trackframe Tools:

trackman

Version: 1.00.00
Date: December 21, 2008

Funded by

‘\ Bayerische

Farschungsstiftung

Authors: Peter Keitler

Project partners:

EADS p y(.'[on

megmrmn

trackframe Tools

trackframe Tools

Table of Contents

T INSTAlIALION PrOCESS. et e e e e s e e e e e e e e e e e e e nnree s 3
L B o (=1 (= To 0 Lo OO P PP SRR PP 3
1.2 BasiC INSTAIIALION.eeiiie it e e e s rab et e e e s s aabb e e e e e e e eaanreeeeeeeee 3
1.3 Setup UDItrack BinAINgS.....c.cooueiiiieie ittt ettt st e at e e e e e e e e e e e e e e e nnereeeae 3
1.4 RUNNING TraCKIMAN.coiiiiiiiiei ettt e s e e s nb e e s e e e s aan e e e s nne e 4

P2 O 1Y =T T S 5
P2 B C 1= o] g IR 1= USSR 5
2.2 THEE VIBW...eeee ettt ettt ettt a et e ekttt e e h et e 4 s et e e b e et e e Rt e e e e n b et e e b e et e e be e e e e n e rern e e e e e e e e e s 5
P2 B o (0T 0 =T VN =To 11 (o SR PSPPPPP 5

3 FUNCHON@lity IN DETAIL.....coi e a e aas 7
3.1 SRG CONSITUCHION BASICS. .. .eeiutieieiiiieeiitee ettt et e e e e e e e eeeeeas 7
3.2 Data FIOW ANAIYSIS.....ueiiiiiiiiiiieee et e aaaaaaaas 7
3.3 DescCription Of OPErations.oueiii ittt e et n e e e aaaaeas 8

4 ConfIQUration SEHINGS. . .coi ittt e e e e e e e e e e e 13

5 Example Data FIOW CONSIIUCHION.uiiiiiiiie et e e e e e e e e nneeeeenes 15

trackframe Tools

1 Installation Process

trackman has been developed fully in Java for the sake of platform-independency. This facilitates the
use of trackman not only as an offline planning tool but also as an online data flow analysis tool in
combination with the open source Ubitrack library. This combination of Ubitrack and trackman should
run at least on Linux, MS Windows XP, MS Windows Vista and Mac OS X platforms.

1.1 Prerequisites

At least the following prerequisites have to be fulfilled in order to run trackman:
e A Java SE Runtime Environment (JRE or JDK) version 6.0 or higher has to be installed on
your machine. It can be downloaded from http://java.com/en/download/manual.jsp.
e A trackman binary package trackman_<version>.zip version 1.00.00 or higher.

In order to make use of the online data flow analysis functionality of trackman, additionally the follow-
ing software has to be installed in advance:
e Java3D version 1.5.1 or higher has to be installed into your JRE directory. It can be down-
loaded from https://java3d.dev.java.net/binary-builds.html.
e A current installation of the Ubitrack tracking library is needed. It can be obtained from
http://campar.in.tum.de/UbiTrack/WebHome.

1.2 Basic Installation

In order to install frackman on your computer, just unzip the frackman installation package in a direc-
tory of your choice. In case of updating from a previous version, you might want to copy the track-
man. conf file from your old installation directory in order to keep your current settings.

By default, trackman reads in the various pattern templates supported by the Ubitrack library from the
pattern template directory hierarchy at startup. They are located in the bin/ subdirectory of your
trackman installation directory. See chapter 4 for information about how to keep in sync with progress
in Ubitrack development. Installation is finished if you do not need the online data flow analysis func-
tionality.

1.3 Setup Ubitrack Bindings

This section can be skipped if the online data flow analysis functionality of trackman is not needed. To
instantiate Ubitrack data flows, trackman has to know about which Ubitrack installation to use. This is
accomplished by three configuration settings in your t rackman. conf file contained in the bin/ sub-
directory of your trackman installation.
® UbitrackComponentDirectory has to point to the directory containing all ubitrack data
flow components, probably a subdirectory of 1ib/ or bin/ in your ubitrack installation.
Windows example: UbitrackComponentsDirectory=C\:\\Dokumente und Einstel-
lungen\\keitler\\Desktop\\ubitrack\\bin\\ubitrack
® UbitrackWrapperDirectory has to point to the directory containing the ubitrack. jar
file.
Windows example: UbitrackWrapperDirectory=C\:\\Dokumente und Einstellun-
gen\\keitler\\Desktop\\ubitrack\\1lib
® UbitrackLibraryDirectory has to point to the directory which contains the 1ibubi-
track.so (Unix) / ubitrack.d11l (Windows) native library, probably either 1ib/ orbin/.
Windows example: UbitrackLibraryDirectory=C\:\\Dokumente und Einstellun-—
gen\\keitler\\Desktop\\ubitrack\\bin

An exemplary configuration file is included in the trackman installation package trackman_<ver-—
sion>.zip. See also chapter 4 for further information about these settings. Note that “\” characters
in Windows paths have to be quoted by a preceding, second “\” in trackman.conf.

http://java.com/en/download/manual.jsp
https://java3d.dev.java.net/binary-builds.html

trackframe Tools

Furthermore, the dynamic linker of your operating system has to be configured to load dynamic li-
braries (*.so, *.d11, ...) from this location, too. Depending on your platform, this is accomplished in
different ways:

e Linux: Either add the 1ib/ subdirectory of your Ubitrack installation to the
LD_LIBRARY_PATH environment variable or add this directory to your /etc/1d.so.conf
and run Idconfig as root.

e MS Windows XP / Vista: Add the 1ib/ subdirectory of your Ubitrack installation to the PATH
environment variable.

e Mac OS X: Add the 1ib/ subdirectory of your Ubitrack installation to the
DYLD_LIBRARY_PATH environment variable.

If the UbitrackLibraryDirectory property is unset, trackman will disable automatically all online
data flow functionality and configuration of your dynamic linker is not necessary. See also chapter 4
for further information about this configuration property.

1.4 Running trackman

trackman is started by changing to the bin/ subdirectory of your installation and typing

java —jar trackman_<version>. jar
in the console. Under MS Windows you should be able to start it by double-clicking on the jar-file if the
JRE has been installed correctly, though console output is sometimes useful, especially when using
Ubitrack for data flow instantiation.

trackframe Tools

2 Overview

The main view consists of a hierarchical tree view on the upper left hand side, the property editor on
the lower left hand side and the main graph view on the right hand side, as can be seen in Figure 1.

(8 trackman 0.24.00 [TUM Edition] - Demo

File

1+ SRG Editor | & DFN'\

) Database server
=43 Local SRGs
-5 Demo
<% Application Push Sink (Fose) (PosePushApplicationSink)
R.T. tracker pattern (ARTTracker)
tatic position (StaticPosition)
=il Pattern templates
°

A(node_1)

=52 Base patterns
[& ART Body File Reader (ArtBodvyfileReader)

enderer (X3D object path) (VirtualObject)

enderer (fov camera parameters) (Camera)

layer (Rotation) (RotationPlayer)

layer (Fose) (PoseFlayer)

pen Tracker interface pattern (OpenTracker)

est source (TestSource)

Application Push Source (Button) (ButtonPush&pplicationSource)
etworlk Source (Position) (MetworkSourcePosition)

Tracked Transforiation [60] [push]

AB [3DPosition] [pull]

ART
Tracker
(node_2

B (node_3)

= Commaon
Name Tracked Transformation
Description

= Antributes
Matching Edge

ART. body ID 1
ART. marker type 6D measurement tool

AR.T. body ID
Body ID used by AR T. (configured in DTrack software)

Range: [1,20]

Figure 1: trackman main view

2.1 Graph view

The graph view is currently showing the the SRG Editor tab which is used for editing SRGs. The
,DFN* tab (data flow network) which is currently inactive, is a pure visualization of the data flow result-
ing from the current SRG layout, as will be seen later.

2.2 Tree view

The tree view is always showing three root elements:

e The database server node contains projects available on the Ubitrack database server. Each
project has a unique ID by which it is represented in the tree and and contains SRGs belong-
ing to this project. The SRGs in turn are also represented by their ID and contain the SRG pat-
tern instances they consist of.

e The local SRGs node behaves very similar to the projects contained by the database server. It
is a pool for SRGs imported from files.

e The pattern templates node contains pattern templates that can be instantiated in your SRG
via drag and drop.

2.3 Property Editor

trackman always always keeps track of selection of objects in the tree view and graph view. It is possi-
ble to select an element or an object by a single left-click. If one object is selected, its properties are

trackframe Tools

shown in the property editor on the bottom left, along with a brief description. The properties shown in
grey are read-only and the properties shown in black can be edited.

It is also possible to select several objects simultaneously by holding the CTRL key down during the
left-click This will be needed by some of the graph editing actions later on. If several objects are se-
lected, the property editor will be deactivated.

trackframe Tools

3 Functionality in Detail

3.1 SRG Construction Basics

Pattern templates from the query patterns, full patterns and base patterns nodes in the tree view can
be added to the SRG currently shown in the SRG editor via a drag and drop operation. Once several
patterns have been added, they can be combined to construct the SRG. Mainly two input metaphors
are used for combining patterns.

e Node unification is used to combine at least two nodes belonging to the output sections of dif-
ferent patterns. In the SRG view, all participating nodes are replaced by a single newly intro-
duced node called supernode. All attributes of the unified nodes are aggregated at the supern-
ode and can henceforth be edited in the property editor by selecting the supernode. If two or
more unified nodes share the same attribute, it can henceforth be edited consistently for all of
them.

In UTQL requests, the supernode pattern is added to represent the supernode which serves
as container for attributes used by the unified nodes in order to avoid redundancy.

For UTQL responses, the supernode is not relevant and the attributes of the unified nodes are
set directly at the single nodes since during instantiation of a UTQL request, each driver or
data flow component only reads in its pattern instance.

e The process of assigning an edge contained in the input section of one pattern with an edge
contained in the output section of another pattern is called edge matching. This always implies
that the source and sink nodes of the input edge are also matched against their corresponding
nodes of the output edge.

In UTQL requests, this matching is expressed by predicates set accordingly by trackman.
in UTQL responses, this matching is expressed by setting pattern-, node- and edge |IDs appro-
priately.

Both metaphors for SRG construction are invoked via the context menu of the affected SRG nodes
and edges, as described in the following section.

For further information about the Ubiquitous Tracking Query Language (UTQL), please refer to the
technical report The Ubiquitous Tracking Query Language (UTQL) Version 1.0 which can be down-
loaded from http://campar.in.tum.de/twiki/pub/UbiTrack/WebHome/utql.pdf.

3.2 Data Flow Analysis

The data flow described by a certain SRG can be instantiated using the open source Ubitrack library
by invoking the instantiate data flow operation on the SRG. Please refer to 1.2 for information about
how to enable this functionality in frackman.

Data Flow Comparison

trackman supports relative comparison of alternative data flows against a selected reference data
flow. This functionality is currently implemented only for transformations with type pose.

To perform data flow comparison, register one “Application push sink (pose)” pattern (push sink) in the
SRG, along with one or several “Application pull sink (pose)” patterns (pull sink). If there are more than
one patterns of the former type, the first pattern instance will be used as reference.

Attention: This feature only yields reasonable results if the push and all the pull sinks are situated be-
tween the same two nodes and all point in the same direction.

Pushing Events into the Data Flow

If you want to push events into the data flow, e.g. in order to make measurements in user-defined po-
sitions, use an “Application push source (button)” pattern as event source in your SRG. Only one in-
stance of this pattern is supported at the moment and the first will be used in case of doubt.

trackframe Tools

Data Flow Instantiation

As a prerequisite for data flow instantiation, all mandatory attributes of all patterns/nodes/edges in the
SRG have to be set appropriately, an error message describing the problem will be generated other-
wise.

If data flow instantiation is successful, the Data flow dialog as shown in Figure 2 will be opened.

Dataflow = =] PS

‘ Measurement

PullsinkindirectRaw{pattern_23) - angle error ®

. ‘
- PullsinkindirectCorrected{pattern_24) - angle error ® Reset axes ‘
‘ Continue
Stop
[[] Enable axes
|

-2.0

-2.5

-3.0
=3.3

-4.0

error [*]

=45

-5.0

=5.5

-6.0

-6.5
-7.0

T
| I I I | I I I I |

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

time [ms] %10

PulisinkindirectRaw(pattern_23) - dist. x ®
J| PulisinkindirectCorrectec(pattern_24) - dist. x ¥

=)
T

error [m]
wn

S kMW
T T T T T

I L L L L I L L I I L
0.0 05 1.0 15 2.0 2.5 2.0 3.5 4.0 4.5 5.0 5.5
time [ms] ®10

Figure 2: trackman data flow interaction and analysis

The plot in the upper left shows the rotational error for each registered pull sink relative to the regis-
tered push sink, each pull sink having a distinct color. Analogously, the plot in the lower left shows the
translational error (euclidean distance) for each registered pull sink. The plots will remain empty if no
push / pull sinks have been registered, as described in above in this section.

Setting the Enable axes checkbox results in plotting the relative distances in each of the three coordi-
nate axes in addition.

The units of the coordinate axes adapt appropriately as tracking data is generated by the data flow
network. Pressing the Reset axes button throws away all existing data and thus adapts scaling of the
axes to the current state of the system.

Pressing the Measurement button pushes an event into the data flow as described above in this sec-
tion.

Pressing the Pause button temporarily freezes the data flow. It can be resumed by pressing the Con-
tinue button.

Pressing Stop stops and de-registers the data flow and also closes the Data flow dialog.

3.3 Description of Operations

Almost all program options are reached via the context menu of the elements shown in the tree and
graph views which will be displayed upon a single right-click on the element. For some actions, sev-

trackframe Tools

eral elements of a certain type have been selected and the semantics of the action depends on the se-
quence of selection.

The following table lists the available options for each element and gives a description of its seman-
tics.

Element in tree- or Available operations
graph view
Database Server e [load from database: Loads/refreshes all projects with SRGs

represented by proxy objects from database server. All current
contents of the Database Server tree (projects and SRGs) will
be removed first. A warning will be shown if this leads to data
loss.
This operation is also performed automatically on trackman
startup

e Save in database: Persists all projects an all SRG proxy ob-
jects and currently open SRGs to database. Database contents
having the same IDs will be updated but other database con-
tents will remain unchanged.

e New: Create a new project in memory. A unique ID will auto-
matically be suggested.

Database server — e New: Creates a new empty SRG in memory

<Project-Name> ® [oad:Imports an SRG from a file containing a UTQL request.
The ID of the SRG is either taken from the UTQL file if avail-
able or generated by trackman. SRGs are the default storage
format used by trackman.

e /mport data flow description: Imports a DFG from a file contain-
ing a UTQL response. The ID of the DFG is either taken from
the UTQL file if available or generated by trackman. DFGs are
needed for data flow instantiation using the Ubitrack library.

e [oad from database: As above but for single project only

e Save in database: As above but for single project only

e Delete: Deletes the project persistently.
Database server — e Save: Exports this SRG to a file in the UTQL request format
<Project-Name> - that can be used to register the SRG at the Ubitrack server.
<SRG-Name> This is the preferred storage format.

® Export data flow description: Exports this DFG to a file in the
UTQL response format that can be used for direct instantiation
by a Ubitrack tracking client. DFGs are complete and self-con-
tained SRGs. All mandatory pattern/node/edge attributes must
be set and no unmatched input nodes/edges are allowd.

e [oad from database: As above but for a single SRG only

e Save in database: As above but for a single SRG only

e Close: Closes an opened SRG removing it from trackman con-
text, leaving only a SRG proxy object in the tree. A warning will
be shown if this leads to data loss.

® Export SRG as PNG: Exports an screen shot of the SRG-Editor
tab in PNG-Format (portable network graphic).

® Export DFN as PNG: Exports an screenshot of the DFN tab in
PNG-Format (portable network graphic).

® Export SRG as SVG: Exports an screen shot of the SRG-Editor
tab in SVG-Format (scalable vector graphic).

e Instantiate data flow: Instantiates the data flow described by
this SRG using the Ubitrack library. See 3.2 for further informa-

trackframe Tools

Element in tree- or Available operations
graph view
tion.
e Delete: Removes this SRG from program context and deletes it
in database.

e Open in editor: Shows the SRG in the graph view
® Register SRG: Creates a UTQL request from the SRG and reg-
isters it at the configured Ubitrack server.

Local SRGs Same functionality as described for Database server - <Project-ID>
except that the operations load from database, save in database and
delete are not available

Local SRGs - Same functionality as described for Database server - <Project-ID> -
<SRG-Name> <SRG-ID> except that the operations load from database, save in data-
base and delete are not available.

Pattern templates e Import: Imports UTQL patterns from a file in UTQL template for-
mat and adds them to the pattern categories (base patterns,
full patterns and query patterns)

<Pattern-Name> e Delete: Removes this pattern from the SRG it belongs to after
having released all node/edge dependencies from other pat-
terns to this pattern as well as all node/edge dependencies
from this pattern to other patterns.

® [solate pattern: Isolates the pattern this node belongs to from
the current SRG. In other words, all node/edge dependencies
from input sections of other patterns to the output section of
this pattern as well as all node/edge dependencies from the in-
put section of this pattern to output sections other patterns will
be released and the pattern will be in the same state as directly
after dropping it into the SRG view.

® /solate pattern inputs: Same as isolate pattern, but acts only on
dependencies from the input section of this pattern to output
sections of other pattern. The operation is directed “upwards” in
the data flow graph (DFG).

® [solate pattern outputs: Same as isolate pattern, but acts only
on dependencies from the output sections of other patterns to
the input section of this pattern. The operation is directed
“downwards” in the DFG.

e Hide associated patterns: Hides all selected patterns. They will
not be displayed in the SRG view afterwards and they will ap-
pear in cursive in the tree view. See also show associated pat-
terns.

® Show associated patterns: Shows again the selected patterns
that were hidden before. See also hide associated patterns.

<Node-Name> o Delete: Performs the delete operation on the pattern this node
belongs to (see <Pattern-Names>). If the node is a supernode,
the operation will be invoked recursively on all dependent out-
put but not on matching input nodes, effectively deleting all pat-
terns with output nodes unified under this supernode.
e Match nodes: Depending on the type of the selected nodes,
performs one of the following two operations.
e Unifies two or more output nodes (blue ellipses) belong-
ing to different patterns, in other words, inserts one rep-
resentative supernode for the set of selected nodes.

10

trackframe Tools

Element in tree- or Available operations
graph view

The supernode will apparently be the last node selected
thus the selection sequence matters.
e Matches the selected input node (grey ellipse) against
the selected output node (blue ellipse).
Note: This operation can also be invoked by dragging and
dropping one node onto the other.

e [solate pattern: Performs the isolate pattern operation on the
pattern this node belongs to (see <Pattern-Name>).

e [solate pattern inputs: Performs the isolate pattern inputs oper-
ation on the pattern this node belongs to (see <Pattern-
Names>).

® [solate pattern outputs: Performs the isolate pattern outputs op-
eration on the pattern this node belongs to (see <Pattern-
Names>).

® Hide associated patterns: Hides all patterns which somehow
share this node. If the node is an input node, just the associ-
ated pattern will be hidden. If it is an output node, the pattern
associated with the output node and additionally all patterns
with matching input nodes will be hidden. For a supernode, the
operation will be applied to all dependent output nodes, with
the aforementioned consequences.

® Show associated patterns: Displays a list with hidden neighbor
patterns for re-showing them again. This is an alternative to to
invoke the same operation on <Pattern-Name>. See also hide
associated patterns.

e Deduce transformation: Automatically derives the desired
transformation between the two selected nodes by using the
Ubitrack pattern matcher. The target of the transformation has
to be selected last. Note that pattern templates have to be en-
abled for pattern matching by setting the “include in SRG auto-
completion” flag in the property editor.

<Edge-Name> e Delete: Performs the delete operation on the pattern this edge
belongs to (see <Pattern-Names>).

e Match edge: Establish a dependency relationship from an input
edge (dashed arrow) to an output edge (solid line) of another
pattern.

Note: There is currently no consistency check implemented in
trackman. Thus it is possible to match edges having different
transformation types and / or synchronisation modes. The user
has to take care of the SRG consistency itself. Corrupted SRGs
will fail to instantiate in the Ubitrack library.

e [solate pattern: Performs the isolate pattern operation on the
pattern this edge belongs to (see <Pattern-Name>).

e [solate pattern inputs: Performs the isolate pattern inputs oper-
ation on the pattern this edge belongs to (see <Pattern-
Names>).

® [solate pattern outputs: Performs the isolate pattern outputs op-
eration on the pattern this edge belongs to (see <Pattern-
Names>).

e Collapse all: Hide all edges parallel to this edge in one single
edge. This is useful to reduce clutter.

e Collapse this edge only: Hides this edge. Useful to reduce clut-

11

trackframe Tools

Element in tree- or
graph view

Available operations

ter.

Expand all: Shows all edges again that have been hidden by a
collapse all before.

Hide associated patterns: Hides the pattern containing the cho-
sen edge as well as all patterns with input edges matching
against the edge, in case it is an output edge.

Show associated patterns: Displays a list with hidden neighbor
patterns of the edge for re-showing them again. See also hide
associated patterns.

Deduce transformation: Automatically derives the desired
transformation as indicated by the selected input edge by using
the Ubitrack pattern matcher. Note that pattern templates have
to be enabled for pattern matching by setting the “include in
SRG auto-completion” flag in the property editor.

12

trackframe Tools

4 Configuration Settings

Some of the behaviour of trackman can be configured persistently in the t rackman. conf configura-

tion file which resides in the bin/ subdirectory of your frackman installation. If it is not available, it will
be created automatically by trackman when the program is closed. The following table lists all configu-
ration attributes that are currently available, along with a brief description.

Ensure to quote the backslash when specifying a path under MS Windows, e.g.
C:\\directory\\file

Attribute Description

LastDirectory In this attribute, trackman remembers the directory which has been
used last for importing or exporting SRGs. It will be provided as de-
fault path in subsequent import / export operations and be written
to trackman.conf whenever the program is closed.

PatternTemplateDirectory | Pattern templates are being maintained as part of Ubitrack since
they describe the sensor drivers and data flow components pro-
vided by the tracking framework. They represent the current set of
Ubitrack driver and data flow components along with their
node/edge structure and available pattern/node/edge properties
(including data types and their domain)

For convenience, the template files are also provided in the bin/
directory of your trackman installation and are used by default, so if
this attribute is not set, those versions are imported during startup.

In order to keep the patterns used by trackman in sync with your
Ubitrack installation, your might want to either overwrite those files
with the corresponding current versions lying in the
doc/utgl/patterns directory of your Ubitrack installation or set
this attribute to the doc/utgl/patterns directory of your Ubi-
track installation.

UbitrackLibraryDirectory |Let this attribute point to the directory which contains the 1ibubi-
track.so (Unix) / ubitrack.d11 (Windows) native library, as
well as the 1ibubitrack_java.so (Unix) / ubitrack_ja-
va.dll (Windows) native part of the Ubitrack wrapper, probably
either 1ib/ or bin/. This setting is mandatory for the online data
flow analysis functionality.

Windows example: UbitrackLibraryDirectory=C\:\\Doku-
mente und Einstellungen\\keitler\\Desktop\\ubi-
track\\bin

UbitrackWrapperDirectory |Has to point to the directory containing the ubitrack. jar file, the
java part of the Ubitrack wrapper.

Windows example: UbitrackWrapperDirectory=C\:\\Doku-
mente und Einstellungen\\keitler\\Desktop\\ubi-
track\\1lib

UbitrackComponentDirec— |Has to point to the directory containing all ubitrack data flow com-
tory ponents, probably a subdirectory of 1ib/ or bin/ in your ubitrack
installation. This setting is mandatory for the online data flow anal-
ysis functionality.

Windows example:

13

trackframe Tools

UbitrackComponentsDirectory=C\:\\Dokumente und
Einstellungen\\keitler\\Desktop\\ubitrack\\bin\\u
bitrack

UbitrackServerIp

IP address of the Ubitrack server, defaults to localhost.

UbitrackServerPort

UDP port of the Ubitrack server, defaults to 3000.

DatabaseServerIp IP address of the database server. No default value. Database
server cannot be used without this setting.

EnableTheme If set to t rue, the trackman theme will be played during startup.

LogLevel Configures the granularity and amount of log/error messages.

Stack traces for all caught exceptions are printed for values greater
orequal to 1.

14

trackframe Tools

5 Example Data Flow Construction

In the following, it will be shown step-by-step how to create a data flow description which can be in-
stantiated by the Ubitrack tracking framework. In this scenario, there are two tracking systems. The
stationary A.R.T. system tracks the marker of a car body as well as another marker being attached to
a second mobile A.R.T. system. The mobile system in turn is capable of tracking the marker attached
to a welding gun which is not visible for the stationary system. The welding application needs to know
the transformation between the car's marker and the welding gun's marker.

We start with trackman directly after having loaded it.

@ trackman - 0 X
Filz

-0 Database server
[Local SRGs
- Pattern templates

8 [E
= Commaon

Mame Local 5RGCs
Description

Right-click on Local SRGs and select New from the context menu. A new SRG named SRG_1 will ap-
pear below Local SRGs, rename it by selecting it in the tree view and changing its name in the prop-
erty editor.

Then, select Open in editor from its context menu. In the graph view, the SRG Editor and DFN tabs
appear.

15

@ trackman
Fila

trackframe Tools

[Database server
=4 Local SRCs

- @-f Demo

-1 Partern 1emplates

I+ SRG Editor | & DFN |

5B

= Commaon
Mame Damo
Description

Name
MName

We are now ready to add patterns, the atoms of our SRG, to the editor. For this purpose, expand the
Pattern templates element and its child named ,Base patterns®. Via drag and drop, instantiate the
»A.R.T. tracker pattern” thrice and the ,Static pose pattern“ once in our SRG. The patterns are added

at the location where you release the left mouse button.

16

@ trackman
Fila

trackframe Tools

=¥ Demo

] Static pose pattern
AR.T. tracker pattern
[ART. tracker pattarn
ART. tracker patern
Fattern templates

2 Query patterns

2 Full pattarns

2 Basa patterns

[virual object
Camera

Frame grabber

AR.T. finger tracker pattern
ART. tracker pattern
o] Static pose pattern

= _

I+ SRG Editor | & DFN |

ART. Tracker

Tracked Transformation

ART. Marker

ART. Tracker

Tracked Transformation

ART. Marker

ART. Marker

By selecting the single nodes and edges and changing their names in the property editor obtain the

following result.

17

@ trackman
Fila

trackframe Tools

1[5 Static pose pattern
AR.T. tracker pattern
AR.T tracker pattern
(3 ART. tracker pattern
Pattern templates

Query patterns

22 Full patterns

Base patterns

=) Virtual object
Camera

Frame grabber

AFR.T. tracker pattern
Static pose pattern
..[Z supernode pattern

AFRT. finger tracker pattern

[a s

I+ SRG Editor | & DFN |

S E

= Commaon

Description AB
Source A

Target E

= Antributes

Transformation type 6 DOF
Static orientation [0.0,
Synchronization mode Fush

Mame ART Marker to Mobile A .

Static position [0.0,0.0, 0.

ART. Tracker

Tracked Transformation

Car body

Tracked Transformation

Mobile
ART Marker

ART Marker to Mobilg

ART calibration

Mohile ART

Tracked Transformation

Welding
Gun Marker

Now, we are ready to construct the SRG from its atoms. Select the ,A.R.T. Tracker“ node, hold down
the CTRL key and select the ,Static ART” node. Then choose ,Unify nodes” from the context menu.
We do this since there are actually two entities that shall be tracked by the one stationary ART sys-

tem.

Do the same for ,A“ and ,Mobile ART Marker".
Do the same for ,B" and ,Mobile ART".

18

@ trackman
Fila

trackframe Tools

[Database server
=4 Local SRGs
244 Demo
i[5 Supermode pattern

Supernode pattern

[7] Supernode pattern
[Static pose pattern
-[3 ART. tracker pattern
+--[5%] ART. tracker pattern
[&5 ART. tracker pattern
Pattern templates
08 Query patterns
Full patterns

I+ SRG Editor | & DFN |

L]

42
= Common
Mame ART Marker to Mohile A .
Description AB
= Attributes
=
X 0.2824
\' 8]
z 1]
=
X 0
V' 1]
z 1]
W 1
X
¥ component of translation
Range: [,]

Trackgd Transformation

Car body

Tracked Transformation

Static
ART (node_1)

Mobile
ART
Merker (node

ART Marker to Mobile AET calibration

Mobile
ART (node_3)

Tracked Tfansformatio

Welding
Gun Marker

L

Select the edge named ,ART Marker to Mobile ART calibration“ and enter the transformation obtained

from calibration in the property editor as shown above.

Select the edges named ,Tracked transformation” one after the other and for each set the marker ID in
accordance to what has been configured in the A.R.T. DTrack software for that system.

Select the node named ,Static ART (node_1)" and set the UDP port in accordance to what has been
configured in DTrack.
Do the same for ,Mobile ART (node_3)".

We are now ready to construct the data flow upon this base SRG constructed so far. Expand the Full
patterns element in the tree and add the ,Pose push-pull multiplication” pattern to the editor.

19

trackframe Tools

@ trackman
Fila

. = || &¥SRGEditor| & DFN)

L [es Mo L LaLREn paenn

= £ Partern templates

2 Query patterns Trackw
22 Full patterns ART

Pose time-complamentary fusion Magker (nods

H Fose push inversion

ART (node_1)

Fose push-pull multiplication
Pose linear interpolation
Marker tracker

RFID tracker patern

a e Base patterns i
Virtual object 1
Camera

@ Frame grabber

ART Marker to Mobile ART calibration

Mobile
ART (node_3)

Trackgd Transformation

L]

Tracked Tfansformatio

Car body

Welding
Gun Marker

g e ;::;;:l | »

We need this data flow pattern to concatenate two consecutive edges in the SRG. It consists of three
grey nodes, two dashed arrows, and one solid arrow. The latter is added to the SRG at the location
where we match the grey nodes and dashed edges.

For this, select edge ,,A2B" followed by the edge , Tracked Transformation® starting at node ,Static

ART (node_1)" towards node ,Mobile ART Marker (node_2)“. Choose Match edges from the context
menu of the latter edge.

Do the same for ,B2C“ and ART Marker to Mobile ART calibration®.

You should end up with a new edge connecting node ,Static ART (node_1)" and ,Mobile ART
(node_3) as shown below.

20

@ trackman
Fila

trackframe Tools

L [es Mo L LaLREn paenn

= £ Partern templates
2% Query patterns
=22 Full patterns
[Pose time-complementary fusion
- Fose push inversion
- Fose push-pull multiplication
Pose linear interpolation
[Marker tracker
- [Z] RFID tracker panern
Efg Base patterns
Virtual object
Camera

[»]

I+ SRG Editor | & DFN |

Trackgd Transformation

Tracked Transformation -
Mobile
ART
Merker (node
Static
ART (node_1)

oncatenated ecge

ART Marker to Mobile AET calibration

Mobile
ART (node_3)

- -- Frame grabber

L]

Tracked Tfansformatio

Car body

Welding
Gun Marker

What we want to do next is concatenating the newly created ,Concatenated edge” with the rightmost
»1racked Transformation” in order to compute an edge between node ,Static ART (node_1)“ and node
~Welding Gun Marker“ because then we would have both, the car body and the welding gun marker in
the same coordinate system.

However, we cannot do this directly. First, add pattern template ,Pose linear interpolation” to the SRG
view and match its edge ,AB“ with the ,Concatenated edge” created in the last step.

Background: We need to do this because there are two tracking systems with independent synchro-
nization. The data flow algorithm behind the ,Pose push-pull multiplication pattern needs as input one
edge of type push and one of type pull (as for example the ,ART Marker to Mobile ART calibration®
edge used in matching the first full pattern above) in order to provide one concatenated edge of type
push. Push means that its updates are driven by the frame rate of the tracking system whereas pull
means that a current measurement can always be delivered upon request. The edges we want to con-
catenate are both of type push. The ,Pose linear interpolation” pattern needs an edge of type push
and provides and edge of type pull, and this is exactly what we need next.

21

@ trackman
Fila

trackframe Tools

L as A watRer paue
: AR.T. tracker pattern

= Pattern templates

Query patterns

Full patterns

2] Pose time-complementary fusion
Fose push inversion

Pose push-pull multiplication
E| Pose linear interpolation

2| Marker tracker

RFID tracker pattern

Base patterns

Vir‘tual object

I+ SRG Editor | & DFN |

Tracked Transformation -
Mobile
ART
Magker (nods
Static
ART (node_1

ART Marker to Mobile AET calibration

Mobile
ART (node_3

toncatenated ecge

¢c Transformation

Tracked Tfansformatio

Car body

Welding
Gun Marker

4|

:nl

Now, add pattern template ,Pose push-pull multiplication” to the editor and match ,A2B“ with ,AB inter-
polated” and ,B2C* with the rightmost , Tracked Transformation® edge.

22

trackframe Tools

@ trackman . =] s
Fila

. = || &¥SRGEditor| & DFN)

LU [Bs) A L UALREE A

ART. tracker pattern

AR.T tracker pattern Trackmﬂ
i Pattern templates ART
22 Query patterns Megker (nocs
2% Full patterns —
ART (node_1)

s Pose time-complementary fusion
Pose push inversion

@ Pose push-pull multiplication

%| Pose linear interpolation :
Marker tracker L]
RFID tracker pattern
02 Base patterns

: @ Virtual object

ART Marker to Mobile AET calibration

Mobile
ART (node_3)

toncatenated ecge

Trackgd Transformation

L]

Concaterigjed edge

Tracked Tfansformatio

Car body

alding
Cun
Magker (node

A

We have constructed a data flow description allowing us to bring both, the car body and the welding
gun into one coordinate system. This is what an application that wants to navigate the welding gun to
the next welding position on the car body, needs.

Our last step is to provide this information represented by two edges to the application.

For this, from ,Query patterns”, add the ,Application push sink” pattern twice. As you can see, this pat-
tern just consists of grey nodes and dashed edges, it does not add anything new to the SRG. Match
one ,Input edge* with the ,Tracked transformation” on the left and one with our ,Concatenated edge*
created before. The patterns are not visible any more in the editor after having been matched with the
SRG. However, they appear in the tree view and also on the DFN tab as shown below.

23

() trackman

trackframe Tools

File

=0 Database server
=142 Local SRGs
=L Demo
Application push sink
Application push sink
Pose push-pull multiplication
Pose linear interpolation
Fose push-pull multiplication
- Supernode pattern
[=-[3%] Supernade pattern
B[] Supernode patern
Static pose pattern
ART. tracker pattern
{5 ART. tracker pattern
B-[F% AR.T. tracker patern
~[21 Pattern templates
252 Query patterns
. %l Renderer
-3 Application push sink
[2] Fdoe aueny

=]

[«]

4 SRG Editor” & DFN|

Input edgg (Input)

Y

Application push sink (Applicatio

AZB (AB)

B2C (BC)

Input edge (Input)

Application push sink {(Applicatio

Green boxes represent data provided by sensors (base patterns), blue boxes represent data derived
by data flow components (full patterns) and orange boxes represent interfaces to the application

(query patterns).

In the context menu of our ,Demo* SRG (in tree view), choose Export UTQL data flow in order to cre-
ate a file containing a UTQL response that can be instantiated by the Ubitrack library. The AR-applica-
tion building on the Ubitrack library can access its data via the IDs of the two query patterns added

last.

24

	1Installation Process
	1.1Prerequisites
	1.2Basic Installation
	1.3Setup Ubitrack Bindings
	1.4Running trackman

	2Overview
	2.1Graph view
	2.2Tree view
	2.3Property Editor

	3Functionality in Detail
	3.1SRG Construction Basics
	3.2Data Flow Analysis
	3.3Description of Operations

	4Configuration Settings
	5Example Data Flow Construction

