
Technische Universität München

Fakultät für Informatik
d d d d
ddd ddd ddd ddd

d d dd

Systementwicklungsprojekt

Run-time Development and Configuration of
Dynamic Service Networks

Markus Michael Geipel

Aufgabensteller: Prof. Bernd Brügge Ph.D. , Prof. Gudrun Klinker Ph. D.

Betreuer: Dipl.-Inf. Asa MacWilliams, Dipl.-Inf. Christian Sandor

Abgabedatum: Juni 2004

Erklärung

Ich versichere, dass ich diese Ausarbeitung des Systementwicklungsprojekts selbstständig
verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 29. Juni 2004 Markus Michael Geipel

Abstract

Development and configuration of dynamic service networks are core activities in the de-
velopment process of new DWARF applications. This development and configuration can
be tedious if done only with text editors and the console. The following work describes
how the monitoring tool DIVE has been restructured and extended, based on experience
gained during the CAR project, to allow ”Run-time Development and Configuration of
Dynamic Service Networks”. Furthermore the results will be discussed as well as possible
future work.

Contents

1 Introduction 3
1.1 Augmented Reality and Service Networks 3
1.2 Context . 3

1.2.1 The DWARF Framework . 3
1.2.2 The Monitoring Tool DIVE . 4
1.2.3 The CAR Project . 5

1.3 Problem Statement . 6

2 Requirements Analysis 7
2.1 Requirements . 7

2.1.1 Functional Requirements . 7
2.1.2 Nonfunctional Requirements . 8
2.1.3 Pseudo Requirements . 9

2.2 Use Case Models . 9
2.2.1 Scenarios . 11
2.2.2 Actors . 12
2.2.3 High Level Use Cases . 12
2.2.4 Low Level Use Cases . 15

2.3 Object Model . 23

3 System Design 25
3.1 Design Goals . 25
3.2 Subsystem Decompsition . 26

3.2.1 DWARF System Model . 27
3.2.2 Graph Visualization . 27
3.2.3 Application . 27
3.2.4 Debugging . 27

4 Object Design 28
4.1 Refactored Objects . 28

4.1.1 DwarfSystemModel and ServiceManagerSession 28
4.1.2 DIVEApp . 29
4.1.3 GraphView . 31

1

CONTENTS 2

4.2 The New Update Procedure . 31
4.2.1 Version Counting . 32
4.2.2 Multithreaded Update . 32

4.3 New Views . 34
4.3.1 List View . 34
4.3.2 Grouped Graph View . 34

4.4 Extensions . 34
4.4.1 Changing Predicates . 35
4.4.2 Changing Attributes . 35
4.4.3 Connection Establishment . 35
4.4.4 Starting Services . 36
4.4.5 Configuring Services . 36
4.4.6 Saving the XML Description . 37

4.5 Other Changes . 38
4.5.1 Hiding Services of the Middleware 38
4.5.2 Exporting of the Layout Source Code 38

5 Results 39
5.1 Update Speed Improvement . 39
5.2 Feedback . 42
5.3 Discussion . 44

6 Future Work 45
6.1 Near Future . 45

6.1.1 Refactoring of DwarfSystemModel 45
6.1.2 Multible Model Views . 45
6.1.3 Cleaning up the DIVEApplication Class 46
6.1.4 Polishing up the GUI . 46

6.2 Far Future . 46
6.2.1 DIVE in 3D? . 46
6.2.2 DIVE in AR? . 48

Bibliography 48

Chapter 1

Introduction

”The nets are vast and infinite.”
Masamune Shirow and Mamoru Oshii, Ghost in the Shell

1.1 Augmented Reality and Service Networks

One of the main issues of an augmented reality system is the processing of streams of data.
Cameras deliver video data, these have to be processed via image recognition to position
data, which is needed by the renderer. The renderer itself, aggregating all necessary data,
produces video data which is feed back to the user. To deal with these streams of data,
a system of dynamically cooperating services is an obious solution ??. The question now
is: How can such a network be built and configured? In order to formulate the concrete
problem statement, we will first consider the specific context of this project . . .

1.2 Context

1.2.1 The DWARF Framework

The DWARF Framework is the basis of this work. It consists of dynamically cooperating
services. A node in this network is called Service and forms the basic processing unit. An
edge is a data stream. Every Service may have Needs and Abilities. Needs are data sinks
and Abilities are data sources. Every data stream has a type: for example ”PoseData”.
The whole Service is described via a ServiceDescription. It holds the service name, infor-
mation about Needs and Abilities as well as annotating information in form of Attributes.
These Attributes can be used to control the connection behavior based on meta informa-
tion. CORBA based middleware manages the run-time connection of services. A so-called
Service Manager runs on each host in the DWARF network. It holds all Service Descrip-
tions of local Services and tries to connect them in coordination with the other Service
Managers on other hosts. The service network is thus: highly distributed, transparent and

3

CHAPTER 1. INTRODUCTION 4

Figure 1.1: A network of cooperating services established in the CAR-Project with the
DWARF-System and visualized via DIVE.

heterogeneous concerning operating system as well as programming language. It is essen-
tial to be familiar with this concept in order to follow the further discussion. Additional
information can be found in [1, 12]. [13] gives an example of application development in
DWARF.

1.2.2 The Monitoring Tool DIVE

As fascinating as the architecture of DWARF is, at the first glimpse, it seems to comprise
a problem for the developer. Daniel Pustka the developer of DIVE puts it this way:

Finding out what services are running on the various computers and how the
DWARF middleware has connected them currently is a tedious task. For that
purpose, a developer usually would open terminal windows that contain the
diagnostic output of all participating software components (the service manager
on the need’s side and the two services). As the output most of the time also
contains other data, finding the right information there is difficult. [16]

In order to use the full power of DWARF, this problem had to be solved. So this problem
statement became the starting point of DIVE, the DWARF Interactive Visualization En-
vironment, a kind of monitoring tool for DWARF. Via DIVE, the service network becomes
visible for the user, be it the developer or just an interested spectator: An automatically
laid out graph shows the network including Needs, Abilities and their Attributes. Further

CHAPTER 1. INTRODUCTION 5

more data streams can be bugged. But still the ’interactive’ ’I’ in DIVE is not supported
with functionality, although is was indended this way. This interaction, or better to say,
missing interaction leads us back to the initial question: How can such a network be built
and configured? And straight to a follow-up question: How do we know what interaction
is needed. The answer to the second question is be given by the CAR-Project . . .

1.2.3 The CAR Project

The CAR Project is an AR Project based on the DWARF System. The interesting points
are: First, CAR is concerned with authoring for AR, so the need to integrate an extended
version of DIVE is quite obvious. Second, CAR involves approximately ten persons of
different skill level concerning DWARF and AR, so it is the ideal test and inspiration
environment for extending DIVE. Figure 1.2 shows a part of the CAR-Setup: The image
in the upper right corner shows a tangible toy car that can be moved on a projected city
map. The big picture shows the simulated view through the windshield of this car.

Figure 1.2: The CAR-Setup.

So, what is CAR exactly about? Here is the official problem statement:

The goal of CAR is to create a collaboration platform for computer scientists
(UI programmers) and non-technicians (human factors, psychologists etc.). The
platform allows collaborative design of visualizations and interaction metaphors
to be used in the next-generation cars with Head-Up Displays. We focus on

CHAPTER 1. INTRODUCTION 6

two scenarios: parking assistance and a tourist guide. On the technical level
we try to incorporate techniques like: layout of information on multiple dis-
plays, active user interfaces based on user modelling with eye tracking and an
improved User Interface Controller with a rapid prototyping GUI. Additionally
a dynamically configurable set of filters (each having an appropriate GUI for
tuning parameters) is provided [. . .] [22]

1.3 Problem Statement

Before the beginning of my work, DIVE was a valuable monitoring tool for DWARF, but
only this, a monitoring tool. Service networks have to be configured and developed, not
only monitored. The process of configuring and developing service networks is tedious and
time consuming, like monitoring was before DIVE. Shells and Editors have to be used
and services or whole parts of the service network have to be restarted which makes the
feedback circle, ”try-change-try”, very sluggish and discouraging. So it is self-evident that
the ’I’ in DIVE has to be filled with meaning: Main properties of the service network have
to be changeable via DIVE during run-time. To accomplish this, information of the service
network has to be accessible in a more convenient way: faster and ergonomically. The
developement of DIVE by Daniel Pustka was done in the context of a ”System Entwicklungs
Projekt” (SEP). Also my work, the extention and further developement of DIVE, will be
done in the context of a SEP.

Chapter 2

Requirements Analysis

Any sufficiently advanced bug is indistinguishable from a feature.
Rich Kulawiec

2.1 Requirements

As this SEP is not a greenfield engineering project but a re-engineering project, most
requests are feature requests. But we will see that not only extensions are needed but also
architectural changes: for example a faster update procedure. The requirements for this
SEP came mainly from three sources:

1. Meetings of CAR-Probect members

2. Feature requests published by DWARF users in the Wiki-Web

3. Meetings with my advisors

As it was mentioned, the CAR Project was the main source of new feature ideas. All
the Features that are listed in the following section were of course considered necessary and
valuable in the beginning of the project. The success of each individual feature is analyzed
and discussed in Chapter 5.

2.1.1 Functional Requirements

Changing Attributes and Predicates Attributes and Predicates determine the con-
nection establishment made by the middleware. Furthermore attributes provide
meta-information that can be used by the application as well as by the developer.
Thus enabling DIVE to manipulate Attributes and Predicates is the main step to-
wards interactive configuration and development of service networks.

Connecting Services This may at first sound misleading: only the middleware connects
services and this only on the basis of the requested and provided data, the com-
munication protocol and the matching of Attributes and Predicates. So connecting

7

CHAPTER 2. REQUIREMENTS ANALYSIS 8

Services in reality only means to adjust the Attributes and Predicates in a way that
the requested connection may be established by the middleware. It is a kind of
automatism that saves the user time.

Starting Services The Developer should be able to access information about what Ser-
vices may be started and be enabled to start them on click.

Configuring Services A configuration beyond the change of Attributes and Predicates
is meant here. Some Services cannot be configured by just changing same Attributes
that can only host strings. Maybe a complete GUI is needed. There has to exist a
flexible extension mechanism to open custom configuration tools from within DIVE.
The first idea of a configuration of Services within DIVE was introduced by Daniel
Pustka [16].

Making Changes Persistent Manipulating, configuring and developing a service net-
work would be in vein, if no mechanism existed to make the changes persistent. So
there has to be a way to save the altered ServiceDescriptions for later use.

List View Also this idea was first found in Daniel Pustka’s original work [16]. The idea
is to provide an alternative view on the system, that does not suffer the complexity
of network graphs, a view in which Services can easily be found by name or even
sorted by name or same other criteria like a specific Attribute. Of course in the List
View the connection structure gets lost. So a List View can only be an addition to
the Graph View.

Grouped View In order to grasp the big picture, it makes sense to reduce the complex-
ity. This can be done by grouping Services based on one of their Attributes. For
example grouping them by hostname to see which host is heavily loaded or which
hosts communicate with each other.

UML like Graph View The Graph View should be compliant with the UML-Standard
[5]. Please note, that this requirement has not been implemented yet. Further
information can be found in section 6.

2.1.2 Nonfunctional Requirements

Performance The constraints concerning update speed in an interactive tool are much
stricter than for a monitoring tool. For effective work even a large DWARF network
should not lead to delays of more than approximately five seconds in average. As a
reference DWARF-Application we choose the CAR-Application. ??? Nr. services in
the CAR?

Usability The effectiveness of DIVE is not only determined by the functions it provides
but also who quick they can be accessed: Often used functions, like update, should
be accessible via one click on the GUI. The UI and visualization elements should be
supported in their expressiveness by icons and color schemes.

CHAPTER 2. REQUIREMENTS ANALYSIS 9

Reliability In order to work productively with DIVE, a certain stability should be guar-
anteed. It is hard to exactly define this ”certain” because there are no strict reliability
levels to separate acceptable stability from unacceptable stability. As a rule of thumb,
DIVE should run for several hours in productive work, without restart 1.

Supportability To make support and further changes and extensions easier, all new fea-
tures should by commented using doxigen [23].

2.1.3 Pseudo Requirements

Implementation As the new features are integrated in the already existing DIVE, the
same implementation constraints have to be considered. Mainly the compatibility
with the following software, according to [16]: Linux 2.4, GNU autotools (automake,
autoconf), OmniORB. New constraints are of course the usage of the same program-
ming language that was used for the already existing DIVE and the same windowing
toolkit: C++ [19], in combination with STL [18] and the windowing toolkit QT [21].
Last but not least, DIVE is part of DWARF and thus has to be incorporated in
the DWARF infrastructure: it has to be available in the CVS-repository of DWARF
and online documentation and discussion of DIVE has to take place on DWARF’s
Wiki-Web [4].

Interface The extensions should use the extension mechanism for DIVE that was intro-
duced by Daniel Pustka. Furthermore the interaction with the DWARF network has
used the interfaces declared by DWARF [4] and CORBA [8].

Packaging As the DWARF System is open source software, published under the General
Public Licence [6]. This is also true for DIVE. The distribution of DWARF is done
via a public CVS-Repository. Also DIVE has been published this way and will still
be published this way.

2.2 Use Case Models

How will the Features be constituted in the functional requirements list work for the user?
This will shown by the following scenarios and use cases. Figure 2.1 gives an overview of
the use cases.

1Taking into account the stability of certain past software products of a certain big software company,
this is already a commonly accepted standard.

CHAPTER 2. REQUIREMENTS ANALYSIS 10

Figure 2.1: Use case overview. Use cases that where added or changed are marked white.

CHAPTER 2. REQUIREMENTS ANALYSIS 11

2.2.1 Scenarios

Configuring the whole Service Network

The developer Maxi2 wants to write an application that shows a world in miniature (WIM)
to the end user of the AR-System as kind of navigation help. To do this he needs several
components that work together: A presentation service to render the WIM (Viewer), a
service that provides the position of the user (Tracker) and several services to filter the po-
sition data (Filters). First Maxi needs to start the Services either by using the shell, in case
he needs the console output or by using DIVE. Now that the Services are running, Maxi
changes the Attributes and Predicates of the Services to fit in his application. This also
includes connecting Services via DIVE. When everything is running, the essential part be-
gins: the fine-tuning. Every filter service has special features that need to be tuned. Maxi
uses DIVE to open a costum, filter specific configuration tool to adjust several parame-
ters. As soon as Maxi is happy with the configuration he makes the ServiceDescriptions
persistent by saving them to XML-files.

Configuring and monitoring a Service

The developer Fabi3 wants to build a new component similar to one that already exists.
He starts DIVE and selects the service, he wants to use as blueprint. He opens a dialog
with the XML-Description of this services and uses it to change it according to his ideas.
After this he saves the description and starts to implement the service. When the service
is ready to run Fabi used DIVE to monitor and fine tune its behavior. The color scheme
and a list view of the services help him to find his service among all the existing ones.
He edits the attributes and predicate checks whether they work fine with the rest of the
system. After Fabi is happy with his configuration he saves the service description to make
his work persistent.

Showing the System to an Audience

The CAR Team presents their work to an external audience. In order to explain the
software architecture, that drives their presentation, they use DIVE to show a graph view of
the service network they built. Now they want to make clear, that the system is distributed
over many hosts. To do this, they group the Services by their host name Attribute. Now
the audience sees the data flows between different hosts. To reduce complexity, the graph
view is colored to distinguish the status of Services and Services of the Middleware can be
hidden.

2The nickname of one of the CAR developers
3The nickname of another CAR developer

CHAPTER 2. REQUIREMENTS ANALYSIS 12

2.2.2 Actors

What Actors can be extracted from the scenarios? The Actors have mainly stayed the
same since the initial work, with one exception: The actor User has been differentiated.
We now have two different types of them . . .

User The User stands for the developer, that uses DIVE in his daily work. It is also the
one, who uses DIVE during presentations to explain the DWARF to Visitors. As
seen in the scenarios, we further distinguish two types. Please note that every time
the general term User is used, both of them are addressed.

Application Developer ApplicationDeveloper concentrates on the whole appli-
cation rather than on details of the components. His task is to combine and
configure components to form one application. The extensions designed for this
kind of user aim to support this kind of authoring work.

Component Developer He concentrates on the design of single components. He
does not need a high level manipulation of the whole system. Tuning single
components and configuring their interfaces is the focus of his work.

Visitor The to Visitors does not work with the DWARF directly. He rather wants to
get an overview and thus need information about DWARF in reduced complexity.

DWARFServiceManager While the first two Actors are of flesh and blood, the
DWARFServiceManager is not. The DWARFServiceManager is part of the DWARF
middleware. In the original work of Daniel Pustka, he only served to retrieve infor-
mation about the DWARF system. Now, his interface is also used to commit changes
in the running DWARF system.

2.2.3 High Level Use Cases

The following three use cases are high level use cases and directly derived from the scenarios.
The use cases ProgramStartup and ProgramShutdown that are included by them, have not
changed and are thus not repeated here. They can be found in [16].

Configure Services

Participating actors Initiated by ComponentDeveloper

Entry condition 1. The ComponentDeveloper starts DIVE (includes
ProgramStartup).

CHAPTER 2. REQUIREMENTS ANALYSIS 13

Flow of events 2. The ComponentDeveloper selects the Service that builds up
his component. (includes Select Service or Selecting a

Service via ListView)

3. He now starts to change them. This includes Changing the

Attributes and Change Predicates.

4. When the Service suits him, he makes the changes persistent.
This includes Make Changes Persistent

Exit condition 5. The User closes DIVE (includes ProgramShutdown).

Configure Application

Participating actors Initiated by ApplicationDeveloper

Entry condition 1. The ApplicationDeveloper starts DIVE (includes
ProgramStartup).

Flow of events 2. The ApplicationDeveloper uses the GraphView to get an
overview. This is supported by coloring and grouping the Ser-
vices.

3. The ApplicationDeveloper selects one of the Services of
her Application. (includes Select Service or Selecting a

Service via ListView)

4. She now performs changes. These may include:

• Change Attributes and Changing the Predicates.

• Connect Services

• Start Services

• Configure Services

5. When the Service suits her, she makes the changes persistent.
This includes Make Changes Persistent, Change Attributes

and Change Predicates.

6. Steps 3 and 5 may be performed as often as it takes to fully
configure the application.

Exit condition 7. The User closes DIVE (includes ProgramShutdown).

Demonstrate System Design

This use case describes how DIVE is used by a User in order to demonstrate a system
design to a Visitor. This is an extended Version of the original use case.

Participating actors Initiated by User

Visitor

CHAPTER 2. REQUIREMENTS ANALYSIS 14

Entry condition 1. The User starts DIVE (includes ProgramStartup).

Flow of events 2. The User explains the system design to a Visitor. To show
details about a service, the User clicks on a node in the diagram
(includes SelectService).

3. When the User has changed the system (e.g. by starting a new
service), DIVE automatically updates the graph to show the
changes (includes UpdateView).

4. to demonstrate the connections between different service groups,
the User enables the grouping option to group the services based
on one of their Attributes. (Figure 2.2 shows the grouped view
from the final implementation.)

5. The Visitor may formulate change or configuration requests
that can be conducted live by the User. This includes Configure
Application.

6. The User continues with steps 2 to 5.

Exit condition 7. The objectVisitor is happy with the knowledge gained dur-
ing the demonstration and the User closes DIVE (includes
ProgramShutdown).

Figure 2.2: The GUI of a grouped view from the final implementation.

CHAPTER 2. REQUIREMENTS ANALYSIS 15

2.2.4 Low Level Use Cases

The rest of the use cases describe system behavior of a lower level. Most of them are
included by the high level use cases. Furthermore, all of these use cases are based on the
assumption that the application DIVE is already running. They thus may include the use
case ProgramStartup and maybe ProgramShutdown if they are not seen in the context of
the high level use cases. For clarity’s sake these details are omitted here. The use cases
documented in [16] which are used here include . . .

1. Update View

2. Select Service. This use case will be reformulated in order to adapt to the new
use case Finding Services with the List View

3. Demonstrate System Design Also this use case will be reformulated in order to take
into account the new possibility to group Services in the GraphView

Select Service via the ListView

This use case describes how a user gets additional information about a service, in an
extended version of the original, as it was mentioned before. Figure 2.3 shows the ListView.

Participating actors Initiated by User

Entry condition 1. The application has started and the model is updated.

Flow of events 2. The User opens the ListView.

3. A list of all Services is displayed, grouped by attributes valu-
able for the decision making of the User.

4. The User browses the list. He may use the sorting feature to
speed up his search.

5. The User has found his Service may now decide whether to
select the Service itself of one of its Needs or Abilities.

Exit condition 6. A new PropertiesWindow becomes visible. It shows a list of all
attributes of the selected Service or its Needs or Abilities.

Special requirements There is always at most one PropertiesWindow visible. If there
already is one, it will be re-used for the new Service.

Change Attributes

This use case describes how DIVE is used by a User in order to change Attributes. Figure
2.4 shows the dialog of the implementation.

CHAPTER 2. REQUIREMENTS ANALYSIS 16

Figure 2.3: The GUI of the ListViewDialog from the final implementation. The user
may browse through the services. He is supported by the the sorting of services, based on
several attributes.

CHAPTER 2. REQUIREMENTS ANALYSIS 17

Figure 2.4: Dialog for changing Attributes as used in the final implementation.

CHAPTER 2. REQUIREMENTS ANALYSIS 18

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User selects an Ability of a Service (includes
SelectService and may also include Finding Services with

the List View) and chooses to edit Attributes.

Flow of events 2. The User is presented a list of all Attributes where read-only
Attributes are disabled

3. The User edits Attributes or creates new ones. This step may
repeat several times

4. The User confirms the changes

5. DIVE orders the DWARFServiceManager to commit the changes.

6. The view is updated (includes Update View) to reflect the
changes.

Exit condition 7. The User sees his changes in the newly updated
PropertiesDialog including the induced changes of the
system.

Change Predicates

This use case describes how DIVE is used by a User in order to change Predicates. Figure
2.5 shows the dialog of the implementation.

Figure 2.5: GUI of the extension ”Changing Predicates” as used in the final implementa-
tion.

CHAPTER 2. REQUIREMENTS ANALYSIS 19

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User selects Need of a Service (includes SelectService

and may also include Finding Services with the List

View) and chooses to edit Predicates.

Flow of events 2. The User is presented a Dialog with the Predicate

3. The User edits the Predicate

4. The User confirms the changes

5. DIVE orders the DWARFServiceManager to commit the changes.

6. The view is updated (includes Update View) to reflect the
changes.

Exit condition 7. The User sees his changes in the newly updated
PropertiesDialog including the induced changes of the
system.

Start Service

This use case describes how DIVE is used by a User in order to change start Services.

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User has found an inactive Service he wants to start. This
may include the use case Finding Services with the List

View

Flow of events 2. The User selects this Service (includes SelectService)

3. The User chooses the Extension to start Services

4. DIVE changes the ServiceDescription of this Service

in a way that activates the auto start mechanism of the
DWARFServiceManager

5. The DWARFServiceManager activates the Service.

6. The view is updated (includes Update View) to reflect the
changes.

Exit condition 7. The User sees the newly started Service.

Connect Services

This use case describes how DIVE is used by a User in order to connect the Need of a
Service to one or more Abilities of other Services. Figure 2.6 shows the dialog of the
implementation.

CHAPTER 2. REQUIREMENTS ANALYSIS 20

Figure 2.6: Dialog for connection establishment from the final implementation.

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User has found a Need of a Service, he wants to con-
nect. This may include the use case Finding Services with

the List View

CHAPTER 2. REQUIREMENTS ANALYSIS 21

Flow of events 2. The User selects this Service (includes SelectService)

3. The User chooses to connect Services

4. The User is presented a list of fitting Abilities he is able to
connect to

5. The User chooses the Ability he wants to connect to.

6. The User is asked to choose an attribute value the connection
is identified with. This attribute is used by the predicate to
reference the connection. It can be seen as a connection name.

7. The User enters a value or leaves finding a value to DIVE

8. DIVE asks the User whether existing connections with this Need
should be preserved. Fomally the question is whether to es-
tablish a 1:1 (connections not preserved) or a 1:n connection
(connections preserved).

9. The User decides or just uses the default.

10. The User confirms the dialog.

11. DIVE uses the interface of the DWARFServiceManager to change
the ServiceDescription of both Services

12. The view is updated (includes Update View)

Exit condition 13. The User sees the newly formed connection.

Make Changes Persistent

This use case describes how DIVE is used by a User in order to make his changes of the
Services persistent. Figure 2.7 shows the dialog of the implementation.

Participating actors Initiated by User

DWARFServiceManager

Entry condition 1. The User selects a Service (includes SelectService and may
also include Finding Services with the List View)

Flow of events 2. The User chooses the Extension to save ServiceDescriptions.

3. DIVE queries the ServiceDescriptions in XML from the
DWARFServiceManager.

4. The User is presented a dialog with the ServiceDescriptions

in XML.

5. The User may now change this ServiceDescriptions in XML
as he likes.

6. The User chooses to save it.

7. DIVE presents the User a SaveFileDialog.

8. The User chooses an appropriate name plus directory and con-
firms.

9. DIVE saves the ServiceDescriptions in XML to the choosen
file.

CHAPTER 2. REQUIREMENTS ANALYSIS 22

Figure 2.7: Dialog for saving the ServiceDescription in XML as used in the final imple-
mentation. The user may use this dialog to edit the XML code before saving it.

CHAPTER 2. REQUIREMENTS ANALYSIS 23

Exit condition 10. The User is able to see the newly created file in his favourite
file browser.

Configure Services

This use case describes how DIVE is used by the ApplicationDeveloper to configure
Services. Figure 2.8 shows the GUI of a sample Configurator.

Participating actors Initiated by ApplicationDeveloper

Entry condition 1. The ApplicationDeveloper selects an Ability of a Service

(includes SelectService and may also include Finding

Services with the List View) and chooses to use the Exten-
sion to configure this Service.

Flow of events 2. DIVE retrieves the appropriate Configurator to configure the
Service and activates it.

3. The ApplicationDeveloper makes the configuration changes.
(how changes are made is left to the particular Configurator)

Exit condition 4. the Configurator runs, is connected to the service and sends
configuration data.

2.3 Object Model

The objects that where identified during the requirements elicitation split into two groupes.
The following list also includes objects that were already found, documented and imple-
mented by Danial Pustka. So the list is a brief repetition as well as a brief summery of
newly found objects:

Entety Objects belonging to DIVE Most Entety Objects used by DWARF have a
counter part in DIVE. They are used to cache the data retrieved by the CORBA
references, these are italicized in the list. Additionally there are some Entety Objects
only used in DIVE. The most important ones are:

• DWARFSystemModel

• ServiceManagerSession

• DWARFServiceManager

• Service (Counterpart to the ServiceDescription in DWARF)

• Need

• Ability

CHAPTER 2. REQUIREMENTS ANALYSIS 24

Figure 2.8: A GUI of an example configurator used in the CAR-Project. This picture is
taken from [9] and shows a rich set of widgets to generate configuration data for the filter
services used in CAR.

• Attribute

Boundery Objects include all elements of the graphical user interface especially the
dialogs. The most important ones are:

• ListView and ListViewDialog

• GraphView

• PredicatesDialog

• AttributesDialog

• ConnectServiceDialog

• XMLDescriptionDialog

• SaveFileDialog

Chapter 3

System Design

”There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies.”
C. A. R. Hoare

We will now have a look at the system design of DIVE. The purpose of this chapter
is to give a rough overview. The points that changed compared to the former version of
DIVE will be discussed.

3.1 Design Goals

In the original work on DIVE three main design goals were stated. Which of them have
changed?

Reusable components It was stated: ”All components of DIVE should work indepen-
dently of each other, so they can be re-used easily in future projects. This also results
in a clean design with clear responsibilities.” But this goal was not fully achieved:
The class DIVEApp included code for updating The GraphView and dialogs. But ac-
cording to the object oriented paradigm it is the GraphView and the dialogs that are
responsible for their own update procedure. Thus this design goal is of unaltered
importance.

Extensibility This is a point that became even more important. In the original work it
mainly aimed towards the extension mechanism for the ”debuggers”. Now this is not
enough: It is the case, that parts of DIVE need to be extended, that nobody thought
about. While for the ”debugger” extensions it was the ideal decision to build an
extension mechanism, but it does not make sense, to build extension mechanisms for
everything. The best way to at least provide an easy way to further extend DIVE
is to enforce the first design goal: ”Re-usable components” with the point ”clear
responsibilities” stressed.

25

CHAPTER 3. SYSTEM DESIGN 26

Compatibility with DWARF This point has lost importance. Not that the compatibil-
ity is not needed anymore. The point is: This design goal has already been reached.
DIVE is perfectly integrated into the DWARF-System.

Are there any new design goals? Yes, at least one:

Focus on the user Now, that DIVE is already a fully functioning application. It is
neccessary to focus on the user. It is important to integrate extensions into DWARF,
that are requested by him, to make the user interface more convenient to use, and so
on. In the end it is the user who decides whether DIVE is successful or not. These
concerns are especially met by co-operating with the CAR-Team including a final
feedback which is discussed in chapter 5.

3.2 Subsystem Decompsition

We will now have a look at the major changes. A detailed view will be given in chapter 4.
Figure 3.1 shows the over all class model of DIVE. The changes are marked in gray. Also
the different subsystem can be seen. In order to discuss the changes, every subsystem will
be addressed separately.

Figure 3.1: The new Classmodel, changes are draws in gray. The ”...” is to be interpreted
as a placeholder for many more extentions that where to space consuming to be shown.

CHAPTER 3. SYSTEM DESIGN 27

3.2.1 DWARF System Model

The class model structure of this subsystem has undergone major changes, whereas the
interface for the outside has hardly changed: First of all the routine for updating has
changed fundamentally. The update is now iterative, so the model is not thrown away
for each update. The update is also multi-threaded to minimize the waiting time due to
network round trips for the Corba calls. Last but not least, version counting has been
introduced to further speed up the update.

Besides the update routine, a new way of querying services from the model has been
implemented: grouped querying. It is now possible to request the services grouped by one
of their attributes. This feature is used by the graph visualization to provide a grouped
view of the services.

3.2.2 Graph Visualization

In the graph visualization subsystem, a new abstraction layer has been introduced to
separate the general functionality of a graph view from the more specific one of a graph
view showing especially DWARF service networks. Furthermore a new way of displaying
service networks has been implemented: a grouped view.

3.2.3 Application

Changes in this subsystem were mainly kinds of refactoring: The size in lines of code of
the main application class has been reduced to enforce clarity and clean object oriented
design. Also some changes have been made concerning the graphical user interface (GUI).
A button bar makes it easier to access vital functions of DIVE and the new list view dialog
simplifies the search for specific services.

3.2.4 Debugging

The structure of this subsystem has not been changed, rather the existing extension mech-
anism has been used to plug in a variety of new features. These will be described in detail
in section 4.4. Most of these extensions directly address a specific use case, discussed in
2.2.

Chapter 4

Object Design

What is true for the same chapter in the predecessor work of Danial Pustka [16] is also
true for this chapter . . .

”This chapter is rather technical and intended for future developers who wish
to change or extend DIVE.”

Further more it is assumed that the reader is familiar with the predecessor work because
this chapter will only discuss changes and extensions and will not repeat the original object
design. We will start our discussion with a list of objects that had to be modified. It will
be explained how they have been changed and what the rational, this change is based
on, was. This is followed by an explanation of the new update procedure and the list of
extensions.

4.1 Refactored Objects

4.1.1 DwarfSystemModel and ServiceManagerSession

This object is used to retrieve and hold all information about the DWARF system. This
includes all cached information of all Services as well as CORBA references to the running
ServiceManagers. Two major changes had to be applied to the DwarfSystemModel:

Adding CORBA references of Services, Needs and Abilities

So, DwarfSystemModel includes a list of DWARFServices that is used to cache information
because CORBA calls are time consuming. There is only one problem: If you want to
change the system, interact with it, changing cached information will not do. You have to
get a CORBA reference to the Service, you want to manipulate. But where to get one?
The first possibility is finding the Service based on his ID and the host name. But that is
rather complicated: You have to get a connection to the responsible ServiceManager based
on the cached host name, then retrieve the Service based on its ID. Last but not least

28

CHAPTER 4. OBJECT DESIGN 29

the Need or Ability that is due for manipulation has to be retrieved based on its name.
The second possibility would be to copy all CORBA references that are used during the
update procedure and store them right away with the other information. Of course these
references may become invalid, but as this can happen all the time, code to check this has
also be included in the first mentioned approach.

Rationale: It was decided to use the second method because it yields better perfor-
mance and easier implementation of the extensions. The overhead of storing space can be
neglected.

Giving the responsibility for Services to ServiceManagerSession

In the original design, the list of Services was held in the DwarfSystemModel. This
may sound convenient because all services can easily be retrieved by one call on the
DwarfSystemModel, namely getService(string name). But this does not reflect real-
ity: In DWARF ServiceDescriptions are not held by a central instance. According to [10]
it is always a good idea to write code that reflects basic structure of the application domain
as close to reality as possible.

The ServiceDescriptions are held by the ServiceManagers which are represented by
the ServiceManagerSessions in DIVE. To preserve the comfort of uniformly querying
all DWARFService-objects from the central DwarfSystemModel, DwarfSystemModel holds
a central list with all the service ids as strings. When a DWARFService is queried, this
query is delegated to the responsible ServiceManagerSessions. The complex structure is
thus hidden behind a facade according to the facade-pattern [7]. All existing objects need
not to be changed.

Besides the higher correlation with the DWARF reality, moving the responsibility for
the ServiceDescriptions to the ServiceManagerSessions yields another advantage: It en-
ables multi-threaded updates because the ServiceManagerSessions are independent from
each other. We come back to this point in the section about the new update procedure,
section 4.2 on page 31.

4.1.2 DIVEApp

DIVEApp is the main class of DIVE and is derived from QT’s QMainWindow. It is intended to
host the glue and control logic of the application. Unfortunately the class also hosted code
to build up the GraphView and to update certain dialogs, code that should be encapsulated
in the corresponding classes. This is exactly what was done to reduce the size of DIVEApp.
But the process is not finished yet. In order to make DIVEApp really clean, even more
refactoring effort should be invested as we will see in the chapter about future work,
chapter 6 on page 45.

CHAPTER 4. OBJECT DESIGN 30

Figure 4.1: The new relationship (up) between DwarfSystemModel, ServiceManagerSession
and the Services compared to the old one (down).

CHAPTER 4. OBJECT DESIGN 31

4.1.3 GraphView

The above mentioned refactoring of DIVEApp made it necessary to restructure GraphView.
GraphView encapsulates all functionality to build network graphs. But the specific graph
used in DIVE, the graph that is built, based on the information in DWARFSystemModel was
constructed in DIVEApp. As I already mentioned this is not the right place to do so. But
a general class to build graphs like GraphView is not the right place either. I decided to
introduce a new class DWARFGraphView that takes responsibility for the construction of the
graph. DWARFGraphView is derived from GraphView as shown in Figure 4.2. This change
is also neccesary for another feature: A graph view with groups of services as nodes. The
grouped graph view is discussed in section 4.3 on page 34.

Figure 4.2: The new relationship (up) between DwarfSystemModel, ServiceManagerSession
and the Services compared to the old one (down).

4.2 The New Update Procedure

Analysis of the old update procedure yielded that not the exact amount of transmitted
data slows down the update, but the number of CORBA calls. So there are two ways to
speed things up:

1. Reducing the number of CORBA calls per update

2. Reducing the time, the application is stalled per CORBA call.

This insight resulted in two independent measures. But before the realization of these,
same other changes had to be made: The old update routine was built upon the ”throw
away and build new from scratch” principle. The simple this method was, it did not allow

CHAPTER 4. OBJECT DESIGN 32

iterative updates that pioneer the way to more sophisticated methods. The new iterative
update consists of three stages:

1. Iterate through our list of Services and mark all as ”not up to date”. The mark is
realized as a property of the class Service.

2. retrieve one Services from the ServiceManager. If the Service is already in our
list, update it, if not insert it. After this mark the Service as ”up to date”. Repeat
this until all Services are retrieved.

3. Iterate through our list of Services and delete all that are marked ”not up to date”.

Please note, that this iterative update will not yield a measurable increase in speed. As
mentioned before it only sets the stage for the following methods that do yield remarkable
higher speed.

4.2.1 Version Counting

Version counting aims to reduce the calls per update. The idea behind this, is the fact
that in between two updates the world does not change that much. Services that did not
change do not need to be retrieved. But how to know that one Service did not change?
The key to success is to introduce a version counter. This counter is maintained by the
Service Manager as an attribute of each service, and called ”changeCounter”. Only if the
newly queried version has changed, the Service has to be updated. The logic for version
checking is encapsulated in the method Update() of DWARFService. By doing this, the
procedure is transparent and no line has to be changed in any other class.

4.2.2 Multithreaded Update

The CORBA call used to retrieve data about services only return small amounts of data:
often only one CORBA reference. So most time during the call is consumed by the network
round trip time. In the old version of DIVE, the application was stalled during this time,
or, more exactly, the update thread. But as the whole application had to wait for the new
information the update thread provided, this did not make a difference. So the idea is
to use this time to initiate the next calls. As was mentioned in section 4.1.1 on page 28
the refactoring of the DwarfSystemModel helps us here. As the Services are held by the
ServiceManagerSessions, which are independent from each other, it is quite obvious to
make each ServiceManagerSessions a Thread by its own. This thread runs in an endless
loop. And this is what it does in this loop:

1. ServiceManagerSessions calls its own method Update().

2. Update() performs the action described at the beginning of section 4.2 on the page
before.

CHAPTER 4. OBJECT DESIGN 33

3. The central service list in DWARFSystemModel, containing only the ID-stings, is syn-
chronized in every step. Hazards are ruled out by semaphores.

4. Finally, ServiceManagerSessions waits for a QWaitCondition that is also known
to DWARFSystemModel.

5. After being woken up, the loop repeats.

The wake-up call is performed by the method Update() of DWARFSystemModel. Figure 4.3
shows an overview.

Figure 4.3: Sequence diagram of the multi-threaded update. Please note, that in this
example there are only two ServiceManagerSessions, but there may be arbitrarily many of
them.

All this has also a beneficial side effect: Formally the DIVEApp was responsible for
creating the update thread, which further complicated it. With the new approach DIVEApp

has only to call Update() upon his reference to the instance of DWARFSystemModel.

CHAPTER 4. OBJECT DESIGN 34

4.3 New Views

Two new views on the DWARFSystemModel have been added to DIVE: One of them is, the
grouped graph view is rather a feature, extending to the graph view. The second is a
complete new view and comes in dialog form.

4.3.1 List View

The list view shows the Services as a list, that can be sorted by different criteria. The
list view is realized as a QDialog containing a QListView. The GUI is shown in Fig-
ure 2.3 on page 16. Some QListViewItems do not contain service information, they serve
as grouping items. The Services can be grouped by their activation status or and their
auto-start property. All the logic is included in the class: ListViewDialog. An instance
of ListViewDialog is held by DIVEApp.

4.3.2 Grouped Graph View

In order to provide a grouping functionality, the class DWARFGraphView. A method for
laying out the standard graph already exists. So, the easiest way is to add a new method
that provides grouped layout. The grouping is done based on an attribute. Grouping
Details. Figure 2.2 on page 14 shows a screenshot of the grouped view with grouping
attribute ”host name”.

If more other layout strategies are planned to be implemented in the future, it would be
worth thinking about a strategy pattern here. In this case however with only two simple
methods and no intent to extend further, a strategy pattern is, in my opinion, not worth
the overhead.

4.4 Extensions

The extensions all use the extension mechanism that was introduced by Daniel Pustka.
Note that he used the notation ”Debugger” for extensions. As I disagree with this naming1,
I will stick to ”extension”. Only for the class names, I will adopt the expression ”Debugger”
for I wish to hold the class names consistant with their super classes. As it was shown in
Figure 3.1 on page 26, all extensions are derived from the objectDebuggerCreator.

So most of the extensions have two main parts that are also reflected in a separation
in different source files:

1. One or two classes that host the logic and implement the extension functionality.

2. A GUI in form of a QT-Dialog which is generated mainly via Trolltech’s GUI gener-
ator. (not all extensions use a GUI)

For all extensions the GUI is presented as Figure and the logic is described in written form.

1Most of the extensions do not satisfy the definition of a debugger. They are ”just” extensions.

CHAPTER 4. OBJECT DESIGN 35

4.4.1 Changing Predicates

This extension implements the use case Changing Predicates. Three objects are used,
the first two for the control, the last one for the GUI:

PredicatesDebuggerCreator . . . implements the DebuggerCreator Interface. The but-
ton for this debugger is only shown for Needs of Services, that have the Attribute

user name set to their login name.

PredicatesDebugger This class retrieves the CORBA reference to the Need and gets the
Predicate in form of a STL string. It creates the PredicatesDebuggerDialog]
and passes the string to it. The dialog is then presented to the User. If the User

confirms his changes, the CORBA reference is used to set the new Predicate.

PredicatesDebuggerDialog Figure 2.5 on page 18 shows the GUI.

4.4.2 Changing Attributes

This extension implements the use case Changing Attributes Three objects are used, the
first two for the control, the last for the GUI:

AttributesDebuggerCreator . . . implements the DebuggerCreator Interface. The but-
ton for this debugger is only shown for Abilities of Services, that have the
Attribute user name set to their login name.

AttributesDebugger This class retrieves the CORBA reference to the Ability and
gets the Attributes in form of a STL key-value-list of strings. It creates the
AttributesDebuggerDialog] and passes the list to it. After the User confirms
changes he made in the dialog, the CORBA reference is used to overwrite the
Attributes with the changes ones.

AttributesDebuggerDialog Figure 2.4 on page 17 shows the GUI. The dialog is respon-
sible for showing an editable list of the Attributes. Every Attribute, that matches
an entry in a black list of read-only Attributes is disabled. The User may now insert,
delete and modify the entries as he likes, until he cancels or confirms the dialog.

4.4.3 Connection Establishment

This extension implements the use case Connecting Services Three objects are used, the
first two for the control, the last for the GUI:

AttributesDebuggerCreator . . . implements the DebuggerCreator Interface. The but-
ton for this debugger is only shown for Needs of Services, that have the Attribute

user name set to their login name.

CHAPTER 4. OBJECT DESIGN 36

AttributesDebugger This class retrieves the CORBA reference to the Needs and gets
the DataType, the Need requires as well the connector type. It then iter-
ates through all the Abilitess of the running Services and adds all fitting
ones to a list. This list is passed to AttributesDebuggerDialog. There after
the AttributesDebuggerDialog is shown. When the User confirms the dialog,
AttributesDebugger adds the Attribute ”connectionName” to the chosen Ability

and sets it to the value entered by the User. If the User refused to enter one,
AttributesDebugger chooses one based on the Need and Ability names. The
Predicate of the Need is set to accept Abilities with the accordant connection
name. If preservation of existing connections is choosen, the new predicate is logi-
cally connected to the old one with an ”or”.

AttributesDebuggerDialog Figure 2.6 on page 20 shows the GUI. It presents the list of
matching Attributes as a pull down list. It also contains a field for the connection
name and a radio button to decide whether existing connection shall be preserved.
The User may cancel or confirm the dialog.

4.4.4 Starting Services

This extension implements the use case Starting Services:

StartDebugger . . . implements the DebuggerCreator Interface. The button for this de-
bugger is only shown for inactive Services that have Autostart set to true. To start
a Service, it performs the following steps:

1. Get the Need ”servicestarter” of DIVE and set its Predicate to
”(AND(serviceID=[SERVICEID])(abilityName=startMe))”, where [SERVI-
CEID] stands for the ID of the Service, that is to be started.

2. Add the Ability ”startMe” to this Service. Set its Connector to ”Null” and its
type to ”Start”.

3. The ServiceManager will now start the Service.

4.4.5 Configuring Services

This extension implements the use case Configuring Services Two objects are used for
control:

FilterConfigurationDebugger . . . implements the DebuggerCreator Interface. The but-
ton for this debugger is only shown for Services that have the Attribute user name
set to the User’s login name. Figure 4.4 on the next page shows the steps that are
performed to open a configuration service. Here is the explanation:

1. DIVE reads the ServiceDescription of the Service to be configured.

CHAPTER 4. OBJECT DESIGN 37

2. A new ServiceDescription is generated by DIVE. It is named ”Configurato-
rOf[SERVICENAME]”, where [SERVICENAME] is the name of the Service,
that is to be configured. The ServiceDescription gets the Attribute ”Pro-
vidingDataFor” set to [SERVICENAME]. ”StartOnDemand” is set to true,
”StopOnNoUse” to true and ”StartCommand” is set to the value of the ser-
vice’s ”configuratorExecutable”-attribute. For every Need with the Attribute

”ConfigurationNeed” set to true, a new Ability with the same name and
data type is added. The Predicate of the corresponding Need is set to
(AND(ProvidingDataFor=[SERVICENAME])(abilityName=[NEEDNAME]))”

3. The ServiceManager will now start the configuration service with this
ServiceDescription.

4. The configuration service has to read its own ServiceDescription and adjust
its user interfaces.

5. The configuration service can now use its connection to the service to be confi-
cured to send configuration data.

Figure 4.4: The steps that are performed to configure a service.

4.4.6 Saving the XML Description

This extension implements the use case Making Changes Persistent Two classes are
used:

GetXMLDescriptionDebugger . . . implements the DebuggerCreator Interface. The but-
ton for this debugger is shown for every Service. The GetXMLDescriptionDebugger
uses the CORBA reference of the selected DWARFService to query the

CHAPTER 4. OBJECT DESIGN 38

ServiceDescription in XML form. This string is then passed to the
GetXMLDescriptionDebuggerDialog.

GetXMLDescriptionDebuggerDialog This dialog just presents the passed string in a
QEditBox. By clicking the ”Save to File”-button, a save dialog appears. If it is
confirmed, the string is saved to a file with the extension ”xml”. Figure 2.7 on
page 22 shows the GUI.

4.5 Other Changes

In this section two smaller additions to DIVE will be discussed, that are not directly related
to the before mentioned objects.

4.5.1 Hiding Services of the Middleware

As DIVE is a monitoring tool that shows all services in the DWARF-Network, it also
shows the services of the middleware: mainly DIVE itself and the service managers. Most
users however are not interested in monitoring the middleware. So the filtering of Services
already implemented in DIVE has been extended to also filter out middleware services.
Three classes have been changed:

DIVEConfiguration The users choice whether to filter the middleware out or not is held
persistent in this class.

DWARFFilter The actual filtering is implemented here.

FilterForm This dialog has been extended to hold a checkbox for the user to make his
choice: to filter or not to filter.

4.5.2 Exporting of the Layout Source Code

In order to lay out the graph view of the services a layouter is used. So, DIVE produces
input code for the layouter, the layouter gives back position information which DIVE uses
for displaying the graph. But the layouter can also be used without DIVE: it can for
example produce png-images from layout source code. So, it is quite obvious that the
possibility of exporting the layout source code would help users to produce high quality
pictures of the service network, for example to be used in documentations and publications.
The implementation includes changes in two classes:

DIVEApp The pulldown menu has been extended to host a menu point named ”export dot”.

DotLayouter . . . has now a new method to do the exporting.

Chapter 5

Results

”I never made a mistake in my life; at least, never one that I couldn’t explain
away afterward.”
Rudyard Kipling

5.1 Update Speed Improvement

To measure the improvement of the update speed, I conducted a small experiment including
the following four hosts in the DWARF network:

atbruegge22 including 1 running DIVE, 1 runnning ServiceManager and 64 inactive ser-
vice descriptions.

atbruegge9 including 1 runnning ServiceManager, 10 running Services (Test-
StringSender) and 64 inactive service descriptions.

atbruegge10 including 1 runnning ServiceManager, 10 running Services (Test-
StringSender) and 64 inactive service descriptions.

atbruegge42 including 1 runnning ServiceManager, 10 running Services (Test-
StringSender) and 64 inactive service descriptions.

I modeled three different situations, that where used to test the update speed using the
old and the new update algorithm. The situations where tested in the following order:

Situation A atbruegge22 and atbruegge9

Situation B Situation A plus atbruegge42

Situation C Situation B plus atbruegge10

Figure 5.1 shows the measurements in seconds. The time is counted until all information
of all hosts is retrieved. But using the new algorithm, as soon as information retrieval of

39

CHAPTER 5. RESULTS 40

one of the hosts is completed, this information is presented to the user. So the user gets
information long before the update is completed. This is illustrated for situation C in
Figure 5.2. In fact some hosts are finished rather quickly while others take much more
time to be queried.

Figure 5.1: Update speed in seconds: The old versus the new Algorithm.

Please note that the figures are only snapshots of the systems performance. Many
disturbance variables make exact, reproducible measurements nearly impossible:

• The hosts DWARF runns on, use multiuser operating systems with lots of daemons
running in the background. As the response times are also depenent of the computing
power of every single host: the number of processes running the performance of the
operating system and so on.

• Furthermore, DWARF runs on computers, that are also used for other purposes:
office tasks, software development for example. So while making a measurement the
load of the hosts can change due to other users and thus intoduce errors.

• The hosts in the DWARF network have different hardware configurations and thus
different computing power. So the steps from situation A to sitiation C are not
linear1. The host atbruegge9 for example is one of the weakest in the network as can

1That’s why the situations are not numbered but tagged with letters.

CHAPTER 5. RESULTS 41

Figure 5.2: Update speed in seconds in situation C: This diagram shows how long it takes
for the data of the different hosts to arrive at DIVE.

CHAPTER 5. RESULTS 42

be clearly seen in Figure 5.2: Its response takes much longer than the ones of the
other hosts.

However the measurements clearly show the impact of the new update routine: It is sig-
nificantly faster than the old one.

5.2 Feedback

Before trying to give ideas and advice for future work, let us look back: what lessons have
been learned? More specific: what extensions or changes constituted in the requirements
list were valuable, useful or accepted by the users? As at the very end it is always the
end-user who decides about failure or success of a piece of software, it makes sense to ask
him. Here is a list of the main features developed during this SEP:

• Changing Predicates

• Changing Attributes

• Connecting Services

• Starting Services

• Configuring Services

• Saving the XML Description

• Higher Update Speed

• Color Scheme for Services

• List View

• Grouping of Services

The team members of CAR were asked to rate the value of each of them in the range
of 1 to 5, with 5 being the best mark. The CAR-Team consisted of students of different
experience levels: three wrote their diploma thesis and four made a SEP2. These two
different groups are nearly similar to the two user types identified in the requirements
analysis:

1. Component Developer (three Diploma thesis writers concentrating on specific parts
of the system)

2. Application Developer (four SEP-students concentrating on authoring)

2System-Entwicklungs-Projekt

CHAPTER 5. RESULTS 43

So the feedback is divided in these two parts. In addition to the rating of features I
discussed some aspects with CAR team members because only anonymous grades do not
tell the whole story.

Figure 5.3 shows the results of the ranking. I will now summarize some opinions that
where predominant in the discussions. Concerning the list view some SEP team members
told me that as update speed increased, they did not use or did not need it anymore.
Another point announced by some of the diploma thesis writers was that the list view
would be very useful but the tree structure of it collapsed after every update and thus
rendered this view more or less useless for their work. This problem is due to the simplistic
update routine of this dialog and could be an issue for future work.

The grouping feature for services was considered more or less lightweight for their work
by both groups. However, in the next section we will see that this feature is in fact very
useful for a special scenario.

By some team members I was told that the value of all features is rather minor compared
to the value of two improvements: Update speed and stability. In fact I was told that
without these they would not have used DIVE at all.

Figure 5.3: The results of the survey.

CHAPTER 5. RESULTS 44

5.3 Discussion

here are some interpretations of the feedback that may guide the development in the future:

component developers vs. application developers It can be clearly seen in the Fig-
ure, that component developers are mainly interested in changing attributes and
predicates. This is quite understandable as their main concern is the fine tuning of
only one or two services. However, application developers are interested in a great
variety of features. This picture is congruent with the assumptions made in the use
case specification.

the list view As I already mentioned, the value of the list view could be heavily improved
by an iterative update routine, that does not collapse the tree list after every update.
However, one should ask oneself whether it is worth the effort because due to higher
update speeds at least for the SEP-students the demand for a list view seemed to be
of decreasing importance.

starting services Starting services did not have the impact I expected them to have.
There are most probably two reasons for the non-acceptance of this extension: First,
this feature seems to contradict the DWARF principle. If a service is needed and the
auto-start ability is set, the service starts anyway. And if the auto-start ability is not
set, nobody seems to need it to be started. Personally I favour the second explanation:
During the discussions I got to know that also the auto-start ability is not really used
or better to say not accepted by the DWARF developers. So, an expansion that is
based on it is likely to share the same lot. But why is the auto-start ability not used?
Maybe the system becomes too dynamic for humans to control? Surely, answering
this question would be an interesting piece of psychological research.

grouping of services and color scheme According to the survey the color scheme and
the grouping function seem to be quite useless. But this is not the case. We omitted
one class of actors: the visitor. The two features turned out to be particularly useful
for presenting the system architecture to visitors; the first time during the final CAR-
presentation. This experience matches the planning, documented in the use cases,
especially the use case Demonstrate System Design.

effort versus effect One of the most demanding features to implement was surely the
new update routine. But as the survey clearly shows is was also the most valuable.
The features that were very usefull and at the same time easy to implement were
the ”change predicates” and ”change attributes” features. Finally a feature of less
relevance but at the same time even less effort to implement: the color scheme.

speed and stability As already mentioned, increasing update speed and increasing sta-
bility turned out to be the major keys to attain user acceptation. And this is surely
also true for the future. In my opinion, making DIVE more user friendly and conve-
nient is the predominant task of every future work on DIVE.

Chapter 6

Future Work

Vorhersagen sind sehr schwierig, insbesondere, wenn sie die Zukunft betreffen1.
Karl Valentin

6.1 Near Future

Now, let us have a look at features that might be incorporated in the next generation of
DIVE. We will first look at some refactoring measures and than discuss extensions.

6.1.1 Refactoring of DwarfSystemModel

The DwarfSystemModel is derived from the abstract class DWARFModelEnumerator.
Which should define an interface according to the Iterator/Enumerator Pattern known
from JAVA Collections [20], the STL [18] or Algorithm Design in general [14]. But there
has been a problem: The class DwarfSystemModel is used by many different Threads.
Now the Pattern has been corrupted to face this problem: The method to iterate one step
further was supplied with an argument denoting the current position. This is a design fault
because it destroys the initial benefit of the pattern: freeing the programmer of keeping
track of the current position. The DwarfSystemModel should never be an Iterator itself
but produce Iterators, one for each Thread. For the retrieval of Service groups, this has
already been done and the added argument is not used anymore. Now it is time to refactor
also the DwarfSystemModel for the retrieval of single Services and to eliminate the added
argument.

6.1.2 Multible Model Views

In the initial DIVE there has been only one View on the Model: the GraphView. This has
changed. Now a ListView was added and there will hopefully come more. The problem is
that the Model-View-Controller Pattern that was used was not implemented correctly: It

1Forecasts are very difficult, especially when they pertain to the future.

45

CHAPTER 6. FUTURE WORK 46

was only implemented to deal with one View, the GraphView. According to the ”pattern
litriture” [3, 7, 2] the MVC should be implemented to deal with many Views on one
Model. Hence there should be an interface for the View that is implemented by the
DWARFGraphView and the ListView. The Views could then be held in a convenient way
by the Application.

6.1.3 Cleaning up the DIVEApplication Class

Although the class DIVEApp has been freed of dislocated code there has to be done more.
Still some dialogs are misusing DIVEApp to host their update procedures. The aim should
be to decrease DIVEApp’s size drastically by outsourcing this kind of code. Also DIVEApp

is subject to changes that are induced by the suggestions in the previous section ”Thoughts
about the Model Views”.

6.1.4 Polishing up the GUI

Despite my efforts to make the UI more comfortable the use, it remains a typical ”Com-
puter Scientist’s UI”. A more fundamental approach than just beautifying some Dialogs is
necessary to make the GUI really ergonomic. Maybe an expert on User Interfaces should
be counselled. In my opinion a general design like Microsoft uses for its Visual Studio [15]
or IBM for its Eclipse [11] would already be a big step in the right direction: The ListView
and the PropertiesDialog should not float around but be integrated in the main window
area as Panels. Figure 6.1 shows the typical eclipse layout with panels surrounding the
main window area.

As Eclipse is a very extandible development environment, an integration of DIVE into
Eclipse is worth thinking of. The drawback: DIVE had to be completely reimplemented
because Eclipse requires extentions to be written in Sun Microsystem’s Java [20].

Another quite interesting point would be to adapt the graph layout to the UML-
Standard [2, 5]. However this would require major changes in the GraphView class.

6.2 Far Future

6.2.1 DIVE in 3D?

The nets in DWARF can become rather vast and the two dimensions of the screen soon
lead to a confusing graph. So the idea of a three-dimensional view on the network is quite
obvious. Maybe in combination with some stereo vision technique. Already Daniel Pustka
presented the idea of a 3-dimensional graph in his work [16]. Of course also the difficulties
are quite obvious: How to layout this graph? And, will a three-dimensional graph be really
more comprehensible?

CHAPTER 6. FUTURE WORK 47

Figure 6.1: The typical eclipse layout with panels surrounding the main window area.

CHAPTER 6. FUTURE WORK 48

6.2.2 DIVE in AR?

Another idea, that even goes one step further, is the idea of making DIVE an augmented
reality applicationitself. It has also been discussed in [17] in the context of dynamic la-
belling. The Services could be presented as augmentation in the real world. A tracking
service would, for example, be floating near the tracking cameras. But also in this approach
the difficulties are quite obvious: Where do services go that do not have a direct connection
to the real world, like filters? How can DIVE help to debug and build an AR-System if it
is built on this very System and does not run on an simple workstation?

Bibliography

[1] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner, Design of a Component–Based Augmented
Reality Framework, in Proceedings of the International Symposium on Augmented
Reality – ISAR 2001, New York, USA, 2001.

[2] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering:
Conquering Complex and Changing Systems, Prentice Hall, Upper Saddle River, NJ,
2000.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerfeld, and M. Stal, A
System of Patterns, Pattern-Oriented Software Architecture, Wiley, West Sussex,
England, 5th ed., 2000.

[4] Chair of Applied Software Engeneering, The DWARF Wiki-Web.
http://www.augmentedreality.de, March 2004.

[5] T. Erler, UML, Verlag Moderne Industrie Buch AG and KG, Landsberg, 2001.

[6] F. S. Foundation, GNU General Public License.
http://www.gnu.org/copyleft/gpl.html, June 1991. version 2.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison
Wesley Pub Co, 1995.

[8] O. M. Group, The Common Object Request Broker: Architecture and Specification.
http://www.omg.org/technology/documents/vault.htm#CORBA IIOP, July 1999.
CORBA 2.3 Specification.

[9] P. Hallama, M. Schwinger, S. Korbinian, and N. Doerfler, Entwicklung
eines dynamisch ueber Tools modifizierbaren Filternetzwerkes. //???, April 2004.

[10] A. Hunt and T. David, The Pragmatic Programmer, Addison Wesley Professional,
1999.

[11] IBM, IBM’s Eclipse Homepage. http://www.eclipse.org/, March 2004.

49

http://www.augmentedreality.de
http://www.gnu.org/copyleft/gpl.html
http://www.omg.org/technology/documents/vault.htm#CORBA_IIOP
//???
http://www.eclipse.org/

BIBLIOGRAPHY 50

[12] A. MacWilliams, DWARF – Using Ad-Hoc Services for Mobile Augmented Reality
Systems, Master’s thesis, Technische Universität München, Department of Computer
Science, Feb. 2000.

[13] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Bruegge, Herding Sheep: Live System Development for Distributed Augmented
Reality, in To appear in Proceedings of the International Symposium on Mixed and
Augmented Reality (ISMAR), Tokyo, Japan, 2003.

[14] G. Michael and T. Roberto, Algorithm Design, Wiley, Hoboken, USA,
international edition ed., 2002.

[15] Microsoft, Microsoft’s Visual Studio Homepage.
http://msdn.microsoft.com/vstudio, March 2004.

[16] D. Pustka, Visualizing Distributed Systems of Dynamically Cooperating Services.
//wwwbruegge.in.tum.de/pub/DWARF/OberSeminar/SEPPustka.pdf, March 2003.

[17] Riedl, Automatic Layout Of User Interface Widgets In Augmented Reality. //???,
Mai 2004.

[18] Silicon Graphics, Silicon Graphics’ STL Homepage.
http://www.sgi.com/tech/stl/, March 2004.

[19] B. Stroustrup, Die C++-Programmiersprache, Addison-Wesley-Longman, Bonn,
3rd ed., 1998.

[20] Sun Microsystems, Sun’s Java Homepage. http://java.sun.com, March 2004.

[21] Trolltech, Trolltech’s QT Homepage. http://www.trolltech.com/developer/,
March 2004.

[22] CAR Project Homepage. Technische Universität München, http://wwwbruegge.in.
tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectBar.

[23] van Heesch, Dimitri, The Doxygen Homepage. http://www.doxygen.org/,
March 2004.

http://msdn.microsoft.com/vstudio
//wwwbruegge.in.tum.de/pub/DWARF/ OberSeminar/SEPPustka.pdf
//???
http://www.sgi.com/tech/stl/
http://java.sun.com
http://www.trolltech.com/developer/
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectBar
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/ProjectBar
http://www.doxygen.org/

	Introduction
	Augmented Reality and Service Networks
	Context
	The DWARF Framework
	The Monitoring Tool DIVE
	The CAR Project

	Problem Statement

	Requirements Analysis
	Requirements
	Functional Requirements
	Nonfunctional Requirements
	Pseudo Requirements

	Use Case Models
	Scenarios
	Actors
	High Level Use Cases
	Low Level Use Cases

	Object Model

	System Design
	Design Goals
	Subsystem Decompsition
	DWARF System Model
	Graph Visualization
	Application
	Debugging

	Object Design
	Refactored Objects
	DwarfSystemModel and ServiceManagerSession
	DIVEApp
	GraphView

	The New Update Procedure
	Version Counting
	Multithreaded Update

	New Views
	List View
	Grouped Graph View

	Extensions
	Changing Predicates
	Changing Attributes
	Connection Establishment
	Starting Services
	Configuring Services
	Saving the XML Description

	Other Changes
	Hiding Services of the Middleware
	Exporting of the Layout Source Code

	Results
	Update Speed Improvement
	Feedback
	Discussion

	Future Work
	Near Future
	Refactoring of DwarfSystemModel
	Multible Model Views
	Cleaning up the DIVEApplication Class
	Polishing up the GUI

	Far Future
	DIVE in 3D?
	DIVE in AR?

	Bibliography

