instead, a region around a pixel is taken to calculate a limited and
fixed set of features. These features are combined with arithmetic operators by a genetic
programming system. The target of the project is to classify parts of the image into one
of several classes. A similar approach is used by [Nandi et al. , 2006]. There, s detection of
carcinoma malignity is performed, based on texture features, edge sharpness features and
shape features. They also use Genetic Programming to combine the features, in order to
classify finally a region containing a tumor as malign or not in four different levels.

3.3 Features for endoscopic images

In literature, many features for general images can be found. This section is restricted to
applications that work with endoscopic images. Examples will be given for different types
of features. All of them are used to automatically recognize pathologies. Applications or
methods that are observing human interaction during a minimally invasive surgery, could
not be found. So there is no comparable method, but different features that work with spe-
cial cases of endoscopic images. Later on we will use some of these features for compari-
son. [Wang et al. , 2001, Karkanis et al. , 1991, Karkanis et al. , 2003, Iakovidis et al. , 2005] are
pathology recognitions based on texture features, while [Majewski & Jedruch, 2005] uses
shape based features for the same task. These two types of features are combined in an
approach presented by [Nandi et al. , 2006].

3.3.1 Texture based features

Texture features were introduced in section 2.2.4. Representative examples have been
selected to show applications of them. The first is a histogram based feature, and the second
a region based clustering.

Texture features like in [Wang et al. , 2001] are used for tumor recognition. In the case of
recognition ulcers and Melanosis coli in colonoscopic data, a local binary pattern (LBP, see
section 2.2.4) histogram was used. This LBP was used to calculate a histogram with 256 bins
for the LPB values and a second dimension of size 8 for the intensity. This histogram was
calculated for every region of interest. If there was more than one region of interest in the
image, the image was split into two regions, or the regions of interest were merged. A neural
network was trained with the resulting histograms. The results were classes of regions. The
neural network was trained unsupervised, and nevertheless it was able to classify ulcers and
Melanosis coli regions in the images.

Also for tumor recognition, in [Karkanis et al. , 1991] a texture spectrum is calculated.
See section 2.2.4. Here it serves for lung endoscopic images to decide about different cancer
stages.

25

CHAPTER 3. RELATED WORK

Not only texture but also color based features and histograms of colors are used. For
example in [Karkanis et al. , 2003] and [Iakovidis et al. , 2005]. Here a Second-Order Color
Wavelet Covariance feature in combination with various similar texture features is used for
computer aided tumor detection. The calculation consists of transforming the image into a
multi scale wavelet space, that represents its texture for every color channel differently. This
is also used in tumor recognition.

3.3.2 Shape based features

Shape based features measure statistics over gradient maps. For example, they can help
to decide if a special object is in an image. Or they represent special classes of objects. We
will present two samples for usage of shape based features in endoscopic images.

A different approach to classify malignity of tumors is presented in
[Majewski & Jedruch, 2005]. This method is based on the water filling feature. See sec-
tion 2.2.2. The water filling algorithm is applied on the edge map for a previously selected
region and the statistics are given to a classifier. This classifier decides over the malignity of
tumors seen in endoscopic images.

Also [Nandi et al. , 2006] works with shape based features, which are the normalized
compactness, the Fourier Descriptor, the spiculation index and the fractional concavity.
These features are the base for a GP framework that evolves programs to classify the ma-
lignity of tumors in four classes. See section 3.2.2.

3.3.3 PCA as a feature

Images in general have a high dimension, which is why features are used to reduce it. But
even features can have high dimensional result. PCA can be applied directly on the image
or on features and feature sets like in [Tjoa & Krishnan, 2003]. In [Keil et al. , 2006], PCA is
used directly on the image to determine if a CT slice shows the feet or the head of a patient,
in order to get information about the position of this patient. This approach uses the PCA
directly on the images. For both classes of images a centroid is calculated from a training set.
A new image is classified using the Mahalanobis distance to the centroids.

An adapted version PCA is used for face recognition in [Turk & Pentland, 1991]. By
defining several undecomposable dimensions an so called independent component analysis
is used to extract more independent

3.4 Classification

Image classification based on features of medical images, or more specific on en-
doscopic images, is performed by [Majewski & Jedruch, 2005, Iakovidis et al. , 2005]. They
use SVMs directly. The pairwise decision to solve a multi-class problem, is used by
[Kudo & Matsumoto, 2001]. Another used classification method are the neural networks,
which for example is utilized [Tjoa & Krishnan, 2003, Wang et al. , 2001].

26

CHAPTER 3. RELATED WORK

3.4.1 Applications of SVM

In [Majewski & Jedruch, 2005] a two class decision is performed in order to decide if a
tumor is malign or not. It is based on a feature set, described before in 3.3.2. The method uses
a least square support vector machine. Least square is the name for the used kernel space.
Similar, [Iakovidis et al. , 2005] classifies, via a long list of features also using a support vector
machine, the malignity of tumors. [Li et al. , 2003] present a comparison between different
classifiers. The performance of classifying natural textures is measured based on translation-
invariant feature sets. As A result that the SVM comes out on top, better than the Bayes
classifier and learning vector quantization. They use Gaussian kernel for error measurement.

3.4.2 Application of NN

[Tjoa & Krishnan, 2003] use a neural network with a backpropagation learning algorithm
for feature set classification. On the feature set, containing texture and color based features, a
PCA is also applied to reduce the dimension of the data. This leads to lower training times of
the neural network. With the reduced training time, the risk of overfitting the training data
is diminished, risking to loose information in the processed data.

The work of [Wang et al. , 2001], cited before in section 3.3.1, uses a self organizing map.
The work was mentioned before, since it extracts texture features to classify regions of en-
doscopic images. Self organizing maps are a special kind of neural networks. It uses an
unsupervised learning strategy and has an activation strategy that includes backward links.

Feature Selection with a NN

Like the PCA, there are more dimension reduction techniques. More specialized towards
features for example is the work of [Jain & Zongker, 1997]. This work discusses several meth-
ods of feature reduction, including a method with neural networks. It compares a NN with
statistical pattern recognition methods, divided into categories. As categories for the sta-
tistical methods the work uses optimal and suboptimal search strategies. As winner of this
comparison results a suboptimal statistical method, the so called floating search method. The
approach presented by [Farmer et al. , 2004] can be seen as extension to this work. It is based
on random mutation hill climbing, and works for large scale problems. It is an approach,
similar to the principle of a genetic algorithm. It selects several feature sets and evaluates
the fitness of these features sets. The best feature set is slightly mutated by removing or
adding features. The underlaying image material was taken inside a car, to decide if the
airbag should stay activated or not. A benchmark system for image features was proposed
by [Ma & Zhang, 1998] and applied on interesting images features that can be used to com-
bine extrinsic information with the right image features. In [Vailaya et al. , 2001] this idea is
applied to classify vacation images.

3.4.3 Pairwise voting

The pairwise decision with SVM, followed by voting to get a multi-class decision is done
by [Kudo & Matsumoto, 2001]. This work is about the analysis of English phrase parts, so

27

CHAPTER 3. RELATED WORK

called chunks. The words are divided into five classes, and the used classification system
choose the correct class for a word. They provide a method for chunking in general, based
on SVM and a weighted voting algorithm.

3.5 Surgical workflow recovery

The analysis of surgical workflow is a rising topic in the medical engineering area. In or-
der to be able to train new surgeons in simulated environment or to use supporting systems
like surgical robots, the necessary actions for a surgery first have to be recognized, ana-
lyzed, standardized and modeled. If a model exist, this has to be recognized in the reality to
have influence on reactions of any system, like it is done in [Lo et al. , 2003, Lin et al. , 2005,
Sielhorst et al. , 2006, Padoy et al. , 2007, Ahmadi et al. , 2006].

3.5.1 Analysis of surgical endoscope sequences

[Lo et al. , 2003] presents a framework for the analysis of the endoscopic view of mini-
mally invasive surgeries. The work uses several tools, including:

• instrument segmentation

• instrument tracking

• tissue deformation detection

• change of specular highlight detection

• suture and suturing detection

All these tools were used to track movements of instruments in video sequences of dif-
ferent types of minimally invasive operations. The approach is tested on several short video
sequences. The test case is the classification of frames and episodes of frames into types of
movements.

3.5.2 Movement recognition

The work of [Lin et al. , 2005] analyzes movements of robotic surgical systems like Intu-
itive Surgical’s da Vinci. These movements are mapped on a list of different actions a surgeon
does with this system. This recognition is part of a surgeon training system, an example to
examine of the skill of the person using the robot.

The work of [Sielhorst et al. , 2006] is about the synchronization of 3D movement trajec-
tories, embedded in several contexts. It also includes the idea of a training application for
surgeons, that provides a trainee with the possibility to follow movements of an expert sur-
geon. The movement trajectories are captured via outside in tracking which is part of the
used RAMP augmented reality system.

28

CHAPTER 3. RELATED WORK

3.5.3 Surgery synchronization

[Ahmadi et al. , 2006, Padoy et al. , 2007] synchronize operations based on the use of in-
struments in surgeries. One is based on dynamic time warping and the other on hidden
markov models. The time synchronization serves to find corresponding instrument changes
in different surgeries. In case of the DTW, by warping a surgery to each other, a new surgery
can be divided into phases. In case of the HMM approach, the states of the HMM provide
this division. This allows any kind of phase dependant feedback in a training application or
a supporting system, that could directly support a surgery.

29

CHAPTER 3. RELATED WORK

30

CHAPTER 4. METHOD

Chapter 4

Method

For this project a Genetic Programming (GP) framework has been implemented. It in-
cluded a new virtual machine for image processing, which simulates the execution of fea-
ture programs. The feature programs are written a linear programming language, specially
defined for this purpose. First the basics of the virtual machine and the programming lan-
guages will be presented. As a next step the evaluation mechanism of the GP framework will
be described. The last section of the chapter describes, how the resulting features are used to
build a multi-class classifier.

4.1 Virtual machine

Semantic problems in a generated program are normal and have to be considered. See
section 2.1. To avoid infinite running times, memory leak or stack overflows, a generated
program should run on a Virtual Machine (VM). The VM will supervise a safe execution and
provide an interface for state changes, that can be used to implement the custom commands.

4.1.1 Command interface

A command for the VM consists of the following items:

• Operation Code (OpCode)

• Function that defines the command

• Operation name

• Parameter sets (3 integer values)

By defining these 4 items a command can be added to the operator set of the VM. A
program will consist of a sequence of OpCodes and a Parameter lists. The functionality of a
command is defined in a callback function. These callback functions have access to the VM
interface. This interface allows the commands to also change the state of the VM, like for
example the instruction pointer. The instruction pointer specifies the next line that will be
executed from a program. The other states of the VM are described in the following sections.

31

CHAPTER 4. METHOD

4.1.2 Memory environment

The memory the VM provides to the program for execution consists of two parts. First,
a stack is provided where the program can access only the upper element. Second, a heap
structure can be directly addressed by the program. Both are restricted in size and initialized
with 0. The lower part of the heap will automatically be saved on a sub procedure call and
reloaded on a return.

4.1.3 Input handling

The virtual machine provides to the program for access to an input image. It offers also
the possibility to change a working copy of this image with image operators. A stack of such
working copies can be managed using special push and pop commands.

4.2 Programming language

The used programming language is a linear. It is assembler-like, since the number of
parameters is limited to three. In the following sections we will present the basic structure
of a program and the used operator sets.

4.2.1 Programs

Programs are the genetic material in the Genetic Programming system, they are specified
by an ID, an corresponding operator set, a program length and the list of commands. Every
command has a line number, an OpCode and three parameters. The programs will be man-
aged using an ID, to distinguish them from the outside. The operator set limits the maximal
opcode, and is used by the virtual machine to execute the program correctly.

Manually implement feature

Appendix A lists several sample programs. Here the structure can be seen. There is one
program that was manually created to implement the water filling feature. See section 2.2.2.
Manually created programs tend to be very long and complicate, compared to the same
program in a high level programming language like for example C++. This is caused by the
linear style, meaning that all kind of arguments are atomic. So every complex expression has
to be solved on the stack.

Computed feature

To illustrate how a program looks like we will have a look at a generated program. If
we compare the water filling feature with the second example: the generated program for to
distinction between phases 2 and 6. It is used later in section 5.1. The code can be found in
Appendix A.2, the operators that are used for the programs are explained in section 4.2.2.

32

CHAPTER 4. METHOD

The computed feature is much shorter, and easily structured. The first thing that can be
seen when analyzing the used commands, is the large number of unnecessary commands.
Half of the program’s commands can be removed without changing its semantic. Also there
are repeated structures in the short program. But on a closer look, the most repeated structure
is a double extraction of the maximum and the minimum of the current working image on
the stack. This structure can be seen as reaction to the fitness criteria, see section 4.3, that there
must be an output on the stack and the input image must be referred. By the recombination
technique crossing over blocks are preferred to stay together. See section 4.4.2.

To conclude these observation, the structure given by the programming language and the
fitness criteria will strongly influence the resulting programs. So these elements have to be
chosen carefully. Until a complex feature, comparable to the water filling, can evolve, many
generations have to be run.

4.2.2 Operator sets

The values that are accepted by an operator as a parameter are normally limited to a
certain interval. Parameter values will be forced to the closest border if they exceed this
interval.

Low level operator set

Table 4.1 shows the list of low level operators. The operator set represents a programming
language powerful enough to express µ-recursive functions. The operator set is not minimal,
since there are operators that can be replaced by others. These operators were introduced in
order to allow easier addressing. Since the VM has limited memory and allowed running
time, not all µ-recursive functions will be computable by the system.

High level operator set

Table 4.2 show the list of the additional high level operators with a short description of
their functionality. The selection is based on several sources, including [Perkins et al. , 2000],
but most of it was chosen intuitionally. A part of the operators work directly on the in-
put image. The functionality of these commands is most times implemented using OpenCV.
They represent a selection of image operators and try to provide an interface for easy feature
implementation. Combined with the low level operators, they also represent a µ-recursive
programming language.

4.3 Evaluation

The evaluation system consists of three elements. First semantic tests are performed to
preselect the programs. They are then executed in the VM for several inputs. The last step of
the evaluation is then the calculation of the fitness function using the results of the execution.

33

CHAPTER 4. METHOD

Table 4.1: Low level operators, also part of the the high level operator set
Command name Parameters Functionality
FOR Start, End, BlockLength Repeating execution of the next block,

defined by the BlockLength parameter, putting
every turn an increasing value starting from
Start up to End on the stack

IF BlockLength If the topmost stack value is equal to 0
the next block, defined by the BlockLength
parameter, is not executed

POP None Deletes the last value from the stack
PUSH Value Pushes the Value parameter on the stack
PLUS None Takes the last two values from the stack

and adds them
MINUS None Takes the last two values from the stack

and subtracts them
MULTIPLY None Takes the last two values from the stack

and multiplies them
DIVIDE None Takes the last two values from the stack

and divides them
GREATER None Compares the last two values from the stack
NOT None Inverts the last value on the stack
EQUALS None Compares the last two values from the stack
SMALLER None Compares the last two values from the stack
DUPLICATE None Duplicates the last value on the stack
CALL TargetLine Calls a subroutine in line TargetLine
RETURN None Returns to the last call position
SAVE Address, Value Saves the value referenced by Value

to the memory position Address. The value
can be read from the stack

LOAD Address Calls a subroutine in line TargetLine
READINPUT X, Y, Z Reads the pixel of an image at position X Y Z
INPUTDIMENSION Dimension Puts the size in the dimension Dimension on

the stack
SUBTRACT Address, Value Subtracts the value referenced by Value

from the memory position Address. Value
can be read from the stack

ADD Address, Value Adds the value referenced by Value
to the memory position Address. Value
can be read from the stack

JUMP TargetLine Jumps to the line TargetLine

34

CHAPTER 4. METHOD

Table 4.2: High level operators
HREADINPUT None Loads the input image as the current

working image
GRADIENT X, Y Calculates a gradient in x direction if

the X parameter is different to 0 else in
y direction

HISTOGRAM Size Calculates a histogram from the current
working image over the values with a
resolution given by the Size parameter

EDGES ThresX, ThresY Applies a canny edge detection on the
working image

GAUSS KernelX, KernelY Applies a gaussian filter on the working
image

DOWNSCALE Factor Reduces the dimensionality of the image
by the Factor parameter

EXTRACTMAX Channel Puts the maximal value of the working
image on the stack

EXTRACTMIN Channel Puts the minimal value of the working
image on the stack

EXTRACTMAXLOC Channel Puts the location of the maximal value
of the working image on the stack

EXTRACTMINLOC Channel Puts the location of the minimal value
of the working image on the stack

DILATE Size, Iterations Applies a dilation on the working image
ERODE Size, Iterations Applies a erosion on the working image
PUSHIMAGE None Puts a copy of the working image on the

image stack
POPIMAGE None Deletes the topmost image of the image

stack
ADDIMAGES None Takes the last image from the image stack

and adds it to the working image
SUBTRACTIMAGES None Takes the last image from the image stack

and subtracts it to the working image
MOTION Direction Takes the last image from the image stack

and calculates the optical flow to the
working image, Direction says if it is in
x or y direction

THRESHOLD Thres, Value Sets all pixel in the images to Value,
if their former value was over Thres.
If it was smaller it will be set to 0

SETPIXEL X Y Z Writes the last stack value to the image
at the specified location

35

CHAPTER 4. METHOD

4.3.1 Semantic test

Two semantic checks are performed. First, the program code is checked for commands
referring to the input. A program that does not fulfill this criterion gets an evaluation result
of zero and will not be included for further tests. The same will happen to programs that fail
on the second semantic test, which checks all unconditioned jump statements for an obvious
infinite loop. Or in more detail, it checks if the target line of a jump operator is lower than the
line number of the statement itself. In case it jumps backwards, all the lines between jump
target and jump statement are checked for another jump command.

4.3.2 Test runs

All programs, that passed the semantic test, will be executed with randomly selected
images. These images are selected well distributed over the phases of interest, normally two
phases. The random selection divides the phase duration according to the number of images
needed and randomly selects one image in every part. Due to the different length of the
phases, this has to be handled with care. A longer phase will have a greater variance of the
selected images than a smaller phase. We used 64 frames per phase and video for the fitness
function.

If an error occurs during the execution, the execution is stopped and the program will
get assigned an evaluation result of zero. Possible errors are a stack overflow or exceeding of
the time limit. Otherwise, for all images an output vector will be calculated and an average
execution time will be measured. The output vectors and the average execution time are then
passed to the fitness function.

4.3.3 Fitness function

The fitness function will take the results of the tests and calculate a value between 0 and
1, that will be assigned to the program as its fitness.

For a first test of a fitness function the output vectors were just taken half and half and
assigned to the test or the training set. The fitness was just the classification rate of the test
set.

For a second attempt, the fitness function was changed to reach a better generalization
between the different surgeries. Therefore all resulting output vectors from three of four
surgeries are taken as training set to initialize the clusters of the same k-means. The testing
set consists of the resulting output vectors of the forth surgery. This is done for all possible
combinations. The average classification rate defines 90 percent of the fitness of the program.
The remaining 10 percent are defined by a percentage of the maximum execution time that
was not used by an average execution of the program. Here the final fitness function:

f =
9

∑N
i=1 ci

10N
+

1− tavg

tmax

10
with ci as the classification rate for the i-th surgery initialization of the k-means from

all others surgeries, N as the number of surgeries available, tmax as the maximal allowed
execution time and tavg as the average execution time of a program.

36

CHAPTER 4. METHOD

4.4 Evolution

The evolutionary part of the system consists of the selection and the generation of new
programs.

4.4.1 Selection

We use three kinds of selection in our system. There is a population of programs. To
enter this population the initiation has to be passed. Once in the population, a program can
be selected as parental program. Only parental programs generate offspring. And last, if the
population exceeds a certain number of programs, a starving event will deselect a number
of programs.

Initiation

To enter the population, a program has to have fitness higher than the population av-
erage. The average fitness is updated every turn. A turn ends when all new children have
passed or failed their initiation. The definition of a turn is based on Figure 2.1 in section 2.1.

Choice of parents

The selection of the programs that are used for reproduction is based on the fitness plus
a random component. First the two best programs are determined. These two best programs
will be mutated each once using the method from section 4.4.2. This mutation will result two
new programs. Then these two programs are combined with the crossing over recombina-
tion. See section 4.4.2.

For all other programs in the population a random event determines if they will serve as
parental program. For every program we want a chance to generate offspring that depends
on the fitness of the program. The following criteria will decide over the selection of a pro-
gram, to provide a decreasing probability with increasing population size and an increasing
probability with an increasing fitness:

f >
xfmax(Npopulation − 2)

Npopulation

where f is the fitness of the program. fmax is the mean of the fitness of the best and second
best program. Npopulation is the current population size and x is a random value between 0
and 1. With this method pairs of programs are selected to create a new program by crossing
over. The number of pairs depends on the maximal population size. With every selected
program a direct offspring will also be generated by mutation.

Starving

If the population exceeds the maximal population size, a starving event will remove part
of the programs. Programs with fitness below the average fitness of the population are re-

37

CHAPTER 4. METHOD

moved. When the average is updated and the population size is still over the maximum, the
step is repeated.

4.4.2 Recombination

The recombination is done in two different ways, the point mutation and the crossing
over. Point mutation does slight changes to a single program. Crossing over combines the
codes of two programs.

Point mutation

Point mutation will will choose for every line of a program for one of these six actions:

• Let the current line unchanged

• Change the OpCode

• Change a parameter

• Change the order of the next two lines

• Skip the line

• Add a random command in front of this line

For each of those actions exists a certain probability to be chosen. While the first action
will have the highest, and all the others a lower. We defined the probability for an unchanged
line with 16

20 , and 4
20 for a changing event.

Crossing over combination

The crossing over combination takes the code of two programs and merges it into a new
program. Figure 4.1 tries to sketch the principle used for crossing over. A counter will par-
allel run through the lines of both programs. At every line a decision if there is a crossing
point takes place. This decision depends on a random variable and a changing probability.
The probability depends on the number of lines passed since the last crossing point.

In order to keep blocks complete which are semantically connected, a size of a preferred
block must be defined. By analyzing programs we defined which size a semantically con-
nected block has, later on called blocksize. So, if a part of a program is taken, we want to also
take the next blocksize commands with a decreasing probability for a new crossing point
until a block of length blocksize is reached. The maximum length that is taken from one
program is two times the blocksize, meaning that the probability for a crossing point will
increase for every new line in the block greater than blocksize.

Whenever a crossing point occurs, there is a small probability of inserting a random
command at this crossing point.

We estimated the maximal size of a strongly connected block to 24 commands, and chose
12 commands as block size.

38

CHAPTER 4. METHOD

Figure 4.1: The crossing over in the programming language

39

CHAPTER 4. METHOD

4.4.3 Remarks

The system has a variable running time depending on the starting population, the prob-
lem complexity and the computing power.

Starting population

The first evolution was started including several hand written programs. These programs
only consist of a few line of code each, one extracting an x gradient, another extracting the
minimum and the maximum from an image, another using the histogram command on an
edge map and a last one performing an opening and a closing followed by an extraction of
the maximum value. None of theses programs performed well. But the structures used there
could be found again in programs generated later on. Normally, those structures were used
in new contexts and combined.

Problem complexity

The problem complexity varies for each phase combination. Phases near to each other
tend to cause more problems than phases with larger distances. But this is only a tendency
and can not be measured by the running time of the system which depends on to many
additional random factors. The performance of standard features was a better indicator for
the complexity.

Distributed execution of the application

Since we run a large number of tests on each program, this method needs a lot com-
puting power. We used a distributed system to perform the test runs and semantic tests. A
server sends programs to several clients that run all necessary test and return messages with
the calculated fitness to the server. The server selects the new generation of programs and
sends them to the clients again. This allows a reduction of the calculation time nearly by the
factor of used computers, since the selection and reproduction was much faster than a single
evaluation and had only to be done once for each generation.

4.5 Classification

The final classification consists of two steps. First a binary classification is described
based on one feature for every pair of classes. The final classification into one of the phases
is performed through an voting system using several improvements.

4.5.1 Binary classifiers

Using the ν-SVC training with a fixed parameter set, for all programs that got assigned a
fitness over average of the final population. Here the best of each population is chosen. The

40

CHAPTER 4. METHOD

criterion was the average classification rate on four surgeries, with the three others as train-
ing data. The test set size here was 512 frames from every tested phase and video, meaning
3072 training images and 1024 test images. The selected classifier was chosen to be one of
the final programs.

The parameters of the ν-SVC were optimized for two generated features, and then fixed.

The frame selection of the training frames was similar to the selection in the fitness func-
tion. The phase is divided into 512 parts and a frame is randomly chosen from every part.

4.5.2 Voting based decision

The final programs resulting from an evolution were the base for voting. Every final
program will be executed over a new image. With the result of the program the image is
classified into one of two phases. The classification result is part of a symmetric matrix that
contains the boolean decisions between all pairs of phases. Here we can start a simple vote,
and choose the phase with the most positive decisions.

Problems

The problem hereby is the high risk of a prediction error. For n classes and n+(n−1)
2 deci-

sions, only n − 1 decisions are related with the correct phase, and (n−1)(n−2)
2 are not. If only

one decision between the correct class and any other will result incorrect, there is a risk to
choose another class, even with a very good result for the correct class.

Improvements

This risk can be lowered by using the average matrix over several frames. Figure 4.2
shows the system we used to improve the stability of the voting decision. From every frame
in the video the features selected for a phase decision are extracted again. A 2-class SVM
decides the class that is more probable for every feature. These decisions for every phase
pair are accumulated for 25 subsequent images. Now the voting is done again, by counting
the positive decisions for a phase. Still, with 25 frames as a base, the results contain many
outliers . Here we used a median filter over 25 decisions which were calculated as mentioned
before. This method requires 2 seconds of a video for every decision.

41

CHAPTER 4. METHOD

Figure 4.2: The voting based decision process, started from the image to the median filter.

42

CHAPTER 5. RESULTS

Chapter 5

Results

The method is validated using the following steps:

• statistical results over the Genetic Programming system

• validation of the fitness function

• presentation evolution results

• classification rates of the generated features

• comparison of our features with standard features

• comparison of the multi-class approach with a Neural Network based method

First, we want to give a reasoning for the final selection of the operator set, and also give
an impression on how the system works. We want to show and explain the final results in
numbers and figures. Finally we compare these results with different features and methods,
in order to show how our results compete.

Remarks on the image material

All Results are acquired using a set of videos of cholecystectomies. See Table 5.2, for the
number of frames that are in the 6 videos used, to get an overview of the statistical base.
Generally, not many videos were available, since it takes great effort to acquire the videos.
So, we needed a method that also works on a small training set. We limited the number to a
fraction of the available videos for time reasons, since most of the calculations take a lot of
time. Also The phases are defined by [Ahmadi, 2003], as mentioned in the introduction.

5.1 Results of the evolution

To show how the Genetic Programming framework operates, the key data of the evolu-
tion process will be presented. First by giving an overview of the differences between the
low level and high level operator sets, to show why all tests were done with the high level

43

CHAPTER 5. RESULTS

Figure 5.1: The evolution of the average classification error (in y direction) of the population
of a generation (in x direction)

operator set. Mainly, there are two reasons for the better performance of the high level oper-
ator set: the evolution speed and the error rate. Second, the algorithms of two of the resulting
programs will be analyzed.

5.1.1 Comparison of operator sets

The project was started with the idea of generating image features on the level of assem-
bler commands. This idea was implemented with the low level operator set. But due to a
lack of performance, increasing the evolution speed was necessary to reach acceptable re-
sults in time. So, by reducing generality, we used the high level operator set, where we want
to show the gain of performance with the high level operator set. The comparison is based
on the fitness evaluation, that is described in section 4.3.

Evolution speed

To show the evolution speed of the high level and low level operator set, the resulting
fitness values are plotted relative to the number of generations in Figure 5.1. Since only
programs with a fitness higher than the average can be part of the next generation, average
fitness will not fall. The number of programs that is accepted is falling faster than the average
fitness of the newly generated programs is rising. So the evolution has a decreasing growth.
If the population increases over a certain size, an starving event will remove the programs

44

CHAPTER 5. RESULTS

High level Low level
Average execution time 13,04 ms 148,07 ms
Average fitness 0.547 0.508
Statistical base 11 902 9 108

Table 5.1: Average execution time and average fitness of a set of programs from the low level
and a set of programs from the high level operator set.

with the lowest fitness. This event can be seen in the graph as a sudden jump of the average
fitness.

With the low level operator set, the evolution is slower than for the high level operator
set, since the number of senseless combinations, that can not be filtered out by the semantic
tests, is higher and so the average fitness of newly generated programs is lower. So, passing
the initiation to the population is less probable for a new program.

Error rates

The low level operator set does not contain image related commands, it treats the input as
an array of integers, and does not perform action on the array, but only on a single element.
Therefore the number of basic operators that is necessary to analyze an image is higher. This
also leads to higher evaluation times, since the most costly part of testing is the simulation
of the commands.

In Table 5.1 there can be seen the average execution time of low and high level pro-
grams. In particular is shows that an average low level program needs more time, even if
the operators are less complex. In both cases the statistic contains approximately the first 100
generations of a newly started evolution for the same phase pair.

Figure 5.2 shows the quote of rejected programs, and the different reasons for rejection.
While for low level programs the percentage of rejected programs is 89%, most of the high
level programs reach a final fitness. While the numbers of time related errors are nearly
the same, the memory errors are far less for the high level programs, since there are more
possibilities for a high level program to generate a good output without an extensive use of
the stack. Semantic checks are less for the high level programs because there are more input
referring functions, which increases the probability that one of them occurs in a program.

5.1.2 Program discussion

This section will analyze two of the programs closer. The first is printed in Appendix A.2.
The longer programs are very hard to analyze for a human observer, thus we have chosen a
short one.

The detailed algorithm that is performed by the program GEN72-04.HPRG can be re-
viewed in Appendix A.2. The following is a short summary of the Appendix. At first the
program returns the resulting maximum and minimum gradient strengths of a gradients
filtering. Then it adds the histogram of size 64 of an edge map that was extracted from the

45

CHAPTER 5. RESULTS

Figure 5.2: The percentage of rejected programs on the left side and the percentage of dif-
ferent reasons for the rejection on the right side, separately shown for the low and the high
level operator set.

46

CHAPTER 5. RESULTS

down sampled gradient images. The edge map was closed before the histogram was ex-
tracted by a morphological dilate and an erode operator.

Without a too detailed analysis, we look at the algorithm of the program GEN6-12.HPRG.
Due to a longer evolution, the resulting structure is further away from the simple starting
programs than the program before. The program takes an morphological opened image, sub-
tracts it from the original image and analyzes the resulting difference by maximum extrac-
tion and a histogram. The it calculates an edge histogram. Among others these two actions
are the main resources that lead to a good classification result.

5.2 Classification results

The result of this work is the features, that were generated with our framework. The
classification rates that were reached to distinguish two phases are presented below. These
rates will be compared with several image features, that were presented in the theoretical
background. We will also show the results for the multi-class decision.

5.2.1 2-Class Classification

Using a statistical overview, the performance of the single programs will be shown. The
programs in Table 5.3 are the programs that were performing best in the last generation
of the genetic programming framework. The number of generation to reach a good result
differs from phase pair to phase pair between 5 and over 1000.

Table 5.4 shows the performance we reached for the programs with the training data
from the videos 1 to 4. This was the criteria for the final selection. These 4 videos were taken
for the fitness evaluation during the evolution as well. More interesting are the classification
rates for the test video, that was not used for evaluation before.

Table 5.5 presents these classification rates for the fifth surgery. As expected, most of the
classification rates are falling, some of them down to a useless rate, like 3-4, 3-5, 3-7, 4-7 or
5-7. While other programs performed nearly as well as on the training set, like 2-3, 2-6, 2-7,
3-6, 4-6 or 6-7, and the program 5-6 even performed better on the test than on the training
set.

Seeing these numbers, the question comes up, whether the similarity between the videos
is strong enough to be detected by only having 4 videos as training data. We are positive
about, since for every phase we found another phase that we could distinguish well. Even
if we did not find a criteria for every phase pair, that was general enough to also work in
the test video, there are enough similarities in the videos. Of course a larger training set will
lead to better results, at the cost of running time.

5.2.2 Multi-class Classification

Using the generated features, the multi-class classification is performed. The phase with
the most positive decisions in 25 frames is selected. See Figure 5.3, to see the results for the
simple voting, using the accumulated decisions over 25 images. All positive decisions for a

47

CHAPTER 5. RESULTS

Phase 2 3 4 5 6 7 8 9 10 11 12 13
OP1 3 325 4 725 2 125 975 1 625 13 175 2 175 1 475 15 200 1 225 4 975 3 325
OP2 3 200 9 050 2 925 3 075 1 575 22 900 5 550 5 300 15 175 5 075 4 600 825
OP3 825 16 575 750 3 850 1 725 21 975 5 050 2 425 1 600 450 5 600 725
OP4 5 825 12 900 3 600 14 950 2 800 33 925 12 250 8 400 2 325 8 875 4 500 2 425
OP5 5 475 9 150 5 675 2 925 2 525 4 550 4 600 1 325 4 075 325 5 975 4 350
OP6 3 825 8 750 1 950 625 3 275 10 675 3 100 3 225 1 800 300 3 000 625
Sum 18 650 52 400 15 075 25 775 10 250 96 525 29 625 18 925 38 375 15 950 25 650 11 650
Avg 3 730 10 480 3 015 5 155 2 050 19 305 5 925 3 785 7 675 3 190 5 130 2 330

Table 5.2: Number of available frames per phase in the used videos.

Phases ID Avg. exec. time Output length Prg. length
2-3 GEN73-01.HPRG 72 ms 75 39
2-4 GEN53-02.HPRG 166 ms 79 34
2-5 GEN4-03.HPRG 126 ms 155 30
2-6 GEN72-04.HPRG 126 ms 77 38
2-7 GEN78-05.HPRG 105 ms 388 37
3-4 GEN6-12.HPRG 133 ms 1 091 307
3-5 GEN190-13.HPRG 251 ms 76 50
3-6 GEN14-14.HPRG 60 ms 316 226
3-7 GEN37-15.HPRG 206 ms 32 877
4-5 GEN111-23.HPRG 10 ms 258 1 525
4-6 GEN509-24.HPRG 117 ms 531 263
4-7 GEN533-25.HPRG 62 ms 25 15
5-6 GEN187-34.HPRG 10 ms 257 677
5-7 GEN447-35.HPRG 93 ms 9 20
6-7 GEN207-45.HPRG 245 ms 16 23

Table 5.3: The average execution time of the resulting programs. The output vector length
and the program length are in the last column. Only for all pairs of the phases 2 to 7 the
program is analyzed.

48

CHAPTER 5. RESULTS

Phases class. rate true neg. true pos. num. neg num pos
2-3 0,831 0,668 0,953 7 167 7 167
2-4 0,907 0,839 0,962 6 893 6 893
2-5 0,936 0,872 0,985 7 118 7 118
2-6 0,903 0,778 0,997 7 167 7 167
2-7 0,851 0,828 0,869 7 167 7 167
3-4 0,666 0,616 0,720 7 918 7 918
3-5 0,705 0,726 0,683 8 143 8 143
3-6 0,752 0,830 0,673 5 120 5 120
3-7 0,726 0,906 0,545 8 192 8 192
4-5 0,724 0,810 0,634 8 942 9 167
4-6 0,626 0,488 0,755 7 918 7 918
4-7 0,766 0,908 0,634 7 918 7 918
5-6 0,593 0,651 0,535 8 143 8 143
5-7 0,720 0,839 0,603 8 143 8 143
6-7 0,825 0,949 0,702 8 192 8 192

Table 5.4: The classification rate of the resulting programs for phases 2 to 7. These are the
results on randomly selected frames from the training videos (1-4). The SVM classifiers are
trained on three of them(1-3).

Phases class. rate true neg. true pos. num. neg num pos
2-3 0,760 0,834 0,686 1 024 1 024
2-4 0,642 0,845 0,438 1 024 1 024
2-5 0,693 0,925 0,461 1 024 1 024
2-6 0,868 0,741 0,994 1 024 1 024
2-7 0,769 0,795 0,742 1 024 1 024
3-4 0,519 0,835 0,203 1 024 1 024
3-5 0,534 0,973 0,095 1 024 1 024
3-6 0,758 0,975 0,543 1 024 1 024
3-7 0,531 0,671 0,391 1 024 1 024
4-5 0,566 0,603 0,530 2 048 2 048
4-6 0,790 0,684 0,896 1 024 1 024
4-7 0,511 0,548 0,474 1 024 1 024
5-6 0,684 0,479 0,889 1 024 1 024
5-7 0,544 0,722 0,367 1 024 1 024
6-7 0,756 1,000 0,512 1 024 1 024

Table 5.5: The classification rate of the resulting programs for phases 2 to 7. These are the
results on randomly selected frames of the test video (5). The SVM classifiers are trained on
three of them(1-3).

49

CHAPTER 5. RESULTS

Phase 2 3 4 5 6 7 All (2-7)
Video 5
Simple Voting 0,197 0,350 0,967 0,897 0,519 0,815 0,558
Median 50 0,183 0,239 0,990 0,852 0,211 0,192 0,489
Video 6
Simple Voting 0,360 0,548 0,842 0,938 0,995 0,403 0,546
Median 0,360 0,562 0,855 1,000 0,992 0,248 0,506

Table 5.6: The prediction error in case of the voting system. The statistical base are all frames
from the phases. See 5.2.

phase in the pairwise classifications were counted. The phase with the highest value for 25
frames was used as a first prediction. The median 25 of these first prediction was used as the
final prediction, based on 50 images, or 2 seconds of the video.

The overall correctness in the video of the fifth surgery was 49,9% on the five phases (a
random guess would have a 16.7% chance, a fixed guess on the largest phase 32,1%). On the
training data a successful prediction of up to 75% could be achieved with the same method.
See Table 5.6 for the error per phases, and compare with the yellow dots and the light blue
dots in Figure 5.3(b). This figure shows with a thick magenta line the original phase where
the images where taken of, the yellow dots are showing the prediction using the voting
system with the median filter.

5.3 Comparison

In this section we compare the fitness function, the results of the pair wise phase classifi-
cation and the multi-class classification with different methods. The fitness function will be
qualified by comparing there average results with a standard classifier. The results for the
the final programs will be compared with other image features used on endoscopic images.
The multi-class classification will be compared with an early approach, a neural network
classification on the same data set, but directly, without voting on a reasonable feature set
like color, edge and motion components of two images.

5.3.1 Fitness function and classifiers

To verify the quality of the fitness function, the results of several evaluations are com-
pared with a standard classifier, in this case a SVM with a ν-SVC training algorithm using a
RBF kernel. The expected result was that a high fitness value of a program would indicate a
high classification rate with a SVM training on the output vectors of the program.

Table 5.7 displays the fitness values and the classification rates of the final programs.
For each of these programs the fitness function was executed 30 times, since it depends on
random events for selection of the input images. Thus the variance for the resulting fitness
of every program is plotted as well. The SVM was trained on 2048 images, from four dif-
ferent surgeries and from two different surgical phases. The test set had the same size, and
contained 2048 different images from the same surgeries and the same surgical phases.

50

CHAPTER 5. RESULTS

(a) The predicted phase for the phases 2 - 7 in a video of the training data.

(b) The predicted phase for the phases 2 - 7 in a test video.

Figure 5.3: Compare the results for the stateless prediction of the current phase using 25
images (blue) and 50(yellow)

51

CHAPTER 5. RESULTS

Phases Average fitness std. deviation Op5 class rate
2-3 0,801 0,012 0,760
2-4 0,839 0,033 0,642
2-5 0,932 0,014 0,693
2-6 0,932 0,008 0,868
2-7 0,757 0,025 0,769
3-4 0,572 0,035 0,519
3-5 0,640 0,018 0,534
3-6 0,734 0,012 0,759
3-7 0,662 0,071 0,531
4-5 0,667 0,027 0,566
4-6 0,728 0,019 0,790
4-7 0,742 0,029 0,511
5-6 0,664 0,012 0,684
5-7 0,712 0,025 0,544
6-7 0,813 0,017 0,756

Table 5.7: The average fitness with the standard deviation, in comparison with the classifica-
tion rate for the test video

Figure 5.4: Comparison between the average fitness of a program in 30 runs of the fitness
function with the standard deviation in the error bars , and a result for a SVM classification

52

CHAPTER 5. RESULTS

Data PCA 3-6
Video 1-4 0,889 0,752
Video 5 0,500 0,758

Table 5.8: The classification rate for the PCA based classification for the phases 3 and 6,
compared with the corresponding feature 3-6.

(a) Original endoscopic image. (b) Reconstruction using 100 eigen-
vectors, 100 is the average output
length of the generated programs.

(c) Using 200 eigenvectors.

Figure 5.5: Reconstruction error using different numbers of eigenvectors (image size 64x64,
first color channel).

In Figure 5.4 a weak correlation can be seen. So the upper left and the lower right quad-
rant are empty, and program with a relative high fitness has a relative high classification rate.
And for low fitness the classification rate was relatively low.

5.3.2 Program and PCA

On the data a simple PCA based approach of [Keil et al. , 2006] was tested to compare
it with the resulting programs. The 100 most relevant eigenvectors were used, decomposed
from 2000 images, down scaled to a 64x64-resolution. Plotting the cumulative sum of the
eigenvalues, the resulting curve represent the percentage of the data that can be recon-
structed using the corresponding eigenvectors. The reconstruction of an image using this
technique is visualized in Figure 5.5. The first reconstruction shows an image reconstructed
using only 100 Eigenvectors and the second a reconstruction using 200. We transformed the
training images from two phases into this eigenvector space, and build a cluster for every
phase. Taking the centroid for 2 phases, the Mahalanobis distance is a measurement, whether
an image is closer to the first or the second phase.

Table 5.8 presents the classification results for the PCA. While we reached a classification
rate up to 88.9% on test images from the same surgeries as the training images, we did
not reach classification rate over 50,0% for another surgery. This is probably caused by the
common features of the phases not being locally invariant. Even if the images seem similar,
a slight shift of the relevant features in the images from one video to another removes the
similarity in the PCA space.

53

CHAPTER 5. RESULTS

Test domain HSV Color Histogram To compare: 2-7 Stat. base
Video 1-4 0,753 0,903 17 212
Phase 2 0,480 0,778 8 191
Phase 7 1,000 0,997 9 021
Video 4 0,650 0,778 4 096
Phase 2 0,300 0,561 2 048
Phase 7 1,000 0,994 2 048
Video 5 0,614 0,868 4 096
Class 2 0,229 0,741 2 048
Class 7 1,000 0,994 2 048
Avg. exec. time 239 ms 105 ms 21 308

Table 5.9: The HSV Color Histogram and the generated feature for the phase combinations 2
- 7.

5.3.3 Program and standard image features

We compared some programs with several standard image features. The first test was
with a HSV-color histogram. The second test was done with Water Filling features. See in
section 3.3.2. The third test was done with a combination of HSV-color histogram, a Gradient
Histogram and a OpticalFlow map.

HSV-color histogram

The HSV-color histogram was chosen, because some phases can be recognized due to
colors. For example in the clipping phase, the surgeon uses colored clips. Using a color his-
togram, the presence of such clips should be easy detectable. The expected problems are
the color variation between the clips in different videos and the images were no clips are
in view. For performing this test, we used two elements that were not available as opera-
tor in our Genetic Programming framework: the color transformation to the HSV space and
a color normalization for the image. We performed the test for three different phase pairs.
First, an early phase without clips against a later phase were all clips are set, and coagulation
is performed or with number phase 2 against 7.

See the classification results in Table 5.9. Analyzing these results, it reveals that the HSV
color histogram performs worse than the generated feature for this phase pair, but still rela-
tively good. Taking the more homogenous images from phase 4 instead of phase 2, the clas-
sification rates are even better than the rates from the comparable generated feature. This is
in Table 5.10 in detail.

For the other tested phase pairs, there was no classification at all, the training error were
about 50 percent and there was no generalization possible with the classifiers. These tested
phase pairs were 2-3 and 4-5.

54

CHAPTER 5. RESULTS

Test domain HSV Color Histogram To compare: 4-7 Stat. base
Video 1-5 0,770 0,754 19 182
Phase 4 0,980 0,903 8 942
Phase 7 0,588 0,625 10 240
Video 4 0,732 0,753 4 096
Phase 4 0,992 0,983 2 048
Phase 7 0,473 0,523 2 048
Video 5 0,689 0,653 4 096
Phase 4 0,929 0,818 2 048
Phase 7 0,450 0,487 2 048
Avg. exec. time 239 ms 192 ms 19 182

Table 5.10: The classification results HSV Color Histogram and the generated feature for the
phase combinations 4 - 7.

Test domain LBP To compare: 3-6 Stat base
Video 1-4 0,541 0,785 17 212
Video 4 0,536 0,707 4 096
Phase 3 0,890 0,799 2 048
Phase 6 0,182 0,614 2 048
Video 5 0,516 0,759 4 096
Phase 3 0,995 0,975 2 048
Phase 5 cl 6 0,036 0,543 2 048
Avg. exec. time 372 ms 60 ms 21 308

Table 5.11: The classification rates for the LBP Feature in comparison with the generated
feature for the phase combinations 3-6.

Local Binary Pattern

We also started some tests with the local binary pattern (LBP) histogram. On the first
sight texture feature shows interesting. The texture of the tissue in the endoscopic view
changes during the surgery, therefore it seemed possible to distinguish the phases using
a texture feature.

Table 5.11 shows the result for the phase pair 3 and 6, it demonstrates the poor results we
got for the LBP feature. Similar result we got for other phase pairs, 2-6, 4-5, 2-4 and 2-5. This
shows, that this texture feature is not a very discriminant features. Perhaps, another texture
feature that works can be found for some phases, but searching for it is not as interesting as
for other types of feature. Therefore, it can be seen as correct, that by analyzing the generated
features no calculation similar to a texture analysis could be found.

Water-Filling Feature

The most interesting feature we use for comparison is the water filling (WF) feature,
which was already presented in 2.2.2. The statistics it measure about the shape structure of
the image could for example distinguish

55

CHAPTER 5. RESULTS

Test domain WFFeature To compare: 3-6 Stat base
Video 1-4 0,752 0,785 17 212
Video 4 0,770 0,707 4 096
Phase 3 0,820 0,799 2 048
Phase 6 0,720 0,614 2 048
Video 5 0,955 0,759 4 096
Phase 3 0,995 0,975 2 048
Phase 5 cl 6 0,915 0,543 2 048
Avg. exec. time 3s542 ms 60 ms 21 308

Table 5.12: The classification rates for the WF Feature in comparison with the generated
feature for the phase combinations 3-6.

Test domain WFFeature To compare: 4-5 Stat. base
Video 1-4 0,494 0,724 17 212
Video 4 0,500 0,627 4 096
Phase 3 1,000 0,903 2 048
Phase 6 0,000 0,351 2 048
Video 5 0,500 0,566 4 096
Phase 3 1,000 0,603 2 048
Phase 6 0,500 0,530 2 048
Avg. exec. time 5s542 ms 10 ms 21 308

Table 5.13: The classification rates for the WF feature in comparison with the generated fea-
ture for the phase combinations 4-5.

56

CHAPTER 5. RESULTS

Test error Training error
0,705 0,445
0,644 0,355
0,625 0,298
0,593 0,249
0,580 0,237
0,644 0,116
0,735 0,062

Table 5.14: Excerpts of the test and training error evolution of a NN, to demonstrate the
danger of overfitting

Phase 2 3 4 5 6 7 All (2-7)
NN with combined features 0,366 0,000 0,994 1,000 1,000 0,121 0,580

Table 5.15: Prediction error with a neural network

The execution times of the WF feature was higher than the execution time allowed by
the VM. But the execution time can not be seen as an absolute value, since there are better
ways to execute it, than in our virtual machine. This shows the complexity of WF feature
compared to the generated program.

Table 5.12 presents are the classification rate reached with the water filling feature. It
performed very well for the class pair 3 and 6. It performed better than the generated feature,
especially with a higher grade of generalization to the test videos. For the phase pair 4-5 we
got no results, like for the HSV feature, see Table 5.13.

Combined basic features

As a last test, we combined several features and fed them as input to a neural network.
The desired output was one of the phases between 2 - 8. The features used were an HSV-
color histogram with 512 bins, a gradient histogram with 64 bins and a motion map with
16 entries. The gradient histogram counted the accumulated strength of the gradients in a
certain direction.

We used a resolution of the direction of 64. The motion was calculated using 2 images,
parting the two in 16 subimages and giving the direction and strength of the motion in a
subimage as a value to the neural network. We used a feed forward network with a back-
propagation learning algorithm, with .

As training data served those three features extracted from four videos, 512 frames per
phase , and over all the phases 2 to 7. For the same phases of a fifth video, we extracted the
features as before and used them as testing images.

The Table 5.14 shows the generalization of different learning states of the neural net-
work. The random guess would be around 0,84 error, the decreasing training error leads to
a decreased testing error, this shows that the generalization works, and overfitting is not to
strong. But the data from the different video do not seem really comparable, so the resulting
error differs strongly. Decreasing the training error too much, will result in an overfitting,

57

CHAPTER 5. RESULTS

as can be seen in the last steps of the lines, where the test error increases again. The neural
network finally stopped at a level oscillating around the final result and a 10 percent worse
error value.

See Table 5.15 for the phase wise results in training and testing data of this final training
state. The classification rate is around 55

5.4 Summary and possible improvements

The results show that an identification of a surgical phase from an endoscopic image with
this method is possible up to a chance of about 50% in contrast to a chance of a random pick
of 17% and a maximal class size of 30%.

For a 2-class problem the rates range up to 86%, but they can also go down to approx-
imately 50%. For any standard feature we tested, we found several generated features that
performed better for a phase pair. In special cases, when the standard image feature nearly
worked perfect, we could only reach a comparable result.

Generally, by investing more time in the selection of operators and in running more evo-
lutions with a larger number of generation or using more training videos, it should be pos-
sible to improve the results considerably. The results can also be improved by increasing
the number of evaluated images for the fitness function can improve the results, in order to
reduce the variance of the fitness for a program.

Generally, all these possibilities show that the work can be useful for the search for the
optimal feature for a classification task.

58

CHAPTER 6. CONCLUSION

Chapter 6

Conclusion

After a manual search for features suitable for the phase recognition, the idea of fea-
ture generation was self-evident. Inspired by several sources, Genetic Programming was the
method we chose, due to personal interest into this area. The creation of a framework for Ge-
netic Programming was the first time-consuming task of this work. It included the definition
of a programming language fulfilling all requirements, as well as implementing the virtual
machine for this programming language. Then the fitness criteria was defined and the evo-
lution started. At last the features were evaluated and compared and finally integrated into
a multi-class decision system.

The results show that the identification of a surgical phase from an endoscopic image is
possible. The Genetic Programming created several interesting features which are useful for
this specific task. These features did not outperform all basic features in any phase pair, be-
cause of the limits that are set on execution time and memory usage for a generated feature.
These limits were imposed by the major problem within this approach: the high calculation
time of the evolution. The calculation time varies due to randomness and the complexity
of the problem. Still, the search for a feature solving a special classification problem can be
almost completely automated using the approach proposed and tested in this work. With
enough computing power, better results could be achieved.

The information that is gained with the proposed method could provide additional input
for the recognition of the surgical workflow. This is possible since this method uses only
image sequences and no further information to gain abstract workflow information.

59

CHAPTER 6. CONCLUSION

60

Part III

Appendix

61

APPENDIX A. PROGRAMS

Appendix A

Programs

A.1 Water filling feature

Here a sample of a manual implemented program. It is implemented in the Programming
language defined in 4. All jump and call targets are labeled with a name. These names are
converted in addresses before passing it to the Virtual Machine.

#WaterFilling
READINPUT
EDGES 64 64
EXTRACTMAX 1
PUSH 9
MULTIPLY
PUSH 10
DIVIDE
SAVE 3 -1
LOAD 3
THRESHOLD -1 255
PUSH -1
#NEWSTARTING: NOP
EXTRACTMAX 1
PUSH 255
EQUALS
IF #&FINISH
EXTRACTLOCMAX 1
SAVE 2 -1
SAVE 1 -1
PUSH 0
LOAD 1
LOAD 2
SETPIXEL -1 -1 1
LOAD 1
LOAD 2

63

APPENDIX A. PROGRAMS

#BACK: CALL #WATERFILL
LOAD 13
ADD 11 -1
LOAD 13
SAVE 13 1
PUSH 1
MINUS
ADD 12 -1
DUPLICATE
PUSH -1
EQUALS
NOT
IF #&STARTINGPOINTFINISHED
JUMP #BACK
#&STARTINGPOINTFINISHED: NOP
CALL #WFHISTS
LOAD 9
LOAD 14
GREATER
IF #&MAXFILLLINGTIME
LOAD 9
SAVE 14 -1
LOAD 12
SAVE 15 -1
#&MAXFILLLINGTIME: NOP
LOAD 11
LOAD 16
GREATER
IF #&MAXWATERAMOUNT
LOAD 11
SAVE 16 -1
LOAD 9
SAVE 20 -1
LOAD 12
SAVE 21 -1
#&MAXWATERAMOUNT: NOP
LOAD 12
LOAD 18
GREATER
IF #&MAXFRKCOUNT
LOAD 12
SAVE 18 -1
LOAD 9
SAVE 19 -1
#&MAXFRKCOUNT: NOP
SAVE 9 0
SAVE 10 0

64

APPENDIX A. PROGRAMS

JUMP #NEWSTARTING
#&FINISH: NOP
POP
LOAD 14
LOAD 15
LOAD 18
LOAD 19
LOAD 16
LOAD 20
LOAD 21
FOR 0 14 #LFCTHS
DUPLICATE
SAVE 1 -1
PUSH 22
PLUS
LOAD -1
DUPLICATE
SAVE 2 -1
LOAD 1
PUSH 36
PLUS
LOAD -1
LOAD 2
DIVIDE
#LFCTHS: NOP
JUMP #LAST
#WATERFILL: NOP
ADD 9 1
SAVE 2 -1
SAVE 1 -1
#ONEUP: LOAD 1
PUSH 1
PLUS
LOAD 2
CALL #SUBSCRIPT1
#ONEDOWN: LOAD 1
PUSH 1
MINUS
LOAD 2
CALL #SUBSCRIPT2
#ONERIGHT: LOAD 1
LOAD 2
PUSH 1
PLUS
CALL #SUBSCRIPT3
#ONEDOWN: LOAD 1
LOAD 2

65

APPENDIX A. PROGRAMS

PUSH 1
PLUS
CALL #SUBSCRIPT4
RETURN
#SUBSCRIPT1: NOP
#SUBSCRIPT2: NOP
#SUBSCRIPT3: NOP
#SUBSCRIPT4: NOP
SAVE 2 -1
SAVE 1 -1
LOAD 1
PUSH -1
GREATER
IF #&RETURNSUBSCRIPT1
LOAD 1
INPUTDIMENSION 0
SMALLER
IF #&RETURNSUBSCRIPT2
LOAD 2
PUSH -1
GREATER
IF #&RETURNSUBSCRIPT3
LOAD 2
INPUTDIMENSION 1
SMALLER
IF #&RETURNSUBSCRIPT4
LOAD 1
LOAD 2
READPIXEL -1 -1 1
PUSH 255
EQUALS
IF #&RETURNSUBSCRIPT5
PUSH 0
LOAD 1
LOAD 2
SETPIXEL -1 -1 1
LOAD 1
LOAD 2
ADD 13 1
#&RETURNSUBSCRIPT1: NOP
#&RETURNSUBSCRIPT2: NOP
#&RETURNSUBSCRIPT3: NOP
#&RETURNSUBSCRIPT4: NOP
#&RETURNSUBSCRIPT5: NOP
RETURN
#WFHISTS: NOP
LOAD 9

66

APPENDIX A. PROGRAMS

PUSH 60
GREATER
IF #&FTH1
ADD 28 1
LOAD 12
ADD 41 -1
JUMP #FTH2
#&FTH1: NOP
LOAD 9
PUSH 10
DIVIDE
DUPLICATE
PUSH 22
PLUS
ADD -1 1
PUSH 36
PLUS
LOAD 12
ADD -1 -1
#FTH2: NOP
LOAD 12
PUSH 6000
GREATER
IF #&FCH1
ADD 35 1
LOAD 9
ADD 49 -1
JUMP #FCH2
#&FCH1: NOP
LOAD 9
PUSH 1000
DIVIDE
DUPLICATE
PUSH 29
PLUS
ADD -1 1
PUSH 43
PLUS
LOAD 9
ADD -1 -1
#FCH2: NOP
RETURN
#LAST: NOP
#FINAL: NOP
#END

67

APPENDIX A. PROGRAMS

A.2 A generated program, Gen74-04

#ProgramCode
#Length:
38
0 0 0 0
1 8454 10747 -1 #READINPUT restore original image
0 0 0 0
0 0 0 0
1 0 0 0 #READINPUT restore original image
11 4 1 0 #DILATE
12 4 1 0 #ERODE
11 4 1 0 #DILATE
12 4 1 0 #ERODE
1 -1 -1 -1 # READINPUT restore original image
18 -1 9882 21463 #FOR 0 - 9882 , blocksize: 21463
2 1 0 0 #GRADIENT
7 0 0 0 #EXTRACTMAX
7 0 0 0 #EXTRACTMAX
8 0 0 0 #EXTRACTMIN
0 0 0 0
8 0 0 0 #EXTRACTMIN
2 0 1 0 #GRADIENT
7 0 0 0 #EXTRACTMAX
7 0 0 0 #EXTRACTMAX
8 0 0 0 #EXTRACTMIN
8 0 0 0 #EXTRACTMIN
2 -1 -1 2609 #GRADIENT reading 2 values from the stack
0 0 0 0
6 3 0 0 #DOWNSCALE
4 100 100 0 #EDGE
5 9 9 0 #GAUSS
11 4 1 0 #DILATE
12 4 1 0 #ERODE
3 64 0 0 #HISTOGRAMM 64
7 0 0 0 #EXTRACTMAX
7 0 0 0 #EXTRACTMAX
8 0 0 0 #EXTRACTMIN
8 0 0 0 #EXTRACTMIN
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
#END

68

APPENDIX A. PROGRAMS

Detailed algorithm

Line 1-12: the program starts with reading the input and some NOP operations. The first
actions are in line 7 to 10, here two times a closing is performed. The results are deleted
by another READINPUT result, and a for loop with a to long inner block is set. This
preamble of 12 commands has not much effect on the result, only an -1 will be pushed
on the stack by the for command. See A.1(a) for the original sample image.

Line 13: the next command is a gradient filter in X direction. See A.1(b) for gradient image
that results.

Line 14-15: the first interaction with stack is performed via a maximum pixel value extrac-
tion. In the sample we got a 166 as result, that is pushed on top of the stack two times.

Line 15-18: the same for the minimum gradient two times. The result for the sample was
-162.

Line 19: now a gradient of the gradient image is calculated in y direction. See A.1(c) for this
image.

Line 20-23: again the maximum and the minimum value of this image are searched and are
pushed two times on the stack. Stack size now is 9, and the minimum was -394 and the
maximum 272.

Line 24-25: again a gradient is extracted. This time again in y direction, see A.1(d).

Line 26: a scaling is performed to a third of the size. Here is no difference in the image,
A.1(e), but from now on the resolution of the images is only a third of before.

Line 27: the next command is a canny edge detection the parameters 100 and 100 are used
as threshold in x and y direction. See A.1(f) for the resulting image.

Line 28: the next command is gauss filter with a kernel size of 9 times 9. See A.1(g) for the
image.

Line 29-30: a closing is performed. A.1(h)

Line 31: over this gray level image a histogram is calculated with 64 bins.

Line 32-36: again two times the minimum and maximum. are extracted two times. These
are 0 and 111.

Line 37-38: two NOPs and the end of the program, the resulting output hat the size 77

69

APPENDIX A. PROGRAMS

(a) An image from the second phase in the
first video.

(b) After x gradient.

(c) After y gradient. (d) After y gradient.

(e) After down scale. (f) After Canny Edge.

(g) After Gauss. (h) After closing.

Figure A.1: The image sequence represents the intermediate states during an execution of
the Program here.

70

BIBLIOGRAPHY

Bibliography

[Ahmadi, 2003] Ahmadi, Seyed-Ahmad. 2003. Automatic workflow retrieval in surgery. TU
München.

[Ahmadi et al. , 2006] Ahmadi, Seyed-Ahmad, Sielhorst, Tobias, Stauder, Ralf, Horn, Mar-
tin, Feussner, Hubertus, & Navab, Nassir. 2006. Recovery of surgical workflow without
explicit models. In: MICCAI ’06.

[Allwein et al. , 2000] Allwein, Erin L., Shapire, Robert E., & Singer, Yoram. 2000. Reducing
Multiclass to Binary: A Unified Approach for Margin Classification. vol. 1.

[Banzhaf et al. , 1998] Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. 1998. Genetic
Programming: An Introduction. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[Bishop, n.d.] Bishop, Christopher M. Pattern Recognition and Machine Learning.

[Burges, 1998] Burges, Christopher J.C. 1998. A Tutorial on Support Vector Machines for
Pattern Recognition. In: Zeitschrift Data Mining and Knowledge Discovery, vol. 2. Verlag
Springer Netherlands.

[Darwin, 1859] Darwin, Charles. 1859. The Origin of Species.

[Dietterich & Bakiri, 1996] Dietterich, Thomas G., & Bakiri, Ghulum. 1996. Solving Multi-
class Learning Problems via Error-Correcting Output Codes. vol. 2.

[Farmer et al. , 2004] Farmer, Michael E., Bapna, Shweta, & Jain, Anil K. 2004. Large Scale
Feature Selection Using Modified Random Mutation Hill Climbing. IEEE.

[Forgy, 1965] Forgy, E. 1965. Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications.

[Ghosh & Mitchell, 2006] Ghosh, Payel, & Mitchell, Melanie. 2006. Segmentation of Medi-
cal Images Using a Genetic Algorithm. Pages 1171–1178 of: Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ACM Press New York, NY, USA.

[Horn & Schunck, 1980] Horn, Berthold K.P., & Schunck, Brian G. 1980. Determining Opti-
cal Flow. In: AIM-572. Massachusetts Institute of Technology Cambridge, MA, USA.

[Hsu & Lin, 2000] Hsu, Chih-Wei, & Lin, Chih-Jen. 2000. A Comparison of Methods for
Multiclass Support Vector Machines. vol. 13. IEEE.

71

BIBLIOGRAPHY

[Iakovidis et al. , 2005] Iakovidis, Maroulis, Karkanis, & Brokos. 2005. A Comparative Study
of Texture Features for the Discrimination of Gastric Polyps in Endoscopic Video. Pages
575–580 of: Proceedings. 18th IEEE Symposium on Computer-Based Medical Systems, 2005.
IEEE.

[Jain & Zongker, 1997] Jain, Anil, & Zongker, Douglas. 1997. Feature Selection: Evaluation,
Application, and Small Sample Performance. vol. 19. IEEE.

[Johnson, 2002] Johnson, Colin G. 2002. Deriving Genetic Programming Fitness Properties
by Static Analyse. Page 298 of: Genetic Programming: 5th European Conference, EuroGP 2002,
Kinsale, Ireland, April 3-5, 2002. Proceedings. Springer Berlin / Heidelberg.

[Josh C. Bongard, 2003] Josh C. Bongard, Rolf Pfeifer. 2003. Evolving Complete Agents us-
ing Artificial Ontogeny.

[Karkanis et al. , 1991] Karkanis, S., Galousi, K., & Maroulis, D. 1991. Classification of Endo-
scopic Images Based on Texture Spectrum.

[Karkanis et al. , 2003] Karkanis, Stavros A., Iakovidis, Dimitris K., Maroulis, Dimitris E.,
Karras, Dimitris A., & Tzivras, M. 2003. Computer-Aided Tumor Detection in Endoscopic
Video Using Color Wavelet Features. In: IEEE TRANSACTIONS ON INFORMATION
TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 3, SEPTEMBER 2003 141. IEEE.

[Keil et al. , 2006] Keil, Andreas, Wachinger, Christian, Brinker, Gerhard, Thesen, Stefan, &
Navab, Nassir. 2006. Patient Position Detection for SAR Optimization in Magnetic Reso-
nance Imaging. Pages 49–57 of: Larsen, Rasmus, Nielsen, Mads, & Sporring, Jon (eds), Proc.
Int’l Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI). Lecture
Notes in Computer Science, vol. 4191. Springer.

[Kleene, 1952] Kleene, Stephen. 1952. Introduction to Metamathematics. Walters-Noordhoff &
North-Holland, with corrections (6th imprint 1971); Tenth impression 1991.

[Koza, 1990] Koza, John R. 1990. Genetic Programming: A Paradigm for Genetically Breed-
ing Populations of Computer Programs to Solve Problems.

[Kudo & Matsumoto, 2001] Kudo, Taku, & Matsumoto, Yuji. 2001. Chunking with Support
Vector Machines.

[Lenze, 1997] Lenze, Burkhard. 1997. Einführung in die Mathematik neuronaler Netze.

[Li et al. , 2003] Li, Shutao, Kwok, James T., Zhua, Hailong, & Wang, Yaonan. 2003. Texture
classification using the support vector machines. Pages 2883–2893 of: Pattern Recognition,
Volume 36, Issue 12. Copyright l’ 2003 Pattern Recognition Society. Published by Elsevier
Science B.V.

[Lin et al. , 2005] Lin, Henry C., Shafran, Izhak, Murphy, Todd E., Okamura, Allison M.,
Yuh4, David D., & Hager, Gregory D. 2005. Automatic Detection and Segmentation of
Robot-Assisted Surgical Motions. In: Proceedings of MICCAI 2005. Springer.

[Lo et al. , 2003] Lo, Benny P.L., Darzi, Ara, & Yang, Guang-Zhong. 2003. Episode Classifi-
cation for the Analysis of Tissue/Instrument Interaction with Multiple Visual Cues. In:
Medical Image Computing and Computer-Assisted Intervention - MICCAI. Springer.

72

BIBLIOGRAPHY

[Ma & Zhang, 1998] Ma, Wei-Ying, & Zhang, Hong-Jiang. 1998. Benchmarking of image
features for content-based retrieval. Pages 253–257 of: Signals, Systems and Computers, 1998.
Conference Record of the Thirty-Second Asilomar Conference. IEEE.

[Majewski & Jedruch, 2005] Majewski, Pawel, & Jedruch, Wojciech. 2005. Endoscopy Im-
ages Classification with Kernel Based Learning Algorithms. Pages 400–405 of: Innovations
in Applied Artificial Intelligence. Springer.

[McConaghy & Gielen, 2006] McConaghy, Trent, & Gielen, Georges. 2006. Canonical form
functions as a simple means for genetic programming to evolve human-interpretable
functions. Pages 855–862 of: Proceedings of the 8th annual conference on Genetic and evolu-
tionary computation. ACM Press.

[Motsinger et al. , 2006] Motsinger, Alison A., Hahn, Lance W., Ryckman, Kelli K., & Ritchie,
Marylyn D. 2006. Alternative cross-over strategies and selection techniques for grammat-
ical evolution optimized neural networks. Pages 947–948 of: Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ACM Press.

[Nandi et al. , 2006] Nandi, R. J., Nandi, A. K., Rangayyan, R. M., & Scutt, D. 2006. Classifica-
tion of breast masses in mammograms using genetic programming and feature selection.
Pages 683–694 of: Journal Medical and Biological Engineering and Computing. Springer Berlin
/ Heidelberg.

[Padoy et al. , 2007] Padoy, N., Horn, M., Feussner, H., Berger, M.O., & Navab, N. 2007. Re-
covery of Surgical Workflow: a Model-based Approach. In: Proceedings of Computer As-
sisted Radiology and Surgery (CARS 2007) 21st International Congress and Exhibition, Berlin,
German.

[Perkins et al. , 2000] Perkins, S., Theiler, J., Brumby, S. P., Harvey, N. R., Porter, R. B., Szy-
manski, J. J., & Bloch, J. J. 2000. GENIE - A Hybrid Genetic Algorithm for Feature Classi-
fication in Multi-Spectral Images. In: SPIE4120.

[Platt, 1999] Platt, John C. 1999. Fast training of support vector machines using sequential minimal
optimization. MIT Press Cambridge, MA, USA.

[Rifkin & Klautau, 2004] Rifkin, Ryan, & Klautau, Aldebaro. 2004. In Defense of One-Vs-All
Classification. vol. 5. IEEE.

[Schölkopf et al. , 2000] Schölkopf, Bernhard, Smola, Alex J., Williamson, Robert C., &
Bartlett, Peter L. 2000. A New Support Vector Algorithms. In: Neural Computation 2000 12.
The MIT Press.

[Sielhorst et al. , 2006] Sielhorst, Tobias, Bichlmeier, Christoph, Heining, Sandro, & Navab,
Nassir. 2006. Depth perception a major issue in medical AR: Evaluation study by twenty
surgeons. In: Proceedings of MICCAI 2006. LNCS. Copenhagen, Denmark: Springer, for
MICCAI Society.

[Szymanski et al. , 2002] Szymanski, John J., Brumby, Steven P., Pope, Paul, Eads, Damian,
Esch-Mosher, Diana, Galassi, Mark, Harvey, Neal R., McCulloch, Hersey D.W., Perkins,
Simon J., Porter, Reid, Theiler, James, Young, A. Cody, Bloch, Jeffrey J., & David, Nancy.
2002. Feature Extraction from Multiple Data Sources Using Genetic Programming. In:
SPIE4725.

73

BIBLIOGRAPHY

[Thomason & Soule, 2006] Thomason, Russell, & Soule, Terence. 2006. Redundant genes
and the evolution of robustness. Pages 959–960 of: Proceedings of the 8th annual conference
on Genetic and evolutionary computation. ACM Press.

[Tjoa & Krishnan, 2003] Tjoa, Marta P, & Krishnan, Shankar M. 2003. Feature extraction for
the analysis of colon status from the endoscopic images. In: BioMedical Engineering OnLine.
BioMedical Engineering OnLine.

[Turk & Pentland, 1991] Turk, M.A., & Pentland, A.P. 1991. Face recognition using eigen-
faces. Pages 586–591 of: Computer Vision and Pattern Recognition, 1991. Proceedings CVPR
’91., IEEE Computer Society Conference on.

[Vailaya et al. , 2001] Vailaya, A., Figueiredo, M.A.T., Jain, A.K., & Zhang, Hong-Jiang. 2001.
Content-based Hierarchical Classification of Vacation Images. Pages 117–130 of: Image Pro-
cessing, IEEE Transactions. IEEE.

[Wang & Soule, 2004] Wang, Gang, & Soule, Terence. 2004. How to Choose Appropriate
Function Sets for Gentic Programming.

[Wang et al. , 2001] Wang, P, Krishnan, S M, Kugean, C, & Tjoa, M P. 2001. Classification of
endoscopic images based on texture and neural network. In: EBMS, 2001. IEEE.

[Zhang et al. , 2003] Zhang, Mengjie, Ciesielski, Victor B., & Andreae, Peter. 2003. A Domain-
IndependentWindow Approach to Multiclass Object Detection Using Genetic Program-
ming. Pages 841–859 of: EURASIP Journal on Applied Signal Processing 2003:8. 2003 Hindawi
Publishing Corporation.

74

LIST OF FIGURES

List of Figures

1.1 Several samples of endoscopic images in a gallbladder resection. 6

2.1 The basic components of Genetic Programming 8

2.2 Crossing over as the most important recombination strategy, here a schema of
the biological inspiration: The crossing over of chromosomes. 9

2.3 A schema of how the 3 dimensions of the HSV-Colorspace are connected. . . 12

2.4 A sample image and its gradient image . 13

2.5 A flow pattern. 14

2.6 Calculation of a LBP code and its contrast measure 14

2.7 An example for a linear support vector machine. 17

2.8 A scheme for a feed forward network. The input is the vector I with its en-
tries I1..Ii and the length I . The results are the estimated probabilities for the
special class. 19

4.1 The crossing over in the programming language 39

4.2 The voting based decision process, started from the image to the median filter. 42

5.1 The evolution of the average classification error (in y direction) of the popula-
tion of a generation (in x direction) . 44

5.2 The percentage of rejected programs on the left side and the percentage of
different reasons for the rejection on the right side, separately shown for the
low and the high level operator set. 46

5.3 Compare the results for the stateless prediction of the current phase using 25
images (blue) and 50(yellow) . 51

5.4 Comparison between the average fitness of a program in 30 runs of the fitness
function with the standard deviation in the error bars , and a result for a SVM
classification . 52

5.5 Reconstruction error using different numbers of eigenvectors (image size
64x64, first color channel). 53

75

LIST OF FIGURES

A.1 The image sequence represents the intermediate states during an execution of
the Program here. 70

76

	Title
	I Preface
	Abstract
	Acknowledgement

	II Automatic Feature Computation for Endoscopic Image Classification
	Introduction
	Motivation
	Classes of endoscopic images
	Automatic Feature Computation
	Image Classification

	Theoretical Background
	Genetic Programming
	Fitness function
	Selection
	Reproduction
	Code

	Image features
	Color features
	Gradient features
	Motion features
	Texture features
	Principal Component Analysis

	Classification
	k-Means
	Support Vector Machine
	Backpropagation Neural Network
	Multi-class extension

	Related Work
	Genetic Programming methods
	Fitness
	Reproduction
	Function set comparison

	Genetic Programming with images
	Direct approach
	Indirect approach

	Features for endoscopic images
	Texture based features
	Shape based features
	PCA as a feature

	Classification
	Applications of SVM
	Application of NN
	Pairwise voting

	Surgical workflow recovery
	Analysis of surgical endoscope sequences
	Movement recognition
	Surgery synchronization

	Method
	Virtual machine
	Command interface
	Memory environment
	Input handling

	Programming language
	Programs
	Operator sets

	Evaluation
	Semantic test
	Test runs
	Fitness function

	Evolution
	Selection
	Recombination
	Remarks

	Classification
	Binary classifiers
	Voting based decision

	Results
	Results of the evolution
	Comparison of operator sets
	Program discussion

	Classification results
	2-Class Classification
	Multi-class Classification

	Comparison
	Fitness function and classifiers
	Program and PCA
	Program and standard image features

	Summary and possible improvements

	Conclusion

	III Appendix
	Programs
	Water filling feature
	A generated program, Gen74-04

	Bibliography
	List of Figures

