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Abstract

Modern surgical trainees are often given written examinations to test their knowl-

edge and decision-making skills. However, there exists no widely accepted method

for objective evaluation of technical skill. The need for such a method is particularly

evident in the young field of robot-assisted minimally invasive surgery, where specific

training methods have not been fully established and little is known about surgeons’

skill acquisition. Our approach to objective evaluation is based on the assumption

that technical skill will reveal itself in the motions used to complete a surgical task.

We collect detailed motion data from Intuitive Surgical’s daVinci� robotic surgical

system during the performance of such tasks and automatically segment and recog-

nize these motions. With a list of the motions used to complete a task, we may

evaluate skill by comparing the number, distribution, and sequences of motions used

by novices and experts.

Our methodology is comprised of four major steps. First, a motion vocabulary

must be defined. Second, segmenting the data into individual motions is done using

the Cartesian velocities of surgeon’s input motions. Third, individual motions are

automatically recognized using hidden Markov models; recognition rates have been
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improved by the application of linear discriminant analysis and a normalization pro-

cedure. Using these techniques, recognition rates as high as 85% have been achieved.

Lastly, the motions are used to evaluate skill. Skill assessment using motion tran-

scriptions is shown to agree with the skill implied by experience and other objective

measures.
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Chapter 1

Introduction

1.1 Motivation

Surgical training programs require the highest possible standards to ensure proper

acquisition of skill and the best standard of care for all patients. Surgical skill can

be broken down into technical skill—the ability to carry out the manual tasks such

as dissection and suturing—and decision-making skills. Decision-making skills are

generally agreed to be the more important of the two; these skills are often taught in

a classroom setting and are thought to be accurately tested with written examinations.

Technical skill, on the other hand, is much more difficult to judge. In most modern

training programs the technical skill of surgical residents is largely evaluated using

unstructured, subjective criteria applied by senior surgeons.

Although the process is clearly successful, as many talented surgeons are trained

and evaluated in this way, clinicians desire an objective method for evaluation of

technical skill. Among other reasons, recent rule changes regarding working conditions
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for medical residents have reduced the amount of time available for training and, in

the eyes of some professionals, have created an even greater need to ensure residents

are being taught efficiently and learning well. An effective, accurate method would

enable several key initiatives. These include:

• a method by which to evaluate training methods themselves.

• insight into how surgical skills are obtained. Analyzing the effect of different

training methods on skill level may reveal the underlying factors at work.

• the possibility of formal certification for specific procedures or techniques. Such

a certification could provide confidence for patients, play a role in the approval

of techniques by governing bodies, and possibly provide a degree of protection

for surgeons for insurance and litigation purposes.

• a better understanding of the mechanisms that contribute to favorable out-

comes, assuming that a measure of skill is correlated and validated with objec-

tive outcomes.

• a method for evaluation of new tools and techniques for surgery. For example,

if the average objective skill measure for a group of surgeons is significantly

different when using one tool or technique versus another, this might indicate

the effectiveness of that tool or technique.

With these goals in mind, this research was conducted to develop a method for

objective evaluation of technical skill in surgery. To demonstrate the method, we have
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sought to enable identification of learning curves for surgeons new to a commercially-

available robotic system for minimally invasive surgery (MIS). Minimally invasive

(such as laparoscopic or thoracoscopic) procedures are performed through three or

more small incisions 5–15mm in size. A small camera is inserted through one inci-

sion and long-shafted tools are inserted through the others. While traditional MIS

techniques have many benefits for patients, they create a number difficulties for the

surgeon.

Intuitive Surgical’s daVinci� system [28] (pictured in Figure 1.1) is designed to

overcome many of these difficulties. The system has robotic arms that hold the

endoscope and specially-designed surgical tools. The system enables the surgeon to

view and control the tools inside the patient by manipulating joystick-like devices at

a console several feet away. The motions used closely replicate the same motions a

surgeon would utilize if operating directly on the patient during open surgery; with

the aid of the robot these operations can be performed through three small incisions

roughly 15mm in size.

Robotic assistance in MIS is still a relatively young technology. As such, many

surgeons who might use the daVinci� or a similar system clinically are already experi-

enced in more traditional MIS techniques. When introduced to the daVinci� system,

the training for these surgeons is typically limited to the function of the system. No-

tably, it includes very little training regarding surgical techniques specific to such a

system. Skill on the daVinci� system, then, is largely learned through experience.

While learning to use the system does seem very intuitive, history does give us some

pause. In the first decade of laparoscopic surgery, an underestimation of the difficulty
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Figure 1.1: The daVinci� Surgical System (Intuitive Surgical, Inc.). A surgeon seated
at the console controls surgical tools held by robotic arms at the patient’s side. (Image
used with permission of Intuitive Surgical, Inc.)

of these techniques led to inadequate training and a higher incidence of mistakes.

Thus, the application of objective surgical skill evaluation is particularly necessary

and appropriate in this new field.

1.2 Key Topics

Our approach to the skill-evaluation problem is to exploit the robotic nature of

the daVinci� to gather accurate motion data from a surgeon during performance

of a surgical task. We desire to automatically recognize a set of high-level motions

used during the task. With this list we may evaluate skill by making comparisons

between novice and expert users, such as the total number of motions used and the
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distribution of motions used by surgeons from each group. This skill evaluation must

be correlated with a measurable functional outcome of the task.

In the pursuit to achieve automatic motion recognition there are perhaps two

choices which have the greatest significance. The first is the recognition technique.

For this purpose we have selected hidden Markov models, discussed fully in Section

2.1. The second lies in the definition of the motion “vocabulary,” those motions the

system will be capable of recognizing. Unlike speech recognition, with which this

task shares many similarities, there exists no predefined vocabulary. Definition of the

motion vocabulary could be done at several different levels. A lower-level vocabulary

could include such motions as “moving forward” and “pushing away,” while a higher-

level one may include motions like “tying suture” or “dissecting vessel.”

Numerous factors guide the choice of vocabulary. We desire a vocabulary that

has an appropriate level of generality, so that the vocabulary remains relatively small

yet comprehensively includes all possible motions. Alongside generality is a desire

for portability, meaning that the vocabulary can be used across multiple domains.

While artificial intelligence techniques could possibly be used to automatically define

a vocabulary, we also desire for the motions in the vocabulary to be meaningful and

intuitive to both ourselves and the surgeons who may potentially use such a system–a

characteristic not guaranteed by algorithmic techniques. If a vocabulary meets all of

these criteria, it will be evaluated further by its effect on our ability to automatically

recognize the motions that comprise it.
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1.3 Previous Work in Surgical Skill Assessment

There exists a great demand for objective skill assessment in surgery, as noted by

many authors. Some of the most prominent and vocal advocates have been Darzi and

colleagues from Imperial College London. A number of articles from these authors [9,

10, 11, 33, 39, 48] provide a good overview of the motivations for objective assessment

and the variety of systems developed for this purpose. These papers also serve to guide

the reader towards other writings from medical professionals on this topic.

There exist several different approaches to the skill evaluation problem: 1) struc-

tured human grading, 2) low-level data analysis, and 3) methods for higher-level

surgeon/procedure modeling.

The Objective Structured Assessment of Technical Skills (OSATS) system de-

signed by Martin, et al. [38] falls in the category of structured human grading. OSATS

tests are conducted using a series of stations where trainees perform surgical tasks

and are rated by an expert observer using both a task-specific checklist and a global

rating scale. Other researchers have used this system as a reference for assessing the

performance of automated evaluation systems. Although OSATS has many benefits

over typical, unstructured subjective assessment, the grading at each station is done

by a single human observer, introducing the possibility of bias.

Computerized and virtual reality training systems for surgery have gained increas-

ing acceptance and sophistication in recent years. These tools lend themselves well to

collecting data and providing objective scoring of some kind. The MIST-VR laparo-

scopic trainer is one of the earliest and most widely-used of these systems [24, 25].
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The software in this system and a survey of other work in the field reveals systems

that perform low-level analysis of the positions, forces, and times recorded during

training on simulator systems [8, 42, 54].

Similar analyses are at the core of a system developed by Darzi and colleagues, the

Imperial College Surgical Assessment Device (ICSAD). ICSAD uses electromagnetic

markers placed on a trainee’s hands to track the movements during performance

of a surgical training task. The system software uses the motion data to provide

information about the number and speed of hand movements, the distance travelled

by the hands, and the time taken for the task. The technical details regarding the

software for data analysis are found in [13]. In contrast to our work, which seeks

to actually identify the motions used during task performance, the ICSAD system

simply counts the number of motions, using hand velocity as the segmentation criteria.

ICSAD has been validated and used extensively in numerous studies, e.g. [13, 14, 36].

Verner, et al. [51] collected data from the daVinci� system during performance of

a training task by several surgeons. Their analysis also examined tool tip path length,

velocities, and time required to complete the task. Recently, the ICSAD analysis has

also been applied to data collected from the daVinci� [29].

Although not related directly to skill evaluation, Cao and MacKenzie [6, 37] pub-

lished the results of their analysis of laparoscopic/endoscopic surgeries. In these

studies they identify a small set of motions that are used to complete all such tasks.

Rosen, et al. also performed a “task decomposition” of laparoscopic surgeries [46, 47],

and independently defined a set of motions very similar to that of Cao and MacKen-

zie. These lists closely mimic the motion vocabulary which must be defined for our
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own system.

The work of Rosen and colleagues can be categorized into the third type of skill

assessment systems, that of higher level modelling. In fact, their work has many

interesting parallels to our own. In both [46] and [47], an instrumented laparoscopic

tool was used to collect force/torque data during performance of two surgical tasks

by both expert and novice surgeons. In [46], the force/torque signatures for a set

of five basic surgical motions were identified and the force/torque data was grouped

into clusters. The first step of the analysis showed significant differences in the levels

of forces used by experts and novices. In the second phase of analysis, a Markov

model (not a hidden Markov model) was developed for each step required to complete

the surgical tasks. The observations produced by these known states were discrete

magnitudes of the cluster centers taken from the force/torque data. A manual video

analysis was used to identify transitions between the states during surgery, and thus

define a model for each surgeon in the study. A statistical distance between models

was used to identify surgeons as experts or novices. The second study [47] followed

a very similar approach as the latter half of the first, this time using pseudo-hidden

Markov models for comparisons. In this study the authors were also able to identify

differences in skill between residents at different stages in their training. The study

identified these results as “learning curves,” although the study did not track the

performance of individual surgeons over time, so acceptance of these results as learning

curves requires some assumptions. Our work differs fundamentally from all of the

studies done by Rosen, et al. in that we train many models—one for each gesture or

motion—and seek to assess skill through a direct analysis of all the motions used in
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the completion of a task.

1.3.1 Application to Virtual Reality

It is also appropriate to consider the applications for skill evaluation in virtual

reality. While the ultimate goal of our research is to accomplish skill evaluation for

tasks performed in the real world, there is an ever-growing body of virtual reality

surgical training systems. These tools, such as laparoscopic surgical simulators, open

the door to a host of techniques not available with traditional training methods. For

example, it is possible to create training scenarios that contain important complica-

tions that are rarely encountered in practice. Other benefits include the low cost of

repetition, the opportunity to fail without consequences, and (potentially) increased

realism in comparison to traditional training methods such as synthetic or animal

models. An additional feature of these computerized systems is the wealth of data

that may be collected during a training session. Presumably this data can be used to

develop meaningful and objective metrics for skill, but in many applications the best

way to do so remains unclear. A sampling of previous work in the medical field reveals

systems that perform low-level analysis of the positions, forces, and times recorded

during training on simulators and teleoperation systems [8, 47, 51, 54]. The results

presented in Chapter 2 were used to validate our overall approach. They also vali-

date the use of motion recognition as part of the evaluation criteria in virtual reality

systems. Therefore, although our ultimate objectives are not specifically aimed at

virtual reality, whatever successes we achieve here will likely have direct application
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to such systems.

1.4 Thesis Organization

This essay is organized as follows. Chapter 2 presents the theoretical foundation

for hidden Markov models (HMMs) and the results of applying these models to mo-

tion recognition for a dynamic task performed in a virtual environment. Chapters 3

and 4 address the motion recognition problem as two separate sub-problems of seg-

mentation and recognition. Segmentation is the process of identifying the boundaries

between motions. Recognition is the process of identifying which motion occurred

between these boundaries. As elaborated in Section 2.1.1, continuous HMM recogni-

tion systems perform these two tasks simultaneously. However, this approach did not

produce high recognition rates in our application, and following our preliminary work

we adopted an isolated architecture. So, while Chapter 3 discusses the methods for

automatic segmentation, Chapter 4 naturally covers the isolated recognition process

and presents our results for recognition of surgical motions. Chapter 5 presents the

variety of ways that automatically recognized motions can be used for objective skill

evaluation using data from our preliminary work and the tasks described in Chapter

3. Chapter 6 contains the conclusions of this research and discusses areas for future

work.
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1.5 Thesis Contribution

This thesis describes the following contributions:

• methods for automatic segmentation of robot-assisted surgical motions.

• guidelines for selecting a motion vocabulary for robot-assisted surgical tasks

and methods for automatic recognition of these motions using hidden Markov

models.

• guidelines for the use of motions in objective evaluation of technical surgical

skill.
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Chapter 2

Background & Preliminary Work

The goal of this research is to develop methods for objective evaluation of technical

surgical skill. Our approach to this greater problem is to use automatic motion

recognition as a means for developing technical performance indices. This chapter

presents the theory of hidden Markov models (HMMs) and how they are applied

to motion recognition. It also describes the preliminary work to validate an HMM-

based motion recognition approach to skill evaluation. In this work, users perform

a dynamic task in a virtual environment using a three dimensional haptic device for

motion input. Motions used during performance of the task are identified and models

are trained for each motion. In turn, these models are then used to automatically

recognize motions executed during additional repetitions of the task.
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2.1 Hidden Markov Models

It is likely that automatic motion recognition could be achieved with numerous

techniques; this essay describes the efforts to accomplish this problem through the use

of hidden Markov models. A hidden Markov model operates under the premise that

a system may be described as being in one of a set of distinct states. The observable

output of the system is a probabilistic function of the state the system is in. As time

progresses, the system will change state. The state changes are also controlled by a

probabilistic function.

Another approach to modeling surgical motions would be to identify a particular

“signature” from position or force information, much like that used by Rosen, et

al. [46, 47]. Such deterministic models must explicitly encode the effects of noise,

disturbances, etc. HMMs, on the other hand, are stochastic models that seek to

predict the output of the system based on past observations.

HMMs have been applied extensively to recognition problems in several domains.

The widest application has been in speech recognition (see [45] for an overview). They

have also been used for recognizing driving behavior [35], handwriting [30], human

motion [4], sign language [50] and other gesture recognition [44, 55]. Previous work

in our laboratory used HMMs for gesture recognition in a cooperative (admittance

control) human-robot surgical system [31] to provide appropriate assistance in the

form of virtual fixtures [34]. The manipulation environment was far more constrained

than in the application presented here, and only the forces applied by the user were

included in the observations.
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Figure 2.1: A 4-state HMM as implemented by the HTK. The model has starting
(Ss) and ending (Se) states that produce no observations but facilitate transitioning
to other models.

HMMs have several attractive qualities for our application:

• they have been used extensively in speech recognition applications and the basic

theory as well as many extensions have been thoroughly defined.

• model training is supervised—that is, the models are explicitly defined by us,

the researchers. This allows us to ensure that each model has some real physical

significance, a quality which we desire.

• HMMs capture the time history that is an essential component of physical

systems

• the availability of toolkits and the body of previous work facilitates implemen-

tation of HMM theory

The structure of an HMM is illustrated in Figure 2.1. While each HMM consists

of a network of states, an entire system (or task) may be understood as consisting

of a higher-level network of HMMs. An HMM Θ is described by three components:
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the state transition probability distribution matrix A, which defines the probability

of transitioning from one state to another; the observation symbol probability distri-

bution matrix B, which defines the observations a state is likely to produce; and the

initial conditions of the system π. With this notation, a model Θ can be succinctly

defined by writing Θ = (A, B, π). Note that the observations produced by a state

are typically the values of several variables in the system; together these values form

what is known as the observation vector.

Rabiner provides an excellent overview of the basic theory behind HMMs and

references to many of the original works in [45]. There he explains the three basic

questions that emerge when using HMMs to model real-world systems:

• Problem 1: Given the observation sequence O = o1, o2, . . . , ot and a model

Θ= (A, B, π), how do we efficiently compute P (O|Θ), the probability of the

observation sequence given the model?

• Problem 2: Given the observation sequence O = o1, o2, . . . , ot and a model

Θ= (A, B, π), how do we choose a corresponding state sequenceQ = q1, q2, . . . , qt

that best explains the observations?

• Problem 3: How do we adjust the model parameters Θ= (A, B, π) to maximize

P (O|Θ)?

2.1.1 Application of HMMs to Motion Recognition

The questions identified by Rabiner have direct applications in motion recognition.

Problem 1 is essentially the recognition problem. Given the model Θ for some motion
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and the series of observations O made from an unknown motion, solving Problem 1

reveals the probability these observations were produced by the model Θ. The so-

called Forward-Backward procedure introduced by Baum and Egon [1, 2] is used to

solve this problem.

HMM recognition systems can be classified into two groups, either continuous

or isolated (note: HMM systems may also be classified in terms of continuous or

discrete, relating to assumptions about continuous or discrete random variables—

this is a different meaning of continuous). In continuous systems, the data input to

the system may contain multiple motions. Isolated systems require segmenting the

motions in advance. Depending on the system type, Problem 2 may have analogues in

our application on two levels. In both cases we are interested in knowing the best state

sequence for the purposes of recognizing each separate motion, but in the continuous

case we are also concerned with knowing the most likely sequence of motions used

during a task—that is, the most likely sequence of models. Fortunately, the Viterbi

algorithm [52, 21], which is often used to solve this problem for state alignment,

extends well to a network of models.

Finally, the answer to Problem 3 tells us how we can define appropriate models for

each of our motions—models that we will need for the solutions to Problems 1 and 2.

The approach to solving this problem is to use a series of observations known to be

from a particular motion along with an iterative procedure such as the Baum-Welch

method (a special case of the Estimation Maximization algorithm [16]) to estimate

the model parameters.
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Analogues to Speech Recognition

As noted earlier, HMMs have been applied extensively in speech recognition. As a

result, most of the literature regarding HMMs and many of the tools for implementing

them are specific to speech recognition. For the uninitiated, the domain-specific

terminology can be obfuscating, so this section exists to show the connection between

our approach and their typical use.

Most modern speech recognition systems model speech at the phoneme level,

where one HMM is trained for each phoneme. A phoneme is the smallest phonetic

unit in a language; English has 42 phonemes. In spoken language, phonemes are

often used in similar groupings, so in some cases additional models are trained that

contain up to three phonemes, called “triphones.” The observations used to train and

recognize these models are a parametric representation of the speech signal. The most

common choice is mel frequency cepstral coefficients [15].

One benefit of phoneme-level modelling is that additional words may be added

to the system vocabulary—the list of words it can recognize—simply by defining

the phoneme sequences which are used to pronounce the word. Notably, adding

this additional capability does not require training additional models. To improve

recognition for complete sentences, many systems also rely on a language’s grammar.

By studying large volumes of text, it is possible to define the probability that one

word will follow another, and this information may be used to weight candidate words.

Motion recognition with HMMs follows a similar structure. Basic motions or

“gestemes” could form the basis for all higher-level motions. However, it is the task
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of the system designer to define these basic motions, as well as the higher-level motions

that would form a complete vocabulary. Until these are determined, it is impossible

to identify or create a grammar defining how motions are used in context with one

another. It is not known what observations would be best for motion model train-

ing and recognition, but much as frequency seems an appropriate choice for speech

applications, positions, velocities, and forces are a natural choice for motions.

2.2 A System for Testing HMM-based Motion Recog-

nition

Although hidden Markov models have been used for motion recognition appli-

cations before and reported in the literature, we desired to validate our approach

using HMMs to recognize motions used in a dynamic, unconstrained task analogous

to surgery. For this purpose we developed a system involving a three dimensional

haptic device and a virtual environment. The device, pictured in Figure 2.2 (3GM,

Immersion Corporation), is fitted with a modified laparoscopic tool (Auto Suture

Endo Shears).

Interfacing with the 3GM haptic device is accomplished through an Immersion

Impulse PCI card. A Hall-effect sensor on the scissor-like handle of the laparoscopic

tool is used to determine the position of the gripper handle, and this data is obtained

through a custom A/D card using the computer’s parallel port. A representation of

the laparoscopic tool and an end-effector are drawn in the virtual environment (shown
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Figure 2.2: The 3GM haptic device with laparoscopic tool handle attached

in Figure 2.3), where the user interacts with other objects. The virtual environment

was created with Microsoft Visual C++ and runs on the Windows 2000 operating

system.

The virtual environment is contained within a two-dimensional box. The limits

of the environment are shown with dark lines, and forces displayed to the user by

the haptic device prevent the tool tip from moving outside these boundaries. In

addition to the tool, the environment contains a moving target (a thin rectangle)

and a ball that can be picked up, carried, and thrown with the gripper. The target

moves continuously up and down in a regular sinusoidal pattern. The ball behaves

much like a ball in the real world: it is subject to a constant downward acceleration

from gravity, viscous damping in air, and it will bounce off of the target and the
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Figure 2.3: The virtual environment. Using the tool, subjects grasp and throw the
circular ball at the small rectangular target

floor. However, if it strikes either the left or right wall, it “sticks” to the wall and

falls to the floor. The goal of the task is to hit the moving target three times by

throwing the ball from behind the dotted line drawn vertically through the middle

of the environment. If the ball misses the target, it strikes the right wall and falls

to the floor, where it must be retrieved for another try. If the ball hits the target it

bounces back to the left, where it will eventually settle in the corner. All users are

instructed to refrain from catching the ball in mid-air but, rather, to wait until the

ball had settled after each throw before retrieving it. This constraint was developed

to simplify the number of potential motions to be recognized.
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2.2.1 Recognition System

An experiment was performed to test the performance of an HMM recognition sys-

tem. The HMM algorithms are implemented with the Hidden Markov Model Toolkit

(HTK) from the Cambridge University Engineering Department [17, 56]. Details

regarding our use of the HTK can be found in Appendix B.

Use of an HMM system for motion recognition is preceded by a process of training

models for each of the motions we desire to recognize. Which motions we desire to

recognize is an important choice (see Chapters 1 and 3 for more discussion on this

topic), and almost any group of motions could have been selected for this experiment.

An analysis of the motions executed during the recorded sessions of an expert user

and several test subjects resulted in the definition of ten basic gestures (chosen by the

experimenter) that are used to classify all the observed motion. These ten gestures

define the “vocabulary” of our recognition system and are described in Table 2.1. The

training data was formed from 14 recordings of an experienced user executing these

motions. Not every recording contained every motion; each motion had a minimum

of seven examples in the training data. The data was used to train a plain, single

mixture, single stream, five-state HMM for each of the basic motions.

To assess the performance of the recognition system, it is necessary to have a

standard for comparison. As with speech recognition systems, our standard is a tran-

scription detailing the motions used and times of transition between motions. This

transcription was identified manually by using the capability of the virtual environ-

ment to replay recorded sessions. As the recording is replayed, the data is labelled and
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Table 2.1: Motion Vocabulary for the Ball and Target Task

Label Description

A Moving downward to retrieve ball, ends after ball is
grasped

B Moving primarily upward with ball.
C Throwing the ball. Ends at time the major components

of motion in the direction of the throw cease.
D Horizontal movement to the left without the ball.
E Moving forward and down to retrieve ball. Ends after

ball is grasped.
F Moving left and up with ball in gripper.
G Moving backward and down to retrieve ball. Ends after

ball is grasped.
H Moving forward and up with ball in gripper.
I Wasted motion-low magnitude in any direction, does not

result in major position change or end by retrieving or
throwing the ball.

J No motion; silence.

segmented manually by the experimenter. (In previous work [31, 34], we allowed the

users to segment the task during execution by pressing a key on the control computer

when they intended to change motions, but for the dynamic task presented here, this

method generates significant errors in transcription due to increased mental load.)

During each recording, data was collected at 100 Hz. In all, twelve observations were

recorded: position (xpos, ypos, zpos) and velocity (xvel, yvel, zvel) of the tool tip in three

dimensions, position of the ball (xball, yball), the distance separating the ball and the

tool tip (ds), the status of the gripper (g)—either open or closed—and the magnitude

of forces (fx, fy) being exerted on the tool tip by objects in the environment.

22



2.3 Validating Experiment

The algorithms in the HTK have several parameters which require tuning to obtain

the best performance. Thus, our experimental process began with nearly 60 test

runs used to adjust these parameters to baseline values that produced reasonable

results. Among these parameters were the model transition penalty, the pruning

threshold, and the number of states in each model. The transition penalty affects

the Viterbi-like algorithm used for recognizing the most likely sequence of models,

known as the Token Passing Model. The algorithm works by passing tokens through

the network of possible models and discarding tokens that travel low probability

paths. The transition penalty is a fixed value that is added to the log probability

of each token as it jumps to a new model. The pruning threshold defines the width

of search used during the forward-backward procedure for model estimation. Both

the transition penalty and the pruning threshold have a strong effect on performance

of the system. In general, a lower transition penalty results in a greater number

of insertions. Insertions describe places where the system “recognizes” a motion

that was not actually performed. Conversely, a higher transition penalty leads to

more deletions, when the system does not recognize motions that were performed.

The effect of the pruning threshold is less dramatic (the main benefit is decreased

computation), but making it larger tends to increase the number of insertions and

vice versa. Both parameters require fine-tuning for optimal performance and different

data sets. The first batch of tests also verified that the quantity of training data was

sufficient for robust model estimation by using only half of the data and obtaining

23



Table 2.2: Word accuracy percentages for recognition of training data

Test Observations Accuracy %

1 xpos,ypos, zpos, xvel, yvel, zvel 73.83
2 xpos, ypos,xvel, yvel 73.83
3 xvel, yvel, g 71.96
4 xvel, yvel 71.96
5 xvel, yvel, fx, fy 71.96
6 xpos, ypos, xball, yball, ds, fx, fy 73.83
7 xball, yball, ds, fx, fy 81.31
8 xball, yball, ds 81.31
9 xball, yball 81.31

comparable results to tests using twice as much data. With the values of these

parameters settled, we set out to determine which observations were most important

to achieving accurate recognition.

2.3.1 Results

Table 2.2 shows the results of nine different tests including various combinations

of observations in the training data. The recognition was performed on the training

data. For all tests, the transition penalty and pruning threshold parameters of the

HTK system were set at -200 and 1000, respectively. Accuracy is computed using a

common formula from the speech recognition literature (also the one automatically

computed by the HTK): (N − D − S − I)/N , where N is the number of motions in

the transcription, D is the number of deletions, S is the number of substitutions, and

I is the number of insertions. This is an appropriate metric because it captures the

number of each type of error during recognition.

The results show there is considerable room for improvement before we achieve the
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success of other systems based on the same techniques. (Successful speech recognition

systems typically have recognition accuracies greater than 95%.) However, they also

highlight the flexibility of this method. Even when using nine different combinations

of input observation vectors—some with more than three times as many components

as others—the recognition rate remains relatively flat. The small variance in recog-

nition rate prevents any sweeping conclusions, but some variables do appear to have

advantages over others. As shown in Table 2.2, Test 1 represented a typical sampling

of observations that would naturally be selected for a motion task. This combination

also included the z-axis position and velocity. Despite the fact that the virtual envi-

ronment is only two-dimensional, the haptic device is not constrained to this plane,

and the possibility existed that movement along that axis could be of use in recogni-

tion. When compared to Test 2, though, we see that the recognition is unaffected by

the loss of the z-axis information, and we declined using it further. The observations

in Tests 3 and 4 were selected because these were most closely related to how the

motions were defined (Table 2.1). The results suggest that despite this primary role,

recognition can be improved with the inclusion of more information. Test 4 indicates

that knowing the gripper status contributes negligibly. Test 5 was the first to include

the forces displayed to the user and shows that, although these forces improve the

reality of the environment and may be beneficial to the user for completion of the

task, they do not appear to have a useful effect on recognition. The results of Tests 7

and 8 support this hypothesis. Test 6 used only observations that are not measured

outside of the virtual environment. A small improvement in recognition encouraged

Tests 7–9, and these observations, particularly the position of the ball, produce the
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highest recognition rates. However, these results do not tell the complete story. First,

the state of objects in a real environment may not be available for use in evaluation.

Also, further analysis reveals that only one of the 13 examples of motion J (silence)

in the data was correctly recognized in these tests. For that reason, this group of

observations may not be the best choice in the context of our overall goal of skill

evaluation.

This preliminary work also explored the use of a list of motions for skill evaluation.

These methods are discussed in Chapter 5.

2.3.2 Conclusions

In our preliminary work we demonstrated the viability of a motion-recognition

system using HMMs. Trained motion models were used to automatically recognize

the motions utilized during performance of a dynamic, unstructured task. We learned

several important things through this work. First, several parameters of the HMM

system were found to have important effects on the recognition percentage. Second,

the recognition performance is also affected by the observations used for training and

recognition with the motion models. Perhaps most importantly, however, we gained

insight regarding the tremendous importance of the motion vocabulary and its role

in both the ability to recognize the motions which comprise it, and in the type of

assessment that may be made using this list of motions.
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Chapter 3

Motion Segmentation

3.1 Introduction

In Section 1.4 it was noted that the use of a continuous HMM recognition system

did not produce acceptable results in our application. Under the continuous approach,

the algorithms incorrectly identified both the times of transition as well as the total

number of transitions. Subsequently, the fraction of motions correctly recognized

was quite low. An alternate method for automatically segmenting the motion data

enables use of the HMM framework for a more simple, isolated recognition process

described fully in the next chapter. Inspired by the use of an algorithm for “episode

extraction” in [43], we consulted the original work [20], in which the authors present

an algorithm for motion segmentation based on the sum of squares of the angular

velocity at each joint in a serial chain manipulator (a human arm). This algorithm

has proven to be an effective tool for motion segmentation in our application.

Implied in any discussion of an automatic segmentation technique is the existence
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of a standard by which to judge the performance of the technique. In our case the

standard is obtained through a manual process to identify times of transition between

separate motions.

The segmentation process is intricately tied to the definition of the motion vo-

cabulary through the criteria used to identify the beginning and end of each motion.

This chapter presents the results of working with data from two different tasks. For

each of these, as for any task, it is possible to define any number of segmentations and

attempt to manipulate the parameters of the sum of squares (or another) algorithm

to produce the desired result. This chapter describes the data collection methods,

each of the tasks and the varying segmentations used thus far, and methods and

techniques for both manual and automatic segmentation.

3.2 Data Collection Methods

Collecting motion data from the daVinci� system is done through a software

framework known as the Application Programming Interface (API). This arrange-

ment guarantees the data collection process will not affect the operation of the robot

by publishing the data under controlled circumstances. A program running on a

computer inside the daVinci� acts as a server, and sends data over a serial commu-

nications line to a client computer at a nonconfigurable rate of approximately 10Hz.

The source code for both server and client programs was provided by Intuitive as

part of the API installation. The client application was then modified to facilitate

recording of the data to logfiles used for all later analysis. Further information about
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the API can be found in [32].

Table 3.1 summarizes the data available through the API framework. There are

192 separate values in total. As they appear in the table many of these values are

self-explanatory, but others require additional interpretation. The rotation matrix

for the master manipulators represents the rotation from the fixed base frame on

the console to the coordinate system attached at the end of the manipulator. The

Cartesian velocities of the master relate to this final frame. The six values represent

the three linear velocities as well as the rotational velocity around each axis.

The data for the three patient side arms (the two manipulators and the camera)

has some interesting features. Most notably, the Cartesian endpoint of the slave tools

is not available. The Cartesian position that is provided is the location of the remote

center of motion (RCM) relative to a frame attached to the tower at the patient’s

side. The shaft of the surgical tool will change orientation during operation, but will

always pass through this point, which is aligned with the patient’s abdominal wall

during setup. The rotation matrix provides the orientation of the frame located at

the tool tip. There are 12 values for the setup joints. These joints are used during

initial setup of the robot, but do not move during surgery. There are six joints, with

two values (one is redundant) for each joint. The position and velocity values for

the final joints on the camera manipulator have no meaning, as the camera lacks a

gripper.
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Table 3.1: daVinci� API Data Organization

Master Telemanipulators (MTMs)
Label Data Points Organization

Cartesian position 3 x, y, z
Rotation matrix 9 (1,1), (1,2), (1,3), (2,1),

(2,2),. . .,(3,3)
Cartesian velocity 6 xvel, yvel, zvel, xrot, yrot, zrot

Joint position 8 joint 1, joint 2,. . ., joint 7, gripper
Joint velocity 8 joint 1, joint 2,. . ., joint 7, gripper

Patient Side Manipulators (PSMs)
Label Data Points Organization

Joint position 7 joint 1, joint 2,. . ., joint 6, gripper
Joint velocity 7 joint 1, joint 2,. . ., joint 6, gripper
Cartesian position of RCM 3 x, y, z
Rotation matrix 9 (1,1), (1,2), (1,3), (2,1),

(2,2),. . .,(3,3)
Set-up joint values 12 Two values each for joint 1, joint

2, . . ., joint 6

Other
Label Data Points Organization

Servo Times 5 left master, right master, left
slave, right slave, camera slave

Console Buttons 5 Head in, Master clutch, Camera
control, Standby, Ready

3.3 Ring Transfer Task

The first data used for analysis came from a simple, pseudo-surgical task using

the daVinci� surgical system. The task was done on a training board designed

for robotic minimally invasive surgery [27], and was designed to use very simple,

deliberate motions that would be amenable to segmentation and recognition. The

training board has synthetic rubber cones of varying sizes. The larger cones used for

the task measure approximately 30mm in height and 15mm in diameter at the base.
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An 8mm diameter rubber ring was placed on a cone on the left side of the surgical

field. The purpose of the task was to transfer this ring to another cone on the right

half of the training model. All test subjects were instructed to retrieve the ring from

the cone with the left hand, transfer it to the right hand, and place it on the new cone

with the right hand. The task was always initiated and completed with the daVinci�

tools held motionless, grippers closed, in the middle of the viewable workspace.

Figure 3.1 shows the robotic tools and the test apparatus during performance of

the task. After several practice runs to get acquainted with the system, the move-

ments of each subject were recorded for up to 20 repetitions of the task. On average,

each trial required approximately 15 seconds for completion.

3.3.1 Six Motion Segmentation

As stated, any arbitrary motion vocabulary and segmentation could be defined

for this task. The first segmentation divided the task into six intuitively-selected

motions:

1. Move the left tool toward the left cone where the ring is located

2. Retrieve the ring from the left cone

3. Move the left tool back to the center to transfer the ring to the right tool

4. With the right tool, move with the ring toward the right cone

5. Place the ring on the right cone

6. Move the right tool back to center to end the trial
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1 2

3 4

Figure 3.1: The ring transfer task. 1)The starting and ending position. 2)Retrieving
the ring from the left cone. 3)Transferring the ring to the right tool. 4) Placing the
ring on the right cone.

Criteria were specified to define the start and end of these motions. Motion

1 begins when the grippers open and movement towards the left cone is initiated.

Motion 1 ends when the tool first makes contact with the cone. Motion 2 ends when

the ring, held in the gripper, clears the cone. Motion 3 was defined to end at the

middle of the time when the ring was held by both the left and right gripper during

handoff. Motion 4 ends when the right cone first penetrates the center of the ring.

Motion 5 ends when the ring is fully placed. Motion 6 ends when the tool is back in
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the center of the workspace with the gripper closed.

3.3.2 Alternate Segmentations

Two alternate segmentation schemes were tested with the ring transfer data, one

with seven motions and another with four motions. Both schemes are essentially

modifications of the original six motion arrangement.

Seven Motion Segmentation

The seventh motion in the seven motion segmentation comes from redefining the

third and fourth motions of the six motion segmentation. Whereas previously the

handoff was treated as an event which occurred at the transition between two motions,

in this scheme it is treated as a motion itself. Also, in this approach, less significance

was given to external events and more significance was given to the appearance of

motion at the tool tip. The seven motions are:

1. Move the left tool toward the left cone

2. Retrieve the ring from the left cone

3. Move the left tool back to the center

4. Hand the ring from the left tool to the right tool

5. Move the right tool toward the right cone with the ring

6. Place the ring on the right cone

7. Move the right tool back to center
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The criteria are modified accordingly. Motions 1 and 2 remain unchanged. Motion

3 concludes as general motion towards the handoff location ceases. Motion 4 is the

handoff. Motion 5 begins when the right hand initiates movement away from the

handoff location and ends when motion ended near the right cone. Motion 6 ends

when the ring was fully placed. Motion 7 ends when the tool was back in the center

of the workspace with the gripper closed.

Four Motion Segmentation

The four motion segmentation arose from a combination of the motions in the

seven motion segmentation. This shift was inspired by the basic surgical motions

identified by Cao and MacKenzie in [6, 37]. One of these motions was labelled “reach

& orient.” Applying this methodology to our own task, Motion 1 can be characterized

as a reach, while Motion 2 can be roughly characterized as an orient, so the two are

combined into a single “reach & orient” motion. A similar rule was applied for the

remainder of the task to arrive at the following four motions:

1. Move the left tool toward the left cone and retrieve the ring from the cone

2. Move the left tool back to the center to transfer the ring to the right tool and

make the handoff

3. With the right tool, move to the right cone and place the ring

4. Move the right tool back to center to end the trial

The transition criteria are modified once again. Motion 1 concludes as the general

motion towards the handoff location ceases. Motion 4 is the handoff. Motion 5
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begins when the right hand initiates movement away from the handoff location and

ends when the right cone first penetrates the center of the ring. Motion 6 ends when

the ring is fully placed. Motion 7 ends when the tool is back in the center of the

workspace with the gripper closed.

3.4 Manual Segmentation

In addition to recording data through the API framework during performance

of the ring transfer and suture tasks, the movements of the daVinci� tools were

simultaneously recorded on videotape using the feed from one of the two cameras in

the daVinci� laparoscope. Each recording was then carefully examined to determine

the start and stop time of each of the six motions used in completion of the task.

The manual segmentation procedure was initially done using the slow-motion

replay feature on a VCR. The complete details regarding this process are outlined

in Appendix A.1, but can be summarized as follows. During playback, the timing

of transition events were noted using a stopwatch. To mitigate the effect of errors

in this process, each recording was viewed three times and the transition times were

averaged.

We believe the intervals of the transition times to be accurate to within 0.1 s of

the events as viewed on video. However, as the data and video recording systems are

completely independent, it is necessary to correlate these times with the data. Again,

the details of all the steps taken to correlate these times are included in Appendix

A.1 but will be summarized here. Most importantly, each task contained intentional,
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well-defined events at the beginning and end. These events are clearly observable in

both the API data and the video. There was a discrepancy in the elapsed time for

each recording as derived from the data and from the video review, so a constant

scaling factor was used to adjust the transition times for each file to match the total

number of data points. Because the scaling was administered to the entire recording,

the total change for each transition time was less than one data point on average. It

is likely that this method produced segment times that group only a handful of data

points in the wrong motion.

In later work an alternate manual segmentation method was devised. In the

revised procedure, video from the task is digitized using a video capture card in a

PC. With the video in this format it is then possible to step through each recording

frame by frame and record the transition times. In addition to being much more

efficient, this procedure eliminates the error derived from starting and stopping the

stopwatch while viewing the recording. It does not, however, eliminate any errors

induced by interpretation of the motions viewed.

3.5 Automatic Segmentation

It is possible for an algorithm to perform motion segmentation just as well or

perhaps better than a human segmenter. A human may assign significance to events

that are not observable in the data without force measurement or environmental

knowledge. For example, in the six-motion ring transfer segmentation, the definition

of motion 1 ends when the tool touches the cone, but due to the pliable nature of the
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cones, no changes in position or velocity may be evident at this event. However, we

do want our system to closely replicate the analysis performed by human surgeons, so

it desirable to define the motions in an intuitive way and work to design an algorithm

that will function in a similar fashion.

The sum of squares algorithm was proposed in [20], in which the authors used it

to segment motions of a human arm. The algorithm is:

z = θ̇1
2
+ θ̇2

2
+ θ̇3

2
+ . . .+ θ̇n

2

In general, during motions, z� 0, but during transitions the sum drops to z≈ 0.

By empirically identifying an appropriate threshold, the sum of squares may therefore

be used for segmenting motion data. As implied by the notation, in the original

paper the variables in the summation were joint velocities. Following suit, we applied

the sum of squares algorithm to the data collected from the daVinci�, where θi

represented the joints on the left and right master manipulators. Plotting the sum of

squares for a typical task produced graphs like Figure 3.2. The continuous line shows

the sum of squares of the joint velocities, while the vertical bars show the location of

manually-identified motion transitions. In general, these results gave little hope that

the sum of squares would be a reliable method for identifying motion transitions in

our application.

We then used the same algorithm with the Cartesian velocities of the master

manipulators instead of the joint velocities. That is,

z = ẋl
2 + ẏl

2 + żl
2 + ẋr

2 + ẏr
2 + żr

2

This approach produced graphs like that shown in Figure 3.3 (for the same trial as

37



0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

time (s)

su
m

 o
f s

qu
ar

ed
 jo

in
t v

el
oc

iti
es

 (
z)

Figure 3.2: Sum of squared joint velocities. The continuous line represents the sum
of squares, the vertical bars represent manually-identified motion transitions.

above), where the continuous line once again indicates the sum of squares and the

solid vertical bars indicate motion transitions. Although the “peaks” and “valleys”

do not line up exactly with the manual segmentation, the algorithm clearly identifies

distinct segments in the data which agree with the manual segmentation.

Why does this algorithm work poorly with joint variables but perform admirably

with Cartesian variables? We surmise that, during operation of the daVinci�, sur-

geons do not explicitly control the joint positions of either the master or slave devices

but rather, they control the Cartesian position of these. It stands to reason, then,

that the joint positions and velocities would not necessarily be reliable indicators of

the surgeon’s input, while the Cartesian positions and velocities contain a valuable

record of the motions used during surgery. Bobrow, et al [3] provide some interest-

38



0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

time (s)

su
m

 o
f s

qu
ar

es

Figure 3.3: Sum of squared Cartesian velocities. The continuous line represents the
sum of squares, the vertical bars represent manually-identified motion transitions.

ing insight on this topic associated with their goal of generating human-like robot

motions. It is worth noting that the ICSAD system also uses a Cartesian velocity

magnitude for segmenting surgical motions [13].

3.5.1 Implementation

Starting with the promising, preliminary results shown in Figure 3.3, the task

was to produce an algorithm that robustly and accurately identifies transitions across

multiple recordings. In general, the approach has been to iteratively search for peaks

in the sum of squares. If the peak is above the higher of two threshold values, it is

assumed a motion is in progress. The algorithm then searches for the nearest points

on either side of the peak which are below the lower threshold; these points indicate
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Figure 3.4: Segmentation with the sum of squares. The continuous line represents
the sum of squared Cartesian velocities. Vertical bars show times of motion tran-
sitions: solid lines are manually-identified, dashed lines are automatically identified
with an algorithm. The horizontal lines show the thresholds used in the segmentation
algorithm.

motion transitions. Variations on this general strategy include smoothing the data,

limiting how close two transitions may be, and using velocities from the left and

right hands individually. These varying implementations can be best understood by

examining the code directly; short descriptions of each are included in Section A.2.

An example of an automatic segmentation is shown in Figure 3.4.

The multitude of variations on the sum of squares algorithm made qualitative

assessment of each approach a difficult task. An objective scoring system was de-

veloped to help compare the performance of the segmentation algorithm for different

parameter values and approaches. The scoring system works by first gathering the

automatic segment times for each trial. These automatic segment times are then
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compared to the manual segment times. If an automatically-identified transition is

sufficiently close (± seven data points) to a manual transition, the program says the

automatic transition “corresponds” to the manual transition.

To generate a score for an automatic segmentation, the transition time between

corresponding automatic and manual transitions are subtracted. The score is the sum

of the absolute values of all these differences. For example, if an automatic transition

was placed two data points before or after the manual transition, two points are added

to the score. A high score indicates that the automatic segmentation for the trial does

not agree well with the manual segmentation.

The automatic segmentation may also miss some transitions or insert others where

no transition was manually identified. These transitions typically do not correspond

to any of the manual transitions. The scoring system accounts for these types of

errors by adding .01 to the score. Thus, a final score of 7.02 indicates a total of seven

points of difference between corresponding manual and automatic transitions and two

transitions that were either missed or inserted by the automatic segmentation. The

score for the automatic segmentation shown in Figure 3.4 is 11.01. This method

has proven to be an effective way to compare different versions of the automatic

segmentation algorithm.

3.6 Suture Task

Promising results in both segmentation and recognition for the ring transfer task

led to a second, more realistic surgical task. This task was performed on a different

41



portion of the same training board used for the ring transfer task [27]. This portion

of the training board contains a piece of simulated tissue with a large incision roughly

75mm in length. The purpose of the task was to pass a needle through the tissue on

one side of the incision. The needle was placed sticking out of the tissue prior to the

task, where it is retrieved, positioned, and pushed partway through the tissue with

the right tool. The left tool is then used to pull the needle through the tissue and

place it near its starting point to complete the task. As before, the task was always

initiated and completed with the daVinci� tools held motionless, grippers closed, in

the middle of the viewable workspace. Each trial of the task required approximately

15 seconds to complete. Figure 3.5 shows the robotic tools and the test apparatus

during performance of the suturing task.

3.6.1 Seven Motion Segmentation

This data was manually segmented into seven distinct motions:

1. Move the right tool to the needle

2. Pluck the needle from its place in the tissue

3. Position needle for insertion

4. Push the needle into the tissue

5. Using the left tool, pull the needle and attached suture material through the

tissue

6. Place the needle on the tissue near where it started
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3 4

Figure 3.5: The suture task. 1)The starting and ending position. 2) Inserting the
needle. 3) Pulling the suture through the tissue. 4) Placing the needle.

7. Return the left tool back to center to end the trial

The criteria defining the start and end of these motions are as follows. Emphasis

was given to the appearance of motion at the tool tip in defining the start and end

of each motion. Motion 1 begins when the grippers open and the right tool initiates

movement towards the needle. Motion 1 ends as the tool stops motion at the needle

site. Motion 2 begins when movement begins with the needle in the right gripper.

This motion was typically away from the insertion site. Thus, Motion 3 begins with

movement towards the insertion site with the needle. Motion 4 begins when the needle

punctures the simulated tissue. Motion 5 begins when the left tool initiates movement
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away from the insertion site with the needle in the gripper. Motion 6 begins with

movement of the left tool back towards the insertion and needle placement site and

ends once it arrives at that location. Motion 7 ends when the tool is back in the

center of the workspace with the gripper closed.

The suture task data was manually segmented using the digitized video process

described earlier in this chapter and several variations on the sum of squares algorithm

were used for automatic segmentation. The best-performing of these was selected and

used to segment the data for the results reported in Chapter 4.

3.7 Conclusions

This chapter described the methods for collecting motion data via the daVinci�

API and two tasks for which data was recorded. Each of the tasks was the subject

of both manual and automatic analyses to determine the times of transition between

motions. The sum of squares algorithm has proven itself as an effective tool for

automatic segmentation in both tasks. There are many possible variations on this

algorithm, a unique scoring system was devised for evaluating the performance of each

variation. The segmentation process implicitly defines the motion vocabulary for the

system. Each of the varying schemes has at least some of the desirable characteristics

we identified for a motion vocabulary in Section 1.2. The next step in the process is

to assess our ability to recognize these motions, and this is the topic of Chapter 4.
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Chapter 4

Automatic Motion Recognition

4.1 Introduction

The experiments described in Chapter 2 validated our approach to using hidden

Markov models for automatic motion recognition. However, as discussed in Sections

1.4 and 3.1, when the continuous HMM approach was applied to data taken from the

daVinci�, the recognition rate was very low. For this reason we adopted an isolated

system architecture. Even with the isolated approach the recognition rate was still

lower than desirable, so this chapter also discusses the effects of three additional

techniques we have explored to increase the rate: interpolation, normalization, and

linear discriminant analysis (LDA). Notably, we have found that the effect of each

technique varies according to the order and combination in which it is used with other

techniques. The results show that a combination of LDA and normalization, in that

order, yield the best results.
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4.2 Methods

The data collection procedures are discussed in Section 3.2. Significant work has

been invested in developing a framework that enables implementing various techniques

like those presented in this chapter and preparing the data files for use in the Hidden

Markov Model Toolkit [17, 56]. Details regarding procedures for using this framework

are included in Appendix B.

4.3 Isolated Motion Recognition

In Section 2.1 we identified three basic problems associated with using HMMs

for practical tasks. Problem 2 in this list asked the question: given a sequence

of observations, how do we identify the “optimal” state sequence which most likely

produced these observations? We say “optimal,” because for most HMM architectures

there are many different state sequences which could have produced a given set of

observations. Much like a multiplicity of state sequences which could have produced

the same observations, there exists a chance that different model sequences could

have produced the same observations.

Ideally, the model for each motion in the system vocabulary would produce ob-

servations distinctly different than those from any other model, as this would make

distinguishing the likely motion from the observations much easier. Unfortunately

this is not always the case, either as a result of insufficient model training or simply

because the motions themselves are similar. This means that when one motion ends

and another begins, there may not always be a significant change in the observations,
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making it difficult to identify the transition. In a continuous system, segmenting and

recognition occur simultaneously. We have adopted an isolated approach. The idea

behind switching to isolated motion recognition is to simplify the task we are asking

the recognition algorithms to perform. By first segmenting the motions with an alter-

nate means, the recognition system is used only to tell us which of the motion models

in the system vocabulary most likely produced the observations for this unknown

motion.

4.4 Interpolation

As detailed in Section 3.2, data is collected from the daVinci� system through

the API software framework. The API publishes the data at a nonconfigurable, fixed

rate of approximately 10Hz. For the deliberate, controlled motions typically used

by surgeons, the 10Hz rate is most likely sufficient for capturing the essence of the

signals. However, for the purposes of motion recognition with a statistical technique

such as HMMs, we would ideally collect data at a much higher rate. To understand

why this is, recall that HMM recognition relies on the calculation of the probability

that a given set of observations were produced by one of the trained models in the

system. A low data collection rate is therefore problematic at two different stages.

First, with limited data it is difficult to robustly estimate the observation distributions

and transition probabilities that define the models. Second, at a low data collection

rate, each motion we wish to recognize may be represented by only a relatively small

number of data points (15–25), and calculating the probability that these observations
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came from any particular model can only be done with low confidence.

One possible solution to this problem is to interpolate the data we have. In order

for this to be a valid approach, we make the assumption that the data we collected

at 10Hz is not aliased. Aliasing describes a condition that might occur if a dynamic

signal is sampled at a rate too low to capture the frequency of the transients and

the recorded data appears to have a lower frequency. In our system, we can rely

on some knowledge of the task to validate this assumption. That is, we know that

in general, surgical motions are performed in a relatively slow, deliberate manner

and it is unlikely that any significant motions were not captured at the 10Hz rate.

Also, an examination of the 10Hz data shows “smooth” position trajectories. This

suggests that if aliasing did occur, it resulted because of oscillatory motions occurring

at almost exactly integer multiples of 10Hz, an unlikely scenario. Figure 4.1 shows

the x position for the left master during a typical recording of the ring transfer task.

The interpolation is done by fitting a third-order polynomial to each pair of po-

sitions. The four coefficients in the third-order polynomial are solved for using the

pair of positions and the velocities recorded at each of those positions. Originally we

intended to use the velocity data recorded from the robot. However, this velocity is

often noisy enough that the resulting fitted polynomial is not smooth. Instead, we

perform a rudimentary numerical differentiation on the position data using a back-

ward difference calculation. The resulting velocity trace has all the key features of

the velocity data recorded from the robot, as seen by comparing Figures 4.2 and 4.3.

The resulting interpolated position data is shown in Figure 4.4. The dots on the

line show the original data points. In this example, three additional points were added
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Figure 4.1: Cartesian x position of the daVinci� left master manipulator during
performance of the ring transfer task.

between each original pair. There is no theoretical limit to how many points could

be added.

4.4.1 Effects of Interpolation

Although using interpolated data for model training and recognition appears to

be a valid approach, the real value of this or any technique is evaluated solely by how

it affects the ability of the system to automatically recognize motions. In order to

determine this effect, an analysis of variance (ANOVA) study was conducted using

data from the ring transfer task and the six motion segmentation described in Section

3.3.

The dependent variable in this study was the percentage of motions correctly
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Figure 4.2: x velocity taken directly from the daVinci�.
This data was too noisy to use with the interpolation
procedure.
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Figure 4.3: x velocity calculated with backward difference
from daVinci� position data. This data mimics the qualities
of the raw daVinci� data while being smooth enough to use
for interpolation.
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Figure 4.4: Interpolated Cartesian x position; there are three additional points be-
tween each original pair.

recognized for the isolated motion recognition procedure. There are many factors

that could contribute to variation in the dependent variable, such as the surgeon,

the data set used for training the HMMs, the experimental setup, the parameters

in the recognition algorithms, and other methods of post-processing the data. We

sought to hold all of these factors constant while recording the results of the automatic

motion recognition process for 20 combinations of two other factors: 1) the level of

interpolation and 2) the number of states in the hidden Markov model. We also chose

to consider the surgeon as a blocking factor.

The interpolation levels represent the number of additional points generated be-

tween each pair of points in the original data. The levels were 0, 1, 3, and 5 points.

We considered five possible values for number of states in the model: 1, 2, 3, 4, and
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Table 4.1: Percentage of motions correctly recognized

Number of States
Points of 1 2 3 4 5

Interpolation S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 55.6
3 50.0 50.0 50.0 50.0 11.1 33.3 11.1 33.3 16.7 33.3
5 50.0 50.0 11.1 27.8 11.1 27.8 11.1 27.8 11.1 27.8

5. Data from two surgeons were recorded and used in the experiment. Ten record-

ings from each surgeon were used to train the models, and isolated recognition was

attempted on a total of 36 motions taken from three additional recordings done by

each surgeon (six recordings with six motions each).

The results are presented in Table 4.1. The recognition percentage for each of the

two subjects (S1 and S2) is shown for each combination of factor levels. Using the

isolated motion recognition procedure, the percentage reflects the fraction of the 36

motions that were recognized correctly.

The results of the ANOVA study showed that increasing the number of inter-

polated points has a negative effect on the recognition percentage. All pairwise-

comparisons between the levels of interpolation showed no significant difference (p =

0.95) between no interpolation and adding one point, but all other increases in the

level of interpolation significantly worsened the recognition rate. This shows that

interpolation will not generally improve recognition rates, likely because it does not

add truly new information.

Similarly, increasing the number of states also leads to a decrease in the recognition

rate. Here the all pairwise-comparisons showed significant differences for all levels
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except for levels 3, 4, and 5. This result is not completely unexpected, and the

mechanisms are better understood. Adding states to the model creates a need to

estimate additional parameters. With a limited amount of data for training, the

estimates for all parameters become less robust, which could lead to a decrease in

the recognition rate. Also, if the underlying system being modeled by an HMM does

not exhibit a sufficient level of complexity, adding additional states creates a model

that is not properly matched with the system. This condition may also lead to a low

recognition rate. These results seem to indicate that the underlying process is simple

enough that it is best modeled with a single-state HMM.

4.5 Linear Discriminant Analysis

As implied by the preliminary experiments discussed in Section 2.3.1, the choice

of features included in the observation vector has a definite effect on the performance

of an HMM-based recognition system. It is easy to imagine that two or more distinct

motions could have some similarities in the values of particular variables. Other

variables may differ a great deal, and the ones that differ significantly are more useful

for discriminating between motions and ought to be included in the observation vector.

Another less obvious issue is that too much information in the observation vector

may also be problematic. If we create a more complex model via a larger observation

vector, we require more data to estimate the model parameters. However, because we

have a limited amount of training data, the result is often poor parameter estimation

and reduced recognition capability.
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In short, for HMM-based motion recognition to work reliably, each model must

have distinct parameters from all other models, a condition which will arise only

if each of the motions we wish to recognize are somehow distinct from all other

motions in the data we use to train the models. This separation criteria is part of

the motivating idea behind performing a linear discriminant analysis (LDA). LDA

will transform our data into a reduced dimension space in such a way as to maximize

the between-motion separation while minimizing the within-motion variation. The

transformed data is then used to train models; test data must also be transformed to

this new “feature space” before we can attempt recognition. The reduced dimension

of the feature space is an ancillary benefit that will reduce the complexity of the

models and the computing requirements for training and recognition. LDA has been

applied in speech recognition systems for many years; [5, 18, 57, 58] are some of the

earliest works reporting this application.

In order to demonstrate the effectiveness of LDA we considered several test cases.

These test cases, much of the following discussion, and our own LDA implementation

are drawn heavily from the work of Geirhofer [26]. A formal treatment can be found

in [22]. Figure 4.5 shows data from two different “classes” (the different motions in

our application). There is very little separation between these classes in either the

x or y dimensions, as demonstrated by the general distribution curves for each class

on the x-axis (y-axis distributions are not shown). If we attempted to classify a new

point into one of the two groups using the x and y values independently, there are

regions in which the probability of the new point belonging to either class are roughly

equal, and the chance of making an error is therefore quite high.
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Figure 4.5: Example of data from two different classes with characteristic distributions
shown on the x-axis. The data can not be accurately classified using either the x or
y axes separately.

To improve this classification problem, we would like to transform the data so

that we maximize the separation between these classes while minimizing the within-

class variance. Any linear transformation can be represented as y = θT x. Here the

vector x represents a single sample with dimension m, so x ∈ 
m. We will use this

transformation to reduce the size of the feature space from m to p, so y ∈ 
p and

therefore θ is an m × p matrix. In practice, we will have n samples of x, forming an

n × m matrix X. Each sample is transformed to produce an n × p matrix Y.

As described by Geirhofer, the process to determine the appropriate θ begins by

calculating the mean covariance matrix for each of the J classes W j and the mean

covariance matrix for the complete data set T , each defined as
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W j =
1

Nj

Nj∑

i=1

(xi − xj)(xi − xj)
T

T =
1

N

Nj∑

i=1

(xi − x)(xi − x)T ,

where xj is the mean vector for each class and x is the mean vector for the complete

data set. Nj denotes the number of samples of data for class j, and N simply denotes

the total number of samples for all classes.

The optimization criteria for θ̂ is formulated as

θ̂ = argmax
θp

|θT
p Tθp|

|θT
p Wθp|

,

where

W =
1

N

J∑

j=1

NjW j.

It can be shown that, in order to satisfy the criteria, θ̂ is formed from the eigen-

vectors corresponding to the p largest eigenvalues of the matrix W
−1

T . The value

of p is chosen based on the desired dimension of the reduced space and a somewhat

subjective assessment of the magnitudes of the eigenvalues. For this example, we have

no choice but to transform the data to a single dimension, effectively projecting the

points onto a line. The original data and the line are shown in Figure 4.6. Histograms

showing the distribution of the data from each class on this line are shown in Figure

4.7. From this plot it is clear that there is no overlap between the two classes in the

new feature space, and a classification can now be done with much greater accuracy.
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Figure 4.6: Data from two classes
and a line representing the reduced-
dimension space to which the data will
be transformed.
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Figure 4.7: A histogram showing the
distribution of data from the two classes
in Figure 4.5 projected onto the line
shown in Figure 4.6.

We have applied this same technique to the data collected from the daVinci�

during the two-handed ring transfer task. During that task we recorded 83 of the 192

possible variables detailed in Section 3.2. Of these 83, the 5 servo times were dis-

carded immediately, leaving 78 variables related to the motion of the master and slave

manipulators. These 78 variables were the Cartesian positions, Cartesian velocities,

joint positions, and joint velocities for both the left and right master manipulators,

and the joint positions and joint velocities for left and right slave arms. To apply

LDA to this data we calculated the necessary elements to form the W
−1

T matrix and

plotted the 78 eigenvalues, shown in Figure 4.8.

The plot indicates there are only a handful of eigenvectors which, when used in

a transformation matrix, would have the largest effect. There is a sharp “elbow” in

the magnitudes of the eigenvalues after the sixth one, and a more subtle change after

ten; for this reason we selected p = 10 and formed our transformation matrix θ̂ from

the 10 eigenvectors associated with the 10 largest eigenvalues.
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Figure 4.8: Eigenvalues ofW
−1

T plotted in order of decreasing magnitude. The eigen-
vectors associated with the ten largest eigenvalues are used to form a transformation
matrix.

It is impossible to view the data and visually assess separation between the classes

in the reduced 10-dimensional space. However, as with other techniques, we are

primarily concerned with the impact of LDA on our motion recognition capability.

In order to assess this impact we tested the HMM system’s recognition rate under

seven different conditions, some with LDA and some without. One of the varying

factors in these tests was whether or not the data was normalized at some point in

the process. The normalization procedure is intended to compensate for the different

units of measurement used for different variables. For example, the joint positions are

measured in radians and may vary as much as 3 rad during the task. However, the

Cartesian position of the master is measured in meters, and would rarely vary more

58



Table 4.2: Effect of LDA and normalization on recognition rate

Case Data Normalized Recognition Rate
1 All data (78 columns) No 51.28%
2 All data (78 columns) Yes 44.23%
3 Master Cartesian velocities

and gripper joint position
No 57.69%

4 Master Cartesian velocities
and gripper joint position

Yes 49.36%

5 LDA reduced (10) No 33.33%
6 LDA reduced (10) Yes (pre-LDA) 78.85%
7 LDA reduced (10) Yes (post-LDA) 85.26%

than 0.15m during the task. During model training and recognition, variables with a

smaller magnitude of variation may assume a less significant role, regardless of their

true importance to the task. By normalizing each variable we hope to eliminate this

effect. Normalization for each variable is done by subtracting each sample from that

variable’s global mean and dividing by that variable’s global standard deviation.

In each of the test cases, we used data from 26 trials of the two-handed ring trans-

fer task to train hidden Markov models for six different motions. Once the models

had been trained, the recognition was tested using the isolated motion recognition

process. As there were six motions in each recording and 26 recordings, the recogni-

tion percentage indicates the fraction of the 156 total motions the system correctly

identified. The results are presented in Table 4.2.

The results for Case 7, with an 85% recognition rate, are by far the best results

achieved to date. It is interesting to note that, individually, both normalization and

LDA had a negative impact on the recognition rate, but when done together they had

a positive effect. This indicates an interaction between the two factors, not unlike the
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interaction observed between interpolation and the number of states in the ANOVA

testing discussed earlier. Although in this case the positive result is a welcome one, the

presence of these interactions makes the design of a generally applicable recognition

method difficult to achieve. It suggests that for each new technique we try, we can

not assess the significance of that technique alone. Rather, it must be assessed in

combination with all other techniques in every possible combination. This creates

an enormous possible solution space, and it is not clear if there is a more intelligent

or efficient method to use beyond a brute-force searching of this space for the best

combination of treatments.

To gain a further appreciation for the interaction between different techniques,

recall that the ANOVA analysis in Section 4.4 showed that interpolating the data

had a negative effect on the recognition rate. Our experiments with LDA came later,

and so interpolation had not been considered with this factor. Recent experiments,

however, showed some cases where a 1-point interpolation produced marked improve-

ment when used in conjunction with LDA and normalization. This interaction will

be explored further.
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Chapter 5

Motion-based Skill Evaluation

Chapters 2–4 discussed the concept and implementation of a system to automat-

ically recognize motions for the purposes of surgical skill evaluation. One question

remains: that is, once the motions have been recognized, how can they be used to

evaluate skill? Answering that question is the focus of this chapter. In short, an

examination of the number of motions, the distribution of motions, and the sequence

of motions all have potentially valuable roles for this purpose.

5.1 Preliminary Results

Concurrent with our preliminary work to validate the HMM-based motion recog-

nition approach, we also began to explore appropriate ways for evaluating skill from

motions. Three different subjects, all with no prior experience using the virtual en-

vironment described in Chapter 2 participated in an experiment. Each subject com-

pleted the dynamic task described in that chapter three times and their performances
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Figure 5.1: Total number of motions used by each subject in each repetition of the
ball task. Subject #1 used the fewest motions in each attempt and overall.

were recorded. Our intent was to automatically recognize the motions executed and

use this list to draw conclusions about the user’s skill. In this case we used a simple

method comparing the total repetitions between users over multiple sessions to obtain

a relative measure of skill.

Recognizing that our recognition system had not yet been refined to the point

that it would provide accurate, reliable results, the results of this experiment refer

to the manually identified sequence of motions utilized by each subject, rather than

results from the HMM recognition. Figure 5.1 shows the total number of motions

used by each subject in each of three attempts to complete the task described. The

plot shows that test subject #1 used fewer motions than the other two subjects in

all three trials.

As shown in Figure 5.2, we are also able to compare the time of usage of motions

I (wasted motion) and J (pause). Wasted motion accounts for 34% ±3% of the total

time for all three subjects. More revealing is the usage of pauses, found to be 7.4%
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Figure 5.2: Average time usage distribution for all motions. All three subjects spent
approximately 1/3 of the time using motion I (“wasted motion”)

for subject #1, 18.0% for subject #2, and 9.1% for subject #3.

From these results we conclude that subject #1 was the most skilled of the group.

We make this judgement using the assumption that a skillful user will require the

use of fewer motions to complete the task than a novice user and that this reduction

will come, in part, from more efficient execution. Such “economy of motion” is often

subjectively gauged for surgical skill evaluation.

5.2 Methods of Assessment

A motion recognition system enables numerous methods for assessing technical

skill. In general, there are three ways a list of motions may be used to evaluate skill.

These are examinations of

• the number of motions used
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• the distribution of motions used, and

• the sequence of the motions.

In general, these criteria do not have universal standards associated with them,

but rather, are most useful when used to compare individual surgeons, groups of

surgeons, or the progression of an individual’s performance over time. For example,

how many motions should be used to complete a bowel anastomosis on a training

model? Clearly this is heavily dependent on how we define each motion, and perhaps

the best standard we have is the average number of motions used by a group of highly

experienced surgeons to complete the task.

We would expect the number of motions used by a surgeon to correlate heavily

with the time used to complete the task. Time has been used as a metric for skill

in many previous studies, although there is almost universal agreement that time

alone does not tell the complete story. Knowing the number of motions used during

this time provides useful additional information that enables a reviewer to assess a

surgeon’s style. In general, it is agreed that fewer motions are better. Counting the

number of motions is accomplished by the segmentation algorithm in our system,

and closely follows the implementation of the ICSAD system discussed in Section 1.3.

The amount of time spent using each motion, as in our preliminary analysis, may

also give useful comparisons.

The distribution of motions refers to the relative use of each motion in the sys-

tem vocabulary. We expect to see two characteristics emerge using this analysis.

First, novices will likely use some motions more frequently than experts as a result
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of repetition. For example, if the task required positioning of a needle in a specific

orientation, novices may need to pick up and set down the needle multiple times

in order to achieve this goal, whereas an expert may be able to accomplish this on

the first attempt. Second, there may be some motions that are more “advanced,”

perhaps because they are a hybrid of multiple, more simple motions, which would

be used more frequently by expert surgeons because novices have not acquired the

necessary dexterity.

The discussion regarding the distribution of motions highlights the important

fact that these three criteria (number, distribution, and sequence) are not at all

independent from one another. The repetitions which would affect the distribution

of motions would also necessarily show up in the number of motions. That scenario

would also be precisely the type of characteristics we would expect to find through

analysis of the sequence of motions used. In this context, the term sequence refers

to patterns of motions. To date, we have not performed any analysis of this type,

but it holds some promise for identifying higher-level differences between experts and

novices in their completion of a task.

A comparative analysis using any of these criteria, like the one used in our prelimi-

nary work, would be particularly useful if a recognized expert was included in the test

group. Another possibility would be to track these measures over time or over many

repetitions of the same task by a single user in order to evaluate the user’s learning

curve. Over a large group of subjects trained with different methods, such analysis

could yield valuable insight regarding the efficacy of different teaching techniques.
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5.3 The Role of Recognition Rate

One obvious concern about this method of evaluation is that, if the recognition

system incorrectly identifies some of a user’s motions, any skill assessment based on

this recognition may be flawed. One way to justify the situation would be to view

errors in the recognition system like noise in a more conventional measurement. With

acceptably high recognition rates (perhaps greater than 95%), the recognition system

gives us a flawed picture of reality, but one that represents reality closely enough that

it may still be used effectively to evaluate skill.

A more compelling validation could be achieved through a comparison of the re-

sults from manual and automatic motion identification. If the conclusions reached

from a skill analysis using manually identified motions are consistent with the con-

clusions reached using automatically identified motions, then the system based on

automatic motion recognition has proven its worth. In actual use, knowing that

recognition errors almost certainly exist, it would be incorrect to draw conclusions

from small differences in the motion usage by a surgeon.

Regardless of whether we view errors as noise or choose to ignore them based on

prior validation, correlation of automatic skill evaluation with external metrics, such

as functional outcomes, would provide the best standard.
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5.4 Application to a Surgical Task

5.4.1 Task Description

An experiment was conducted to demonstrate the use of our methods for objective

surgical skill evaluation. Three surgeons completed a simple suturing task using the

daVinci� surgical system. The goal of this task was to form a continuous suture line

by passing the needle through a series of dots marked on a sheet of GORE-TEX�

acting as simulated skin. Prior to the start of the procedure the needle was placed

sticking out of the sheet near the first entry point. After the surgeon had completed

four throws, the needle was laid on the sheet near the last exit point and the grippers

were returned to the starting position near the middle of the workspace. Other than

the needle entry and exit points and the procedure for the start and end of the task, no

constraints were imposed on the surgeon. Each surgeon completed twelve repetitions

of the task using the same set of eight holes in the sheet. The experimental setup

and performance of the task are shown in Figure 5.3.

The three surgeons participating in the experiment had varying levels of experience

and training in both traditional and robotic surgery. The first subject was a senior

cardiac surgeon who had participated in training offered by the Intuitive Surgical,

Inc., the makers of the daVinci� system. Following training, this surgeon had used

the daVinci� in approximately 30 procedures over the year and a half prior to the

experiment. The second subject was a resident in cardiac surgery with less than one

hour of total exposure to the daVinci� system prior to the experiment; none of the

second subject’s exposure was formal training for robotic surgery. The third subject
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1 2

3 4

Figure 5.3: The suture task. 1)Retrieving the needle from the starting position.
2) Inserting the needle with the right tool. 3) Pulling the suture through the sheet
with the left tool. 4)The starting and ending position; the task is complete.

was an individual with no formal medical training and less than 20 minutes of robot

use prior to the experiment.

After reviewing the task performances, an eight-motion vocabulary was identified

for the task. The eight motions can be used to classify all the observed motion and

are defined as follows:

1. Motion of the right tool to retrieve the needle

2. Motion to position the needle for insertion
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3. Needle insertion

4. Motion of the left tool towards the middle or top of the workspace

5. Motion of the right tool towards the middle or top of the workspace

6. Pulling the suture through with the left tool

7. Pulling the suture through with the right tool

8. Orienting the needle with both left and right tools

5.4.2 Manual Evaluation

Using the procedures described in Section 3.4, a transcription for each trial was

manually identified. The transcription contains the times of transition between mo-

tions and a motion label for each segment. With these transcriptions we can make

an analysis of each surgeon’s performance.

Two general statistics, time and number of motions, immediately reveal differences

between the three subjects. Subject #1, the most experienced of the three, required

an average of 56.2 seconds to complete the task, while subject #2 used an average of

77.5 seconds and subject #3 (the least experienced) completed the task in an average

of 82.5 seconds. Not surprisingly, there is a correlation between time and the number

of motions used. The average number of motions used to complete the task were 19.0,

21.2, and 23.8 for subjects #1, #2, and #3, respectively. In fact, surgeon #1 used

the same sequence of exactly 19 motions for all twelve repetitions of the task.
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One observation of the experimenters was that the less experienced surgeons (sub-

jects #2 and #3) typically used more time passing the needle (motion 3) than surgeon

#1, particularly as they sought to guide the needle tip to emerge through the point

marked on the sheet. Indeed, the manual analysis reveals that surgeon #1 spent

a per-trial average of 23.5 seconds (41.8% of the total) using motion 3. Surgeon

#2’s per-trial average was 32.4 seconds (also 41.8% of the total) in use of motion 3.

Surgeon #3 used 34.1 seconds (41.3% of the total) using motion 3 on average.

Yet another indicator of skill can be gathered from the transcriptions. Notably,

surgeon #1 never resorted to using motion #8 (orienting the needle with both tools).

When retrieving the needle from the starting position and when handing the needle

from one tool to the other between suture throws, this surgeon was always able to

grasp the needle in an orientation that allowed immediate procession to the next

phase of the task. Surgeon #2 used this orienting motion twelve times; surgeon #3

used it seven times.

The transcriptions also reveal differences in the approach taken by each surgeon.

Surgeon #1 used one particular pattern of motions repeatedly throughout the task.

After pushing the needle through the sheet, this surgeon pulled the suture taught

with the left tool and then handed the needle to the right tool for another round of

positioning and insertion (motions 6, 4, 2, 3). The other two surgeons generally opted

to pull the suture a portion of the way with the left tool and then hand the needle

to the right tool, which was then used to pull the suture taught (motions 6, 7, 2, 3).

This stylistic choice has performance ramifications. The average total time of use for

motions 4, 6, and 7 on a per-trial basis for surgeon #1 was 16.1 seconds. This same
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statistic for surgeons #2 and #3 was 24.7 and 27.8, respectively. It appears that

choosing to pull the suture in two steps is a less time-efficient method. Additionally,

by choosing to pull the suture across the “wound” with the right tool, surgeons #2

and #3 placed undue stress on the simulated tissue that ought to be avoided.

5.4.3 Automatic Evaluation

The first step in the automatic evaluation process is segmentation. The sum of

squares algorithm, using combined velocity data from left and right hands and a

variation which places transitions on only one side of peaks in the sum of squares,

was used to produce an automatic segmentation. The average number of motions

automatically identified for each surgeon was 19.5 for surgeon #1 (2.6% error), 16.4

for surgeon #2 (22.5% error), and 19.2 for surgeon #3 (17.5% error). The higher

error rates for the less-experienced surgeons is not completely surprising—the motions

executed by these surgeons were noticeably less deliberate and controlled than those

of surgeon #1.

In practical use of a fully-automatic motion segmentation and recognition system

the automatically segmented data would be sent to the HMM recognition, which

would identify the most likely motion model to have produced each segment of data.

This list of automatically-identified motions would then be used for analysis. In

testing of such a system, however, this process is not helpful. If we wish to evaluate the

performance of the recognition system we must have a complete transcription, which

is not produced by the automatic segmentation. For this reason, in this experiment
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the manual segmentation of the data was used for model training and recognition.

The data was prepared for use with the HTK using the scripts and procedure

described in Section B.1 for an isolated recognition approach. Only data from sur-

geons #1 and #2 were used to train the models, as the motions from surgeon #3

were deemed too erratic to be useful. The training data included 15 total trials of

the task by surgeon #1 and twelve by surgeon #2. All motions from surgeon #1’s 15

recordings and twelve recordings each from surgeons #2 and #3 formed the training

set (a total of 739 motions). Overall the system correctly recognized 58.05% of the

motions. More detail regarding common errors can be understood by consulting the

“confusion matrix” composed by the HTK. This matrix has been reproduced below.

------------------- Confusion Matrix -------------

A B C D E F G H \% correct

A 30 6 0 1 1 0 0 1 [76.9]

B 2 83 2 14 10 0 0 0 [74.8]

C 4 0 83 0 8 0 44 18 [52.9]

D 0 0 0 93 0 36 0 32 [57.8]

E 27 11 2 0 20 0 0 1 [32.8]

F 0 0 0 8 0 104 0 5 [88.9]

G 8 0 0 50 0 2 0 13 [ 0.0]

H 1 0 0 2 0 0 1 16 [80.0]

--------------------------------------------------

The labels A–H correspond to the motions 1–8. Reading across the matrix rows

indicates how many times each motion was correctly recognized and how many times

it was mistaken for another motion. For example, motion 1 (label A) was correctly

recognized 30 out of 39 times, while it was mistaken for motion 2 (label B) six times

and once each for motions 4 and 5 (labels D and E). Motion 7 (label G) was never

correctly recognized—it was most often mistaken for motion 4 (label D). Although

on first examination these two motions do not appear to share similar characteristics,
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the definitions of motions in this vocabulary primarily focus on the movement of one

tool. It is possible that the combination of motions from the left and right tools

produced similar observations for these two motions and are thus easily confused.

5.4.4 Validation

A recognition rate of 58% was deemed too low for use in automatic evaluation, but

the results of the manual analysis provide useful insight. These results suggest that

surgeon #1 is the most skilled of the group—on average this surgeon used the fewest

motions in the least amount of time to complete the task. Using the same criteria,

surgeon #2 would be ranked as the second-most skilled of the group and surgeon #3

as the least skilled. This type of motion-based evaluation can be validated with the

use of external metrics. The structure of this experiment provides for several metrics

of this type. First, and probably most importantly, this analysis correlates perfectly

with the amount of training and experience in both traditional and robot-assisted

surgery for each surgeon. Experience is, in many ways, the de facto standard for

judging surgical skill today. Second, although this task did not have a functional

outcome associated with it, the GORE-TEX� sheet used as simulated tissue provides

some objective clues to each surgeon’s performance. It can be seen that surgeon #1

was able to target the needle exit points much more accurately than both surgeons

#2 and #3. The exit points for surgeons #2 and #3 are surrounded by numerous

holes created by the needle; two of the four exit points on surgeon #1’s sheet have

only one hole which was used for all repetitions of the task.
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One interesting result of this analysis is that, although surgeon #2 has far more

medical training than surgeon #3, surgeon #2 appears to fall somewhere in the middle

between surgeon #1 and surgeon #3. This suggests skills gained from traditional

surgical techniques are helpful in robot-assisted MIS, but do not directly correspond

to efficient execution without additional training.
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Chapter 6

Conclusions

Modern surgical training programs rely on the subjective assessment of senior sur-

geons to assess the technical skill of trainees. Clinicians and researchers alike desire

a method for objective evaluation; the emerging field of robot-assisted surgery is an

especially appropriate application for such evaluation. This essay describes a sys-

tem that accomplishes the goal of objective evaluation by automatically segmenting

a surgical procedure into separate motions, then recognizing these motions using sta-

tistical motion models acquired from training data. Motions used in the completion

of a surgical task are used to assess skill; differences in the number, distribution, and

sequence of motions may all be used to discriminate between more and less skilled

surgeons.

We have accomplished automatic motion recognition by addressing two sub-problems

of segmentation and recognition separately. Segmentation—identifying the transi-

tions between motions—is done with algorithms using the sum of squares of the

Cartesian velocity of the master manipulators. During motion the sum of squares is
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generally much greater than zero, while during periods of inaction and motion tran-

sition it falls to approximately zero. The “peaks” and “valleys” in the sum of squares

align well with the observed transitions between intuitively-defined motions within

a task. The complete set of motions we would like to recognize form the motion

vocabulary. Unlike analogous speech recognition systems, there is no predefined or

standardized surgical motion vocabulary. We seek a vocabulary that is appropriately

general, portable, meaningful, and amenable to automatic segmentation and recogni-

tion. The vocabulary defined for the suturing task described in Chapter 5 has many

of these qualities.

Recognition, the process of identifying the motions between transitions, is ac-

complished with hidden Markov models (HMMs). We have applied HMMs at the

motion level. That is, we train one HMM for each motion. Automatically segmenting

the motions with the sum of squares algorithm enables use of an isolated motion

recognition approach which has improved recognition rates in comparison to simul-

taneous segmentation and recognition under the HMM framework. Further gains in

recognition rate have been achieved through the use of several additional techniques.

Interpolation was applied to overcome problems associated with a low data collection

rate imposed by the daVinci� API. Linear discriminant analysis is used to map the

motion data into a reduced-dimension feature space which maximizes the separation

between data from different motions. Data transformed in this way has proven to be

superior for model training and recognition. Normalizing the data reduces the effects

of noise and measurement unit discrepancies and further enhances recognition when

used together with LDA.
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For fully objective evaluation, our approach relies first on an effective, accurate

automatic segmentation, then on a recognition system with an acceptably-high recog-

nition rate. Although many gains have been made, typical recognition rates are not

(and likely never will be) a perfect 100%. Nonetheless, motions recognized by the sys-

tem may still be used for skill evaluation. The system can be validated if differences

in skill identified by the system agree with the amount of prior surgical experience,

objective performance measures, and a subjective skill assessment the surgeons in

question.

6.1 Future Work

There are many aspects of this topic that could be fruitful areas for future research.

Under the HMM framework there are nearly countless variations, extensions, and

techniques that could be applied in search of more consistent and accurate motion

recognition. Other techniques could also be applied that may result in improved

recognition. Principal component analysis (PCA) is one of these. PCA is often used

in classification problems, and would most likely take the place of LDA if utilized

here. If an isolated recognition approach is to be used, more sophisticated methods

for automatic motion segmentation could also be investigated.

Perhaps more interesting would be further investigation regarding a generalized

motion vocabulary. Additionally, identification of a grammar for this vocabulary

could yield at least two valuable results. First, following the pattern of speech recog-

nition systems, the grammar could be used to improve the results of the motion

77



recognition task. Second, farther down the road, identifying a surgeon’s use of cer-

tain “grammatical idiosyncrasies” might be revealing of their skill or style.

A well-defined grammar could also play a role in a potential, far-flung application

of this work that would enable surgical robots to function autonomously using motion

models trained by human surgeons. A robot could potentially carry out oft-repeated

surgical tasks such as knot-tying, or perhaps even greater portions of surgical pro-

cedures, particularly if enhanced with vision and other environmental sensors. If

attempting to accomplish a higher level task, a robot would rely on a grammar to

construct the proper sequence of motions.

Exploring alternate recognition techniques is another area of potential research.

HMMs assume that each observation is independent from the last—an assumption

that is clearly not true for observations such as positions in our motion data. Seg-

mental Markov models [23] incorporate knowledge of dependence from observation

to observation and thus model the trajectory of observations without independence

assumptions. Yet another method, graphical models, are a generalization of hid-

den Markov models [59]. Graphical model systems can define arbitrary dependencies

and learn parameters automatically from the data. Although this approach may not

produce a meaningful motion vocabulary, improved recognition could justify such a

choice.

Regardless of the recognition technique, there is a great deal of work to be done

in surgical skill assessment using automatically recognized motions. Many of the

motivations driving this research remain unfulfilled. Major initiatives include: further

validation of this approach to skill evaluation by correlating with functional outcomes
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of skilled tasks; integration with virtual reality surgical training systems; identification

of learning curves for surgeons new to surgical robotic systems; and comparisons of

skill between groups of surgeons trained differently. Our hope is that research in this

area will yield practicable systems for objective skill evaluation that, when integrated

with surgical training and feedback, will result in an improved standard of care for

all surgical patients.
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Appendix A

Segmentation Details

A.1 Manual Segmentation Methods, Techniques,

and Results

The first time this manual segmentation procedure was carried out, it was done

using the slow-motion replay feature on a VCR. This feature on the particular VCR

used played back video at approximately 1/7 normal speed. Using a stopwatch, the

timing of events marking a transition from one motion to another were recorded

during the viewing. There is some room for interpretation in the timing of these

events, and there is also room for error in the starting and stopping of the stopwatch.

To mitigate the effect of these errors, each recording was viewed three times and the

times obtained from each viewing were then averaged and to obtain a good estimate

of the actual timing. If, after three viewings of a recording, the three transition times

had a standard deviation greater than one, then the process was repeated for that
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recording until all transition times agreed for favorably. This process seems to work

well: although the error factors lent as much as 0.5 s of variation in the recorded time

of events from viewing to viewing, this error translates to a mere 0.5/7 = 0.071 s in

real time. Recalling that the data is recorded at 10Hz, this corresponds to an error

that is less than the period between individual data points. Because in some cases

the errors are positive and negative in others, averaging the three trials most likely

balances these effects and produces the best estimate.

While this process leads to a good estimate of the timing of transition events as

viewed on the video, it is necessary to correlate these times with the actual data.

During recording of each task we took steps to try and make these things line up.

Each task started with the daVinci�tools held motionless with the grippers closed.

Data recording was preceded with a countdown, and at the moment recording was

initiated the grippers were rapidly opened by the test subject. Likewise, each task

ended by closing the grippers and holding still. A stopwatch was also used to record

the total time of each trial. After the video review process was complete, the total

time for each recording was compared to the time extrapolated from the number of

data points and the data collection rate. In all cases, the time extrapolated from the

the data was larger than the time derived from adding the times obtained from the

slow-motion observations. Moreover, the time recorded during the session and the

time of the recording observed on the tape do not agree. On average, the difference

was 0.59 s, or about 4%.

The reason for these discrepancies has not been conclusively determined. There

were two primary hypotheses: 1) The motion did not start and stop at the same
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time as the data recording 2) the VCR used did not play the video at real speed. To

test the first hypothesis, the data was plotted and examined. In general, changes in

position and velocity were often observed to lag the start of the recording by one or

two data points (0.1-0.2 s). However, it also appeared that approximately the same

number of data points were inappropriately clipped at the end of the data, yielding

a zero net time addition. If the second hypothesis were true, we would expect to see

a constant scaling between the time observed using the stopwatch during recording

and the the time observed on the tape. No such scaling exists.

In the end, a constant scaling factor was used to adjust the transition times for each

file to match the total number of data points. Because the scaling was administered to

the entire recording, which contained six motions, the total change for each segment

time was, on average, less than one data point. Therefore it is likely that, even in the

worst-case, overall this method produced segment times which group only a handful

of data points in the wrong motion.

A.2 Automatic Segmentation Algorithms

This section contains short descriptions of the Matlab script files (m-files) devel-

oped for automatic segmentation.

All of these scripts are variations on a central strategy for automatic segmentation

using the sum of squares algorithm discussed in Section 3.5. The scripts with “com-

bined” in the name combine the Cartesian velocities from the left and right master

manipulators into a single sum of squares measure. Accordingly, scripts with “sepa-
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rate” in the name consider the sum of squared Cartesian velocities from the left and

right hands individually. In the tasks we have tested, motions are often performed

with one hand at a time. Thus, any motion of the “inactive” hand may adversely

affect the rise and fall of the sum of squares. The separate approach gave the best

scores for the ring transfer task discussed in Section 3.3.

A second classification defines these algorithms. The “altered” tag refers to the

style of segmentation in which ”reach and orient” are defined as one motion. This

style of motion definition manifests itself in the automatic segmentation essentially

as a segment at the front of each peak, rather than in front and behind.

All of these scripts make use of smoothed data and thresholds for determining

“peaks” and “valleys.” These parameters can be varied to maximize performance

with a particular data set.

combined evaluation.m This script uses a smoothed sum of squares of the master

Cartesian velocities to estimate segment times. The algorithm finds local max-

ima and then looks for minima below some threshold. This version considers

the velocities of the left and right masters together and places a transition on

the front and back of each peak.

combined evaluation altered.m This script uses a smoothed sum of squares of

the master Cartesian velocities to estimate segment times. The algorithm finds

local maxima and then looks for minima below some threshold. This version

considers the velocities of the left and right masters together but, unlike com-

bined evaluation.m, places a transition only on the front of each peak.
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separate l and r evaluation.m This script uses a smoothed sum of squared Carte-

sian velocities from each of the master manipulators individually to finds local

maxima and minima. Transitions are identified on the front and back of each

peak.

separate l and r evaluation altered.m This script uses a smoothed sum of squared

Cartesian velocities from each of the master manipulators individually to finds

local maxima and minima. Transitions are identified only on the front of each

peak.

combined evaluation fourth power.m This script is essentially the same as com-

bined evaluation.m, but instead of the sum of squared velocities, it sums the

velocities after taking them to the fourth power. Because the velocities are

typically less than one, this has the effect of nearly eliminating low-magnitude

velocities from consideration. This version considers the velocities of the left

and right masters together and places a transition on the front and back of each

peak.
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Appendix B

Recognition Details

B.1 Procedures

B.1.1 Primary Requirements

In the system framework we have created there are four basic phases required to

go from the raw data collected during a task performance to the recognition results

obtained from the HTK [17, 56]. These steps are 1) segment the data, 2) manipulate

the data and create files about the data using a collection of Matlab scripts, 3) format

the data files and compile additional information about the data using HTKWrite, 4)

use a Perl script to execute the HTK tools. The following is a more detailed outline

for each of these steps.

• Segment the data (Chapter 3)

– Decide which motions are to be recognized

– Determine the place at which each motion starts and stops in the data

85



• Create files containing information about the data (details about the structure

of each file follow this section)

– Each recording needs three files

∗ data.dat – one for each recording; contains the raw data such as

positions, velocities, forces, etc. that form the observation vector for

the HMM. Could also be transformed data from a process like linear

discriminant analysis.

· determine which variables will be included in the observation vec-

tor

· use Matlab to manipulate the data, select the proper columns, and

write the file

∗ seg_data.dat – one for each recording; has information about which

motions were used and times of transition between them

∗ data_points.dat – one for each recording; refers to the number of

rows in the file

– Each data set gets one additional file

∗ dimensions.dat – one of these for each set of data

– Put the files into the proper structure in the Input_data directory in the

HTK folder

∗ one folder for each training/test file, labeled consecutively (tr1,tr2,tr3,etc.,

or te1,te2,te3, etc.), containing all three .dat files for that data
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• Format the data (both training and test) and create files needed for the HTK

using the HTKWrite program (written in C++). It does the following:

– reads in information regarding the total quantity of data

– iterates through each of the training files

∗ determines total number of segments and transition times from seg_data.dat

∗ reads in recorded data from data.dat

∗ writes the .usr file containing properly formatted data and the HTK

header

∗ writes the .lab file containing segment labels and transition times

– repeats the above process for each of the test files

– creates bcplist files

– creates bcpvocab files

– for both test and training files, writes file locations and file stubs (filename

string without extension) for perl script

– creates protoconfs files

– creates network files

– creates lattice file – However, there is something wrong with the HTKWrite

code and the network and lattice files are not created with HTKWrite, they

must be done by hand. And actually this may be for the best, since I’m

not sure how it would deal with the isolated setup anyway.
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∗ the lattice file defines the inter-model transitions that are allowed. By

doing so, it defines the grammar for task. See the HTK documentation

for the proper format.

– creates the network file: not sure what it does. I believe it is not used in

the current configuration.

• Run the HTK – uses a Perl script to call each of the separate HTK tools

– a Perl interpreter must be installed on the machine for this to work. I have

been using the most recent one available from http://www.activestate.com/

– the script may be modified to call each of the HTK tools with different

parameters, which can result in different model topologies, different thresh-

olds, different output being printed, etc.

∗ Some of the most important parameters that I have varied in the past

have been the number of states in each model, the pruning thresh-

old, and the model transition penalty. The number of states can be

changed by modifying the proto_s1_m1_dc.pcf file (or whatever file

the Perl script is called with, which contains this information in the

proper structure) in the \HTK\protoconfs directory. The pruning

threshold is changed by altering the way the HVite tool is called un-

der the ’-t’ parameter. The model transition penalty can be changed

by altering the “$pOptStr” parameter in the “TESTING” section of

rundemo.pl.
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B.1.2 Detailed Procedure

A collection of Matlab scripts and C++ programs have been written to manipulate

and create the files and folders necessary to actualize the four phases described above.

This procedure is visualized in the flowchart of Figure B.1 and outlined in further

detail here:

• If the data is to be interpolated, run dv_spline_interp.m

– creates new logfiles with the interpolated points in a new directory

– creates a new segment_times.dat file with the recalculated segment times

• If the data is to be normalized, run dv_normalize.m

– creates new logfiles with normalized columns using the global mean and

standard deviation

• if the dimension of the observation vector is to be reduced with a linear discrim-

inant analysis (LDA), run the appropriate version of the dv_lda scripts. For

tasks with a defined, invariant sequence of motions use dv_lda.m, tasks with a

variable sequence of motions require the use of dv_lda_variable.m

– creates new logfiles with the data having been transformed and reduced in

dimension

• run the appropriate version of the dv_create_files scripts (depends on system

architecture, structure of training data, and segmentation method).

– specify which files are train/test/neither/both
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– for each file used, copies logfile to data_all.dat in appropriate Input_data

directory

– uses transition times from segmenting process and creates seg_data.dat

– creates dimensions.dat for the data set

• run the dv_select_columns.m script.

– asks for desired columns and writes data.dat for all test and training files

– creates data_points.dat for each file

• run HTKWrite (located in the HTK folder)

– edit/create the monLattice file by hand

• run the HTK Perl script

– evaluate results, get disappointed, throw up hands in exasperation
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B.2 Data Preparation Algorithms

This section contains short descriptions of the Matlab script files (m-files) and

C++ programs most commonly used to prepare data for automatic recognition with

the HTK. Other scripts exist in the library with these; if a script described here

doesn’t meet the needs of a future task, it would be worth checking to see that a

script which performs the desired task doesn’t already exist in some form. The files

here are listed in alphabetical order.

dv create files.m This script queries the user for a designation for each logfile (ei-

ther train, test, or neither) and then creates the seg_data.dat file for all the

files to be used. This step requires a transcription of motions; this version of the

script assumes an invariant sequence of motions in the task. It then copies the

logfile into the appropriate tr* or te* directory as data_all.dat. It also cre-

ates a file in this directory, source.txt, which records which logfile was copied

into this directory. Lastly, it creates the dimensions.dat file that is needed

for every data set—it identifies the number of training and test files in the set.

This version is used for continuous motion recognition.

dv create files autoseg.m This version of dv_create_files.m is designed to deal

with an automatic segmentation. A manual segmentation is used for the training

files and the automatic segmentation is used for the test files. The script is able

to cope with the fact that the automatic segmentation may not have the same

number of motions for each file. This version is used for continuous motion

recognition.
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dv create files isolated.m This version of dv_create_files.m is designed for use

with isolated motion recognition. In the isolated case the transcription is used

first to create the seg_data.dat file for all the files to be used. Second, it uses

the transcription to break up the original logfiles and use one-motion portions

to create the data_all.dat files in the tr* and te* folders. It still creates a file

in this directory, source.txt, which records which motion in which logfile was

used to create the data_all.dat.

dv create files variable.m This version of dv_create_files.m is for dealing with

data which has many repetitions of each motion in the recordings. The HTK

allows for only one example of each model in any training file, but we want to

use the extra repetitions for training too, so this script breaks up these record-

ings to form multiple training files. The script can also handle transcriptions

with varying number of motions. This script prepares files for isolated motion

recognition.

dv lda.m This script performs a linear discriminant analysis on the data to enable

a reduction in dimensionality and a mapping to a new feature space. The script

calculates the necessary elements and displays an ordered plot of the eigenvalues

of the W
−1

T so the user can make a judgement regarding the dimension of the

new feature space. It then creates new, transformed logfiles that can be used

in other scripts in the same way as the original logfiles.

dv lda variable.m This version of dv_lda.m has been modified to deal with data

with a varying number of motions in each recording; it is otherwise identical to
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the original version.

dv normalize.m This script normalizes all of the data in a set and creates new,

normalized logfiles which may be used as input to other scripts in the library

the same way as the original files.

dv select columns.m This script deals with three files needed for the HTK process.

A data.dat file is created that contains only the observations of interest from

the complete set contained in data_all.dat. Since the introduction of LDA

into our process, data.dat is often a direct copy of data_all.dat, as the LDA

process essentially selects the desired observations. The dimensions.dat file

for the entire set is modified to include the number of columns in the data.

Lastly, the data_points.dat file is also created for each recording.

dv spline interp.m This script is used to interpolate daVinci data with a third

order cubic polynomial. It calls a subroutine, dv_spline_interp_sub.m which

performs a simple numerical differentiation in order to have enough values to

solve for the coefficients of the polynomial. It creates new, interpolated logfiles

which can be used as input to other scripts.
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