
Process Systems Engineering

Synchronization of Batch Trajectories Using
Dynamic Time Warping

Athanassios Kassidas, John F. MacGregor, and Paul A. Taylor
Dept. of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada

The application of dynamic time warping (DTW) to the analysis and monitoring of
batch processes is presented. This dynamic-programming-based technique has been used
in the area of speech recognition for the recognition of isolated and connected words.
DTW has the ability to synchronize two trajectories by appropriately translating, expand-
ing, and contracting localized segments within both trajectories to achieve a minimum
distance between the trajectories. Batch processes often are characterized by unsynchro-
nized trajectories, due to the presence of batch-to-batch disturbances and the existence
of physical constraints. To compare these batch histories and apply statistical analysis
one needs to reconcile the timing differences among these trajectories. This can be
achieved using DTW with only a minimal amount of process knowledge. The combina-
tion of DTW and a monitoring method based on Multiway PCA/PLS is used for both
off-line and on-line implementation. Data fiom an industrial polymerization reactor are
used to illustrate the implementation and the performance of this method.

Introduction
Batch processes play an important role in the production

of high added value products, such as specialty polymers,
pharmaceuticals, and biochemical materials. Analysis and
monitoring of the operation of these processes is crucial to
the production of consistent, good quality products. More-
over, products from batch processes are often manufactured
in a series of steps; early detection of a bad product at any of
these steps will save energy, raw material, and plant capacity.
Early detection will also make it easier to assign a cause to
the fault and modify the process to eliminate the cause. Fur-
thermore, there may be a chance of compensating for the
fault with an appropriate control strategy if the monitoring
scheme is implemented on-line.

Product quality measurements in batch processes are ob-
tained infrequently; they are often obtained after the product
has been shipped to the customer, or after it has been for-
warded to the next processing step. Fortunately, a multitude
of process measurements, such as temperatures, pressures,
flow rates, are readily available during the process of a batch.
In view of this fact, MacGregor and Nomikos (1992) and
Nomikos and MacGregor (1994, 1995a, b) proposed a method

Correspondence concerning this article should be addressed lo J . F. MacGregor.
Current address of A. Kassidas: Dofasco lnc., Process Automation Technology,

DQC-I, Hamilton, ON, L8N 355, Canada.

for monitoring batch processes using these readily measured
process variables. Their method is based on multiway princi-
pal component analysis (MPCA) and multiway projection to
latent structures (MPLS), which are extensions of PCA and
PLS to handle three-dimensional matrices. The method es-
sentially builds a statistical model for the deviations of the
process variables about their average trajectories using data
only from good quality batches. Then, it compares the varia-
tion of a new batch about the average trajectory with the
MPCA model; any deviation that cannot be statistically at-
tributed to the common process variation indicates that the
new batch is different from the good quality batches. When
quality measurements are available, one can use MPLS to
monitor the progress of the batch and predict its final quality
(Nomikos and MacGregor, 1995b).

One strong assumption of the methods proposed by
Nomikos and MacGregor is that all batches have equal dura-
tion and are synchronized. However, there are many situa-
tions in which the total time duration of the batches and/or
the duration of various stages within the batches are not the
same. Examples include polymerization reactors where there
can be batch-to-batch variations in impurities and in the ini-
tial charges of the recipe components. Different heat re-
moval capabilities arising from seasonal changes in cooling
water temperatures will also influence the rate at which the

864 April 1998 Vol. 44, No. 4 AIChE Journal

reactions can proceed. Furthermore, in those batch proc-
esses, which are not fully automated, some stages are left to
the discretion of an operator and quite large variations in the
variable trajectories can occur. In all these cases, one has to
synchronize the trajectories before the batch histories can be
compared and any analysis is performed.

To handle the problem of synchronization, Nomikos and

to perform the synchronization of the trajectories. The pro-
posed method is then applied to synchronize 31 batch trajec-
tories from an industrial emulsion polymerization process. Fi-
nally, it is shown how DTW can be combined with the moni-
toring scheme of Nomikos and MacGregor (1994, 1995b) for
both off-line and on-line batch monitoring.

MacGregor (1994) proposed the use of an indicator variable
(the approach has been applied by Kourti et al. (1996) to an
industrial batch polymerization process). According to their
proposal, the trajectories are plotted not with respect to time,
but with respect to another variable that must be strictly
monotonic, has the same starting and ending values for all
batches, and is not noisy. Then, a constant increment is se-
lected and one progresses along the indicator variable. Syn-
chronization is performed by retaining the points in the tra-
jectories that have the same values of the indicator variable.
The indicator variable approach assumes that such a variable
exists and that process knowledge can be used to determine
it. However, there may not exist a single indicator variable
that satisfies the above requirements, or if there are several
possibilities, i t may not be obvious which is the best. The
problem of batch trajectories of unequal duration has also
been encountered by Lakshminarayanan et al. (1996); their
solution is to extend all the trajectories to match the duration
of the longest trajectory by simply padding the shorter trajec-
tories with artificial measurements, which are all equal to
their last measurement. By doing that, they implicitly assume
that all the timing differences between trajectories appear at
the last stage of the batch process. This is clearly a strong
assumption, which is not true in most cases (including the
case study presented in this article).

The presence of unsynchronized trajectories is a common
problem in thc area of speech recognition and particularly in
isolated word recognition (Myers et al., 1980; O’Shaughnessy,
1986; Silverman and Morgan, 1990). The same word can be
uttered with different duration and intensity, in different en-
vironments, and by different speakers; yet the speech recog-
nition system should be able to classify it correctly. A major
part of speech recognition research has concentrated on the
type of features to be extracted from speech signals. How-
ever, this research is not directly applicable to applications in
chemical processes because speech signals are nonstationary
high frequency signals and, as such, are quite different from
the outputs produced by a chemical process.

Even when the correct features are extracted, the problem
of a flexible pattern-matching scheme still remains. Dynamic
time warping (DTW) is such a flexible, deterministic, pattern
matching scheme which works with pairs of patterns and is
able to locally translate, compress, and expand the patterns
so that similar features within the patterns are matched.
Gollmer and Postens (1995) used this localized nonlinear syn-
chronization capability of DTW to detect the onset of differ-
ent growth phases or failures in a batch fermentation proc-
ess. Similarly, DTW could provide an elegant solution to the
problem of synchronization of batch trajectories.

In this article, the basic theory of the various DTW algo-
rithms is presented, along with details for their implementa-
tion. An iterative method based on DTW is presented for the
synchronization of batch trajectories. The method is multi-
variate in the sense that it does not rely on a single variable

Theory of Dynamic Time Warping
The material of this section is a compilation of the theory

of DTW that appears in numerous articles in the area of
speech recognition. A compact, yet detailed, description is
presented in this section with the intention that DTW is to
be understood and applied by the unfamiliar reader. More-
over, the application of DTW presented in this article re-
quires several modifications of the standard algorithms, which
would be difficult to explain had the DTW theory not been
previously described.

Introduction
Let T and R denote the multivariate trajectories of two

batches; both are matrices of dimension t X N and r X N ,
respectively, where t and r are the number of observations
and N is the number of measured variables. As discussed in
the introduction, most likely t and r will not be equal. One
way to make them equal would be to create artificial points’
by linear interpolation or extrapolation in one of the two tra-
jectories so that the modified trajectories will contain exactly
the same number of points. However, this may not be a good
approach since the timing differences between the two
batches will probably be local and not global. In such a case,
linear global compression or expansion of the time scales of
either trajectory will not reconcile their timing differences.
Furthermore, with more than two trajectories, it is not obvi-
ous how to extrapolate or interpolate periods in a meaningful
way. Finally, even if the number of observations is the same
for both batches (that is t = r) , their trajectories may not be
synchronized. In either case, if one applies the batch analysis
and monitoring scheme of Nomikos and MacGregor (1994) to
a set of unsynchronized batch trajectories, unnecessary varia-
tion will be included in the statistical model and the resulting
statistical tests will not be as sharp in detecting faulty batches
(that is, a larger probability for Type I1 Error).

Thus, a method is required which will synchronize similar
characteristics in the two trajectories. DTW is such a method
(Itakura, 1975; Sakoe and Chiba, 1978). DTW uses the prin-
ciple of dynamic programming to minimize a dissimilarity
measure (a distance) between the two trajectories. DTW non-
linearly warps the two trajectories in such a way that similar
events are aligned and a minimum distance between them is
obtained. It will shift some feature vectors in time, compress
some and/or expand others so that a minimum distance is
achieved (Nadler and Smith, 1993). Readers who are inter-
ested only in seeing the application of DTW to synchronize
and monitor batch processes and not in the details of the
theory and its implementation can proceed directly in the case
studies section.

Let i and j denote the time index of the T and R trajecto-
ries, respectively. DTW will find a sequence F* of K points
on a t X r grid

AIChE Journal April 1998 Vol. 44, No. 4 865

F* = { ~ (1) , ~ (2) , . . . , c (k) , . . . , c (~) } , m a x (t , r) i K ~t + r but it will tend to expand or compress more one trajectory
(1) relative to the other.

For both tasks, the two trajectories are not considered
equivalent in an asymmetric DTW algorithm. Hence, if their
roles are interchanged, a different optimal path and a differ-
ent minimum distance will be obtained. The most common
asymmetric DTW algorithms map the time index of the tra- (2)

jectory placed on the horizontal &is (that is, the T trajectory
in our discussion) onto the time index of the one placed on

is in fact the time index of the trajec-
and the optimal path

and each point c (k) is an ordered pair indicating a position

in the following paragraphs), this sequence can be viewed as
defining a path on the grid that optimally matches each vec-
tor in both trajectories so that a normalized total distance
between them is minimized. Figure 1 (following O’Shaugh-

in the grid. For a symmetric DTW (to be the axis (that is, the R trajectory). In such a case, the
time index

tory placed on the horizontal axis
contains exactly points, that is,

nessy, 1986) illustrates the main idea behind DTW for two
univariate trajectories T and R. By proceeding vector by vec-
tor, DTW finds the best vector in R against which to com-
pare each vector in T , and vice-versa (O’Shaughnessy, 1986).

As will be explained below, there are many variants of the
DTW algorithm. However, all of them can be classified ei-
ther as symmetric or as asymmetric. In the symmetric ver-
sions, the time index i of T and the time index j of R are
both mapped onto a common time index k , as Eqs. 1 and 2
depict. T and R are considered to be equally important and
the optimal path will pass through all the points in both tra-
jectories. If the roles are reversed and their placement in the
grid is interchanged (that is, R is placed on the horizontal
and T on the vertical axis), a symmetric DTW algorithm will
give the same optimal path and the same minimum distance.

On the other hand, an asymmetric DTW algorithm will
perform one of the two tasks:

(1) It will map the time index of R on the time index of T
or vice-versa, or

(2) It will map both time indices in a common time index,

Figure 1. Example of nonlinear time alignment for two
univariate trajectories R and T using DTW.

and

This implies that the path will go through each vector of T ,
but it may skip vectors of R. Nonetheless, both the symmetric
and the asymmetric DTW algorithms can be cast in the same
framework and a unique solution can be found using the
method of dynamic programming.

Local and global constraints
In order to find the best path through the grid of t X r

points, several factors of the DTW algorithm have to be spec-
ified. These include: constraints on the endpoints of the path,
local continuity constraints that define localized features of
the path (that is, slope) and global constraints that define the
allowable space for the path.

The most common, and simplest, endpoint constraints re-
quire that the two extreme points of both trajectories be
matched. That implies that the first c(1) and the last c (K)
path points are as follows

and

These constraints are useful when the initial and final points
in both trajectories are located with certainty. However, when
there is uncertainty about the location of the two extreme
points, various endpoint constraints are imposed (Rabiner et
al., 1978) which specify an allowable region where the first
and last path point may be placed. In this article only the
fixed endpoint constraints will be considered; for a detailed
description on the implementation of the various relaxed
endpoint constraints, see Kassidas (1997).

The local continuity constraints reflect physical considera-
tions (for instance, events should be compared in their natu-
ral order in time) and they also guarantee that excessive coni-
pression or expansion of the two time scales is avoided (Myers
et al., 1980). The first requirement is satisfied by forcing the
path to be monotonous of non-negative slope. This can be
expressed as

866 April 1998 Vol. 44, No. 4 AIChE Journal

and

The second requirement (that is, to avoid excessive compres-
sion or expansion of the two time scales) is achieved by not
allowing the local slope of the path to exceed a specified
range. This is accomplished by specifying a set of allowable
predecessors for each point in the grid: if (i , j) is the kth
path point, then the previous (k - 1)th path point can only be
chosen from a set of specified grid points. Figure 2 illustrates
common local continuity constraints and the corresponding
slope range that they define.

In Figure 2a the Itakura local constraint is shown (Itakura,
1975). For each (i, j) point in the grid, only three predeces-
sors are allowed: (i - l,j), (i - 1,j - 1) and (i - 1, j - 2). Or,
in other words, the only way to reach the (i , j) point is either
through the (I - 1,;) or the (i - 1, j - 1) or the (i - 1 , j -2)
point. The last local transition (that is, going to the (i, j) point
through the (z - 1,j - 2) point) is characterized by a slope of
2: one horizontal and two vertical steps. Thus, a slope of 2 is
the maximum slope allowed. On the other hand, two consec-
utive horizontal transitions are not allowed, as Figure 2a
shows. The local transition from point (i - 1, j) to point (i , j)
will not be considered at all, if the optimal way to go to point
(i - 1,;) is through the (i -2, j) point. This means that when-
ever a horizontal local optimal transition exists (that is, with
0 slope), it has to be followed by a transition that has slope of
either one or two. This results in a minimum allowable local

(1-1 ,J-2)

No constraint on Slope

(b)

i
Slope range. [1/2,2]

(4

(i-I , j2) J
(i-1 ,j-3) J

Slope range [112,21 Slope range: [1/3.31

(c) (d)

Figure 2. Typical local continuity constraints.
(a) Itakura local constraint allowing slopes in [1/2,2]; (b)
Sakoe-Chiha local constraint with no constraint on slope; (c)
Sakoe-Chiba local constraint allowing slopes in [1/2,2], (d)
Sakoe-C hiha local constraint allowing slopes in [1/3,31.

AIChE Journal April 1998

slope of 1/2 for the path. Hence, the Itakura local continuity
constraint results in a slope range of [1/2,2]. Moreover, it is
an asymmetric constraint since horizontal local transitions are
treated differently from vertical transitions; in fact, vertical
transitions are not even considered.

Figures 2b, 2c and 2d illustrate other types of local con-
straints, the so-called Sakoe-Chiba constraints (Sakoe and
Chiba, 1978). All of them restrain the slope of the optimal
path by defining a set of allowable predecessors. The local
constraint of Figure 2b is an exception to the above state-
ment, because it does not impose any restriction on the slope
of the path; the path can follow horizontal or vertical local
transitions with no restriction on their length. On the other
hand, the local constraints shown in Figures 2c and 2d re-
strict the slope of the path to [1/2,2] and [1/3,31, respec-
tively. The way to read these local constraints can be illus-
trated with the following example. Consider the upper local
transition of the Figure 2c. It indicates that the only way to
reach the (i, j) from the (i -2, j - 1) point is through the (i -
1 , j) point. Moreover, all of them are symmetric since for each
(i ,J) point the possible predecessors are located in symmetri-
cal local transitions about the diagonal. For a detailed pres-
entation of other local constraints see Myers et al., 1980. Note
that in Figure 2, the arrows point towards the allowable pre-
decessor for each (i, j) point to indicate that each point de-
fines its possible predecessors. Thus, the arrows' directions
are the opposite of the actual directions of the allowable
transitions.

One can extend these local constraints to obtain a particu-
lar range of slope. However, this will complicate the dynamic
programming-based implementation. An easier way to im-
pose constraints on the slope of the path is to use the local
constraint shown in Figure 2b, combined with a check on
consecutive horizontal and/or vertical optimal local transi-
tions. This modification will result in a symmetric constraint
with the desired slope range. Thus, if m is the maximum
number of allowable consecutive horizontal or vertical local
transitions, the slope of path will be restricted between l /m
and m; that is, a slope range of [l/m,m].

If the local constraints define a set of predecessors for each
(i, j) point, the global constraints define a subset of the t X r
grid to be the actual search space for the optimal path. Most
of the global constraints need not be explicitly imposed. This
is due to the fact that the implementation of most of the
local continuity constraints automatically implies the global
constraints. For example, assume that the local constraints of
Figures 2a or 2c are used, in conjunction with the fixed-end-
point constraints of Eqs. 5. Then, the actual search space will
be the area included by the lines of slope 1/2 and 2, emanat-
ing from the first (1, 1) and the last (t , r) path point. This is
illustrated in the Figure 3a: the search area is the shaded
parallelogram (Itakura, 1975). In the case that the number of
observations in T is twice (or half) of those in R , the allowed
search space is reduced to the diagonal line (Silverman and
Morgan, 1990).

Figure 3b shows the band global constraint. This constraint
does not allow the path to deviate M grid points from the
linear path starting at point (1,l) (Sakoe and Chiba, 1978).
For a feasible search space to exist, M has to be at least
equal to or greater than the absolute value of the difference
between the number of observations in R and T , that is,

Vol. 44, No. 4 867

Figure 3. Typical global constraints.
(a) Itakura global constraint; (b) Sakoe-Chiba band con-
straint.

This global constraint is usually used in conjunction with the
local constraint of Figure 2b, that is, when no restriction is
imposed on the slope of the path. The combination of the
two constraints will prevent large deviations from the linear
path, although this may be an indication of the dissimilarity
between the two trajectories. When the band constraint is
present, this dissimilarity will appear as an inflated total dis-
tance. Moreover, it is possible to combine different local and
global constraints. For example, one can use the local con-
straint of Figure 2c, together with the band global constraint.
In such a case, the search space will be the intersection of
the two shaded regions of Figures 3a and 3b.

Formulation of the minimum distance problem
As mentioned above, the objective of DTW is to find the

best path through a grid of vector-to-vector distances such
that some total distance measured between the two trajecto-
ries is minimized. A general form of this distance measured
for any path (Sakoe and Chiba, 1978; Myers et al., 1980) is

where D(t , I) is a normalized total distance between the two

jectories; d[i(k) , j (k)] is the weighted local distance between
the i (k) vector of the T trajectory and the j (k) vector of the
R trajectory. The most commonly used local distance is the
weighted quadratic distance.

where W is a positive definite weight matrix that reflects the
relative importance of each measured variable; w(k) is a
nonnegative weighting function for the d [i (k) , j(k)] local dis-
tance; and N(w) is a normalization factor which is a function
of the weighting function w (k) .

Therefore, D(t,r) is the sum of all the local distances be-
tween pairs of observations in the two trajectories that lie
along the path, weighted by w (k) , and divided by the normal-
ization factor N(w).

Thus, the optimal path is found as the solution to the fol-
lowing optimization problem

and

where D*(t , I) is the minimum normalized total distance be-
tween T and R , and F* is the optimal path.

The N(w) parameter is a scalar and serves as normaliza-
tion factor for the distance estimation. Its value will depend
on the type of the weighting function w(k) that is used. Its
purpose is to make the normalized total distance inde-
pendent of the number of path points K and the lengths of
the two trajectories.

The weighting function w (k) depends on the local continu-
ity constraints and serves two purposes. The first is to pro-
vide more flexibility in the DTW algorithm by weighting the
local distance d[i (k) , j (k)] , depending on the local transition
by which the [z (k) , j (k)] path point can be reached from the
[i (k - 1) , j (k - I)] previous path point. As Figure 2 shows, for
any (i , j) point in the grid, a set of allowable local transitions
is defined by which the (i,j) point can be reached; w(k) al-
lows some local transitions to be treated preferentially (by
assigning small weights to them) over some others. The sec-
ond purpose of w (k) is to make the normalized total distance
independent of the number of the path points by imposing an
appropriate value for the normalization factor N(w).

The importance of the last point can be seen in Eqs. 8 and
10. The optimization problem of Eq. 10 uses a rational func-
tion as a criterion. In principle, it is possible to solve such
optimization problems. However, dynamic programming can-
not be used for this problem. since the global solution in dy-
namic programming is obtained recursively by a series of lo-
cal solutions that do not consider the best global path at all.
Dynamic programming retrieves the optimal path at the end,
assuming that the optimal total distance has been found.
Thus, problems like the one of Eq. 10, where the minimiza-
tion depends simultaneously on both the total distance and
the path, cannot be solved by dynamic programming. On the

868 April 1998 Vol. 44, No. 4 AIChE Journal

other hand, if the normalization factor N(w) is independent
of the optimal path, the optimization problem reduces to

and this problem lends itself to a dynamic programming-based
solution (Myers et al., 1980).

Many different weighting functions have been proposed in
the literature of DTW (Itakura, 1975; Sakoe and Chiba, 1978;
Myers et al., 1980; Ney, 1984). The two most common ones
are

symmetric: w(k) = [i (k) - i (k - l)] + [j (k) - j (k - l)] ,

i(0) = j (0) = 0 (13a)

asymmetric: w (k) = i (k) - i (k - l) , i (O) = O (13b)

The weighting function of Eq. 13a weights a local transi-
tion from the (k - 11th path point to the kth path point, ac-
cording to the number of horizontal and vertical steps that
need to be taken for that particular local transition. Both
horizontal and vertical steps are considered equivalent. Thus,
it is a symmetric weighting function. On the other hand, Eq.
13b considers only the number of horizontal steps required
for a local transition and, for that reason, it is an asymmetric
weighting function. Since only the horizontal steps are con-
sidered, this weighting function favors transitions for which
i (k) = i (k - 11, that is, vertical transitions. Figure 4 illustrates
these weighting functions, when the local continuity con-
straint of Figure 2b is applied. The coefficients for each local
transition are the result of the weighting functions of Eqs.
13a and 13b. Similar coefficients are obtained when different
local continuity constraints are applied [see Sakoe and Chiba
(1978), and Myers et al. (1980) for more on various weighting
functions].

The normalization factor N(w) can now be defined. The
normalized total distance, as defined in Eq. 8, is an average
distance between the two trajectories along any path. As such,
it is reasonable to set N(w) equal to the number of the local
distances computed along the path

ti

N(w)= c w(k) (14)
k = l

Figure 4. Local continuity constraint with no constraint
on slope.
(a) Symmetric weighting function; (b) asymmetric weighting
function.

AIChE Journal April 1998

Hence, if the weighting functions of Eqs. 13a and 13b are
used, the corresponding normalization factors are

= i (K) - i(O) + j (K) - j (0) = t + r

N(w) = C [i (k) - i (k - l)] = i (K) - i (0) = t
ti

(15b)
k = l

and they are both independent of the optimal path.
For the application of DTW presented in this article, the

N (w) factor plays no role and it can be omitted. However, in
speech recognition applications, a new word is compared with
several reference words, which may contain a different num-
ber of observations, and the classification is done on the basis
of minimum distance. If a non-normalized distance is used,
the decision will be biased towards the referenced word with
the minimum number of observations. The normalization fac-
tor is therefore used to prevent this undesirable characteris-
tic of DTW.

It was mentioned that there are symmetric and asymmetric
DTW algorithms. A symmetric DTW algorithm will result if a
symmetric local continuity constraint is used together with a
symmetric weighting function. Conversely, if either an asym-
metric local constraint (such as the Itakura local constraint)
and/or an asymmetric weighting function are used then the
resulting DTW algorithm will be asymmetric.

Solution via dynamic programming
The solution of the optimization problem shown in Eq. 10

is based on the Principle of Optimality, which states that “An
optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must consti-
tute an optimal policy with regard to the state resulting from
the first decision” (Bellman and Dreyfus, 1962; Bertsekas,
1987). For this problem, the Principle of Optimality is trans-
lated into the following two rules (Myers et al., 1980; Ney,
1984; Silverman and Morgan, 1990):

Rule (I): Let F* be the optimal global path on the t X r
grid. If F* goes through an (i , j) point, then the optimal path
to the (i , j) point is part of F*.

Rule @I): The optimal path to the (i, j) point depends only
on previous grid points.

The above rules, used in any variant of DTW, define a
recursive dynamic programming relationship. This recursive
relationship depends on the type of local continuity con-
straint and on the weighting function. It will be described by
means of an example.

Assume that the fixed-endpoint constraints of Eqs. 5 are
used, together with the symmetric local continuity constraint
and the weighting function of Figure 4a. Also, assume that
the band constraint of Figure 3b is used. Let D,(i,j) be the
minimum accumulated distance from point (1,l) to point
(i, j) , that is

Vol. 44, No. 4

(16)

869

where F' is any path, F'" is the optimal path to the (i, j)
point and K' is the number of path points. Thus, Eq. 12
becomes

(17)

(as mentioned, N(w) = t + r for this type of symmetric
weighting function, Eq. 15a).

The assumed local continuity constraint implies that the
(i, j) point can only be reached by either the (i - 1, j), or the
(i - 1, j - 1) or the (i, j - 1) point. However, for any of these
three possible predecessor points, there is a minimum accu-
mulated distance. Due to Rule (I), if the (i, j) point lies on
the optimal path, then the transition from the three possible
predecessors has to be optimal. Also, due to Rule (111, this
optimal transition will not be affected by any subsequent de-
cision. Thus, according to the Rules (I) and (111, the chosen
local continuity constraint and the symmetric weighting func-
tion, DA(i, j) will be found by solving the following simple
optimization problem

Now, because at this point it is not known whether the (i, j)
point lies on the optimal path, we have to store our decision
as to which of the three alternatives in Eq. 18 was selected.
This procedure (that is, Eq. 18 and storage of the optimal
local transition) has to be done for all the (i, j) points that lie
in the allowable search area, that is, the shaded area of Fig-
ure 3b. Note however, that if the optimal path does not need
to be reconstructed, these optimal local transitions do not
have to be stored.

Thus, one would start from the point (1,l) as

depends on the value of the outer iteration index. M (the
maximum deviation from the diagonal path) defines the ex-
tent of the search area for the optimal path; it must be M 2
1 t - r I so that the band of width 2.M includes the (t , r) grid
point and the two constraints (that is, the band constraint
and the fixed endpoint constraints) are compatible. In gen-
eral, M should reflect the uncertainty in locating the first
and the last points of the trajectories.

The iterative procedure of Eq. 18 finishes when the D,(t, I)

distance is computed and, subsequently, the minimum nor-
malized total distance D * (t , r) is computed via Eq. 17. To
reconstruct the optimal path, one has to proceed in a back-
ward manner, starting from the (t , I) point and using the
stored information on the optimal decisions at the allowable
(i, j) grid points. Thus, first the predecessor of the (t , r) point
is located, then the predecessor of the latter is located and
this is repeated until the (1,l) point is reached.

In terms of memory requirements, these are not large if
only the minimum distance is sought. In that case, only two
vectors of accumulated distances have to be stored. At any
outer iteration i a vector that stores the D,(i - 1, j) distances
is required and the DA(i, j) vector of distances is computed
via Eq. 18. At the next iteration, i + 1, the D,(i - 1, j) dis-
tances are not required anymore and their memory space can
be used to store the D,&, j) distances. The memory space for
the latter can be used to store the new D,(i + 1, j) distances
and the whole storage-updating procedure is repeated.

If the optimal path is also sought, then for any (i, j) point
in the allowable search area in the grid, an integer index (from
a set of three indices, each associated with a possible prede-
cessor) has to be stored indicating the optimal predecessor.
This is done because any of the points in the allowable space
can be a point of the optimal path. Thus, for our example,
this information has to be stored for all points that lie in the
shaded region of Figure 3b.

The above procedure, with minor alterations depending on
the type of endpoint, local continuity and global constraints
and weighting function, is applied in any DTW algorithm (for
more details, see Kassidas, 1997). For example, when the
Itakura local continuity constraints are used, the recursive re-
lationship is

(the weight of 2 is according to the assumed weighting func-
tion of Eq. 13a) and would proceed recursively via two itera-
tions, one nested in the other, until the (t , r) grid point is
reached. This constitutes the forward phase of the dynamic
programming recursion. The outer iteration will progress on
the time index i of the trajectory placed on the horizontal
axis, whereas the inner iteration will progress on the allow-
able range of the time index j of the trajectory placed on the
vertical axis. As Figure 3b shows, for any value of the hori-
zontal time index, there is an allowable range (shaded region)
for the vertical time index. Thus, the index of the outer loop i
goes from 1 to t , while the range of the inner loop index j

with

The DTW algorithm of Eq. 18 is a symmetric one; both
trajectories are equivalent and if their placement in the grid
in reversed, the same optimal path and optimal distance will
be obtained. The number of path points K will be greater
than either t or r (K 2 max(f, r)) . Both R and T are locally
expanded and/or translated so that common features are
synchronized and their timing differences are reconciled. In
contrast, the Itakura constraint of Eq. 20 results in an asym-

870 April 1998 Vol. 44, No. 4 AIChE Journal

metric DTW algorithm. The optimal path contains exactly t
points, as many as the trajectory placed on the horizontal axis
(that is, T) contains. R is locally translated, contracted and
expanded, so that its timing differences with T are recon-
ciled; the latter remains intact. These characteristics of sym-
metric and asymmetric DTW algorithms must be taken into
consideration when DTW is applied for the synchronization
of batch trajectories; this is discussed in the next section.

Synchronization of Batch Trajectories Using DTW
Dynamic time warping algorithm

Let B,, i = 1, . . . , I be a set of I trajectories of good quality
batches. Each B, is a matrix of bi X N where bi is the num-
ber of observations and N is the number of measured vari-
ables. Also assume that some appropriate scaling for the vari-
ables has been applied. Finally, assume that a reference batch
trajectory, B,,, has been somehow defined; this is a matrix
of b,,, x N . The issues of scaling and choice of B,,, will
be discussed in the following subsection. Now the objective is
to synchronize each Bi with B,,,.

As discussed in the previous section, DTW works with pairs
of patterns. Thus, one needs to separately synchronize each
B, with B,,,. The main question is what kind of DTW algo-
rithm should be used; specifically, whether it should be a
symmetric or an asymmetric algorithm. As mentioned, after
DTW is performed using a symmetric DTW algorithm, the
synchronized trajectories have equal duration, which is
greater than thc duration of the trajectories before synchro-
nization. This common duration is determined by the DTW
algorithm and cannot be specified a priori. Furthermore, it
will be different for each B, that is synchronized with B,,,.
Therefore, if a symmetric DTW is used to synchronize each
B, with BRFF, the result will be a set of expanded trajectories
with unequal duration; each Bi will be individually synchro-
nized with B,,, but not with each other. Therefore, the
choice of a symmetric algorithm would still result in the situ-
ation of having a set of batch trajectories with unequal dura-
tion.

On the other hand, the most common asymmetric DTW
algorithms treat one trajectory preferentially. The optimal
path goes through all points in one of them (which can be
viewed as the defining trajectory) and can skip points of the
other. After DTW is performed, the synchronized trajecto-
ries have equal duration, equal to the duration of the defin-
ing trajectory. For the current problem, one would use B,,,
as the defining trajectory and map its time axis onto the time
axis of each B,. The end result will be a set of synchronized
trajectories with equal duration b,,, all of them synchro-
nized with B,,, and synchronized with each other.

Although this appears to be a reasonable solution, it has
the disadvantage that the synchronized trajectories may not
contain all the data points of the original trajectories because
the optimal path may have skipped selected points in them.
This is an undesirable side effect because features that ap-
pear in some B, and do not appear in B,,, may be left out.
In effect, a subtle filtering is performed that removes incon-
sistent features. If an MPCA/MPLS model is constructed
from the “filtered” trajectories, it will be biased towards false
alarms since it will not consider inconsistent features that may
be present in a new batch trajectory.

AIChE Journal April 1998

In summary, symmetric DTW algorithms include all points
in the original trajectories and result in expanded trajectories
of various lengths. Asymmetric DTW algorithms may elimi-
nate points, but will produce synchronized trajectories of
equal length. The following method (symmetric DTW algo-
rithm combined with an asymmetric synchronization proce-
dure) proposes to achieve a compromise between the two ex-
tremes.

Step A: Symmetric DTW Algorithm
For each B,, apply DTW between B, and BRFF using the

(i) fixed-endpoint constraints
(ii) band global constraint
(iii) local constraint

following constraints

At the end, reconstruct the optimal path.
Step B: AJymmetric Synchronization
When more than one point of B, is aligned with one point

(i) Take the average of these points of B,.
(ii)Align this average point with the particular point of

BRFF.
After synchronization, B, contains as many data points as

B,,,, that is, bmF.
AJyrnmehic Synchronization (Step B) can be best illustrated

by means of an example. Assume that Bi is placed on the
horizontal and B,,, on the vertical axis. This arrangement
does not affect the DTW algorithm in Step A since it is sym-
metric. Also assume that after DTW, the following three
points are included in the optimal path: (i - l,;), (i,;) and
(i + 1,;). According to them, the (i - l)th, ith and (i + 11th
points of B, are all aligned with the jth point of B,,,. The
proposed method takes the average of the three

of B,,, do the following:

B,(i - 1, :) + Bi(i,:) + Bj(Z + 1, :)
3

and synchronizes this average with B,,&,:).
The proposed DTW algorithm is still a symmetric algo-

rithm and as such the optimal path passes through all the
points in both patterns. All points of B, (even if some of
them have been averaged) are included in the synchronized
trajectory. On the other hand, the local continuity constraint
in Eq. 22 favors diagonal over horizontal or vertical local
transitions. The local constraint is a modification of the one
shown in Eq. 18. The local constraint in Eq. 18 gives a weight
of 2 to the local distance d(i, j) for a diagonal local transition
[from (i - 1,; - 1) to (i , j) point]. This weight was the result
of a symmetric weighting function; its purpose was to provide
independence of the final distance to the number of points in
the optimal path. However, in this problem, only the optimal
path is of interest and not the final distance found by DTW.
Using the smaller weight of 1 (as in Eq. 221, diagonal local
transitions are preferred over horizontal or vertical ones, and

Vol. 44, No. 4 871

it is the horizontal and vertical transitions that distort the
time axes of B, and B,,,. Thus, the constraint of Eq. 22
results in smaller distortions of the time axes of both B, and
B,,, and consequently requires less averaging in Step B.

Although the DTW algorithm of Step A is a symmetric
algorithm, the algorithm in Step B is an asymmetric opera-
tion that synchronizes all Bi in a way that all have the same
duration b,,,. One can now use the synchronized trajecto-
ries from the proposed method to build an MPCA/MPLS
model; the model will be still slightly biased towards false
alarms (due to averaging of inconsistent features). However,
it will be less prone to false alarms than a model, which was
based on synchronized batches from an asymmetric DTW al-
gorithm.

In the above discussion, it was assumed that the raw trajec-
tories had been scaled appropriately and that also a refer-
ence trajectory had been defined. The next subsection deals
with these issues, and proposes a complete method for syn-
chronization of batch trajectories.

Iterative method for synchronization of batch trajectories
As a distance-based method, DTW is sensitive to the scal-

ing of variables. In the case of batch processes an intelligent
scaling should accomplish two objectives. The first is to re-
move the effect of the various engineering units used to record
the variables. This is easily achieved by dividing each variable
by its standard deviation or its range. The second and most
important objective is to give more weight to variables that
are consistent from batch to batch. The synchronization of
batch trajectories should rely more on these variables. This
relative importance of variables is expressed through the
weight matrix W used in the local distance computation in
DTW, that is

One choice would be to assign subjective weight to each
variable; however, this would require process knowledge and
perhaps a number of ad hoc decisions. A more appealing
choice would be to devise a procedure that would automati-
cally detect and increase the weight of consistent variables
and decrease the weights of the rest. For each variable, the
sum of the squared deviation from the average trajectory over
all batches could be used as an indicator of its consistency
over different realizations.

Regarding BRFF, a reasonable choice would be to set it
equal to the average trajectory. However, at the start of the
synchronization procedure it is not possible to average the
batch trajectories since each one of them has a different du-
ration. Thus, one trajectory from the set could be used as
BRFF. One could then synchronize all other trajectories to
this particular one using the DTW/synchronization method
of the previous subsection. After synchronization, all trajec-
tories would have the same duration and so an average tra-
jectory could be defined. The whole procedure could then be
repeated and in the next iteration the average trajectory could
be used as the referenced one.

These are essentially the main steps of the iterative proce-
dure proposed for the synchronization of unequal batch tra-
jectories, which is now being presented in detail.

Step A: Scaling
Let BRAW:,, i = 1, . . . , I , be a referenced set of trajectories

which contain the raw measurements from I good quality
batches.

For each variable, find its average range by averaging the
range from each batch; store these values because they will
be used in the off-line and on-line monitoring of a new batch.

Divide each variable in all batches with its average range.
Let B, , i = 1, . . . , I be the resulting scaled batch trajecto-

Step B: Synchronization
Step 0: Select one of the trajectories B , as the referenced

Consequently: b,,, = b,.
Set W (the weight matrix in the DTW algorithm) equal to

the identity matrix.
Execute the following steps for a specified maximum num-

ber of iterations.

Step 1. Apply the DTW/synchronization method between
B, , i = 1, . . . , I , and BREF as described in the previous subsec-
tion.

Let B, , i = 1, . . . , I be the synchronized trajectories with
b,,, now being their common duration.

Step 2. Compute the average trajectory E , that is, B

ries.

trajectory: B,,F = B,.

-

= C B J Z .
1 = 1

Step 3. For each variable, compute the sum of squared de-
viations from E .

The inverse of this value will be the weight of the particu-
lar variable for the next iteration, that is, W will be a diago-
nal matrix with

Normalize W so that the sum of the weights is equal
to the number of variables, that is, replace W with

(1)
Step 4. For the first three iterations, keep the same refer-

enced trajectory: B,,, = B,.
For subsequent iterations, set the reference equal to the

average trajectory: B,,, = B.
The length of the synchronized trajectories at the end of

the iterative procedure will be the length of the trajectory
initially used as the referenced trajectory. Alternatively, one
could estimate the average duration from the initial trajecto-
ries and the trajectory whose duration is closest to the aver-
age duration could be used as B,,, for the first three itera-
tions. By doing that, the duration of the synchronized trajec-
tories at the end will be the average duration of the available
realizations. The choice of the initial referenced trajectory is
a matter of user preference. Finally, the maximum number of
iterations is another parameter of the method set by the user.
One could also monitor the change of the weight matrix W
from one iteration to the next and use it as an indicator for
convergence.

w N/ C w(j t j) .

-

872 April 1998 Vol. 44, No. 4 AIChE Journal

Variable No. 2 before synchronization
l " " " l

Variable No. 3 before synchronization

Observation No.

Variable No. 5 before synchronization

20 40 60 80 100 120
Observation No.

Observation No

Variable No. 7 before svnchmnization

I !' , . ., . I
20 40 60 80 100 120

Observation No.

Figure 5. Four (out of 10) variables during the 31 good
quality batches before synchronization.
The variables have been divided with their average range.

Case Studies
Figure 5 shows 4 variables (selected from the 10 variables

in the data set) for 31 good quality batches from an industrial
emulsion polymerization process; all variables have been
scaled with their average range. The variables shown in Fig-
ure 5 illustrate a number of issues relating to batch process
data. The most important is that the trajectories are not syn-
chronized and do not have the same duration. Variable No.
5, with the exception of the starting and ending part, is smooth
and strictly monotonic; thus, it could be used as an indicator
variable. Variables No. 2 and 3 are piecewise constant with
occasional step changes in their level. As such, they do not
contain enough information to make them useful as indicator
variables, but the times where their values step from one level
to the next could be used to test the quality of the synchro-
nization. Variable No. 7 is a noisy variable, and, therefore,
one would not use it as an indicator variable.

The durations of the trajectories in this industrial data set
vary from 106 to 126 data points and the average duration is
115. Three trajectories have the average duration and one of
them was chosen to be the referenced trajectory for the
first three iterations. For the DTW/synchronization proce-
dure, the band global constraint was used with maximum al-
lowable deviation M = 35 (from the linear path emanating
from point (1,l)). The iterative procedure was executed for
10 iterations. The band global constraint was never active at
any iteration and for any Bi - B,,, pair; it simply helped to
speed up the computations.

The results after the final (10th) iteration are shown in Fig-
ures 6 and 7. Figure 6 shows the 4 variables after the trajec-
tories have been synchronized and Figure 7 shows how the
weights of the 4 variables changed with respect to the itera-
tions. As Figure 6 illustrates, the variables are now synchro-
nized. This is more apparent by looking at the times of the
step changes in Variables Nos. 2 and 3 and the spike in Vari-
able No. 3. Due to the averaging of selected points by the
asymmetric synchronization procedure, some of the spikes in
Variable No. 2 (see Figure 5) have been fiitered; however,
they are not completely removed.

Variable No. 2 after synchronization

Variable No. 5 after synchronization

-0.5
20 40 80 80 100

Observation No.

Variable No. 3 after synchronization

0.8

0.6

0.4

0.2

0

20 40 60 80 100
Observation No.

Variable No. 7 after synchronization

20 40 60 86 100
Observation No

Figure 6. Four variables of Figure 5 for all 31 batches
after synchronization.

Variable No. 5 is a smooth variable and it could be used as
an indicator variable to synchronize the trajectories as
Nomikos and MacGregor (1994) proposed. Such a synchro-
nization was previously used in analyzing these batch trajec-
tories by Kourti et al. (1996). The proposed iterative proce-
dure validated this approach (as Figure 7 shows) since the
weight of Variable No. 5 accounts for about 85% of the total
weight (the indicator variable solution essentially gives 100%
of the total weight to this variable). Finally, Variable No. 7 is
a noisy variable (as Figure 5 shows) and is of little value for
synchronization. The iterative procedure recognized this and
gave small weight to Variable No. 7 after the first iteration
(see Figure 7).

The iterative procedure could also be used to pinpoint the
most appropriate variable to be used as an indicator variable
if one wants to use this simpler method for synchronization
without relying on expert process knowledge. There may be
situations where several variables are smooth and monotonic;
thus, they could all be candidates for the role of the indicator
variable. The proposed method could assist in choosing the

Variable No. 2 Vanable No 3

Iteration No. Iteration No.

Vanable No. 5 Variable No 7
1001 I 10, I

Iteration NO. Iteration No.

Figure 7. Percentage of total weight vs. iteration num-
ber for the 4 variables in Figures 5 and 6.

AIChE Journal April 1998 Vol. 44, No. 4 873

Variable No. 2 after synchronization Variable No. 3 afler synchronization
I "

20 40 fiO 80 100
Observation No. Observation N o

1st part of Variable No. 5 after synchronization 2nd parl of Variable No. 5 after synchronization

0.4 0.6 o.iri ;iy--j
0.2

0

20 40 60 80 100 20 40 SO 80 100
Observation No. Observation No.

Figure 8. Synchronization of trajectories after Variable
No. 5 was spliced into 2 artificial variables.

most appropriate one by selecting the variable that gets the
largest weight in matrix W.

To investigate the situation where there is no single vari-
able that can be easily identified as an indicator variable, the
following case study was performed. Variable No. 5 was
spliced into two parts and two artificial variables were cre-
ated. The first contains the initial part of Variable No. 5 up
to the point that it reaches the value of zero; then, it is padded
with zeros up to the end of the trajectory. Similarly, the sec-
ond artificial variable contains initially a number of zeros,
followed by the second part of Variable No. 5. Thus, for this
case study, the batch trajectories contained 11 variables: the
other 9 original variables (excluding Variable No. 5) plus the
two artificial ones created from Variable No. 5 .

Next, the synchronization method was applied with the
same parameters described before and the results are pre-
sented in Figures 8 and 9. As Figure 8 shows, the synchro-
nization of the variables is again quite good and almost iden-
tical to the one obtained before (Figure 6). The variable
weights are shown in Figure 9. Interestingly, about 85% of

Variable No. 2 Variable No. 3

lo- lo-

m :/h[,,l I, ,, ,, ,l,,"i
0

z

0
5 to

Iteration No.
"0 5 10

Iteration No.

1st part of Vanable No 5 2nd parl of Variable No 5
1 1001

g 80 .- 2 60

5
Z 40

20 z

0
5 10

Iteration No. Iteration No.

Figure 9. Percentage of total weight vs. iteration num-
ber for the synchronization in Figure 8.

the total weight is now distributed between the two artificial
variables. Although not a proof, this case study shows that
the proposed method can still perform well in cases where it
is not possible to find a single variable that indicates the pro-
gression of the batch process.

Batch Monitoring Using MPCA/MPLS
Of-line implementation

Once timing differences have been removed by the syn-
chronization procedure, the resulting trajectories B,, i =

1, ..., I can be used to build an MPCA/MPLS model for
process monitoring as proposed by Nomikos and MacGregor
(1994, 1995b). However, one important feature has been re-
moved from the raw data (the timing differences) and it could
be the case that this feature is indeed affecting the final
product quality. To account for this possibility, the amount of
time distortion (expansion or compression) imposed by DTW
on the duration of each batch and on the times between any
identifiable checkpoint during each batch should be included
in the MPLS model. These time distortions can be treated as
additional variables in the initial condition matrix of the
Multiblock MPLS model (see Kourti et al., 1995).

Now, assume that the complete trajectory of a new batch
B,,,,,, (a matrix of b,, X N) is available. The objective
is to use the MPCA/MPLS-based monitoring scheme to as-
sess the product quality of the new batch. Most probably the
duration of the new batch bNEw will not be equal to the
duration of the synchronized batches b,,, that were used to
construct the monitoring model. Even if b,,, = b,,, some
stages of the new batch may not be synchronized with the
corresponding stages of the referenced trajectory. In either
case, B,,,,, has to be synchronized before the monitor-
ing scheme is applied. The following method proposes to ac-
complish this task.

Step A: Scaling
Divide each variable in the new batch with the average

Let BNEw be the resulting scaled new trajectory.
Step B: Synchronization
Let B,,, and W be the referenced trajectory and the

weight matrix used in the last iteration of the synchronization
procedure.

Apply the DTW/synchronization method to synchronize
BNEw with BmF.

Let BNEw be the synchronized new trajectory.
B,,, is synchronized with the reference trajectories, its

duration is b,, and the MPCA/MPLS-based batch moni-
toring scheme can now be applied. Note that some points in
BNEW will be averages of selected points of B,, as a result
of the asymmetric synchronization procedure. Since the aver-
aging operation smooths spurious features, rim, is slightly
biased towards the null hypothesis, that is, the new batch be-
ing of good quality. This is a compromise that one has to
accept if one wants to use the same MPCA/MPLS model to
monitor each new batch.

On-line implementation
The on-line implementation of the MPCA/MPLS-based

monitoring scheme is similar to the off-line implementation
with one important difference: in the on-line case, the pre-
diction of the future behavior of the batch trajectory up to its

range estimated from the trajectories of the referenced set.

874 April 1998 Vol. 44, No. 4 AIChE Journal

expected end is required. Nomikos and MacGregor (1995a)
discuss possible methods to carry out these predictions. How-
ever, they assume that the new trajectory is synchronized with
the referenced set trajectories either in time or with respect
to an indicator variable. In real time, this assumption means
that the progress of the new batch up to the current time t is
equivalent to the progress of the referenced set batches up to
time t . Therefore, one has to predict the behavior of the new
batch from the current time and onward up to its end; the
end time for the new batch is assumed to be the common
duration of the referenced set batches. This assumption may
not be always true in industrial batch processes for the rea-
sons given in the Introduction.

Let BRAW,NEW be the raw measurements of the evolving
new batch, a matrix of t x N , with t being the number of
data points from time zero up to the current time. To moni-
tor the progress of the batch on-line, one would have to an-
swer the following question: which point r of the referenced
trajectory best represents the progress of the new batch up to
the current time‘? DTW can provide an answer to this ques-
tion as follows:

Step A: Scaiing
Divide each variable in B,,,,, with its average range

estimated from the trajectories of the referenced set.
Let B,,, be the resulting scaled new trajectory.
Step B: Synchronization
Let B,,, and W be the referenced trajectory and the

weight matrix used in the last iteration of the synchronization
procedure.

Step 1: Apply the DTW symmetric algorithm as previously
presented. However, since only the first t data points of the
new batch are available, one would have a set of accumulated
distances: D, (t , j) , j = l (t) , ..., u(t); l (t) and u (t) are the
lower and upper bound imposed by the band constraint on
the index of the inner iteration.

Let r be the point in the D,(t,:) vector where the mini-
mum occurs, that IS, r = argmin [D,(t, j)] .

Step 2: Synchronize the t points of B,, to the first r
points of B,,, using the asymmetric synchronization method
previously presented. After synchronization, the new trajec-
tory, B,,,, will have r points.

Step 3: Predict the progress of the new batch from point
(r + 1) up to the final point of the referenced trajectory bREF.
Now the MPCA/MPLS-based monitoring scheme can be ap-
plied on-line as described by Nomikos and MacGregor (1994,
199513).

The above method has to be repeated as soon as another
measurement from the new batch is available.

Conclusions
An application of DTW for the synchronization and moni-

toring of batch processes was presented. Industrial batch
processes are often characterized by unsynchronized trajecto-
ries of variable duration. However, the synchronization of the
trajectories to a common length is a necessary condition for
the application of many analysis and monitoring schemes. To
solve the problem of batch synchronization, an iterative
method was proposed based on DTW. The method is multi-
variate since it does not rely on a single variable to perform
the synchronization in contrast to the indicator variable
method. Moreover, the method can be used to pinpoint the

I

most consistent variable, that is, the variable with the small-
est deviation about its average trajectory. This variable could
be used as the indicator variable at subsequent studies, if one
wants to use this simpler approach. Once the batch trajecto-
ries are synchronized, one can then build the MPCA/MPLS
batch monitoring model. To monitor a new batch, its timing
differences with the referenced set batches should first be
reconciled. To achieve this synchronization, a DTW-based
procedure is proposed; guidelines are given for both off-line
and on-line implementation.

Literature Cited
Bellman, R. E., and S . E. Dreyfus, mnamic Programming, Princeton

Univ. Press, Princeton, NJ (1962).
Bertsekas, D. P., Dynamic Programming, Prentice-Hall, Englewood

Cliffs, NJ (1987).
Gollmer, K., and C. Postens, “Detection of Distorted Pattern Using

Dynamic Time Warping Algorithm and Application for Supervi-
sion of Bioprocesses,”Preprints, IFAC Workshop on On-Line Fault
Detection and Supervision in the Chemical Process Industries,
Newcastle (1995).

Itakura, F., “Minimum Prediction Residual Principle Applied to
Speech Recognition,” IEEE Trans. on Acoustics, Speech and Signal
Processing, ASSP-23(1), 67 (1975).

Kassidas, A,, “Fault Diagnosis Using Speech Recognition Methods,”
PhD Diss., Dept. of Chemical Engineering, McMaster Univ.,
Hamilton, Ontario, Canada (1997).

Kourti, T., P. Nomikos, and J. F. MacGregor, “Analysis, Monitoring
and Fault Diagnosis of Batch Processes Using Multiblock and
Multiway PLS,” J . of Process Control, 5(4), 277 (1995).

Kourti, T., J. Lee, and J. F. MacGregor, “Experiences with Indus-
trial Applications of Projection Methods for Multivariate Statisti-
cal Process Control,” Computers & Chem. Eng., 20, Suppl. A., 745
(1 996).

Lakshminarayanan, S., R. D. Gudi, S. L. Shah, and K. Nandakumar,
“Monitoring Batch Processes using Multivariate Statistical Tools:
Extensions and Practical Issues,” IFAC Triennial World Cong., San
Francisco (1996).

MacGregor, J. F., and P. Nomikos, “Monitoring Batch Processes,”
Batch Processing System Engineering, G. V. Reklaitis et al., eds.,
NATO ASI, Ser. F, Vol. 143, p. 242 (1992).

Myers, C., L. R. Rabiner, and A. E. Rosenberg, “Performance
Tradeoffs in Dynamic Time Warping Algorithms for Isolated Word
Recognition,” IEEE Trans. on Acoustics, Speech and Signal Process-
ing, ASSP-28(6), 623 (1980).

Nadler, M., and E. P. Smith, Pattern Recognition Engineering, Wiley,
New York (1993).

Ney, H., “The Use of a One-Stage Dynamic Programming Algorithm
for Connected Word Recognition,” IEEE Trans. on Acoustics,
Speech and Signal Processing, ASSP-32(2), 263 (1984).

Nomikos, P., and J. F. MacGregor, “Monitoring Batch Processes Us-
ing Multiway Principal Component Analysis,” AIChE J . , 40, 1361
(1994).

Nomikos, P., and J. F. MacGregor, “Multivariate SPC Charts for
Monitoring Batch Processes,” Technomehics, 37(1), 41 (1995a).

Nomikos, P., and J. F. MacGregor, “Multi-way Partial Least Squares
in Monitoring Batch Processes,” Chemomehics and Intelligent Lab-
oratory Svstems. 30. 97 (1995b).

O’Shaugessy, D., “‘Speaker Recognition,” IEEE ASSP Mag., 3, 4
(1986). .~ - ~,

Rabiner, L. R., A. E. Rosenberg, and S. E. Levinson, “Considera-
tions in Dynamic Time Warping Algorithms for Discrete Word
Recognition,”IEEE Trans. on Acoustics, Speech and Signal Process.,

Sakoe, H., and S. Chiba, “Dynamic Programming Algorithm Opti-
mization for Spoken Word Recognition,” IEEE Trans. on Acous-
tics, Speech and Signal Process., ASSP-26(1), 43 (1978).

Silverman, H. F., and D. P. Morgan, “The Application of Dynamic
Programming to Connected Speech Recognition,” IEEE ASSP
Mag., 7 , 7 (1990).

ASSP-26(6), 575 (1978).

Manuscript receiued Apr. 14, 1997, and revision received Jan. 9, 1998.

AIChE Journal April 1998 Vol. 44, No. 4 875

