

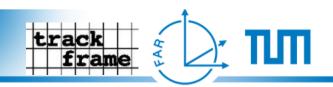

Parasitic radio frequency tracking Leveraging existing infrastructure for location aware computing

Manuel Huber

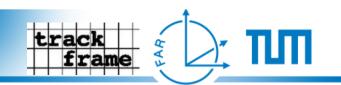
10. February 2008

Introduction

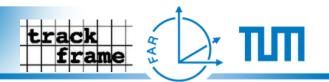
- Ubiquitious Tracking
 - How to track in the wild?
 - Isolated islands of high precision
 - Economic considerations <-> User desires
- Not all applications require high precision
 - Navigation
 - Initialization of primary sensor systems


Closer Look at the Environment

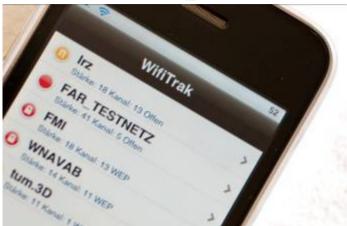
- Ubiquitous Tracking infrastructure
 - Economically infeasible
 - Coordination / Maintenance problems
- Continous growth of information society
 - Communication / Networking pervasive
 - Integrated into end-user gizmos
 - Diffusion of personal information displays and interaction
- Non-Tracking related infrastructure readily available

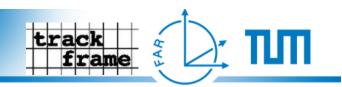

Parasitic Tracking

- General idea of Parasitic Tracking
 - Derive as much information as possible from exisiting infrastructure
 - No need for actual participation
 - No dedicated infrastructure
- Strategies
 - Exploits known characteristics of infrastructure
 - Semantic characteristics
 - Technical characteristics


Parasitic Tracking

- Each parasitic tracking method inherently unreliable
 - May not be available at all
 - Cannot be trusted
 - May be modified
- Parasitic Tracking
 - Needs to integrate different services
 - Dynamic reconfigurability mandatory
- All parasitic tracking techniques implemented as Ubitrack components
 - Management using trackman
 - Fusion of different methods
 - Propagation of location estimates


Radio Frequency tracking methods

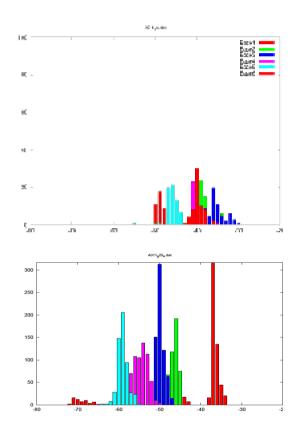

- Quality dependent on accessibility of exploitable characteristics
 - No direct support from off-the-shelf products
 - Hidden internal mechanisms may influence measurements
- Relevant characteristics currently hidden / distorted
- Software Defined Radio
 - Moves complexity from hardware to software
 - "Move the computer as close to the antenna as possible"
- Access to Over-the-Air data cheaper / Reception process more explicit
 - Better exploitability

1. Scenario: 802.11 Wifi Tracking

- Prime candidate for parasitic tracking
 - Fastest growing information infrastructure
 - Indoors reception of multiple base stations
- Different Approaches
 - Fingerprinting
 - Has to be learned for each environemnt
 - Ranging based on radio characteristics
 - Can be described abstract by non-application-specific data
- Characteristics
 - Received Signal Strength Indicator (RSSI)
 - Round-Trip-Time

802.11 Tracking: Testbed Setup

- Testbed scenario
 - Distributed several access points
 - User equipped with SDR 802.11 software receiver (USRPv1)
 - Comparison with 2 OTS wifi receivers
 - Registered with Tachymeter
 - Implemented / Managed with Trackman



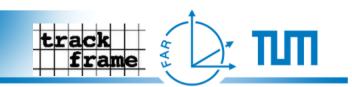
802.11 Tracking: Improvements / Results

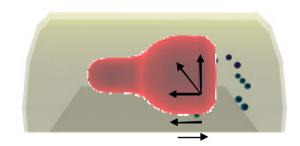
- Data gathered by SDR is more expressive
 - Signal strength much more consistent with distance
 - Higher update rate
 - More differentiated values
 - Better control against drowning of far away stations

Data excerpt	OTS RSSI	SDR Signal Strength
Station 1 (1m)	-41dBm	-35dBm
Station 3 (3m)	-37dBm	-51dBm
Station 6 (6m)	-49dBm	-70dBm

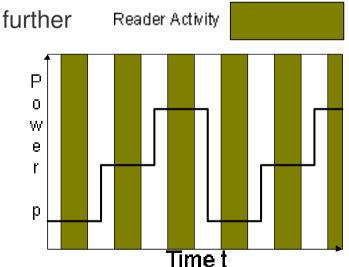
• Distance estimation based location with 0.5m accurracy in 5m x 15m setup

2. Scenario: RFID-Tracking


- Contactless / Long-Range Identification
 - Gains importance
 - e.g. Supply Chain / Inventory Management
- Complex assembled devices
 - Consist of many, individually tagged parts
 - Locations known from CAD/PDM/PLM
- Exploitable Infrastrcuture
 - RFID tag cloud
 - Location annotated tag database



RFID-Tracking: Basic Approach


- Test scenario: Aircraft cabin
 - Mockup equipped with long-range UHF tags
 - User equipped with RFID reader
 - Setup managed with Trackman
- Required: Radio communications characterization
 - Estimate reading volume of antenna
 - Profile tag response behavior
- Location process
 - Read tags
 - Fit antenna model to read tag cloud
 - Antenna model rotated with gyroscope orientation

RFID-Tracking: Results / Challenges

- No vendor support for device "misuse"
 - No RF data available
 - Binary detection decision
- Use power modulation to differentiate distances further
 - Actively cycle radio settings rapidly
 - Only possible due to SDR receiver
- Probabilistic distance estimation to each tag
- ML position estimation
- Initial results: Position error < 0.5m achievable

track frame

Outlook

- Many open problems
- More precise characterization of communications channels neccessary
 - Characterization of timing beaviour
 - Characterization of RFID communications
- Probabilistic position estimation
- Applicable to many tracking methodologies
 - GSM
 - Radio-Fingerprinting
 - Bluetooth
 - Etc.

Thank You