
Technical University of Munich
in cooperation with EADS

Software-Development Project
in the �eld Computer Science (Informatik)

Combination of Di�erent Tracking Systems

Benjamin Becker
Hegelstr. 26, 81739 Munich

Tel. (0163) 6601095

Written in the: 11th Semester
Finished: 31st December 2004

First Advisor (TU Munich): Prof. Gudrun Klinker, Ph.D.
Technical University of Munich
Faculty of Computer Science
Boltzmannstr. 3, 85748 Garching
Tel. (089) 289-18215

Second Advisor (TU Munich): Dipl. Inf. Martin Bauer

Practical Advisor (EADS): Holger Schmidt
EADS Deutschland GmbH
Corporate Research Center Germany
81663 München
Tel. (089) 608-21238

Contents Page 2

Contents

Content 2

List of Figures 4

1 Abstract 5

2 Fundamentals 6
2.1 Tracking and its Uses . 6
2.2 Tracking Systems . 6

2.2.1 Optical Tracking . 6
2.2.2 Infrared Marker Tracking . 7
2.2.3 Gyroscopic Tracking . 8
2.2.4 Magnetic Tracking . 8

2.3 Combination of Tracking Systems . 9
2.4 VRPN . 10

3 Generic Tracker 11
3.1 General Speci�cations . 11

3.1.1 Multi-Threading . 11
3.1.2 System Independent . 11
3.1.3 Network Based . 12

3.2 Implemented Features . 12
3.2.1 Validation . 12
3.2.2 Interpolation . 12
3.2.3 Extrapolation . 13

3.3 Composition - The Client's Point Of View . 13
3.3.1 User Interface Functionality . 14
3.3.2 Front-End Implementation . 15

3.4 Composition - The Server's Point Of View . 16
3.4.1 Generic Tracker's Central Component 16
3.4.2 Back-End Structure . 20

4 AMIRE 23
4.1 The Execution Modes . 23
4.2 The Component System . 24

4.2.1 Component Structure . 25
4.2.2 Component Hierarchy . 25
4.2.3 Framework Components . 26

Contents Page 3

4.2.4 Exporting and Importing the Scene . 28
4.3 The State Machine . 28
4.4 The Component Writing Concept . 29

4.4.1 Component Types . 29
4.4.2 Inheritance . 31

4.5 Implementing the Tracking Component . 31
4.5.1 VRPN Tracking Component . 31
4.5.2 Registering new Components . 31
4.5.3 Performance and CPU Time of Components 32

4.6 Using the Tracking . 32
4.6.1 Building up the Tracked Scenegraph . 32
4.6.2 Matching Video and Computer Graphics 32
4.6.3 Tracking Performance . 33

4.7 Use Cases . 33
4.7.1 Augmented Reality . 33
4.7.2 Guided Work�ow Scenario . 34

5 Intrace 35
5.1 General Information . 35

5.1.1 Raytracing . 35
5.1.2 Tracking in Raytracing . 35
5.1.3 Camera . 36
5.1.4 Tracking in the Camera . 38

5.2 Stereoscopic Raytracing . 38
5.2.1 Basic Idea . 38
5.2.2 Performance . 40

Bibliography 42

List of Figures Page 4

List of Figures

2.1 Optical Marker . 7
2.2 Infrared Marker . 8
2.3 Gyroscopic Tracker . 8
2.4 Infrared and Gyroscopic Tracker and Camera 9
2.5 VRPN Communication Diagram . 10

3.1 Tracker - Poly�t Example [Kalies, 2003] . 14
3.2 Generic Tracker - UML Design . 17
3.3 Tracker - Socket Communication Diagram . 20
3.4 Tracker - Protocol Datagram . 21

4.1 The User And Operator Execution Mode Output 24
4.2 The Scene Description Window . 26
4.3 The Connection Editor Window . 27
4.4 The Matrix Editor Window . 27
4.5 The Prototypes & Tools Window . 27
4.6 The Scene Imported Into Visio . 28
4.7 The State Machine Control Window . 29
4.8 AMIRE Tracking Example . 33
4.9 AMIRE Augmented Reality . 34

5.1 Intrace Raytracing . 36
5.2 Raytracing Camera . 36
5.3 Communication within the Tracked-Camera Shader 39
5.4 Stereoscopic Raytracer Camera . 39
5.5 Head Mounted Display (HMD) with Infrared Markers 40
5.6 Stereoscopic View of a Tornado Cockpit . 41

http://www.math.fau.edu/kalies/mad3400/lab4.pdf

Page 5

1 Abstract

Current tracking systems have reached a high level of sophistication with many companies
and enterprises participating in the research and development. Unfortunately, none of these
products o�ers quality and accuracy at the same time or at least does not have some other
major disadvantage.
This work introduces a Combination of Di�erent Tracking Systems to create a robust and

accurate service that utilizes the advantages of the used tracking subsystems and that com-
pensates their weaknesses. The idea is realised in the Generic Tracker. It is based on the
open VRPN interface which o�ers a front-end to access and control multiple tracking systems.
Featuring both, extrapolation and interpolation as well as a �lter to increase accurray and
reliability, the Generic Tracker uses the collected measurements and creates a robust and
generic service.
To evaluate the capabilities, the quality and the usability, the generic tracker is tested on

two representative tracking scenarios:

• A work-guiding task in cooperation with AMIRE, an Authoring Framework. This allows
it to work as a part of an Augmented Reality Solution, running a work�ow supporting
service.

• An implementation into InView, a Realtime Raytracer, to support it's functionality in a
Virtual Reality Scenario.

Page 6

2 Fundamentals

2.1 Tracking and its Uses

Tracking is a basic element for augmenting reality with computer graphics. This can be
done by tracking a device or an object and compute its pose, the combination of position
and orientation. The calculated pose can be used as a coordinate system null point with its
axes rotated by the computed directions. The entire virtual scene can be attached to this
coordinate center. The other possible way is to use the computed position and orientation
transformations to place a single object at this position and orientation so it shown on the
appropriate place in three dimensional space.
Recognizing objects in a video image or knowing where they must be o�ers the chance to

assign information directly to them. The worker receives exact pointers on the screen to what
parts the message boxes are attached too. Tracking also o�ers the chance to realise a dynamic
and intelligent manual that knows what parts are relevant for the current task and where they
can be found. This helps to guide a worker and give him a hand on complex work�ows.
This makes tracking very helpful in a wide range of situations, solving problems of di�erent

scenarios, ranging from medicine to mechanics.

2.2 Tracking Systems

The idea to track objects with a computer is not new. It has been realised on several di�erent
physical bases, each trying to increase compatibility, accuray and handling. The following will
give a brief introduction, description and overview of the available systems.

2.2.1 Optical Tracking

Optical Tracking available as two di�erent types.

Marker Based Tracking - The �rst and already fully implemented approach is to track
certain marker �elds, usually squares with unique markings to determine the pose. These
marker �elds are visible sheets of paper or plastic with printed signs on them. For every
frame the computer scans the captured video image and uses picture processing to �nd the
characteristic marker �elds on the image.
This idea is widely implemented and tested and it is stable but poorly reliable. Occasional

losses of the tracked object occur in case the markers are hidden or not directed towards

2.2.2 Infrared Marker Tracking Page 7

the camera, since in a perspective sight the marker �elds warp
and distort. There are algorithms implemented in the picture
processing with compensate this e�ect but naturally the less a
marker is visible on the video the more likely recognition fails.
Furthermore, the use of tracking marker �elds might not be wel-
come or practical everywhere, since they must be attached to the
tracked objects. Considering the delay arising from the video
image processing, this approach also is not appropriate for time
critical tracking. A marker �eld can be seen in picture to the
right. The standard marker based tracking implementation is
the AR Toolkit, found in [Kato and Billinghurst, 1999]. Figure 2.1: Optical Marker

Markerless Tracking - A second way to achive optical tracking is to build a tracker that
recognizes objects by their shape. This idea follows the human way to track and determine
position and orientation of objects. The computer must be able to �nd the object in what
ever pose it is shown. The objects are not specially marked in any way, so the algorithm tries
to learn the signi�cant parts and characteristics of the chosen object. Implementations of
markerless tracking are usually based on neuronal networks which are designed for the training
on measurement data. They can learn to recognize objects with their current position from
video streams.
In spite of recent progress in this area the concept has lots of disadvantages. A neuronal

network needs a long training period to produce good results, since it only learns very slowly.
Also the neuronal network can only be trained on a single object, which means each tracked
object has to have its own. Markerless tracking, therefore, can only track a single object in
the scene, unlike the marker based approach that can track multiple targets in its picture
processing routine. This leads to a bad portability due to the long initial learning processes.
Currently, even after lots of training, the neuronal networks still produce a high rate of fail-
ure. Additionally, the use of neuronal networks leads to complicated validation and veri�cation
problems, since they are neither deterministic nor predictable. Because of that, it is compli-
cated to improve the quality of the tracking or try a logic way of optimization. Although an
evolutionary algorithm o�ers an approach to alter a neuronal network to recive better tracking
results on a special scenario might decrease the performance and quality in the generic case.
Due to all these problems, there is no standard implementation available yet.

2.2.2 Infrared Marker Tracking

A similar idea is to track special light re�ecting or light emitting markers, using mul-
tiple cameras to catch the re�ections or impulses and calculating distance and position

2.2.3 Gyroscopic Tracking Page 8

from the computed stereo di�erention. The picture to the right
shows such a marker compound, a geomertric model with sev-
eral marker spots. The tracker's performance increases the more
markers are on a target but they need to have a minimum dis-
tance so it can distinguish them. More information is available
at [Klaus, 2004].
This results in a very fast and exact prediction of the pose. A
high degree of stability produces valid data even on partially
hidden marker compounds which makes the tracking robust, re-
liable and superior to the other optical approaches mentioned Figure 2.2: Infrared Marker

above. However, mounting cameras might not be welcome or practical everyhwere. The less
available the higher the chance of a total occludency is and the less information is gathered
to compute the positions. In such a case the tracking fails.
So this very accurate tracking has the handicap of a possible failure.

2.2.3 Gyroscopic Tracking

Another method of tracking is the use of gyroscopic orientation trackers. Internally they
have a magnetic gyroscope which rotates due to its inertia against the movement of the device.
Its position is calculated on the basis of the magnetic �eld it cre-
ates so it possesses a friction close to zero. The latest generation
even compensates the drift created by earth's magnetic �eld and
returns quite valid measurement values. A gyroscopic device is
shown in the picture to the right.
The huge advantage is that it does not need additional hardware
mounted in the scene, the small cube is totally independant. The
disadvantages are the slowly increasing measurement error due
to drifting, as well as the lack of knowledge about the position.
Basically, it is the ideal fallback for other tracking systems if
they fail by moving out of sight or their calculation is not exact
enough to compute the pose. Figure 2.3: Gyroscopic Tracker

More information is available in [Wormell, 2003].

2.2.4 Magnetic Tracking

One of the �rst ideas to implement tracking was to span magnetic �elds through a room.
Without the need of direct sight to the tracked object it has a fundamental advantage over all
the optical methods and, in contrast to the gyroscope tracking, it measures orientation and
position.

1. AC Magnetic Tracking uses a normal magnetic �eld to compute the pose relative to the
magnetic �eld generator. Electro magnetic tracking is only good for low ranges. There it
computes valid and reliable measurements. Unfortunately, it fails in case of metal bodies
or other disturbing electronic devices in the environment. Due to these characteristics
as well as to the high resolution, the short range and the ability to track even in organic
bodies, it is often used for medical purposes.

2.3 Combination of Tracking Systems Page 9

2. DC Magnetic Tracking is based on pulsed magnetic �elds. This increases the e�ective
range and the noise on the measurements is said to be less. So it can be used as a
mid-ranged tracking system. Though large senders and semsors may cause additional
problems.

3. Radio Frequency Identi�cation (RFID) magnetic tracking works with the tracking of
RFIDs. These were introduced to o�er detailed information about the object they are
attached to but since they send information their position can be computed. Naturally
this tracking su�ers from the same bad characteristics as the two above mentioned.
Though, the huge advantage is, that most companies introduce the small RFIDs to help
keeping the inventory listed or have information on components. The availability of
many RFIDs allows to increase the formerly poor quality of position determination by
tracking multiple targets, �ltering the measurement results. This increases the quality
and leads to far better result. Since RFID markers are already available in industrial
scenarios this allows an easy and fast integration into current work�ows. Results of tests
concerned with the quality of the possible trackings are not yet available.

2.3 Combination of Tracking Systems

A combination of di�erent tracking systems results in an optimal behavior. This decreases
the tracking errors or o�ers a fallback in case one of the used tracking types fails. Another
bene�t is the possibility to move through di�erent areas and switch between tracker systems
on-the-�y, increasing the �eld of activity.
An example is the use of RFIDs with a supporting Gyrotracker. This computes a more

exact position and has a guaranteed orientation measurement. A di�erent but also very good
combination is to use infrared tracking for an exact positioning and a gyroscopic tracker to
have a minimum tracking available. This is needed in the case the opical system fails due to
occludency. The implementation of such a tracker device should not care about the underlying
systems but simply combine the available sources to gain the best possible result.
The two trackers used to test the composition of tracking systems and its capabilities

are the AR-Tracking (described in section 2.2.2 and [Klaus, 2004]) infrared marker track-
ing and the InertiaCube2 gyroscopic tracking (see section 2.2.3
and [Wormell, 2003]). An attached camera (see [Stricklc, 2001])
returns the video stream which was than augmented with the
virtual elements. In this video image the tracked objects are
marked and information is attached in the way chapter 2.1 de-
scribes. This is achived by tracking the assembled tracking ob-
ject, consisting of the markers, the gyrotracker and the camera,
to compute its current position. This pose is used to trans-
form the coordinate system of the computer graphics scene so
the real objects match with the virtually overlayed objects. The

Figure 2.4: Infrared and Gyro-
scopic Tracker and Camera

handling of such environments is possible with an authoring tool such as AMIRE. A picture
of the assembled tracking systems is shown to the right.

2.4 VRPN Page 10

2.4 VRPN

The Virtual Reality Peripheral Network VRPN, developed by the University of North Carolina,
o�ers a generic interface to many trackers. Using it simpli�es the interfacing of the trackers
and helps focusing the attention on the procession of the data. Standard callback functions
handle the trackers and forward information to the applications. Additional information can
be found at [Taylor and Yang, 2004a]. A short introduction on the implementation of a VRPN
client is available at [Taylor and Yang, 2004b].
The concept of VRPN and its communications is shown in �gure 2.5. VRPN consists of

a system independent library which can be statically linked into any tracking application.
Internally, mainly socket communications are used to establish connection with the di�erent
VRPN servers. These handle the communication with the chosen tracker subsystems. The
servers are speci�c for every tracking device, the client o�ers a generic interface to handle any
server compatible to the VRPN standard.

Tracking Application Tracking Systems

VRPN Library

Application
using
Tracking

Systems
offering
Tracking

Tracker 1

Tracker 2

Tracker *

Get Tracking VRPN Client VRPN Server 1

VRPN Server 2

VRPN Server...

Ethernet

Figure 2.5: VRPN Communication Diagram

Page 11

3 Generic Tracker

The following chapter introduces the Generic Tracker component. This component is able
to connect to several di�eren tracking systems and collect their measurements for further
interpolation, extrapolation and validation.
The tracking systems are controlled and used with the VRPN interface. Its general assembly

is de�ned in [Taylor and Yang, 2004b]. The component has a second interface implemented,
the ISD Tracker. This is needed for the Inertia Cube 2 [Wormell, 2003] and other InterSense
products which do not o�er a good VRPN implementation.
The component is con�gured with an extended markup language (XML) �le that allows

di�erent tracker systems to be chosen and the basic coordinate system to be de�ned. Depend-
ing on the selected tracking subsystems, the component collects the data and interpolates
and �lters the most accurate value. In case of a total loss of tracking, the component does
not receive any further information and will continue to extrapolate the movement from the
recently measured values.

3.1 General Speci�cations

3.1.1 Multi-Threading

The component is written multi-threaded. Because of this, it works non-blocking and calcu-
lates the latest position and orientation while the main application ful�lls its tasks. This is
very important for the drawing routines, which are time critical. In the recent implementation
the component's CPU cost is below 1%. For safe multi-threading the program sequences are
checked and validated to secure access on shared variables. These are additionally secured
with mutexes and semaphores. This avoids deadlocks and race conditions to guarantee a
thread-safe execution.

3.1.2 System Independent

Available in three possible con�gurations the generic tracking component is fully system in-
dependent. The possible choices are:

1. Dynamic Linked Libray (DLL): The standard Windows implementation. A dynamically
linked library is created and used without header �les, allowing it to loaded and unloaded
at use.

2. Shared Object (SO): A Linux implementation as a shared object allows the use in Linux
applications by using the dynamical linker it in the make�le. This also does the loading
at runtime.

3. Socket Communications: The socket based implementation is designed for use on net-
works. This allows the application and the tracking component to be on physically

3.1.3 Network Based Page 12

di�erent hosts. It is currently designed for linux but can be ported to work on windows
aswell. This design increases independency from the application from which it is be-
ing used. A simple and small protocol is de�ned to specify the data packages and the
communication commands.

3.1.3 Network Based

Not only the socket based implementation of the Generic Tracker is meant to run on any
network, but also the VRPN Client and VRPN Server as well as most of the server to tracker
system communication are socket based. The communication structure of the VRPN library
is outlined in �gure 2.5. All this allows a distribution over di�erent hosts on a network,
increasing its usability.

3.2 Implemented Features

3.2.1 Validation

Data is collected from all the subsystems that track the device. Since not all of them return
valid information, their use might corrupt the computed pose. The validation to determine if
the calculated or measured values are correct is achived in the following steps.

1. The tracking subsystems return special values in the case that they have lost the object.
These values are ignored. If that happens the system either tries to use the result of the
other trackers or uses an extrapolation to keep track.

2. The generic component compares the di�erent measured values to decide if the value is
corrupted. In this case, depending on the system, it either sets a correction factor or
entirely drops the corrupted data.

The position validation of the Generic Tracker is based on the behavior of the subsystem.
In case they do not return valid information, the component ignores it. This is implemented
for VRPN as well as for ISD Tracker systems. If the Generic Tracker looses all position
tracking information it uses an extrapolation, as described in chapter 3.2.3.

3.2.2 Interpolation

Interpolation is needed if more than one tracking component returns valid information. Two
di�erent algorithms can be used to compute the results:

1. Linear:

Linear interpolation can be used if the errors of the sensors are rather small and the
noise in the measurement is already reduced.

2. Kalman Filter:

Kalman's �lter is used in case there are many tracked devices and the noise is high on
the results. The �lter reduces the high frequent noises and smooths the result.

3.2.3 Extrapolation Page 13

The Generic Tracker implements a linear interpolation, since most of the tracker subsystems
already implement a Kalman �lter. Filtering a second time would smooth the results too much
and produce artifacts and larger error values.
Interpolation is used for the calculations of the position. There is a spherical interpolation

on the orientation quaternions (Quaternions -> [Kolb, 2002]), which removes jerky movements
in the change of the pose and returns the most accurate value to a certain time.
However, Kalman �lters are not designed to �lter objects as as orientations. Orientations

are quadruples of values describing the position on a sphere. Since there is no speci�ed way
to �lter the quaternion's four values, the result will most likely mutate and morph. Thus the
orientation must be interpolated linearly.

3.2.3 Extrapolation

Extrapolation is always computed if enough data has been collected without loss. This feature
is only implemented on movement, not on orientation, because the gyroscopic tracker does
usually not fail. Additionally, extrapolation on orientation is only possible in a linear way, as
described above.
The application collects the last twelve measurements of the position to predict the move-

ment in the near future. A simple linear extrapolation of movement would not match normal
movement. With optical trackers this happens if someone steps in between the tracking sys-
tem and the tracked objects. The tracked object will not neccessary move on in a linear but
possibly in some more complex way. To avoid simple linear movement approximation for each
axis a �fth grade polynomial �tting is computed. Basically that means that the algorithm
searches a polynom of grade �ve that �ts the twelve points best, meaning it has a minimum
square error. Figure 3.1(a) shows a polynom �tted into points.
Another advantage of the polynomial approach is that it is possible to compute 1st and 2nd

derivatives. These allow an approximation of the tracked object's speed, which allows a far
better prediction of the current movement. This particular extrapolation uses the derivatives
to start a physical equation of the accelerated motion to �t real movements.
As seen in �gure 3.1(b), polynomial �tting, Poly�t, automatically takes care of interpolation

of the dataset. The data it uses to build the polynom into can have multiple points for a
single time value, which will be interpolated in the result. In case there are not enough valid
recent measurements the interpolation is skipped, since it would produce faulty results. This
happens if there are less than ten good measurements. Unfortunately, polynomial �t produces
corrupted boundary values, so the approximation is not computed for the last measurement.
Instead the time between the last two collected position values is used.
Poly�t internally uses Gaussian equations to solve the minimum square error problem. Its

general concept is described at [Kalies, 2003] and some additional information is found on
[Gibson, 2004].

3.3 Composition - The Client's Point Of View

This chapter describes the functions and parameters the user is able to access. The internal
functions are described in detail in the Server's Point Of View in section 3.4. The user interface
of the Generic Tracker di�ers, depending on which of the three implementated versions chosen.
Detailed information on implementing the back-ends for the di�erent interface types is given
in chapter 3.4.2.

3.3.1 User Interface Functionality Page 14

(a) Standard (b) Filter (Interpolation)

Figure 3.1: Tracker - Poly�t Example [Kalies, 2003]

3.3.1 User Interface Functionality

1. The dynamic linked library and windows based version of the generic tracker exports
three functions to handle the component.

• The InitialiseTracking() function is used to start the tracking and initialise
all the connections and components.

• UpdateTracking() collects the current position and orientation from the com-
ponent and �lls the information into the matrix.

• Use of the tracked position is implemented with the double GetTrackingValue
(int i) operation, which exports one of the sixteen matrix values. To get the
complete transformation matrix this needs to be called sixteen times.

The �rst step in employing this component is to initialise it. Then UpdateTracking()
and the double GetTrackingValue(int i) loop should be called alternatingly.
The update function is used to make the tracker compute the recent tracking position
and orientation. If this is skipped the values will be out-dated. The matrix describing
the orientation and position is polled stepwise, returning a single value per call. The
entire matrix needs sixteen calls. To collect the tracking value again later it only needs
the update, not the initialisation. Stopping the component and deleting its members is
done by unloading the library. Detailed information on loading and unloading as well
as on the use can be found in chapter 4.5.1 where this DLL based version of the generic
tracker is implemented.

2. The shared-object implementation for Linux uses only two functions to handle the com-
ponent and uses a slightly di�erent syntax. It is not based on matrices to describe the
position and orientation, but uses a position vector and an orientation quaternion.

• InitialiseTracking() initialises the component and its structure, just as in
the DLL front-end con�guration.

http://www.math.fau.edu/kalies/mad3400/lab4.pdf

3.3.2 Front-End Implementation Page 15

• The function getTracking(&double,&..) internally handles two tasks. First,
it updates and calculates the current values and, in the second step, it �lls the the
computed values into the variables addressed by the passed pointers.

The components use starts with initialisation. To obtain the current tracking state it
is su�cient to call the get function with the parameters, which will be �lled with the
computed position and orientation. This can be done anytime after the tracking has
been initialised.

This implementation is fundamental for the socket implementation and is implemented
into the socket server. Otherwise it is unused at this stage.

3. The stand-alone server implementation is socked based. It works with a server / client
structure, which is the most complicated interface. The protocol is kept as small as
possible and implements only the very basic features. The use of the standalone server
needs an implemented client. The server can be started without parameters.

The server receives commands from the client and sends back the tracking information.
The communication of the client and server is shown in the uni�ed modelling language
(UML) diagram 3.3.

The component's init_client() and get_tracking() tell the client to communi-
cate with the server. The initialisation starts the client and tests the connection to the
server, which should be started beforehand. In case it does not fail, the current tracking
can be collected with calling the get_tracking() function.

For more information on this very complicated implementation refer to chapter 3.3.2. A
detailed description of the process and its neccessary elements is given there.

3.3.2 Front-End Implementation

The Dynamic Linked Library Front-End

The DLL's front-end is designed to load the library during runtime. Since it does not o�er
include �les or static library headers, it is neccessary to map them directly. The loading is
achieved with the function LoadLibrary("Tracking.dll") . This opens the DLL and
loads it into the current application. To access its functionality, the library functions need
to be mapped to pointers. This is done by calling GetProcAddress , which searches for a
function with a certain name and casts it on a prede�ned function type. De�ning its type is
done with typedef , which can describe a function pointer with its return type and parameter
list.

Example code:

typedef void (* cfunc_v)();
typedef double (* cfunc_d)(int);

HINSTANCE hLibrary;
cfunc_v UpdateTracking;
cfunc_d GetTrackingValue;

3.4 Composition - The Server's Point Of

View Page 16

hLibrary=LoadLibrary("Tracking.dll");

InitTrack=(cfunc_v)GetProcAddress((HMODULE)hLibrary, "Initiali..");
UpdTrack =(cfunc_v)GetProcAddress((HMODULE)hLibrary, "Update....");
GetTrack =(cfunc_d)GetProcAddress((HMODULE)hLibrary, "GetTrack..");

As seen in the example code, the operation to map the library functions out of the DLL
is the GetProcAddress . It maps the function from the library that is matching the name
onto the function pointer. After this, the function can be accessed. The function pointer
type is de�ned before with a typedef. The declaration for a function which is returning void
and has an empty parameter list is de�ned with typedef void (* cfunc_v)() . Detailed
information on DLLs and their functionality as well as on the exporting and importing is
provided in [Miller, 1999].

The Shared Object Front-End

The use of shared objects in Linux is based on GNU's make command. The make�le used
for compilation needs to link against the shared object. Use of an already compiled shared
library is realised by telling the C++ compiler to include that library. Additional to the normal
compilation parameters the phrase -L<path> -ltracker is added. Path represents the
directory in which to �nd the library. The library nomenclature requires it to start with the
word lib and have the type so. So the name in our case is libtracker.so .
To recompile the shared library the compiler parameter -shared is used. It tells the C++

compiler to create a shared object which will contain all the object �les.

The Socket Communication Client's Front-End

This interface is used by including the header�les and the objects into the current project.
The make�le needs to compile the socket communication code as well as the client. The client
takes care of the exceptions that can occur on network transmission. This implementation
links the client statically into the project. The server runs as a separate program and must
be started from the command line before use.

3.4 Composition - The Server's Point Of View

This chapter describes the implementation of the generic tracker component in detail. It
consists of the central component, which is identical on all the three di�erent implementations,
and the interfaces. These so called back-ends implement the di�erent behavior, required for
the work as DLL, SO or Socket Server.

3.4.1 Generic Tracker's Central Component

The main component of the Generic Tracker has several separate classes. Their correlation,
hierarchy and assembly is shown in detail in the UML (Uni�ed Markup Language) diagram
3.2.

3.4.1 Generic Tracker's Central Compo-

nent Page 17

Quaternion
+Quaternion Data q: float[4]
+Quaternion(): Quaternion
+Quaternion(float,float,...): Quaternion
+operator[](float): float
+operator*(Quaternion): Quaternion
+setValue(float,float,float,float)
+inverse(): Quaternion
+slerp(Quaternion,Quaternion,float): Quaternion
+rotate(Vec): Vec

Vec
+Vector Data x: float
+Vector Data y: float
+Vector Data z: floatTracking

+x,y,z - Position: double
+dx,dy,dz - Velocity: double
+ddx,ddy,ddz - Acceleration: double
+ort - Orientation: Quaternion
+orterror - Orientation Error: Quaternion
+deltatime - last Tracking: double
+init_tracking()
+getTracking()
+interpolate()
+PolyFit()
+track()
+isd_track()
+handle_pos_0(*userdata,*function)

Polyfit
+fit(Mesurements:int,Degree:int,input:double[],polynom:double[])

Isense
+ISD_GetData(...)
+ISD_SetStationConfig(...)
+ISD_GetStationConfig(...)
+ISD_ResetHeading(...)

vrpn_Tracker
+mainloop()
+register_change_handler(*userdata,*function)

Figure 3.2: Generic Tracker - UML Design

Class - Tracking

The class Tracking (3.2) is the main part of the application. It o�ers routines to initiate
the tracking and for returning the current pose. Also the thread´, handling the tracking and
the data processing, is located here.

Functions

• The initialisation is done by calling init_tracking() , setting up data structures
and registering the trackers. It creates an ISD Tracker and a VRPN Tracker device.
The initialised ISD Tracker has a function implemented to return the measured ori-
entation. The VRPN Tracker needs to register a special tracking handler with the
(vrpn_Tracker->register_change_handler()) (handle_pos_0() is such a
handler).

• The data processing thread track() runs in an endless loop and takes care of the
basic tracking, until program termination calls its cleanup() function. It checks the
di�erent sensors and tracking systems for new data and �lls their data structures.

The function call of vrpn_Tracker->mainloop() (3.2) collects all the VRPN based
tracker measurements, as well as the isd_track() which collects the measurement
values of the attached ISD trackers. It wraps the Isense->ISD_GetData() . After
the data has been grabbed, the interpolation routine is called. A short sleep takes care
of avoiding busy waits for new tracking data and prevents high cpu usage. For thread-
safe execution the system independent functions lock() and unlock() o�er blocking
locks, to avoid race conditions and to guarantee valid data.

• The operation interpolate() implements the process of handling measurement data.

3.4.1 Generic Tracker's Central Compo-

nent Page 18

First, a linear interpolation between the di�erent sensors and their responses is per-
formed. Linear interpolation on the orientation quaternions is implemented by a spher-
ical interpolation. Measurements are always marked with a time stamp by the system
independent function currenttime() . The computed data is �lled into a bu�er of 12
data samples required by the polynomial �t.

• The so called PolyFit() operation is run if at least the 10 last measurements were in
order. It computes a polynomial �t to minimise the square error. The explanation of
this routine can be found at 3.2.3.

• For using the component call getTracking() to fetch the position and orientation of
the tracked object. The setup and con�guration of the Generic Tracker is realised with
a con�guration �le.

Attributes Type Functionality

x,dx,y,dy,z,dz Double These static variables store the po-
sition and the speed in the direction
of the three axis

ort Quaternion The orientation, interpolated of all
valid measurements, is stored here.

orterror Quaternion The orientation di�erence between
the measurement of the ISD Track-

ing and the one of VRPN Tracking.
The error of the ISD Tracking arises
from the gyroscope's drift.

Deltatime Double Deltatime, the elapsed time since
the last measurement, is used for ex-
trapolation of the positions.

Class - vrpn_Tracker

The class vrpn_Tracker (3.2) embeds the VRPN Client code. It o�ers routines for adding
handlers to process the returned measurement values and to call the main VRPN Tracking

loop.

Functions

• To collect all data and handle the VRPN Tracker the mainloop() is called. It sends
packages to all available and registered VRPN Servers and collects their data using the
registered change handlers.

• For adding new change handler functions the vrpn_Tracker implements the operation
register_change_handler() . This function takes a pointer to a handler function
and a pointer on user data as parameters. The userdata can be used in the handler to
in�uence the result. The handlers are called each time a new package is received.

3.4.1 Generic Tracker's Central Compo-

nent Page 19

Class - Isense

The class Isense (3.2) embeds the ISD Tracker client code. It o�ers routines to reset the
orientation or to alter the con�guration data. Additionally, it implements a routine to collect
the recent measurement.

Functions

• To return the collected data the function ISD_GetData() is called. Its called with
a pointer on an empty data structure as parameter. Then it �lls it with either an
orientation quaternion or Euler angles, depending on the con�guration settings made.

• Getting the current con�guration of the tracker is done with ISD_GetStationData() .

• After altering the con�guration, ISD_SetStationData() will save the new con�gu-
ration.

• Resetting the orientations heading is implemented with the ISD_ResetHeading()
function.

Class - Poly�t

The class Polyfit (3.2) embeds the Polynomial Fitting code. It o�ers the fit() function,
which computes the corresponding minimum square polynom of a certain degree and a given
set of points.

Class - Quaternion

The class Quaternion (3.2) is used to work with the orientation quaternions. It o�ers various
functions for simple mathematical and numeric tasks.

Functions

• The constructor creates a new quaternion, either with the default zero rotation (0.0, 0.0,
0.0, 1.0) or with the four given values.

• The [] operator allows reading access to the values of the quaternion

• The * operator implements the multiplication that represents the added rotation of two
orientations.

• The inverse() function returns the inverse rotation.

• The slerp() function is used to do spherical interpolation between two quaternions.
A scaling factor de�nes how much each quaternion in�uences the new orientation.

• The rotate() function takes a vector and rotates it with the current orientation.

Class - Vec

The class Vec (3.2) is used to cooperate with the Quaternion class. It is useful for rotating
and modifying vectors with directions and orientations.

3.4.2 Back-End Structure Page 20

3.4.2 Back-End Structure

The Dynamic Linked Library Back-End

The back-end for the Windows library is exporting the used functions. This can only work as
a C function export since C++ has di�erent binary formats, depending on the used compiler.
Importing will fail if library and application use di�erent compilers. Functions are exported
with extern "C" __declspec(dllexport) . These usually wrap the C++ functions
of the library's main part. More information on DLLs and their creation is available at
[Miller, 1999].

The Shared Object Back-End

Creating a shared object is very simple. It is basically done like compiling a normal application
with the di�erence that shared objects do not contain a main routine. The compiler pre�x is
-shared and the output nomenclature is libNAME.so.

The Client Server Communcation and Back-End

This section gives a detailed view into the client - server communication. The server and client
exchange information over the network by using a small protocol. The header datagram.h
contains a data package(tpackage) that can be transmitted over the connection. It is sent
as an array of characters, which implicates the need of serialisation of the package. This is
achieved by casting it into a character bu�er. The received package normally contains the
position and the orientation, as seen in �gure 3.4. The communication between server and
client is displayed in scheme 3.3.

Tracking Client Tracking Server

get_tracking

tpackage

Figure 3.3: Tracker - Socket Communication Diagram

The basic commands implemented in the protocol are:

3.4.2 Back-End Structure Page 21

• "get_tracking ". It is used to tell the server to fetch the latest tracking position and
orientation and send a package with the gathered information over the network towards
the client.

• The keyword "error ". This is sent in case the tracking failed to inform the client
that the tracking system went down or the communication between server and tracking
subsystem failed.

As already mentioned, the server sends the tpackage as a character bu�er. To use the
received packages, the client must cast them back into the tpackage structure, to regain their
functionality. As shown in scheme 3.4 the datagram has position and orientation members
which can be accessed directly after the package has been cast.
In implementing the server - client model of the generic tracker, special attention needs

to be given to the error cases. Socket creation, connection and communication is likely to
fail, so the implementation needs to be encapsuled into try-catch expressions. The process of
interconnection is structured in the following manner:

• First start the tracking server.

• The next step is to start the client. This tries to connect to the server's socket with the
appropriate ip and port. Since the connection request can fail, in case the server was
not able to bind the port or the client can not reach the server, the failure needs to be
handled.

• If the socket connection was opened correctly the tracking tries to establish communi-
cation. For further failures this is also inserted into try-catch expressions which o�er
failure handling and compensation. Sending and receiving is done with the "<<" and
">>" commands, which simply forward a package of characters over the network. The
commands sent between the server and the client are shown in the scheme 3.3: The
client sends the keyword "get_tracking " to make the server fetch the recent tracking
values and send a package.

• The server receives the command and tries to collect the required information from the
tracking subsystems. In case the tracking fails the server sends the keyword "error ",
otherwise a tpackage with the tracked pose is sent.

• The return package waits on the socket till the client �lls it into the bu�er. Now the client
needs to check if the return bu�er is valid. This test is implemeted with a string compare
to the already mentioned keyword "error ". In case the tracking was correct, the return

datagram.h / tpackage:

struct tpackage {
float posx; float posy; float posz;
float ort0; float ort1; float ort2; float ort3;
};

Figure 3.4:

3.4.2 Back-End Structure Page 22

bu�er is cast into the tpackage structure (diagram: 3.4) which then is accessable in the
client.

For further computations on position or orientation, the quaternion and a vector library are
included. This allows rotation and modi�cations of the returned vectors.
This implementation with a standalone tracking server is quite complicated, but it is re-

quired in special limited cases as in InView, described in chapter 5.

Page 23

4 AMIRE

Authoring Mixed Reality, AMIRE, is a authoring tool to create and administrate augmented
and mixed reality scenarios. It is used to create projects that contain information about
a certain procedure. These scenarios are made up of geometric objects like text windows
with annotations, simple control interfaces and other usefull components. AMIRE overlays
a realtime video image with its virtual output to assist a worker in his task and tells what
steps he needs to take. AMIRE is able to mark objects and give additional information to
help perform certain actions or warn about di�culties. Workers are able to pick the scenario
�tting the job or action they need to accomplish and can start working without searching for
a documentation.
Usually AMIRE is installed on a tablet PC with an attached camera device. The worker

sees the video image on the screen and AMIRE overlays this with the virtual elements. The
worker can direct the tablet pc and the camera in any direction while AMIRE searches and
marks the critical parts of the video image with the according information.
The environments AMIRE creates are used by workers to assist them getting through a

certain process. To achieve this AMIRE recognizes certain objects or knows their position
depending on the implemented and used tracking system. It attaches information boxes to the
important objects depending on the step of the work�ow. This makes AMIRE an interactive
manual and working guide, naturally superior to a standard documentation that would only
have images and lacks interaction with the worker.
Usually AMIRE works with a marker based tracking system. It implements a picture

processing routine that searches a captured video image for a certain characteristic marker
object. The Generic Tracker o�ers an approach that is the other way round: the position of
the camera and its orientation is computed. The computed pose can be used in AMIRE to
place the objects at the positions relative to the camera.
The scenarios and use cases implemented to demonstrate the capabilities and possibilities

of AMIRE are described in detail in section 4.7. Further, for general use of tracking and more
basic information, have a look at paragraph 2.1.)

4.1 The Execution Modes

AMIRE combines authoring tool and user application. Launching it without any parameters
brings up the normal graphical user interfacet which is used to model and create the scene and
its controls. Changing the start values can call AMIRE in a use mode where only AMIRE's
output and the implemented controls are visible.

1. The Operator Mode (picture 4.1) displays all the elements of AMIRE's framework. These
can be used to alter the scene's components and change the scenario's work procedure.
This is the way an operator would use AMIRE to add new scenarios or modify and
update existing ones. The elements and control interfaces shown in this mode should
not be accessable for the normal user.

4.2 The Component System Page 24

2. The User Mode (picture 4.1) is the way a worker sees AMIRE. It only displays the
components the operator added to a scene, which are located in the output window.
That is usually the video output, the objects o�ering controls and user interaction,
as well as those that give information to the user. Detailed information about the
components is contained in the following section.

Figure 4.1: The User And Operator Execution Mode Output

More information on the di�erent elements and windows of the Operator Mode are given in
section 4.2.3, where they are introduced and their functionality and use is explained.

4.2 The Component System

Users of AMIRE need not know about the details of components that can be added to the
scenarios, but for an operator this is crucial. AMIRE implements lots of di�erent components
which have either input, output or arithmetical / logical purposes. Although they follow
di�erent tasks, they share some common concepts.

4.2.1 Component Structure Page 25

4.2.1 Component Structure

The component model AMIRE implements is based on interconnections. Every component
has several in- and outslots which can be connected to exchange and forward information.
The Framework Components, which represent the graphical user interface (GUI) and other

fundamental application parts, are statically connected and can not be changed. These com-
ponents o�er services to the operator.
The Application Components, which make up the current project, are manually inserted and

connected. Creating such an object places it into the scene but leaves its slots empty. These
are handled with the Connection Editor 4.2.3. This framework component service allows
interconnection of components. This is done to realise certain behavior or output.
Three dimensional objects require a position and orientation in order to be placed in the

scene, so such components need a connection to a component o�ering such a value. Two
dimensional objects either have an input for the two coordinates or use their o�set attributes.
For example, it is possible to attach a textured cube (3d object) to a computed position of a
tracked device by interconnecting the transformation inslot of the cube with the transformation
output of the tracker component. This will place the object into world space at the assigned
position and orientation. Mathematical or logic components help in�uence the data before it
reaches an inslot and are usually inserted between two other components.

4.2.2 Component Hierarchy

1. Authoring:

Components to handle the objects and to administrate the current scene are part of
the basic system and available by default. It is not possible to add, remove or change
them. All the GUI elements are also part of these components which allow even the
unsophisticated user to create and modify scenes.

2. Application:

These components are addable and usually make up the scenario. The user can select
components to place them into the current scene and interconnect them to build up
the scenario's requested environment and the augmented elements. The application
components are grouped by their di�erent objectives and support either mathematical or
logic computing, displaying 2 or 3d models or o�er user interfaces and control elements.

• Behavior: a state machine to create states and work�ows. It has several in- and
outslots to allow complex stepping and branching. (see section 4.3)

• Graphic: everything that is displayable, ranging from simple models in 2D or 3D
space with certain textures to user interface elements like buttons and levers. The
operator employs these elements to realise the interaction with the user. Text boxes
and graphical objects o�er output to the user, while levers, buttons and switches
implement the input.

• Math: o�ering complex computations on matrices, simple mathematical equations
and logical operations on boolean values. These components are often switched
in between to modify values. They neither have user interaction nor a graphical
representation in the scene.

4.2.3 Framework Components Page 26

Figure 4.2: The Scene Description Window

• Misc: components that do not �t into the other groups. O�ering services ranging
from screenshot tools to audio output devices.

• Tracking: the components o�ering a position and an orientation. There is no
graphical representation, the components work in the background o�ering their
result and information on one of their outslots.

4.2.3 Framework Components

Framework Components are AMIRE's fundament, o�ering all kinds of di�erent services and
are taking care of the environment. These components are hidden from the user and only
accessible for the operator. The di�erent elements are:

• Scene Descriptor (picture 4.2.3), giving an overview of the current scene. It lists all ele-
ments of the current scene, the Application, the Authoring and the Misc Components. It
allows selection of a single application component to modify its properties in the Prop-
erty Editor. In case the chosen component has a matrix component, the Matrix Editor

allows changing of the matrix's rotation, scaling and translation. Marking two applica-
tion components allows the user to modify their interconnections with the connection
editor (picture 4.2.3).

• The Property Editor (picture 4.2.3) gives access to the properties of the currently se-
lected component. It allows the type speci�c settings of this component to be altered.
It in�uences only the selected component and not all the components of a certain type.
In the Property Editor it is possible to specify all attributes wich are often o�set trans-
lations, rotations, model �les, textures or display messages. This is the place to specify
the inserted component to �t its task.

• The Matrix Editor (picture 4.2.3) handles the modi�cation of translation or o�set ma-
trices. It o�ers a graphical user interface (GUI) to modify the selected component's
translation, scaling and rotation.

• Prototypes & Tools (picture 4.2.3) is used to add new components. The component
is chosen from the types folder and the insert button pressed. Usually component's
attributes are changed in the property editor to specify its values. The �nal step is
to connect it to other components, depending on the components slots and function.
This is done by selecting the two objects with the connection editor (picture Connection
Editor).

4.2.3 Framework Components Page 27

Figure 4.3: The Connection Editor Window

Figure 4.4: The Matrix Editor Window

Figure 4.5: The Prototypes & Tools Window

4.2.4 Exporting and Importing the Scene Page 28

Figure 4.6: The Scene Imported Into Visio

• Some framework components can be accessed from the main control bar, such as the
XML export (chapter 4.2.4) or AMIRE's state machine (chapter 4.3).

4.2.4 Exporting and Importing the Scene

After modeling the scene with the authorising components, it is possible to save the scene with
an XML export. This generic output o�ers various possibileties to administer the scene in
either self written XML parsers or with the use of Microsoft Visio. AMIRE has some Visual
Basic Script (VBS) macros included to import / export the scene into Visio, where it can
be displayed and modi�ed. As yet, the implementation of this export is not of good quality.
At the moment there is no sense in using it for large scenes. The di�erent steps of the state
machine are not displayed on di�erent pages, so the export is really chaotic in Visio. A simple
scene imported into Visio is displayed in �gure 4.6.

4.3 The State Machine

The State Machine is a fundamental component for creating a new scene. To allow AMIRE to
guide through a work�ow, the framework o�ers a state machine. It has two lists of slots to, on
the one hand, connect it to logic components that switch between di�erent states and, on the
other hand, a group of components that are in�unced in the selected state. In�uencing usually
means certain components are displayed and others are hidden when a step is activated. This
is used to follow the process step by step and to keep the user updated with valid information
on the task he currently tries to accomplish.
The state machine's user interface is shown in picture 4.7. There is a listing of all existing

steps which each can be selected and modi�ed. The interface allows to characterize the
steps by assigning new names and hitting the Con�rm New Name button. Another button,
the Actiuvate Selected State, changes the scene's state to the currently selected one. State

Activators brings up a list of slots, usually user interface components, that cause the state
machine to proceed to a di�erent step. To �nish the state machines implementation it has
another list, the so called State Dependants. They represent the elements in�uenced by the

4.4 The Component Writing Concept Page 29

current state. This is basically used to attach the visual slots of elements to a state to make
them display while the unconnected elements of the other state stay hidden.
Summing up, the state machine is in control of the scenes process. Usually the steps

in�uence a list of components by displaying them and hiding the rest. Each step has activators
to jump to a new step.

Figure 4.7: The State Machine Control Window

4.4 The Component Writing Concept

This section outlines the basic concepts a programmer needs to consider when wanting to
create or modify components. It is usually wise to only change the application component and
leave the framework untouched. This guarantees an easy portation of the created component
into later versions of AMIRE.
AMIRE is open source. Adding or modifying components is done directly in the AMIRE

project. That means it has to be rebuilt after any modi�cation and that components can
only be inserted if you have the current source code. There is a Component Writer Guide

([AMIRE, 2004]) added in the source code distribution to outline the essential steps in creating
a new component.

4.4.1 Component Types

For the programmer there are only two di�erent component types.

4.4.1 Component Types Page 30

• Display components appear in AMIRE's output. Again there are two di�erent ways to
create these objects:

� The fast way for simple objects is to use the displayCallback() function which
executes OpenGL code. This display function is called in four passes:

1. PREPARE RENDER MODE: the mode is added to prepare the coming calls

2. SETTING MODE: the mode to make all the settings, for example the light-
sources and the render modes

3. OPAQUE RENDER MODE: the mode to draw non transparent objects

4. BLENDING RENDER MODE: �nal mode to draw the semi transparent objects
and the 2D objects

� The preferable way to draw complex models or meshes is to use the Open Scene
Graph (OSG), which is part of AMIRE's 3d engine. OSGs are trees that carry
geometric information in their nodes (osg::Node). These again can be roots
to new OSG trees. There are numerous di�erent node types o�ering meshes and
geometry information, translations and other settings. In such a tree an entire
geometric environment with lots of elements can be stored. The OSG library o�ers
routines to modify the nodes, to walk through the scene or to draw the entire
tree (consult: [OpenSceneGraph, 2004] for detailed information). To create a new
displaying component a new node can be added into AMIRE's already existing OSG
tree. The OSG library is capable of parsing many di�erent �le types (like .obj ,
.3ds , .flt etc.) and transforming them automatically into an osg::Node . This
is done with the osgDB::readNodeFile() function.

Display components inherit the position matrix. This can be changed by using the
frameworks matrix editor. Modifying this so called o�set matrix moves, scales or rotates
the object. Also the other type dependant properties of the object can be edited, which
can in�uence texturising, texture scaling, lighting and much more. There are no rules
or limits when using attributes to control the newly created component.

Beside changing the attributes, a display component can be in�uenced by attaching its
translation and visibilety inslots to the outslots of a component that o�ers appropriate
data, like, for example, a translation matrix. These forward their output through the
display component's inslots. The display components use the received data in their
internal drawing routine. In this way it is possible to promote the o�set matrix from a
tracking component forward to other objects to position them in the scene.

• Functional components run their code in the functionalCallback() function. The
computed information is forwarded to the outslots. In case these are connected to the
inslots of another component the information is available there. Functional components
usually do simple logic or mathematical equasions to change the forwarded information.
Some of them create data on their own by calculating positions with a tracking.

Summing up, AMIRE uses a network of connections with its components representing the
nodes. The interconnections forward information from outslots to inslots giving the scene the
ability to have a complex behavior.

4.4.2 Inheritance Page 31

4.4.2 Inheritance

The above mentioned concepts have in�uence on the way components are created. The concept
of interconnecting all the di�erent components means, that some unitary standard must exist,
how components are constructed. If a component does not show the correct behavior the
whole system might crash. Additionally, it confuses when using a new component if it is
not behaving the required or expected way. So, usability and communication structure force
components to inherit most of their functionality from generic components deeply rooted in
AMIRE's framework.
Components the programmer adds are added in the genericComponents project part of

AMIRE, while the basic components they are inherited from, are located directly in AMIRE's
framework.

4.5 Implementing the Tracking Component

The VRPNTrackingComponent is inherited from the generic Component . It implements the
additional methods and constructors the framework requires.

4.5.1 VRPN Tracking Component

• Constructor: It initiates the Property type so it has an entry in the Prototypes & Tools

section. In a second step it creates the components attributes, the transformation matrix
and a boolean and adds them to the outslot. The inslot is initialised, but at the moment
unused.

• Destructor: Unloads the tracking library by calling FreeLibrary() on the DLL

• newInstance: Loads the DLL by calling LoadLibrary() and maps its services to
function pointers by calling GetProcAddress() on the DLLs exported functions. Also
it starts the tracking system with the InitialiseTracking() . See chapter 3.3.2.

• reinitializeEngine: Reconnects the out and inslots.

• functionalCallback: Performs the basic tracking. Calling UpdateTracking() com-
putes the new position and orientation. The translation matrix is updated with the
GetTrackingValue() function. Afterwards the results are forwarded to the outslot.
See chapter 3.3.1.

• emitOutSlotProperty: Connects the translation matrix to the inslot of a di�erent com-
ponent. This component will be positioned and oriented according to the input matrix.
This operation forwards the tracking.

• receiveInSlotProperty: Unused.

4.5.2 Registering new Components

The component is registered at the AMIRE framework by modifying AMIRE's Generic Com-
ponents project (the class genericLabeinComponents registeres new components). After in-
cluding the header �les a new instance is created with amire::component::Component .
Next the component is registered on the component manager with componentManager ->

4.5.3 Performance and CPU Time of

Components Page 32

registerComponentPrototype , becoming available in the Tools & Prototypes window as
seen in picture 4.2.3.
The Generic Trackers created to track with VRPN can be found with the prototype name

VRPN_Tracking in the prototypes & tools component (4.2.3).

4.5.3 Performance and CPU Time of Components

Including slow computations is not a good idea since the callbacks are time critical. Out-
sourcing of di�erent tasks into multi-threaded DLLs is a way to keep AMIRE's augmented
reality engine fast and reliable. This is the way the Generic Tracker was written and which
is implemented into the VRPN Tracking Component.
The VRPN Tracking Component loads the DLL by calling LoadLibrary() . A second

step is to extract the services with the GetProcAddress() which assigns the functions to
pointers. After this you can call the DLL's exported functions and starts running in a seperate
thread.
Basically the component loads the DLL to run the tracking in a second thread. This allows

to replace the VRPN Tracking DLL without chaning AMIRE's source. That is very important
on a huge and complex program as AMIRE whose compilation takes hours.

4.6 Using the Tracking

As mentioned in chapter 2.3, in this project the camera is the tracked object. Having its
position and orientation allows to compute the translation from the coordinate null point.
Multiplying the translation matrices of any object in the scene with the tracking components
output places it into the scene exactly on the null point of the world coordinate system.
Further translations to the objects can be done by changing their properties.

4.6.1 Building up the Tracked Scenegraph

You can add objects to the scene by connecting their translation inslot to the matrix outslot
of the tracking component. This is done with the Connection Editor 4.2.3. The connection is
internally realised as matrix multiplication of the inslot matrix and the internal matrix of the
3d object.
The scene is built up as a tree, the root of which is the tracking component. All display

objects that need to be tracked are attached to it. The displayed objects can be moved to their
�nal position by changing their internal o�set matrix with the Matrix Editor 4.2.3. Changing
the translation of the x,y and z axis would move the object along the prede�ned axes of the
world coordinate system. These axis were initially calibrated with the tracking systems.

4.6.2 Matching Video and Computer Graphics

Since we are combining the camera view with certain graphical elements, the video image
and the graphics must correlate. The movement of the camera is tracked and the translation
matrix of the scene graph root is changed automatically. So the tracking keeps the objects
positioned correctly in the space.

4.6.3 Tracking Performance Page 33

(a) AMIRE No Tracking (b) AMIRE Tracking Direction 1

(c) AMIRE Tracking Direction 2 (d) AMIRE Tracking Direction 3

Figure 4.8: AMIRE Tracking Example

Camera projection and the openGL projection matrix are identical (�eld of view (FOV) 40
degrees from the speci�cation of the digital camera [Stricklc, 2001]) resulting in a quite good
match of camera video stream and the virtual 3d graphics.

4.6.3 Tracking Performance

The capability of the tracking system is shown in the following screenshots from AMIRE. The
�rst shows the unaugmented sceme. the room with a door and a blue sign at its side (�gure
4.8(a)). In the demo we track the sign, assuming it is a fusebox, which should be checked.
The tracking works at 60Hz, which brings an update every seventeen milliseconds, and is very
precise as the pictures 4.8(b), 4.8(c) and 4.8(d) illustrate.

4.7 Use Cases

4.7.1 Augmented Reality

The possibility to track objects allows one to augment reality. AMIRE supports the use of
really complex 3d �les by using the OpenSceneGraph library. You can see a low polygon

4.7.2 Guided Work�ow Scenario Page 34

(a) AMIRE Simple Model (b) AMIRE Complex Model

Figure 4.9: AMIRE Augmented Reality

example of a bar in �gure 4.9(a) or a highly complex model in picture 4.9(b).

4.7.2 Guided Work�ow Scenario

The main goal of this scenario was to show what is possible to track the camera instead of
objects in the scene and to derive the position of objects in the scene. This all was implemented
into a work guiding project to illustrate the capabilities. For detailed information and use of
this demonstration refer to the modi�ed AMIRE version on the CD.

Page 35

5 Intrace

5.1 General Information

5.1.1 Raytracing

Intrace is a raytracer designed for the use of cpu resources on distributed networks. Raytrac-
ing's main advantage over usual computer graphics is a physical correct result in the scenes.
There are two fundamentally di�erent types of raytracers. The �rst is to track the light cast
from lightsources through a scene, to compute the output. This is the so called backward
raytracing. The InView raytracer implements a forward raytracing and follows the direction
of the ray starting at the camera. It is cast from the camera and is heading in the direction the
camera is pointed at. When it hits an object the ray is changed, depending on the material
of the surface. The changes on surfaces are described with material shaders, which simulate
a certain physical e�ect. This allows to compute re�ections, refractions and shades in an
incredibly realistic and exact way. It o�ers an easy way to implement refractions of glass,
shading and shadows as well as glare. Usually computer graphics is working on OpenGL or
DirectX. These are using pixel and vertex shaders which try to imitate physics by reducing
the complexity of the e�ect with approximation. Normal shaders are optimized for games and
try to produce good looking output at high framerates, which means they can not be realistic
at such a degree.
In short, ray tracing can be used to give a realistic impression of how objects will really look

without constructing them. This leads to a faster development and the possibility to change
construction and design in real time. Another very appealing idea is to use raytracing to �nd
negative e�ects of lights and glare to increase the usability. Calculating where re�ections show
up gives the chance to reduce disturbing glare on screens and re�ecting objects. Raytracing
reduces cost-intensive prototype construction and averts negative surprises.
Raytracing is based on the idea to follow the line of sight in a certain direction. Since the

eye has only a certain angle of sight the rays are only sent in a certain direction and through
a certain volume. To simpli�ce this and to �t the needs of a rectangular window the volume
is a pyramide frustum. The rays sent through the scene intersect with objects. These carry
shaders, small algorithms describing what in�uence the surface has on the ray and what color
it returns.

5.1.2 Tracking in Raytracing

Advantages

The �rst idea now was to implement tracking into the raytracer. A better immersion should
be gained by using the tracking as an input device. Raytracers with high resolution output
consumes a lot of CPU power so the output jerks often. This makes navigation very inaccurate
and tricky. A high frame rate solves this problem, but it might not always be possible to access
the needed resources and to combine 30 CPUs. To save expensive resources and still have a

5.1.3 Camera Page 36

(a) Example 1 (b) Example 2

Figure 5.1: Intrace Raytracing

good feedback when controling the camera, it is practical to track �ysticks, headmounted dis-
plays or other possible input devices. Tracking o�ers a very good feedback of what movement
is made which is increasing the usability.

5.1.3 Camera

As already mentioned, raytracing is a physical approach to computer graphics, so that e�ects
such as re�ections, refractions and shadows arise automatically. The camera object of a
raytracer just decides form which point the ray is cast and which direction if follows by
de�ning a volume, a frustum, which is traversed by the rays.

Eye

left right

top

bottom

distance

(a) Camera Frustum

Eye
lookUp

lookAt

lookSd

y

x

y = 0

y = ymax
x = 0 x = xmax

(x,y)

(b) Ray hitting the Viewplane

Figure 5.2: Raytracing Camera

The geometric concepts behind the raytracer camera are illustrated in �gure 5.2. The
camera is based on vectors to represent the rays. The eye vector is the starting point from

5.1.3 Camera Page 37

which the rays are cast. These rays penetrate the viewplane and traverse the scene, calculating
data when hitting objects by running their assigned shaders.

Camera Creation

In the Camera Creation the ray-independant vectors of the camera are created and scaled.
They are needed to compute the ray's direction and speci�c vectors in the Ray Creation section
(as described in chapter 5.1.3). The camera creation algorithm implements the frustum with
its direction and opening angle. The frustum and its composition with the basic vectors
are displayed in picture 5.2(a). The computed directional vectors that de�ne the camera
coordinate system are shown in �gure 5.2(b). This coordinate system is essential for a fast
ray creation routine.

1. Calculate the three coordinate vectors:

The ~lookUp and the ~lookAt vectors are given by the camera parameters. As seen in
5.2(b), the third vector, ~lookSd, is perpendicular to the other two vectors and can be
computed with a cross product:

~lookSd = ~lookAt× ~lookUp (5.1)

2. Scaling:

Distance scales the ~lookAt, hight the ~lookUp and width the ~lookSd vector:

~lookAt = distance · ~lookAt (5.2)

~lookUp = (top− bottom) · ~lookUp (5.3)

~lookSd = (left− right) · ~lookSd (5.4)

Ray Creation

Ray creation computes the direction vector from the eye towards every point on the viewplane.
The viewplane represents the window that is later shown on the screen. The geometric basics
are outlined in �gure 5.2(b). The x and y values in the viewplane specify the rays and range
in these intervals:

x ∈ [0, xmax] ∧ y ∈ [0, ymax] (5.5)

To compute the direction vector for the corresponding x and y coordinates, the following
equation is solved:

~dir = ~lookAt +
ymax− y

ymax
· ~lookUp +

xmax− x

xmax
· ~lookSd (5.6)

This function is called for each x,y-pair in the viewplane to determine the direction of the ray
that penetrates this point. The ray's source is always the same, the eye, which is computed
in the camera creation routine (5.1.3).

5.1.4 Tracking in the Camera Page 38

5.1.4 Tracking in the Camera

General Idea

The eye vector is the position and in the tracking it will simply be translated with the position
vector returned by the Generic Tracker. The ~lookAt vector in computer graphics initially looks
along the negative z axis and is rotated with the orientation the tracker computes. The same
occurs with the ~lookUp vector, initially looking along the positive y axis. The ~lookSd vector
is automatically rotated since it is computed with the vector product of the other two vectors
(see above in section 5.1.3).

Implementation

The Generic Tracker written for AMIRE is also portable to Linux. Intrace is closed source and
allows only the changing of small parts by dynamically loading them at runtime. It is possible
to insert di�erent material or camera shaders as shared objects. This permits a certain degree
of in�uence on the raytracer, but still blocks most serious modi�cations. The �rst approach to
implement the tracking was the idea to load a camera shader that uses the tracking as a shared
object. This failed since Intrace's enviroment did not allow the VRPN communication sockets
(introduced in chapter 2.4). To circumvent this problem a small socket based implementation
is o�ered that allows the control and the use of a tracker even in a closed environment such
as InView. The di�erent con�gurations of the generic component are described in detail in
section 3.1.2.
Accordingly, a camera shader was written implementing the theoretical basics of section

5.1.3, one which implements frustum and the coordinate vectors was written. The next step
was to implement the tracking. Using the tracked position is simply achieved by moving
the eye position to a di�erent location. This is done by translating the eye vector with
the computed o�set. The orientation the tracking returns can be integrated by rotating the
cameras coordinate system vectors. In the computer graphics standard case, the ~lookAt vector
is oriented along the negative ~Z-Axis, the ~lookUp vector points along the positive ~Y -Axis and
the ~lookSd is heading towards the positive ~X-Axis. The �rst two vectors are rotated with
trackings newly computed orientation and determine ~lookSd with their cross product.
The communication implementation is outlined in picture 5.3.

5.2 Stereoscopic Raytracing

5.2.1 Basic Idea

The easy approach to creating a tracked camera for InView led to a new thought: is it possible
to render a stereoscopic output for two eye positions?
The theoretical basics are taken from chapter 5.1.3 which is also illustrated in picture 5.2.

The idea is to duplicate the window size along the ~X-Axis and plot the normal output twice
in the new window. The left and right side of the new window will have di�erent sources and
orientations of the rays. The geometric concept of how to alter the camera is explained in
picture 5.4.
The InView traces the left half of the screen �rst, then changes the ray origin by translating

the eye a bit to the side and proceeds to render the second part. The resulting screen is a
single window with the scene the left eye sees on the left side and the right eye picture on the

5.2.1 Basic Idea Page 39

Intrace Raytracer

Tracked Camera Shader

Socket Com. Module

Tracked Server

Socket Com. Module

Generic Tracker

 Ethernet

Figure 5.3: Communication within the Tracked-Camera Shader

other. The vectors of the camera coordinate systems do not change. The direction is only
in�uenced by the new x and y values since they now have a di�erent range.

x ∈ left : [0.25 ∗ xmax, 0.75 ∗ xmax] ∧ y ∈ [0, ymax] (5.7)

To compute the direction vector for the corresponding x and y the following equation is solved:

~dir = ~lookAt +
ymax− y

ymax
· ~lookUp +

xmax− x

xmax
· ~lookSd (5.8)

Left Eye Right Eye

x = 0 x = 0x = xmax x = xmax
y = ymax

y = 0

Camera Position

Figure 5.4: Stereoscopic Raytracer Camera

The technical implementation to use this output as a stereo 3d scene is accomplished with
a desktop extension to �ll two screens. The result is not visible on a normal computer, since
it shows two screens with a slightly di�erent view. For the 3D view a Head Mounted Display
(HMD) was used that positions a small LCD screen infront of each eye.

5.2.2 Performance Page 40

Figure 5.5: Head Mounted Display (HMD) with Infrared Markers

Rendering the raytracer on full screen moves the left half of the rendered output to the left
screen of the HMD and places the right part on the other display side attached infront of the
right eye. This creates a stereoscopic picture for the user. The HMD is trackable with attached
infrared markers for use as input control device. That means when the user's head moves,
the raytracer camera is moving along. For better understanding of how a stereoscopic output
looks like, refer to picture 5.6. Since the distance between the eyes is small, the di�erences in
the picture between left and right are also slight.
This implementation of raytracing into a virtual reality environment o�ers engineers and

designers the chance of seeing the product beeing generated in a realistic and accurate way.

5.2.2 Performance

Although the newly designed camera makes a couple of new computations the CPU time per
pixel is less. The tracking routine is only called once per frame and therefore is not as time
critical as the pixel processing routines. Anyway, tracking only takes a few milliseconds. The
ray casting routine is now fully optimized and is about 20% faster than the original one, which
is also increasing the framerate by one �fth.
The stereoscopic view renders twice the number of pixels for the same window. This natu-

rally divides the usable screen size, so raytracing with stereo needs twice the resolution (screen
left+right) and, thus, still looses a lot of the original frame rate.
These results are average values, because it is di�cult to let the stereo and the mono camera

render exactly the same scene and situation.

5.2.2 Performance Page 41

Figure 5.6: Stereoscopic View of a Tornado Cockpit

Bibliography Page 42

Bibliography

[AMIRE, 2004] AMIRE (2004). Component writer's guide. http://www.amire.net/ .

[Gibson, 2004] Gibson, B. (2004). Numerical methods: Interpolation and curve �t-
ting. http://www.maths.usyd.edu.au:8000/u/billg/MATH2052/tutorials/
tutorial10/tutorial10.html .

[Kalies, 2003] Kalies, B. (2003). Notes on least-squares approximation. http://www.math.
fau.edu/kalies/mad3400/lab4.pdf .

[Kato and Billinghurst, 1999] Kato, H. and Billinghurst, M. (1999). Marker tracking and hmd
calibration for a video-based augmented reality conferencing system. Proceedings of the 2nd
International Workshop on Augmented Reality (IWAR 99).

[Klaus, 2004] Klaus (2004). ARTtrack & DTrack Manual. Advanced Realtime Tracking, www.
AR-Tracking.de , 1.22 edition.

[Kolb, 2002] Kolb, A. (2002). Geometrische Modellierung & Animation I.

[Miller, 1999] Miller, K. (1999). Creating and using dlls - using the dll (without an import li-
brary). http://www.flipcode.com/articles/article_creatingdlls.shtml .

[OpenSceneGraph, 2004] OpenSceneGraph (2004). Osg project documentation. http://
openscenegraph.org/osgwiki/pmwiki.php/Documentation/Documentation .

[Stricklc, 2001] Stricklc (2001). USB PC Video Camera Toucam XS. Phillips.

[Taylor and Yang, 2004a] Taylor, R. and Yang, R. (2001-2004a). Virtual reality peripheral
network. http://www.cs.unc.edu/Research/vrpn/ .

[Taylor and Yang, 2004b] Taylor, R. and Yang, R. (2001-2004b). Vrpn from the application's
point of view. http://www.cs.unc.edu/Research/vrpn/app_point_of_view.
html .

[Wormell, 2003] Wormell, D. (2003). Product Manual for use with InertiaCube2 Serial and

USB Interface. InterSense, www.isense.com .

http://www.amire.net/
http://www.maths.usyd.edu.au:8000/u/billg/MATH2052/tutorials/tutorial10/tutorial10.html
http://www.maths.usyd.edu.au:8000/u/billg/MATH2052/tutorials/tutorial10/tutorial10.html
http://www.math.fau.edu/kalies/mad3400/lab4.pdf
http://www.math.fau.edu/kalies/mad3400/lab4.pdf
www.AR-Tracking.de
www.AR-Tracking.de
http://www.flipcode.com/articles/article_creatingdlls.shtml
http://openscenegraph.org/osgwiki/pmwiki.php/Documentation/Documentation
http://openscenegraph.org/osgwiki/pmwiki.php/Documentation/Documentation
http://www.cs.unc.edu/Research/vrpn/
http://www.cs.unc.edu/Research/vrpn/app_point_of_view.html
http://www.cs.unc.edu/Research/vrpn/app_point_of_view.html
www.isense.com

	Content
	List of Figures
	Abstract
	Fundamentals
	Tracking and its Uses
	Tracking Systems
	Optical Tracking
	Infrared Marker Tracking
	Gyroscopic Tracking
	Magnetic Tracking

	Combination of Tracking Systems
	VRPN

	Generic Tracker
	General Specifications
	Multi-Threading
	System Independent
	Network Based

	Implemented Features
	Validation
	Interpolation
	Extrapolation

	Composition - The Client's Point Of View
	User Interface Functionality
	Front-End Implementation

	Composition - The Server's Point Of View
	Generic Tracker's Central Component
	Back-End Structure

	AMIRE
	The Execution Modes
	The Component System
	Component Structure
	Component Hierarchy
	Framework Components
	Exporting and Importing the Scene

	The State Machine
	The Component Writing Concept
	Component Types
	Inheritance

	Implementing the Tracking Component
	VRPN Tracking Component
	Registering new Components
	Performance and CPU Time of Components

	Using the Tracking
	Building up the Tracked Scenegraph
	Matching Video and Computer Graphics
	Tracking Performance

	Use Cases
	Augmented Reality
	Guided Workflow Scenario

	Intrace
	General Information
	Raytracing
	Tracking in Raytracing
	Camera
	Tracking in the Camera

	Stereoscopic Raytracing
	Basic Idea
	Performance

	Bibliography

