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The application of dynamic time warping (DTW) to the analysis and monitoring of 
batch processes is presented. This dynamic-programming-based technique has been used 
in the area of speech recognition for the recognition of isolated and connected words. 
DTW has the ability to synchronize two trajectories by appropriately translating, expand- 
ing, and contracting localized segments within both trajectories to achieve a minimum 
distance between the trajectories. Batch processes often are characterized by unsynchro- 
nized trajectories, due to the presence of batch-to-batch disturbances and the existence 
of physical constraints. To compare these batch histories and apply statistical analysis 
one needs to reconcile the timing differences among these trajectories. This can be 
achieved using DTW with only a minimal amount of process knowledge. The combina- 
tion of DTW and a monitoring method based on Multiway PCA/PLS is used for both 
off-line and on-line implementation. Data fiom an industrial polymerization reactor are 
used to illustrate the implementation and the performance of this method. 

Introduction 
Batch processes play an important role in the production 

of high added value products, such as specialty polymers, 
pharmaceuticals, and biochemical materials. Analysis and 
monitoring of the operation of these processes is crucial to 
the production of consistent, good quality products. More- 
over, products from batch processes are often manufactured 
in a series of steps; early detection of a bad product at any of 
these steps will save energy, raw material, and plant capacity. 
Early detection will also make it easier to assign a cause to 
the fault and modify the process to eliminate the cause. Fur- 
thermore, there may be a chance of compensating for the 
fault with an appropriate control strategy if the monitoring 
scheme is implemented on-line. 

Product quality measurements in batch processes are ob- 
tained infrequently; they are often obtained after the product 
has been shipped to the customer, or after it has been for- 
warded to the next processing step. Fortunately, a multitude 
of process measurements, such as temperatures, pressures, 
flow rates, are readily available during the process of a batch. 
In view of this fact, MacGregor and Nomikos (1992) and 
Nomikos and MacGregor (1994, 1995a, b) proposed a method 
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for monitoring batch processes using these readily measured 
process variables. Their method is based on multiway princi- 
pal component analysis (MPCA) and multiway projection to 
latent structures (MPLS), which are extensions of PCA and 
PLS to handle three-dimensional matrices. The method es- 
sentially builds a statistical model for the deviations of the 
process variables about their average trajectories using data 
only from good quality batches. Then, it compares the varia- 
tion of a new batch about the average trajectory with the 
MPCA model; any deviation that cannot be statistically at- 
tributed to the common process variation indicates that the 
new batch is different from the good quality batches. When 
quality measurements are available, one can use MPLS to 
monitor the progress of the batch and predict its final quality 
(Nomikos and MacGregor, 1995b). 

One strong assumption of the methods proposed by 
Nomikos and MacGregor is that all batches have equal dura- 
tion and are synchronized. However, there are many situa- 
tions in which the total time duration of the batches and/or 
the duration of various stages within the batches are not the 
same. Examples include polymerization reactors where there 
can be batch-to-batch variations in impurities and in the ini- 
tial charges of the recipe components. Different heat re- 
moval capabilities arising from seasonal changes in cooling 
water temperatures will also influence the rate at which the 
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reactions can proceed. Furthermore, in those batch proc- 
esses, which are not fully automated, some stages are left to 
the discretion of an operator and quite large variations in the 
variable trajectories can occur. In all these cases, one has to 
synchronize the trajectories before the batch histories can be 
compared and any analysis is performed. 

To handle the problem of synchronization, Nomikos and 

to perform the synchronization of the trajectories. The pro- 
posed method is then applied to synchronize 31 batch trajec- 
tories from an industrial emulsion polymerization process. Fi- 
nally, it is shown how DTW can be combined with the moni- 
toring scheme of Nomikos and MacGregor (1994, 1995b) for 
both off-line and on-line batch monitoring. 

MacGregor (1994) proposed the use of an indicator variable 
(the approach has been applied by Kourti et al. (1996) to an 
industrial batch polymerization process). According to their 
proposal, the trajectories are plotted not with respect to time, 
but with respect to another variable that must be strictly 
monotonic, has the same starting and ending values for all 
batches, and is not noisy. Then, a constant increment is se- 
lected and one progresses along the indicator variable. Syn- 
chronization is performed by retaining the points in the tra- 
jectories that have the same values of the indicator variable. 
The indicator variable approach assumes that such a variable 
exists and that process knowledge can be used to determine 
it. However, there may not exist a single indicator variable 
that satisfies the above requirements, or if there are several 
possibilities, i t  may not be obvious which is the best. The 
problem of batch trajectories of unequal duration has also 
been encountered by Lakshminarayanan et al. (1996); their 
solution is to extend all the trajectories to match the duration 
of the longest trajectory by simply padding the shorter trajec- 
tories with artificial measurements, which are all equal to 
their last measurement. By doing that, they implicitly assume 
that all the timing differences between trajectories appear at 
the last stage of the batch process. This is clearly a strong 
assumption, which is not true in most cases (including the 
case study presented in this article). 

The presence of unsynchronized trajectories is a common 
problem in thc area of speech recognition and particularly in 
isolated word recognition (Myers et al., 1980; O’Shaughnessy, 
1986; Silverman and Morgan, 1990). The same word can be 
uttered with different duration and intensity, in different en- 
vironments, and by different speakers; yet the speech recog- 
nition system should be able to classify it correctly. A major 
part of speech recognition research has concentrated on the 
type of features to be extracted from speech signals. How- 
ever, this research is not directly applicable to applications in 
chemical processes because speech signals are nonstationary 
high frequency signals and, as such, are quite different from 
the outputs produced by a chemical process. 

Even when the correct features are extracted, the problem 
of a flexible pattern-matching scheme still remains. Dynamic 
time warping (DTW) is such a flexible, deterministic, pattern 
matching scheme which works with pairs of patterns and is 
able to locally translate, compress, and expand the patterns 
so that similar features within the patterns are matched. 
Gollmer and Postens (1995) used this localized nonlinear syn- 
chronization capability of DTW to detect the onset of differ- 
ent growth phases or failures in a batch fermentation proc- 
ess. Similarly, DTW could provide an elegant solution to the 
problem of synchronization of batch trajectories. 

In this article, the basic theory of the various DTW algo- 
rithms is presented, along with details for their implementa- 
tion. An iterative method based on DTW is presented for the 
synchronization of batch trajectories. The method is multi- 
variate in the sense that it does not rely on a single variable 

Theory of Dynamic Time Warping 
The material of this section is a compilation of the theory 

of DTW that appears in numerous articles in the area of 
speech recognition. A compact, yet detailed, description is 
presented in this section with the intention that DTW is to 
be understood and applied by the unfamiliar reader. More- 
over, the application of DTW presented in this article re- 
quires several modifications of the standard algorithms, which 
would be difficult to explain had the DTW theory not been 
previously described. 

Introduction 
Let T and R denote the multivariate trajectories of two 

batches; both are matrices of dimension t X N and r X N ,  
respectively, where t and r are the number of observations 
and N is the number of measured variables. As discussed in 
the introduction, most likely t and r will not be equal. One 
way to make them equal would be to create artificial points’ 
by linear interpolation or extrapolation in one of the two tra- 
jectories so that the modified trajectories will contain exactly 
the same number of points. However, this may not be a good 
approach since the timing differences between the two 
batches will probably be local and not global. In such a case, 
linear global compression or expansion of the time scales of 
either trajectory will not reconcile their timing differences. 
Furthermore, with more than two trajectories, it is not obvi- 
ous how to extrapolate or interpolate periods in a meaningful 
way. Finally, even if the number of observations is the same 
for both batches (that is t = r ) ,  their trajectories may not be 
synchronized. In either case, if one applies the batch analysis 
and monitoring scheme of Nomikos and MacGregor (1994) to 
a set of unsynchronized batch trajectories, unnecessary varia- 
tion will be included in the statistical model and the resulting 
statistical tests will not be as sharp in detecting faulty batches 
(that is, a larger probability for Type I1 Error). 

Thus, a method is required which will synchronize similar 
characteristics in the two trajectories. DTW is such a method 
(Itakura, 1975; Sakoe and Chiba, 1978). DTW uses the prin- 
ciple of dynamic programming to minimize a dissimilarity 
measure (a distance) between the two trajectories. DTW non- 
linearly warps the two trajectories in such a way that similar 
events are aligned and a minimum distance between them is 
obtained. It will shift some feature vectors in time, compress 
some and/or expand others so that a minimum distance is 
achieved (Nadler and Smith, 1993). Readers who are inter- 
ested only in seeing the application of DTW to synchronize 
and monitor batch processes and not in the details of the 
theory and its implementation can proceed directly in the case 
studies section. 

Let i and j denote the time index of the T and R trajecto- 
ries, respectively. DTW will find a sequence F* of K points 
on a t X r grid 
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F* = { ~ ( 1 ) , ~ ( 2 ) , . . . , c ( k ) , . . . , c ( ~ ) } ,  m a x ( t , r ) i  K ~t + r  but it will tend to expand or compress more one trajectory 
(1) relative to the other. 

For both tasks, the two trajectories are not considered 
equivalent in an asymmetric DTW algorithm. Hence, if their 
roles are interchanged, a different optimal path and a differ- 
ent minimum distance will be obtained. The most common 
asymmetric DTW algorithms map the time index of the tra- ( 2 )  

jectory placed on the  horizontal &is (that is, the T trajectory 
in our discussion) onto the time index of the one placed on 

is in fact the time index of the trajec- 
and the optimal path 

and each point c ( k )  is an ordered pair indicating a position 

in the following paragraphs), this sequence can be viewed as 
defining a path on the grid that optimally matches each vec- 
tor in both trajectories so that a normalized total distance 
between them is minimized. Figure 1 (following O’Shaugh- 

in the grid. For a symmetric DTW (to be the axis (that is, the R trajectory). In such a case, the 
time index 

tory placed on the horizontal axis 
contains exactly points, that is, 

nessy, 1986) illustrates the main idea behind DTW for two 
univariate trajectories T and R. By proceeding vector by vec- 
tor, DTW finds the best vector in R against which to com- 
pare each vector in T ,  and vice-versa (O’Shaughnessy, 1986). 

As will be explained below, there are many variants of the 
DTW algorithm. However, all of them can be classified ei- 
ther as symmetric or as asymmetric. In the symmetric ver- 
sions, the time index i of T and the time index j of R are 
both mapped onto a common time index k ,  as Eqs. 1 and 2 
depict. T and R are considered to be equally important and 
the optimal path will pass through all the points in both tra- 
jectories. If the roles are reversed and their placement in the 
grid is interchanged (that is, R is placed on the horizontal 
and T on the vertical axis), a symmetric DTW algorithm will 
give the same optimal path and the same minimum distance. 

On the other hand, an asymmetric DTW algorithm will 
perform one of the two tasks: 

(1) It will map the time index of R on the time index of T 
or vice-versa, or 

(2) It will map both time indices in a common time index, 

Figure 1. Example of nonlinear time alignment for two 
univariate trajectories R and T using DTW. 

and 

This implies that the path will go through each vector of T ,  
but it may skip vectors of R. Nonetheless, both the symmetric 
and the asymmetric DTW algorithms can be cast in the same 
framework and a unique solution can be found using the 
method of dynamic programming. 

Local and global constraints 
In order to find the best path through the grid of t X r 

points, several factors of the DTW algorithm have to be spec- 
ified. These include: constraints on the endpoints of the path, 
local continuity constraints that define localized features of 
the path (that is, slope) and global constraints that define the 
allowable space for the path. 

The most common, and simplest, endpoint constraints re- 
quire that the two extreme points of both trajectories be 
matched. That implies that the first c(1) and the last c ( K )  
path points are as follows 

and 

These constraints are useful when the initial and final points 
in both trajectories are located with certainty. However, when 
there is uncertainty about the location of the two extreme 
points, various endpoint constraints are imposed (Rabiner et 
al., 1978) which specify an allowable region where the first 
and last path point may be placed. In this article only the 
fixed endpoint constraints will be considered; for a detailed 
description on the implementation of the various relaxed 
endpoint constraints, see Kassidas (1997). 

The local continuity constraints reflect physical considera- 
tions (for instance, events should be compared in their natu- 
ral order in time) and they also guarantee that excessive coni- 
pression or expansion of the two time scales is avoided (Myers 
et al., 1980). The first requirement is satisfied by forcing the 
path to be monotonous of non-negative slope. This can be 
expressed as 
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and 

The second requirement (that is, to avoid excessive compres- 
sion or expansion of the two time scales) is achieved by not 
allowing the local slope of the path to exceed a specified 
range. This is accomplished by specifying a set of allowable 
predecessors for each point in the grid: if ( i , j )  is the kth 
path point, then the previous ( k  - 1)th path point can only be 
chosen from a set of specified grid points. Figure 2 illustrates 
common local continuity constraints and the corresponding 
slope range that they define. 

In Figure 2a the Itakura local constraint is shown (Itakura, 
1975). For each (i, j )  point in the grid, only three predeces- 
sors are allowed: (i - l,j), (i - 1,j - 1) and (i - 1, j - 2). Or, 
in other words, the only way to reach the ( i , j )  point is either 
through the ( I  - 1,;) or the (i - 1, j - 1) or the (i - 1 , j  -2) 
point. The last local transition (that is, going to the (i, j )  point 
through the (z - 1,j - 2) point) is characterized by a slope of 
2: one horizontal and two vertical steps. Thus, a slope of 2 is 
the maximum slope allowed. On the other hand, two consec- 
utive horizontal transitions are not allowed, as Figure 2a 
shows. The local transition from point (i - 1, j )  to point ( i , j )  
will not be considered at all, if the optimal way to go to point 
( i  - 1,;) is through the (i -2, j )  point. This means that when- 
ever a horizontal local optimal transition exists (that is, with 
0 slope), it has to be followed by a transition that has slope of 
either one or two. This results in a minimum allowable local 

(1-1 ,J-2) 

No constraint on Slope 

(b) 

i 
Slope range. [1/2,2] 

(4 

(i-I , j2) J 
(i-1 ,j-3) J 

Slope range [112,21 Slope range: [1/3.31 

(c) (d ) 

Figure 2. Typical local continuity constraints. 
(a)  Itakura local constraint allowing slopes in [1/2,2]; (b) 
Sakoe-Chiha local constraint with no constraint on slope; (c) 
Sakoe-Chiba local constraint allowing slopes in [1/2,2], (d) 
Sakoe-C hiha local constraint allowing slopes in [1/3,31. 
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slope of 1/2 for the path. Hence, the Itakura local continuity 
constraint results in a slope range of [1/2,2]. Moreover, it is 
an asymmetric constraint since horizontal local transitions are 
treated differently from vertical transitions; in fact, vertical 
transitions are not even considered. 

Figures 2b, 2c and 2d illustrate other types of local con- 
straints, the so-called Sakoe-Chiba constraints (Sakoe and 
Chiba, 1978). All of them restrain the slope of the optimal 
path by defining a set of allowable predecessors. The local 
constraint of Figure 2b is an exception to the above state- 
ment, because it does not impose any restriction on the slope 
of the path; the path can follow horizontal or vertical local 
transitions with no restriction on their length. On the other 
hand, the local constraints shown in Figures 2c and 2d re- 
strict the slope of the path to [1/2,2] and [1/3,31, respec- 
tively. The way to read these local constraints can be illus- 
trated with the following example. Consider the upper local 
transition of the Figure 2c. It indicates that the only way to 
reach the (i, j )  from the (i -2, j - 1) point is through the (i - 
1 , j )  point. Moreover, all of them are symmetric since for each 
(i ,J)  point the possible predecessors are located in symmetri- 
cal local transitions about the diagonal. For a detailed pres- 
entation of other local constraints see Myers et al., 1980. Note 
that in Figure 2, the arrows point towards the allowable pre- 
decessor for each (i, j )  point to indicate that each point de- 
fines its possible predecessors. Thus, the arrows' directions 
are the opposite of the actual directions of the allowable 
transitions. 

One can extend these local constraints to obtain a particu- 
lar range of slope. However, this will complicate the dynamic 
programming-based implementation. An easier way to im- 
pose constraints on the slope of the path is to use the local 
constraint shown in Figure 2b, combined with a check on 
consecutive horizontal and/or vertical optimal local transi- 
tions. This modification will result in a symmetric constraint 
with the desired slope range. Thus, if m is the maximum 
number of allowable consecutive horizontal or vertical local 
transitions, the slope of path will be restricted between l /m 
and m; that is, a slope range of [l/m,m]. 

If the local constraints define a set of predecessors for each 
(i, j )  point, the global constraints define a subset of the t X r 
grid to be the actual search space for the optimal path. Most 
of the global constraints need not be explicitly imposed. This 
is due to the fact that the implementation of most of the 
local continuity constraints automatically implies the global 
constraints. For example, assume that the local constraints of 
Figures 2a or 2c are used, in conjunction with the fixed-end- 
point constraints of Eqs. 5. Then, the actual search space will 
be the area included by the lines of slope 1/2 and 2, emanat- 
ing from the first (1, 1) and the last ( t , r )  path point. This is 
illustrated in the Figure 3a: the search area is the shaded 
parallelogram (Itakura, 1975). In the case that the number of 
observations in T is twice (or half) of those in R ,  the allowed 
search space is reduced to the diagonal line (Silverman and 
Morgan, 1990). 

Figure 3b shows the band global constraint. This constraint 
does not allow the path to deviate M grid points from the 
linear path starting at point (1,l) (Sakoe and Chiba, 1978). 
For a feasible search space to exist, M has to be at least 
equal to or greater than the absolute value of the difference 
between the number of observations in R and T ,  that is, 
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Figure 3. Typical global constraints. 
(a) Itakura global constraint; (b) Sakoe-Chiba band con- 
straint. 

This global constraint is usually used in conjunction with the 
local constraint of Figure 2b, that is, when no restriction is 
imposed on the slope of the path. The combination of the 
two constraints will prevent large deviations from the linear 
path, although this may be an indication of the dissimilarity 
between the two trajectories. When the band constraint is 
present, this dissimilarity will appear as an inflated total dis- 
tance. Moreover, it is possible to combine different local and 
global constraints. For example, one can use the local con- 
straint of Figure 2c, together with the band global constraint. 
In such a case, the search space will be the intersection of 
the two shaded regions of Figures 3a and 3b. 

Formulation of the minimum distance problem 
As mentioned above, the objective of DTW is to find the 

best path through a grid of vector-to-vector distances such 
that some total distance measured between the two trajecto- 
ries is minimized. A general form of this distance measured 
for any path (Sakoe and Chiba, 1978; Myers et al., 1980) is 

where D(t ,  I) is a normalized total distance between the two 

jectories; d[i( k ) , j ( k ) ]  is the weighted local distance between 
the i ( k )  vector of the T trajectory and the j ( k )  vector of the 
R trajectory. The most commonly used local distance is the 
weighted quadratic distance. 

where W is a positive definite weight matrix that reflects the 
relative importance of each measured variable; w(k) is a 
nonnegative weighting function for the d [ i ( k ) ,  j(k)] local dis- 
tance; and N(w) is a normalization factor which is a function 
of the weighting function w ( k ) .  

Therefore, D(t,r) is the sum of all the local distances be- 
tween pairs of observations in the two trajectories that lie 
along the path, weighted by w ( k ) ,  and divided by the normal- 
ization factor N(w). 

Thus, the optimal path is found as the solution to the fol- 
lowing optimization problem 

and 

where D*(t ,  I) is the minimum normalized total distance be- 
tween T and R ,  and F* is the optimal path. 

The N(w) parameter is a scalar and serves as normaliza- 
tion factor for the distance estimation. Its value will depend 
on the type of the weighting function w(k) that is used. Its 
purpose is to make the normalized total distance inde- 
pendent of the number of path points K and the lengths of 
the two trajectories. 

The weighting function w ( k )  depends on the local continu- 
ity constraints and serves two purposes. The first is to pro- 
vide more flexibility in the DTW algorithm by weighting the 
local distance d[ i (k) ,  j ( k ) ] ,  depending on the local transition 
by which the [ z ( k ) , j ( k ) ]  path point can be reached from the 
[ i ( k  - 1) , j (k  - I)] previous path point. As Figure 2 shows, for 
any ( i ,  j )  point in the grid, a set of allowable local transitions 
is defined by which the (i,j) point can be reached; w(k) al- 
lows some local transitions to be treated preferentially (by 
assigning small weights to them) over some others. The sec- 
ond purpose of w ( k )  is to make the normalized total distance 
independent of the number of the path points by imposing an 
appropriate value for the normalization factor N(w). 

The importance of the last point can be seen in Eqs. 8 and 
10. The optimization problem of Eq. 10 uses a rational func- 
tion as a criterion. In principle, it is possible to solve such 
optimization problems. However, dynamic programming can- 
not be used for this problem. since the global solution in dy- 
namic programming is obtained recursively by a series of lo- 
cal solutions that do not consider the best global path at all. 
Dynamic programming retrieves the optimal path at the end, 
assuming that the optimal total distance has been found. 
Thus, problems like the one of Eq. 10, where the minimiza- 
tion depends simultaneously on both the total distance and 
the path, cannot be solved by dynamic programming. On the 
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other hand, if the normalization factor N(w) is independent 
of the optimal path, the optimization problem reduces to 

and this problem lends itself to a dynamic programming-based 
solution (Myers et al., 1980). 

Many different weighting functions have been proposed in 
the literature of DTW (Itakura, 1975; Sakoe and Chiba, 1978; 
Myers et al., 1980; Ney, 1984). The two most common ones 
are 

symmetric: w(k )  = [ i ( k ) - i ( k - l ) ] + [ j ( k ) - j ( k - l ) ] ,  

i(0) = j (0)  = 0 (13a) 

asymmetric: w ( k ) = i ( k ) - i ( k - l ) ,  i ( O ) = O  (13b) 

The weighting function of Eq. 13a weights a local transi- 
tion from the ( k  - 11th path point to the kth path point, ac- 
cording to the number of horizontal and vertical steps that 
need to be taken for that particular local transition. Both 
horizontal and vertical steps are considered equivalent. Thus, 
it is a symmetric weighting function. On the other hand, Eq. 
13b considers only the number of horizontal steps required 
for a local transition and, for that reason, it is an asymmetric 
weighting function. Since only the horizontal steps are con- 
sidered, this weighting function favors transitions for which 
i ( k )  = i (k  - 11, that is, vertical transitions. Figure 4 illustrates 
these weighting functions, when the local continuity con- 
straint of Figure 2b is applied. The coefficients for each local 
transition are the result of the weighting functions of Eqs. 
13a and 13b. Similar coefficients are obtained when different 
local continuity constraints are applied [see Sakoe and Chiba 
(1978), and Myers et al. (1980) for more on various weighting 
functions]. 

The normalization factor N(w) can now be defined. The 
normalized total distance, as defined in Eq. 8, is an average 
distance between the two trajectories along any path. As such, 
it is reasonable to set N(w) equal to the number of the local 
distances computed along the path 

ti 

N(w)= c w(k) (14) 
k = l  

Figure 4. Local continuity constraint with no constraint 
on slope. 
(a) Symmetric weighting function; (b) asymmetric weighting 
function. 
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Hence, if the weighting functions of Eqs. 13a and 13b are 
used, the corresponding normalization factors are 

= i ( K )  - i(O) + j ( K )  - j (0)  = t + r 

N(w) = C [ i ( k )  - i ( k  - l ) ]  = i ( K )  - i (0)  = t 
ti 

(15b) 
k = l  

and they are both independent of the optimal path. 
For the application of DTW presented in this article, the 

N ( w )  factor plays no role and it can be omitted. However, in 
speech recognition applications, a new word is compared with 
several reference words, which may contain a different num- 
ber of observations, and the classification is done on the basis 
of minimum distance. If a non-normalized distance is used, 
the decision will be biased towards the referenced word with 
the minimum number of observations. The normalization fac- 
tor is therefore used to prevent this undesirable characteris- 
tic of DTW. 

It was mentioned that there are symmetric and asymmetric 
DTW algorithms. A symmetric DTW algorithm will result if a 
symmetric local continuity constraint is used together with a 
symmetric weighting function. Conversely, if either an asym- 
metric local constraint (such as the Itakura local constraint) 
and/or an asymmetric weighting function are used then the 
resulting DTW algorithm will be asymmetric. 

Solution via dynamic programming 
The solution of the optimization problem shown in Eq. 10 

is based on the Principle of Optimality, which states that “An 
optimal policy has the property that whatever the initial state 
and initial decision are, the remaining decisions must consti- 
tute an optimal policy with regard to the state resulting from 
the first decision” (Bellman and Dreyfus, 1962; Bertsekas, 
1987). For this problem, the Principle of Optimality is trans- 
lated into the following two rules (Myers et al., 1980; Ney, 
1984; Silverman and Morgan, 1990): 

Rule (I):  Let F* be the optimal global path on the t X r 
grid. If F* goes through an ( i , j )  point, then the optimal path 
to the ( i , j )  point is part of F*.  

Rule @I): The optimal path to the (i, j )  point depends only 
on previous grid points. 

The above rules, used in any variant of DTW, define a 
recursive dynamic programming relationship. This recursive 
relationship depends on the type of local continuity con- 
straint and on the weighting function. It will be described by 
means of an example. 

Assume that the fixed-endpoint constraints of Eqs. 5 are 
used, together with the symmetric local continuity constraint 
and the weighting function of Figure 4a. Also, assume that 
the band constraint of Figure 3b is used. Let D,(i,j) be the 
minimum accumulated distance from point (1,l)  to point 
(i, j ) ,  that is 
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where F' is any path, F'" is the optimal path to the (i, j )  
point and K' is the number of path points. Thus, Eq. 12 
becomes 

(17) 

(as mentioned, N(w) = t + r for this type of symmetric 
weighting function, Eq. 15a). 

The assumed local continuity constraint implies that the 
(i, j )  point can only be reached by either the ( i  - 1, j),  or the 
( i  - 1, j - 1) or the (i, j - 1) point. However, for any of these 
three possible predecessor points, there is a minimum accu- 
mulated distance. Due to Rule (I), if the (i, j )  point lies on 
the optimal path, then the transition from the three possible 
predecessors has to be optimal. Also, due to Rule (111, this 
optimal transition will not be affected by any subsequent de- 
cision. Thus, according to the Rules (I) and (111, the chosen 
local continuity constraint and the symmetric weighting func- 
tion, DA(i, j )  will be found by solving the following simple 
optimization problem 

Now, because at this point it is not known whether the (i, j) 
point lies on the optimal path, we have to store our decision 
as to which of the three alternatives in Eq. 18 was selected. 
This procedure (that is, Eq. 18 and storage of the optimal 
local transition) has to be done for all the (i, j )  points that lie 
in the allowable search area, that is, the shaded area of Fig- 
ure 3b. Note however, that if the optimal path does not need 
to be reconstructed, these optimal local transitions do not 
have to be stored. 

Thus, one would start from the point (1,l) as 

depends on the value of the outer iteration index. M (the 
maximum deviation from the diagonal path) defines the ex- 
tent of the search area for the optimal path; it must be M 2 
1 t - r I so that the band of width 2.M includes the ( t ,  r )  grid 
point and the two constraints (that is, the band constraint 
and the fixed endpoint constraints) are compatible. In gen- 
eral, M should reflect the uncertainty in locating the first 
and the last points of the trajectories. 

The iterative procedure of Eq. 18 finishes when the D,(t, I )  

distance is computed and, subsequently, the minimum nor- 
malized total distance D * ( t , r )  is computed via Eq. 17. To 
reconstruct the optimal path, one has to proceed in a back- 
ward manner, starting from the ( t ,  I) point and using the 
stored information on the optimal decisions at the allowable 
(i, j )  grid points. Thus, first the predecessor of the ( t ,  r )  point 
is located, then the predecessor of the latter is located and 
this is repeated until the (1,l) point is reached. 

In terms of memory requirements, these are not large if 
only the minimum distance is sought. In that case, only two 
vectors of accumulated distances have to be stored. At any 
outer iteration i a vector that stores the D,(i - 1, j )  distances 
is required and the DA(i, j )  vector of distances is computed 
via Eq. 18. At the next iteration, i + 1, the D,(i - 1, j )  dis- 
tances are not required anymore and their memory space can 
be used to store the D,&, j )  distances. The memory space for 
the latter can be used to store the new D,(i + 1, j )  distances 
and the whole storage-updating procedure is repeated. 

If the optimal path is also sought, then for any (i, j )  point 
in the allowable search area in the grid, an integer index (from 
a set of three indices, each associated with a possible prede- 
cessor) has to be stored indicating the optimal predecessor. 
This is done because any of the points in the allowable space 
can be a point of the optimal path. Thus, for our example, 
this information has to be stored for all points that lie in the 
shaded region of Figure 3b. 

The above procedure, with minor alterations depending on 
the type of endpoint, local continuity and global constraints 
and weighting function, is applied in any DTW algorithm (for 
more details, see Kassidas, 1997). For example, when the 
Itakura local continuity constraints are used, the recursive re- 
lationship is 

(the weight of 2 is according to the assumed weighting func- 
tion of Eq. 13a) and would proceed recursively via two itera- 
tions, one nested in the other, until the ( t , r )  grid point is 
reached. This constitutes the forward phase of the dynamic 
programming recursion. The outer iteration will progress on 
the time index i of the trajectory placed on the horizontal 
axis, whereas the inner iteration will progress on the allow- 
able range of the time index j of the trajectory placed on the 
vertical axis. As Figure 3b shows, for any value of the hori- 
zontal time index, there is an allowable range (shaded region) 
for the vertical time index. Thus, the index of the outer loop i 
goes from 1 to t ,  while the range of the inner loop index j 

with 

The DTW algorithm of Eq. 18 is a symmetric one; both 
trajectories are equivalent and if their placement in the grid 
in reversed, the same optimal path and optimal distance will 
be obtained. The number of path points K will be greater 
than either t or r ( K  2 max(f, r)) .  Both R and T are locally 
expanded and/or translated so that common features are 
synchronized and their timing differences are reconciled. In 
contrast, the Itakura constraint of Eq. 20 results in an asym- 
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metric DTW algorithm. The optimal path contains exactly t 
points, as many as the trajectory placed on the horizontal axis 
(that is, T )  contains. R is locally translated, contracted and 
expanded, so that its timing differences with T are recon- 
ciled; the latter remains intact. These characteristics of sym- 
metric and asymmetric DTW algorithms must be taken into 
consideration when DTW is applied for the synchronization 
of batch trajectories; this is discussed in the next section. 

Synchronization of Batch Trajectories Using DTW 
Dynamic time warping algorithm 

Let B,, i = 1, . . . , I  be a set of I trajectories of good quality 
batches. Each B, is a matrix of bi X N where bi is the num- 
ber of observations and N is the number of measured vari- 
ables. Also assume that some appropriate scaling for the vari- 
ables has been applied. Finally, assume that a reference batch 
trajectory, B,,, has been somehow defined; this is a matrix 
of b,,, x N .  The issues of scaling and choice of B,,, will 
be discussed in the following subsection. Now the objective is 
to synchronize each Bi with B,,,. 

As discussed in the previous section, DTW works with pairs 
of patterns. Thus, one needs to separately synchronize each 
B, with B,,,. The main question is what kind of DTW algo- 
rithm should be used; specifically, whether it should be a 
symmetric or an asymmetric algorithm. As mentioned, after 
DTW is performed using a symmetric DTW algorithm, the 
synchronized trajectories have equal duration, which is 
greater than thc duration of the trajectories before synchro- 
nization. This common duration is determined by the DTW 
algorithm and cannot be specified a priori. Furthermore, it 
will be different for each B, that is synchronized with B,,,. 
Therefore, if a symmetric DTW is used to synchronize each 
B, with BRFF, the result will be a set of expanded trajectories 
with unequal duration; each Bi will be individually synchro- 
nized with B,,, but not with each other. Therefore, the 
choice of a symmetric algorithm would still result in the situ- 
ation of having a set of batch trajectories with unequal dura- 
tion. 

On the other hand, the most common asymmetric DTW 
algorithms treat one trajectory preferentially. The optimal 
path goes through all points in one of them (which can be 
viewed as the defining trajectory) and can skip points of the 
other. After DTW is performed, the synchronized trajecto- 
ries have equal duration, equal to the duration of the defin- 
ing trajectory. For the current problem, one would use B,,, 
as the defining trajectory and map its time axis onto the time 
axis of each B,. The end result will be a set of synchronized 
trajectories with equal duration b,,, all of them synchro- 
nized with B,,, and synchronized with each other. 

Although this appears to be a reasonable solution, it has 
the disadvantage that the synchronized trajectories may not 
contain all the data points of the original trajectories because 
the optimal path may have skipped selected points in them. 
This is an undesirable side effect because features that ap- 
pear in some B, and do not appear in B,,, may be left out. 
In effect, a subtle filtering is performed that removes incon- 
sistent features. If an MPCA/MPLS model is constructed 
from the “filtered” trajectories, it will be biased towards false 
alarms since it will not consider inconsistent features that may 
be present in a new batch trajectory. 
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In summary, symmetric DTW algorithms include all points 
in the original trajectories and result in expanded trajectories 
of various lengths. Asymmetric DTW algorithms may elimi- 
nate points, but will produce synchronized trajectories of 
equal length. The following method (symmetric DTW algo- 
rithm combined with an asymmetric synchronization proce- 
dure) proposes to achieve a compromise between the two ex- 
tremes. 

Step A: Symmetric DTW Algorithm 
For each B,, apply DTW between B, and BRFF using the 

(i) fixed-endpoint constraints 
(ii) band global constraint 
(iii) local constraint 

following constraints 

At the end, reconstruct the optimal path. 
Step B: AJymmetric Synchronization 
When more than one point of B, is aligned with one point 

(i) Take the average of these points of B,. 
(ii)Align this average point with the particular point of 

BRFF. 
After synchronization, B, contains as many data points as 

B,,,, that is, bmF. 
AJyrnmehic Synchronization (Step B) can be best illustrated 

by means of an example. Assume that Bi is placed on the 
horizontal and B,,, on the vertical axis. This arrangement 
does not affect the DTW algorithm in Step A since it is sym- 
metric. Also assume that after DTW, the following three 
points are included in the optimal path: (i - l,;), (i,;) and 
(i + 1,;). According to them, the (i - l)th, ith and (i + 11th 
points of B, are all aligned with the jth point of B,,,. The 
proposed method takes the average of the three 

of B,,, do the following: 

B,(i - 1, :) + Bi(i,:) + Bj(Z + 1, :) 
3 

and synchronizes this average with B,,&,:). 
The proposed DTW algorithm is still a symmetric algo- 

rithm and as such the optimal path passes through all the 
points in both patterns. All points of B, (even if some of 
them have been averaged) are included in the synchronized 
trajectory. On the other hand, the local continuity constraint 
in Eq. 22 favors diagonal over horizontal or vertical local 
transitions. The local constraint is a modification of the one 
shown in Eq. 18. The local constraint in Eq. 18 gives a weight 
of 2 to the local distance d(i, j )  for a diagonal local transition 
[from (i - 1,; - 1) to ( i , j )  point]. This weight was the result 
of a symmetric weighting function; its purpose was to provide 
independence of the final distance to the number of points in 
the optimal path. However, in this problem, only the optimal 
path is of interest and not the final distance found by DTW. 
Using the smaller weight of 1 (as in Eq. 221, diagonal local 
transitions are preferred over horizontal or vertical ones, and 
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it is the horizontal and vertical transitions that distort the 
time axes of B, and B,,,. Thus, the constraint of Eq. 22 
results in smaller distortions of the time axes of both B, and 
B,,, and consequently requires less averaging in Step B. 

Although the DTW algorithm of Step A is a symmetric 
algorithm, the algorithm in Step B is an asymmetric opera- 
tion that synchronizes all Bi in a way that all have the same 
duration b,,,. One can now use the synchronized trajecto- 
ries from the proposed method to build an MPCA/MPLS 
model; the model will be still slightly biased towards false 
alarms (due to averaging of inconsistent features). However, 
it will be less prone to false alarms than a model, which was 
based on synchronized batches from an asymmetric DTW al- 
gorithm. 

In the above discussion, it was assumed that the raw trajec- 
tories had been scaled appropriately and that also a refer- 
ence trajectory had been defined. The next subsection deals 
with these issues, and proposes a complete method for syn- 
chronization of batch trajectories. 

Iterative method for synchronization of batch trajectories 
As a distance-based method, DTW is sensitive to the scal- 

ing of variables. In the case of batch processes an intelligent 
scaling should accomplish two objectives. The first is to re- 
move the effect of the various engineering units used to record 
the variables. This is easily achieved by dividing each variable 
by its standard deviation or its range. The second and most 
important objective is to give more weight to variables that 
are consistent from batch to batch. The synchronization of 
batch trajectories should rely more on these variables. This 
relative importance of variables is expressed through the 
weight matrix W used in the local distance computation in 
DTW, that is 

One choice would be to assign subjective weight to each 
variable; however, this would require process knowledge and 
perhaps a number of ad hoc decisions. A more appealing 
choice would be to devise a procedure that would automati- 
cally detect and increase the weight of consistent variables 
and decrease the weights of the rest. For each variable, the 
sum of the squared deviation from the average trajectory over 
all batches could be used as an indicator of its consistency 
over different realizations. 

Regarding BRFF, a reasonable choice would be to set it 
equal to the average trajectory. However, at the start of the 
synchronization procedure it is not possible to average the 
batch trajectories since each one of them has a different du- 
ration. Thus, one trajectory from the set could be used as 
BRFF. One could then synchronize all other trajectories to 
this particular one using the DTW/synchronization method 
of the previous subsection. After synchronization, all trajec- 
tories would have the same duration and so an average tra- 
jectory could be defined. The whole procedure could then be 
repeated and in the next iteration the average trajectory could 
be used as the referenced one. 

These are essentially the main steps of the iterative proce- 
dure proposed for the synchronization of unequal batch tra- 
jectories, which is now being presented in detail. 

Step A: Scaling 
Let BRAW:,, i = 1, . . . , I ,  be a referenced set of trajectories 

which contain the raw measurements from I good quality 
batches. 

For each variable, find its average range by averaging the 
range from each batch; store these values because they will 
be used in the off-line and on-line monitoring of a new batch. 

Divide each variable in all batches with its average range. 
Let B, ,  i = 1, . . . , I be the resulting scaled batch trajecto- 

Step B: Synchronization 
Step 0: Select one of the trajectories B ,  as the referenced 

Consequently: b,,, = b,. 
Set W (the weight matrix in the DTW algorithm) equal to 

the identity matrix. 
Execute the following steps for a specified maximum num- 

ber of iterations. 

Step 1. Apply the DTW/synchronization method between 
B, ,  i = 1, . . . , I ,  and BREF as described in the previous subsec- 
tion. 

Let B, ,  i = 1, . . . , I be the synchronized trajectories with 
b,,, now being their common duration. 

Step 2. Compute the average trajectory E ,  that is, B 

ries. 

trajectory: B,,F = B,. 

- 

= C B J Z .  
1 = 1  

Step 3. For each variable, compute the sum of squared de- 
viations from E .  

The inverse of this value will be the weight of the particu- 
lar variable for the next iteration, that is, W will be a diago- 
nal matrix with 

Normalize W so that the sum of the weights is equal 
to the number of variables, that is, replace W with 

( 1)  
Step 4. For the first three iterations, keep the same refer- 

enced trajectory: B,,, = B,. 
For subsequent iterations, set the reference equal to the 

average trajectory: B,,, = B.  
The length of the synchronized trajectories at the end of 

the iterative procedure will be the length of the trajectory 
initially used as the referenced trajectory. Alternatively, one 
could estimate the average duration from the initial trajecto- 
ries and the trajectory whose duration is closest to the aver- 
age duration could be used as B,,, for the first three itera- 
tions. By doing that, the duration of the synchronized trajec- 
tories at the end will be the average duration of the available 
realizations. The choice of the initial referenced trajectory is 
a matter of user preference. Finally, the maximum number of 
iterations is another parameter of the method set by the user. 
One could also monitor the change of the weight matrix W 
from one iteration to the next and use it as an indicator for 
convergence. 

w N/ C w(j t j )  . 

- 
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Variable No. 2 before synchronization 
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Variable No. 3 before synchronization 
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Variable No. 5 before synchronization 
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Observation No. 
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Variable No. 7 before svnchmnization 

I !' , . ., . I  
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Figure 5. Four (out of 10) variables during the 31 good 
quality batches before synchronization. 
The variables have been divided with their average range. 

Case Studies 
Figure 5 shows 4 variables (selected from the 10 variables 

in the data set) for 31 good quality batches from an industrial 
emulsion polymerization process; all variables have been 
scaled with their average range. The variables shown in Fig- 
ure 5 illustrate a number of issues relating to batch process 
data. The most important is that the trajectories are not syn- 
chronized and do not have the same duration. Variable No. 
5, with the exception of the starting and ending part, is smooth 
and strictly monotonic; thus, it could be used as an indicator 
variable. Variables No. 2 and 3 are piecewise constant with 
occasional step changes in their level. As such, they do not 
contain enough information to make them useful as indicator 
variables, but the times where their values step from one level 
to the next could be used to test the quality of the synchro- 
nization. Variable No. 7 is a noisy variable, and, therefore, 
one would not use it as an indicator variable. 

The durations of the trajectories in this industrial data set 
vary from 106 to 126 data points and the average duration is 
115. Three trajectories have the average duration and one of 
them was chosen to be the referenced trajectory for the 
first three iterations. For the DTW/synchronization proce- 
dure, the band global constraint was used with maximum al- 
lowable deviation M = 35 (from the linear path emanating 
from point (1,l)). The iterative procedure was executed for 
10 iterations. The band global constraint was never active at 
any iteration and for any Bi - B,,, pair; it simply helped to 
speed up the computations. 

The results after the final (10th) iteration are shown in Fig- 
ures 6 and 7. Figure 6 shows the 4 variables after the trajec- 
tories have been synchronized and Figure 7 shows how the 
weights of the 4 variables changed with respect to the itera- 
tions. As Figure 6 illustrates, the variables are now synchro- 
nized. This is more apparent by looking at the times of the 
step changes in Variables Nos. 2 and 3 and the spike in Vari- 
able No. 3. Due to the averaging of selected points by the 
asymmetric synchronization procedure, some of the spikes in 
Variable No. 2 (see Figure 5 )  have been fiitered; however, 
they are not completely removed. 

Variable No. 2 after synchronization 

Variable No. 5 after synchronization 

-0.5 
20 40 80 80 100 

Observation No. 

Variable No. 3 after synchronization 

0.8 

0.6 

0.4 

0.2 

0 

20 40 60 80 100 
Observation No. 

Variable No. 7 after synchronization 

20 40 60 86 100 
Observation No 

Figure 6. Four variables of Figure 5 for all 31 batches 
after synchronization. 

Variable No. 5 is a smooth variable and it could be used as 
an indicator variable to synchronize the trajectories as 
Nomikos and MacGregor (1994) proposed. Such a synchro- 
nization was previously used in analyzing these batch trajec- 
tories by Kourti et al. (1996). The proposed iterative proce- 
dure validated this approach (as Figure 7 shows) since the 
weight of Variable No. 5 accounts for about 85% of the total 
weight (the indicator variable solution essentially gives 100% 
of the total weight to this variable). Finally, Variable No. 7 is 
a noisy variable (as Figure 5 shows) and is of little value for 
synchronization. The iterative procedure recognized this and 
gave small weight to Variable No. 7 after the first iteration 
(see Figure 7). 

The iterative procedure could also be used to pinpoint the 
most appropriate variable to be used as an indicator variable 
if one wants to use this simpler method for synchronization 
without relying on expert process knowledge. There may be 
situations where several variables are smooth and monotonic; 
thus, they could all be candidates for the role of the indicator 
variable. The proposed method could assist in choosing the 

Variable No. 2 Vanable No 3 

Iteration No. Iteration No. 

Vanable No. 5 Variable No 7 
1001 I 10, I 

Iteration NO. Iteration No. 

Figure 7. Percentage of total weight vs. iteration num- 
ber for the 4 variables in Figures 5 and 6. 
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Figure 8. Synchronization of trajectories after Variable 
No. 5 was spliced into 2 artificial variables. 

most appropriate one by selecting the variable that gets the 
largest weight in matrix W. 

To investigate the situation where there is no single vari- 
able that can be easily identified as an indicator variable, the 
following case study was performed. Variable No. 5 was 
spliced into two parts and two artificial variables were cre- 
ated. The first contains the initial part of Variable No. 5 up 
to the point that it reaches the value of zero; then, it is padded 
with zeros up to the end of the trajectory. Similarly, the sec- 
ond artificial variable contains initially a number of zeros, 
followed by the second part of Variable No. 5. Thus, for this 
case study, the batch trajectories contained 11 variables: the 
other 9 original variables (excluding Variable No. 5 )  plus the 
two artificial ones created from Variable No. 5 .  

Next, the synchronization method was applied with the 
same parameters described before and the results are pre- 
sented in Figures 8 and 9. As Figure 8 shows, the synchro- 
nization of the variables is again quite good and almost iden- 
tical to the one obtained before (Figure 6). The variable 
weights are shown in Figure 9. Interestingly, about 85% of 
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Figure 9. Percentage of total weight vs. iteration num- 
ber for the synchronization in Figure 8. 

the total weight is now distributed between the two artificial 
variables. Although not a proof, this case study shows that 
the proposed method can still perform well in cases where it 
is not possible to find a single variable that indicates the pro- 
gression of the batch process. 

Batch Monitoring Using MPCA/MPLS 
Of-line implementation 

Once timing differences have been removed by the syn- 
chronization procedure, the resulting trajectories B,, i = 

1, ..., I can be used to build an MPCA/MPLS model for 
process monitoring as proposed by Nomikos and MacGregor 
(1994, 1995b). However, one important feature has been re- 
moved from the raw data (the timing differences) and it could 
be the case that this feature is indeed affecting the final 
product quality. To account for this possibility, the amount of 
time distortion (expansion or compression) imposed by DTW 
on the duration of each batch and on the times between any 
identifiable checkpoint during each batch should be included 
in the MPLS model. These time distortions can be treated as 
additional variables in the initial condition matrix of the 
Multiblock MPLS model (see Kourti et al., 1995). 

Now, assume that the complete trajectory of a new batch 
B,,,,,, (a matrix of b,, X N )  is available. The objective 
is to use the MPCA/MPLS-based monitoring scheme to as- 
sess the product quality of the new batch. Most probably the 
duration of the new batch bNEw will not be equal to the 
duration of the synchronized batches b,,, that were used to 
construct the monitoring model. Even if b,,, = b,,, some 
stages of the new batch may not be synchronized with the 
corresponding stages of the referenced trajectory. In either 
case, B,,,,, has to be synchronized before the monitor- 
ing scheme is applied. The following method proposes to ac- 
complish this task. 

Step A: Scaling 
Divide each variable in the new batch with the average 

Let BNEw be the resulting scaled new trajectory. 
Step B: Synchronization 
Let B,,, and W be the referenced trajectory and the 

weight matrix used in the last iteration of the synchronization 
procedure. 

Apply the DTW/synchronization method to synchronize 
BNEw with BmF. 

Let BNEw be the synchronized new trajectory. 
B,,, is synchronized with the reference trajectories, its 

duration is b,, and the MPCA/MPLS-based batch moni- 
toring scheme can now be applied. Note that some points in 
BNEW will be averages of selected points of B,, as a result 
of the asymmetric synchronization procedure. Since the aver- 
aging operation smooths spurious features, rim, is slightly 
biased towards the null hypothesis, that is, the new batch be- 
ing of good quality. This is a compromise that one has to 
accept if one wants to use the same MPCA/MPLS model to 
monitor each new batch. 

On-line implementation 
The on-line implementation of the MPCA/MPLS-based 

monitoring scheme is similar to the off-line implementation 
with one important difference: in the on-line case, the pre- 
diction of the future behavior of the batch trajectory up to its 

range estimated from the trajectories of the referenced set. 
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expected end is required. Nomikos and MacGregor (1995a) 
discuss possible methods to carry out these predictions. How- 
ever, they assume that the new trajectory is synchronized with 
the referenced set trajectories either in time or with respect 
to an indicator variable. In real time, this assumption means 
that the progress of the new batch up to the current time t is 
equivalent to the progress of the referenced set batches up to 
time t .  Therefore, one has to predict the behavior of the new 
batch from the current time and onward up to its end; the 
end time for the new batch is assumed to be the common 
duration of the referenced set batches. This assumption may 
not be always true in industrial batch processes for the rea- 
sons given in the Introduction. 

Let BRAW,NEW be the raw measurements of the evolving 
new batch, a matrix of t x N ,  with t being the number of 
data points from time zero up to the current time. To moni- 
tor the progress of the batch on-line, one would have to an- 
swer the following question: which point r of the referenced 
trajectory best represents the progress of the new batch up to 
the current time‘? DTW can provide an answer to this ques- 
tion as follows: 

Step A: Scaiing 
Divide each variable in B,,,,, with its average range 

estimated from the trajectories of the referenced set. 
Let B,,, be the resulting scaled new trajectory. 
Step B: Synchronization 
Let B,,, and W be the referenced trajectory and the 

weight matrix used in the last iteration of the synchronization 
procedure. 

Step 1: Apply the DTW symmetric algorithm as previously 
presented. However, since only the first t data points of the 
new batch are available, one would have a set of accumulated 
distances: D, ( t , j ) ,  j =  l ( t ) ,  ..., u(t); l ( t )  and u ( t )  are the 
lower and upper bound imposed by the band constraint on 
the index of the inner iteration. 

Let r be the point in the D,(t,:) vector where the mini- 
mum occurs, that IS, r = argmin [ D,(t, j ) ] .  

Step 2: Synchronize the t points of B,, to the first r 
points of B,,, using the asymmetric synchronization method 
previously presented. After synchronization, the new trajec- 
tory, B,,,, will have r points. 

Step 3: Predict the progress of the new batch from point 
( r  + 1) up to the final point of the referenced trajectory bREF. 
Now the MPCA/MPLS-based monitoring scheme can be ap- 
plied on-line as described by Nomikos and MacGregor (1994, 
199513). 

The above method has to be repeated as soon as another 
measurement from the new batch is available. 

Conclusions 
An application of DTW for the synchronization and moni- 

toring of batch processes was presented. Industrial batch 
processes are often characterized by unsynchronized trajecto- 
ries of variable duration. However, the synchronization of the 
trajectories to a common length is a necessary condition for 
the application of many analysis and monitoring schemes. To 
solve the problem of batch synchronization, an iterative 
method was proposed based on DTW. The method is multi- 
variate since it does not rely on a single variable to perform 
the synchronization in contrast to the indicator variable 
method. Moreover, the method can be used to pinpoint the 

I 

most consistent variable, that is, the variable with the small- 
est deviation about its average trajectory. This variable could 
be used as the indicator variable at subsequent studies, if one 
wants to use this simpler approach. Once the batch trajecto- 
ries are synchronized, one can then build the MPCA/MPLS 
batch monitoring model. To monitor a new batch, its timing 
differences with the referenced set batches should first be 
reconciled. To achieve this synchronization, a DTW-based 
procedure is proposed; guidelines are given for both off-line 
and on-line implementation. 
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